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Quasinormal modes provide valuable information about the structure of spacetime outside a black hole.

There is also a conjectured relationship between the highly damped quasinormal modes and the

semiclassical spectrum of the horizon area/entropy. In this paper, we show that for spacetimes charac-

terized by more than one scale, the ‘‘infinitely damped’’ modes in principle probe the structure of

spacetime outside the horizon at the shortest length scales. We demonstrate this with the calculation of the

highly damped quasinormal modes of the nonsingular, single-horizon, quantum corrected black hole

derived in [A. Peltola and G. Kunstatter, Phys. Rev. D 79, 061501 (2009); ].
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I. INTRODUCTION

During the last decade, a great deal of attention has been
given to the ‘‘ringing’’ or quasinormal mode (QNM) spec-
tra of black holes. QNMs are the damped fundamental
frequencies at which black hole spacetimes resonate
when perturbed. The long-lived QNMs are in principle
observable in the gravitational waves emitted during the
ring down of a black hole formation. The highly damped
modes, while not in practice observable, have in recent
years become a subject of interest due in part to a con-
jecture by Hod [1] relating them to the spacing between
semiclassical area/entropy eigenvalues of the quantum
black hole. Hod’s argument was based upon earlier nu-
merical results for the highly damped QNMs of the
Schwarzschild black hole and the Bohr Correspondence
Principle.

Our purpose here is not to settle the controversy over this
intriguing conjecture. Whether or not one subscribes to a
specific relationship between highly damped QNMs and
the black hole area spectrum, the impressive body of
calculations in the literature makes it clear that there is a
deep connection between the black hole QNMs and the
small scale structure of the black hole spacetime. The
nature of this connection was at first considered a bit
mysterious due to the fact that the calculation of the
asymptotic QNMs required analytic continuation of the
exterior solution to the entire complex r-plane. This gen-
erated questions along the lines of: ‘‘Why would the vibra-
tional modes exterior to the horizon care about the
singularity at the origin?’’ An answer to this was already
implied in the paper of Andersson and Howls [2] in the
context of the highly damped QNMs of Reissner-
Nordström (R-N) black holes. It had been observed that
in the highly damped limit, the real part of the QNMs of the

R-N black hole approached lnð5Þ when the charge q was
taken to zero. This appeared to be in contradiction to the
fact that for the Schwarzschild solution (which of course is
the q ! 0 limit of the R-N solution) one obtains lnð3Þ.
Andersson and Howls suggested that the explanation for
this apparent contradiction lay in the existence of two
separate scales in the R-N problem, both in addition to
the scale set by the ADMmass of the solution. They argued
that care had to be taken as to the order in which the various
scales were taken to zero or infinity. Specifically, the q ! 0
limit does not commute with the j!ij ! 1 limit, where !i

is the imaginary part of the complex QNM frequency !
which is also the damping rate. If the former limit is taken
first, one obtains lnð3Þ whereas if the latter limit is taken
first, lnð5Þ is the result. They noted therefore that while
lnð5Þ is the correct R-N result for very high damping, there
should be an intermediate range of damping for which the
Schwarzschild value of the real frequency is correct. Order
of magnitude arguments suggest this range in four space-
time dimensions (4� d) to be:

1 � GMj!j � ðGMÞ4=q4; (1.1)

where M is the black hole mass and G is Newton’s gravi-
tational constant. Note that j!j � j!ij in the large damp-
ing limit. This observation was verified explicitly in [3]. A
similar situation also appears in Kerr black holes with
small angular momentum. In the case of Kerr spacetime,
it was observed by Keshet and Hod [4] that in the highly
damped limit, the real part of the QNM frequency ap-
proached zero when the angular momentum per unit
mass a was taken to zero. This is again in contradiction
to the fact that for the Schwarzschild solution, which is the
a ! 0 limit of the Kerr solution, one obtains lnð3Þ. This
issue was resolved by Green, Mulligan and one of us in [5],
where it was shown that in the intermediate range of

1 � GMj!j � GM

a
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the Schwarzschild value of the real part of the QNM
frequency is recovered. These observations have important
implications for interpreting the highly damped QNMs.

Of course the QNMs cannot, by definition, probe the
black hole interiors directly. However, for each indepen-
dent scale associated with the black hole exterior, there is
an appropriate range of dampings over which the QNM
spectrum is sensitive to the structure of the exterior metric
at that scale. It is perhaps worth elaborating this point a bit
further. The equations governing the propagation of black
hole QNMs can invariably be reduced to a scalar equation
of Schrödinger form:

d2c

dr2
þ RðrÞc ¼ 0; (1.3)

where the ‘‘potential’’ RðrÞ depends explicitly on the form
of the metric, and on the QNM frequency !. For example,
for pure electromagnetic and gravitational perturbations in
the background of a 4� d R-N black hole, the potential
can be approximated by

RðrÞ � 1

f2

�
!2 � lðlþ 1Þ

r2
þ j2 þ lðlþ 1Þ

r3
2GM

� j2 � 1=4

r4
ð2GMÞ2 þ j2 þ 6

r5
2GMq2 � 6

r6
q4
�
(1.4)

when q � GM. Here j is the spin of the perturbation,
which is 0 for scalar, 1 for electromagnetic and 2
for gravitational perturbations. In the case of infinite
damping, i.e.

GMj!j � ðGMÞ4
q4

� 1; (1.5)

the analytic techniques are only consistent if one retains
the last term in RðrÞ, despite the fact that exterior to the
horizon, r > 2GM, this term is much less than those that
depend only on M. That is

q4=r6

ðGMÞ2=r4 <
q4

ðGMÞ4 � 1: (1.6)

As we will soon see in the analytic calculations, this is due
to the fact that we analytically continue the approximate
solutions of wave equation (1.3) to the whole complex
plane. In these calculations, the poles of the function
RðrÞ in the entire complex plane need to be taken into
consideration for determining the QNM frequency spec-
trum. Since R, in addition to the inner and outer horizons,
also diverges at the origin of the complex r-plane, in the
infinite damping limit (1.5) all the terms in (1.4) can be
neglected compared to!2 except when r ! 0. Near r ¼ 0,
we only need to keep the term with the biggest power of r
in its denominator. This is what is meant by the statement
that for suitably large damping, the corresponding QNM
spectrum is sensitive to the small scale structure of the

spacetime. On the other hand, for intermediate damping,
as in (1.1), one can safely ignore all terms containing q
so that the spectrum is purely Schwarzschild and contains
no information about corrections due to the presence of
electric charge and the inner horizon. This is because the
analytic calculations for intermediate damping can be done

in a region of the complex plane where jrj * j
ffiffiffiffiffiffi
GM
!

q
j. In this

region of the complex plane

q4=r6

ðGMÞ2=r4 &
q4j!j
ðGMÞ3 � 1: (1.7)

Similar arguments can be made for the Kerr case as well.
The above discussion leads one to ask about the role of

the classical singularity in determining the highly damped
QNMs. At some scale, presumably the Planck scale, quan-
tum gravity corrections will become important. A great
deal of work has recently been devoted to the question of
how, or indeed if, the singularity at the center of black
holes gets resolved by quantum gravitational effects. Most
of this work has been in the context of loop quantum
gravity [6–13]. One can therefore ask how the resulting
quantum gravity motivated corrections to black hole space-
times exterior to the horizon affect the highly damped
QNMs. Or to put it differently, can one even in principle
obtain information about the quantum gravity induced
small scale structure of a quantum corrected (QC) black
hole by measuring its highly damped QNMs?
The purpose of this paper is to examine this question

in the context of the particular QC black hole space-
time derived by Peltola and one of us in [14] using an
effective polymer quantized theory of the homogeneous
Schwarzschild interior. This QC black hole has several
properties that make it particularly well suited for such
an investigation. First of all, it is possible to explicitly write
down a relatively simple analytic expression for the metric.
This is a necessary condition for doing the analytic calcu-
lations of the highly damped QNMs. Secondly, the solution
is completely regular everywhere, but has only a single
horizon. The exterior is asymptotically flat and at large
distances takes the usual Schwarzschild form. Using
the language of the maximally extended Kruskal spacetime
to describe the interior, one finds that the throat of
the Einstein-Rosen wormhole contracts to a minimum
‘‘bounce radius’’ before expanding to infinity. Thus the
interior asymptotes to a Kantowski-Sachs type homoge-
neous but anisotropic spacetime. The singularity is avoided
because, in effect, r ¼ 0 is not in the manifold. It is there-
fore intriguing to see how the nonsingular nature of the
interior affects the highly damped QNMs as (in principle)
seen in the exterior.
It should be noted that there are two commonly used

methods for the analytic (as opposed to numerical) calcu-
lation of asymptotic QNMs. The Motl-Neitzke (MN) [15]
method was first used to obtain analytic expressions for the
highly damped QNMs of Schwarzschild black holes in four
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dimensions and higher. These results were later confirmed
using a slightly different method by Andersson-Howls
(AH) [2]. Both methods have since been applied to a large
variety of black hole spacetimes. In some cases, such as the
Gauss-Bonnet black hole, it turns out that the analytic
structure of the solution makes it difficult to implement
the AH procedure [16]. This is related to the presence of a
branch point singularity in the Schwarzschild form of the
metric, which appears in the complex plane. The QC black
hole that is examined here, despite being nonsingular, also
has such a branch point singularity in the Schwarzschild
form of the metric and a preliminary examination points to
potential difficulties with the AH method in this case as
well. We will show that the MNmethod can nonetheless be
implemented in a rather straightforward fashion.

The structure of the paper is as follows. In Sec. II we
review briefly the AH and MN methods for the
Schwarzschild black hole, introducing the notion of
Stokes and anti-Stokes lines for the uninitiated.
Section III is devoted to a review of the QC black hole of
[14], including a presentation of the Stoke/anti-Stokes
lines for this case as well as a demonstration of why the
AH method is problematic. In Sec. III, we also present our
calculation of the asymptotic QNMs for the QC black hole
using the MN method. Finally, we close in Sec. IV with
conclusions and prospects for future work.

II. HIGHLY DAMPED QUASINORMAL
MODE CALCULATIONS

A. General method

In order to illustrate the method in its simplest form we
consider the QNMs of a massless scalar field propagating
in a Schwarzschild black hole background. The equations
for the gravitational wave modes, after the appropriate
tensor decompositions [17], are qualitatively similar. The
Klein-Gordon equation we wish to consider has the form

@�
ffiffiffiffiffiffiffi�g

p
g��@�� ¼ 0; (2.1)

where g�� is the metric and g is its determinant. In a

completely general, spherically symmetric, static space-
time, the line element can be written as

ds2 ¼ �fðrÞdt2 þ gðrÞ�1dr2 þ r2d�2: (2.2)

We separate variables ðr; tÞ as follows

�ðr; tÞ ¼ e�i!t c ðrÞ
r

ffiffiffiffi
F

p ; (2.3)

where F ¼ ffiffiffiffiffiffi
fg

p
and ! ¼ !r þ i!i is in general a com-

plex frequency such that !r > 0 and !i < 0. The spatial
part of the wave function c ðrÞ obeys

d2c

dr2
þ RðrÞc ¼ 0; (2.4)

where the effective potential RðrÞ is

RðrÞ ¼ !2

F2
� 1

2

@2rF

F
þ ð@rFÞ2

4F2
� 2

r

@rF

F
: (2.5)

Note that for nonextremal horizons F has a simple zero at
the horizon location. Moreover, for asymptotically flat
spacetimes, F ! 1 as r ! 1 so the potential R ! !2.
The asymptotic solutions are therefore ingoing and out-
going spherical plane waves, as expected.
The QNMs are defined as usual to be solutions to the

wave equation that are purely ingoing at the (outer) horizon
and outgoing at spatial infinity. In the limit that the magni-
tude of the imaginary part of ! is large (this will be made
more precise in what follows), the only terms in RðrÞ other
than the term containing !2, which are relevant to the
calculation, are those that dominate near any poles that
may be present in R.
In the case of the Schwarzschild solution, the line ele-

ment is given by

ds2 ¼ �
�
1� 2GM

r

�
dt2 þ

�
1� 2GM

r

��1
dr2 þ r2d�2:

(2.6)

In this case there are poles in RðrÞ only near the horizon
and the origin. In the infinite damping limit, the relevant
part of the potential is simply

RðrÞ � !2

F2
� 4j2 � 1

4r2
; (2.7)

where j ¼ 0 for scalar perturbations. This is because we
analytically continue the approximate solutions of wave
equation (2.4) to the whole complex plane in the analytic
calculations. Therefore, the poles of the function RðrÞ in
the entire complex plan need to be taken into account for
determining !. Since R, in addition to the horizon, also
diverges at the origin of the complex r-plane, in the infinite
damping limit j!j ! 1 all the terms in (2.5) can be
neglected compared to the term !2=F2 except when
r ! 0. In this region of the complex plane, the term with
the biggest power of r in its denominator becomes
important.
The analytic calculation is based on the Wentzel-

Kramers-Brillouin (WKB) approximation, which gives
the two linearly-independent solutions to be

fðtÞ1;2ðrÞ ¼ Q�ð1=2ÞðrÞ exp
�
�i

Z r

t
Qðr0Þdr0

�
; (2.8)

where t is one of the zeros of the function QðrÞ. Generally,
one needs to take

Q2ðrÞ ¼ RðrÞ �X
P

1

4ðr� PÞ2 ; (2.9)

where P are the location of the poles of R. The second term
in Eq. (2.9) is added so that the approximate solutions to
the wave equation (2.4) in the limit r ! Pmatch the WKB
solutions (2.8) at the location of each pole in the complex
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plane. The derivation of this correction is explained in
detail in Section II of [2]. Note that each of these terms
only becomes relevant near the corresponding pole and can
be neglected elsewhere in the complex plane. We define the
square root of Q2 in the WKB solution so that the positive
exponential term (i.e. f1) is outgoing at infinity.

The basic idea of both the AH and MN analytic methods
is to find a closed contour around the pole at the event
horizon in the complex r-plane along which the WKB
approximation remains valid and evaluate the change in
the phase of the above expressions (the monodromy) along
this contour. If the contour can be suitably connected to
r ¼ 1, one can impose the boundary condition that the
solution be purely outgoing (f1) there as a ‘‘starting point’’
and see how the solution changes as one goes around the
contour. If in addition the chosen contour can be deformed
without obstruction to a contour close to and encircling the
event horizon, one can impose the second boundary con-
dition that the solution is purely ingoing at the horizon to
evaluate the monodromy along this contour. Requiring the
two monodromies to be equal gives the WKB condition on
the QNM frequency and determines the spectrum. A useful
concept in choosing the contours is the anti-Stokes line,
which is a line along which QðrÞdr is purely real and thus
our WKB solutions are periodic functions. The anti-Stokes
lines far from the origin (r ¼ 0) and two suitable contours
(path 1 and path 2) for our calculations are shown in Fig. 1.
Note that path 2 starts at point a. Then it moves to point c
and after encircling the horizon it returns back to point a.
This was the loop chosen by Andersson and Howls.1 The
other contour, path 1, was the one used by Motl and
Neitzke. It starts at point a in Fig. 1. Then, it moves to
point d and follows the line shown in the figure to infinity
and circles around at infinity in the counter-clockwise
direction to meet the line in the upper half plane and finally
it returns back to point a.2 Since path 1 can be contracted to
path 2without encountering any poles, one expects them to
yield equivalent results, which indeed they do.

As long as one stays on an anti-Stokes line the relative
weights of the two WKB solutions do not change. So if the
solution is purely f1, it remains f1 as long as one does not
leave the anti-Stokes line. The problem, as illustrated by
the two contours in Fig. 1 is that one cannot find a suitable
closed contour that remains on a single anti-Stokes line,
since in general they emanate from the neighborhood of
poles in RðrÞ. The trick is to know how the solution

changes as one ‘‘jumps’’ from one anti-Stokes line to
another in the neighborhood of a pole. Motl and Neitzke
[15] solved the approximate wave action analytically near
the poles in order to calculate the monodromy along the
contours in their vicinity. Andersson and Howls [2] clari-
fied the MN calculation by using the so-called Stokes
phenomena to calculate the monodromies in the vicinity
of the poles. In all previous calculations in the literature,
both methods gave identical results, as they must.
We will now describe both in the context of the

Schwarzschild black hole before proceeding to apply
them to the nonsingular black hole of reference [14].

B. The Andersson-Howls method applied to
Schwarzschild black holes

The AH method requires a detailed knowledge of the
analytic structure of the function QðrÞ near the pole at
r ¼ 0. For this, one needs to determine the location of
the zeros of Q in the complex r-plane. It is important to do
this as it is from the zeros that the Stokes and anti-Stokes
lines emanate. There are three of each emerging from each
zero in the complex plane, being initially spaced 2�=3
radians apart from one another. We also need to introduce a
branch cut from each zero to ensure that Q remains single-
valued. These cuts need to be introduced in a way that they

h

path 2

path 1

a
b

c
d r

FIG. 1 (color online). A simplified schematic illustration of
anti-Stokes lines far from the origin for the Schwarzschild
spacetime in the complex r-plane. The filled circles are the poles
of the function QðrÞ at the event horizon (r ¼ rh) and the origin
(r ¼ 0). The dashed lines represent the paths that we follow
along anti-Stokes lines to determine the QNM spectrum.

1Note that Andersson and Howls encircle the horizon in the
clockwise direction in [2], but path 2 runs in the counter-
clockwise direction. This difference should not and does not
affect the results.

2Note that, in [15], Motl and Neitzke start their loop at point d
and rotate in the clockwise direction along path 1. The reason for
this difference is the fact that Motl and Neitzke assume that
perturbations depend on time as ei!t, which means !i > 0. In
this paper we assume that perturbations depend on time as e�i!t,
which means !i < 0.
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do not affect our analysis. Specifically, they should not
intersect path 1 and path 2 in Fig. 2. The Stokes lines are
the lines in the complex plane where QðrÞdr is purely

imaginary (and thus one of the WKB solutions fðtÞ1;2 blows
up exponentially as one moves away from the zero of the
function QðrÞ at t along Stokes lines). When one moves
from one anti-Stokes line to an adjacent anti-Stokes line in
the vicinity of a zero, a Stokes line has to be crossed. In this
case, the Stokes phenomenon dictates that the WKB solu-
tion, which is dominant on the Stokes line, be replaced by
the dominant WKB solution �i times the subdominant
term. The positive sign is used when one crosses the
Stokes line in the anticlockwise direction and the negative
is used for the clockwise crossing. Note that this simple
change, i.e. the addition of �i times the subdominant
WKB solution to the dominant one, only holds when the
Stokes line emanates from the zero, which is used as the
lower limit in the phase-integral that appears in the WKB

solutions fðtÞ1;2. This means that in order to construct an

approximate solution valid in different regions of the com-
plex plane we need to switch the lower limit of our phase-
integral between zeros. This requires the evaluation of
integrals of the type

�ij ¼
Z tj

ti

QðrÞdr; (2.10)

where ti and tj are two zeros of Q. To derive a WKB

condition on QNM’s, we can take either path 1 or path 2. In
both paths, we start on the line labeled a on which we know
what the solution is due to the boundary condition at
infinity:

�a ¼ fðt1Þ1 ; (2.11)

where the superscript t1 indicates that the WKB phase-
integral is to be evaluated from the zero t1 shown in Fig. 2.
In the case of path 1, we can move along anti-Stokes lines,
while applying Stokes phenomenon when we jump from
one anti-Stokes line to the other near zeros, to the line
labeled f that extends to infinity in the lower half plane. On
line f, we get the solution

�f ¼ �ðe�3i� þ e�i� þ ei�Þfðt4Þ1

þ iðe�3i� þ e�i� þ ei� þ e3i�Þfðt1Þ2 ; (2.12)

where

� ¼ �31 ¼ �32 ¼ �42; (2.13)

which can be evaluated analytically in the limit r ! 0. In
this limit, we can use Eqs. (2.7), (2.29), and (2.10) to show
that

�31 �
Z t1

t3

�
r2!2

ð�2GMÞ2 �
j2

r4

�
1=2

dr ¼ j

2
� ¼ �: (2.14)

We can now close path 1 at infinity, where f1 is domi-
nant. After returning back to the line labeled a, we get

��a ¼ �ðe�3i� þ e�i� þ ei�Þeið�ccwþ�Þfðt1Þ1

þ sub dominant term; (2.15)

where ccw stands for counter-clockwise and

�ccw ¼
I
ccw

Qdr ¼ 2�iResr¼2MðQÞ ¼ 4�i!GM:

(2.16)

We now can use the fact that

��a ¼ e�i�ccw�a; (2.17)

where e�i�ccw is the monodromy of our loop according to
the boundary condition at the event horizon to get the
WKB condition

e�2i�ccw ¼ e8�!GM ¼ �1� 2 cosð2�Þ ¼ �1� 2 cosðj�Þ
(2.18)

on the QNM frequency !. The disadvantage of path 1 is
that, as pointed out by Motl and Neitzke, it can only be
trusted near infinity for the dominant mode, so that the
subdominant mode must be dropped. While this is suffi-
cient to give the correct condition on the frequency, one

t

tt

1

2

3

4

t

b

c

c’

d

a

path 2

e

f

rh

path 1

FIG. 2 (color online). A complete schematic illustration of
Stokes (dashed) and anti-Stokes (solid) lines for the
Schwarzschild spacetime in the complex r-plane. The hollow
circles are the zeros and the filled circles are the poles of the
function QðrÞ. The poles are located at the event horizon
(r ¼ rh) and the origin (r ¼ 0). The paths (path 1 and path 2)
that we can follow along anti-Stokes lines to determine the QNM
spectrum are represented by thin dashed lines with lighter colors.
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gives up the ability to do a consistency check using the
monodromy of the subdominant mode. The AH contour
(path 2), however, does not suffer from such a disadvant-
age. In the case of path 2, after circling around the horizon,
we get back to the line labeled a, where we get

��a ¼ �ð1þ e2i� þ e�2i�Þei�fðt1Þ1

� ið1þ e2i�Þ½e�i� þ ei�ð1þ e2i� þ e�2i�Þ�fðt1Þ2 :

(2.19)

Comparing ��a and �a tells us that the coefficient of the
subdominantWKB solution f2 has to be zero. This gives us
the same WKB condition as in Eq. (2.18). We now can use
(2.18) to show that the coefficient of the dominant WKB
solution f1 is equal to the correct monodromy presented in
Eq. (2.17). This is what we mean by consistency check.

C. The Motl-Neitzke method applied
to Schwarzschild black holes

An alternative means of determining the QNM spectrum
is given by Motl and Neitzke. For this method the simpli-
fied version of the anti-Stokes line topology in the infinite
damping limit, shown in Fig. 1, is sufficient. In other words
we can ignore the ‘‘fine structure’’ of zeros surrounding the
pole at the origin, as well as the details of the Stokes lines.
The basic idea is to approach each singularity in the com-
plex plane along an anti-Stokes line closely enough so that
a suitable approximation to the differential equation (2.4)
can be solved analytically. In all cases that have been
considered so far, the solution near the poles is well
approximated by a Bessel function. This approximate ana-
lytic solution is then used instead of the Stokes phenome-
non to ‘‘jump’’ between anti-Stokes lines near a pole.

Our task then is, essentially, to ‘‘walk’’ our solution
around a closed contour such as path 1 or path 2 using
the WKB approximation along the anti-Stokes lines and
the approximate analytic (Bessel function) solution near
the poles.

We now calculate the monodromy around path 1 using
the MN method. Note that we have chosen the branch cut
from the origin to point along the negative real axis. We
start at the point a in Fig. 1, such that ra � 2GM which is
near enough to the pole at r ¼ 0 so that Eq. (2.4) can be
well approximated by

d2�

dr2
þ

�
r2!2

ð�2GMÞ2 �
4j2 � 1

4r4

�
� ¼ 0: (2.20)

The general solution to the above is:

� ¼ C1

ffiffiffiffiffiffi
�r

p
Jj=2ðzÞ þ C2

ffiffiffiffiffiffi
�r

p
J�ðj=2ÞðzÞ; (2.21)

where

z ¼ r2!

�4GM
(2.22)

and J�� are Bessel functions of the first kind. We now need
to relate this general solution, near the pole at r ¼ 0 along
the anti-Stokes line labeled a to the outgoing and ingoing
WKB wave solutions (2.8). Sufficiently far from the pole

at r ¼ 0 these are well approximated by fð0Þ1 �
ffiffiffiffiffiffiffiffiffiffiffi
�2GM
r!

q
eiz

and fð0Þ2 �
ffiffiffiffiffiffiffiffiffiffiffi
�2GM
r!

q
e�iz respectively. Next we evaluate the

asymptotic form of the Bessel functions. To do this, we use
the fact that

J��ðzÞ ¼ z���ðzÞ; (2.23)

where � is an even holomorphic function. This means we
can write

J��ðei�e�i�zÞ ¼ e�i��J��ðe�i�zÞ; (2.24)

where � ¼ argz. Note that e�i�z ¼ jzj is positive and real.
As long as we stay away from r ¼ 0 at a distance where

jrj �
ffiffiffiffiffiffiffiffiffiffiffi
4GM

j!j

s
; (2.25)

we can assume that jzj � 1. This allows us to use the
asymptotic behavior of the Bessel function

J��ðxÞ !
ffiffiffiffiffiffiffi
2

�x

s
cos

�
x� �

�

2
� �

4

�
for x � 1 (2.26)

to show thatffiffiffiffiffiffi
�r

p
J��ðzÞ ¼

ffiffiffiffiffiffi
�r

p
e�i��J��ðe�i�zÞ

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2GM

r!

s
eið2�=�Þ�� cosðe�i�z� ��Þ;

(2.27)

where �� � �
4 � � �

2 . If we choose the branch ��<

� 	 �, the argument of z along the anti-Stokes line labeled
a is � ¼ 2�. After substituting 2� for � in the above
equation, we find the wave function along anti-Stokes
line a in terms of the ingoing and outgoing WKB modes,
which is

�a ¼ ðC1e
3i�þ þ C2e

3i��Þfð0Þ1 ðzaÞ
þ ðC1e

5i�þ þ C2e
5i��Þfð0Þ2 ðzaÞ: (2.28)

The boundary condition at infinity tells us that, along anti-
Stokes lines that extend to infinity, the solution must be
dominated by the outgoing mode. In other words

C1e
5i�þ þ C2e

5i�� ¼ 0: (2.29)

We now repeat the above expansion near the point b. The
anti-Stokes line b is rotated relative to line a one by��=2
in the r-plane, which means zb ¼ e�i�za. Therefore, �
should be replaced by � in Eq. (2.27). This yields, after a
few steps:
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�b ¼ ðC1e
3i�þ þ C2e

3i��Þfð0Þ1 ðzbÞ
þ ðC1e

i�þ þ C2e
i��Þfð0Þ2 ðzbÞ: (2.30)

Repeating this to get to c and then finally to d, we find that
ultimately the �3�=2 rotation in the complex r-plane that
takes us from the point a on the first anti-Stokes line to the
point d on the last anti-Stokes line yields

�d ¼ ðC1e
�i�þ þ C2e

�i��Þfð0Þ1 ðzdÞ
þ ðC1e

�3i�þ þ C2e
�3i��Þfð0Þ2 ðzdÞ: (2.31)

The trick now is to realize that we can extend the expres-
sion for c d and evaluate it in terms of za by using the
following integral expressions that are understood to be
evaluated along the large loop at infinity:

e�izd ¼ exp

�
�i

Z rd

0
Qdr

�

¼ exp

�
�i

I
ccw

Qdr

�
exp

�
�i

Z a

0
Qdr

�
¼ e�i�ccwe�iza (2.32)

so that

�d ¼ ðC1e
�i�þ þ C2e

�i��Þei�ccwfð0Þ1 ðzaÞ
þ ðC1e

�3i�þ þ C2e
�3i��Þe�i�ccwfð0Þ2 ðzaÞ

� ��a: (2.33)

These two expressions ��a and �a at za must differ by the
appropriate monodromy of the WKB phase, which can
easily be evaluated by invoking the boundary conditions.
In particular, the path 1 can be shrunk without obstruction
to a small loop encircling the horizon. Given that the
solution near the horizon is ingoing, it must be true that

��a ¼ e�i�ccw�a: (2.34)

The above condition, applied to the coefficient of the
dominant solution, yields the following equation:

ðC1e
�i�þ þ C2e

�i��Þei�ccw ¼ e�i�ccw ðC1e
3i�þ þ C2e

3i��Þ:
(2.35)

Eqs. (2.29) and (2.35) are two linear equations on the two
initial coefficients C1;2, which can only be satisfied if the

corresponding determinant vanishes. This yields precisely
the WKB condition (2.18) as before.

Note that with the large loop (path 1) we cannot look at
the condition on the subdominant mode, so it does not yield
any further conditions. However, by looking at the same
calculation using path 2, one can find two different sets of
linear equations using the dominant and subdominant
modes. Both of these sets of equations in turn should
give the same WKB condition in (2.18). This provides a
very useful consistency check of the calculation, as will be

seen in more detail when we consider the more compli-
cated case of the QC black hole.

III. THE QUANTUM CORRECTED BLACK HOLE

The QC black hole we wish to consider was derived in
[14] using a loop quantum gravity inspired quantization
scheme similar to those that were applied to black hole
interiors by a variety of authors [6,10–12]. The basic idea is
to start with homogeneous slicings of spherically symmet-
ric spacetimes in Einstein gravity. Polymer quantization
[7,8] is then applied to the resulting Hamiltonian to pro-
duce a set of effective, QC equations for the geometrical
variables. These equations are solved to find the QC metric
in the Schwarzschild interior. In contrast to the previous
work, reference [14] only applied polymer quantization to
the phase space variable corresponding to area. This re-
sulted in a simple analytic expression for the interior metric
that could be analytically continued to the exterior in order
to construct the complete QC spacetime. The metric for the
QC black hole in Schwarzschild-like coordinates is:

ds2 ¼ �
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

r2

s
� 2GM

r

�
dt2

þ dr2

ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

r2

q
� 2GM

r Þð1� k2

r2
Þ
þ r2d�2; (3.1)

where k is a new (quantum) length scale, and � can be
1 or �1.
The above metric has intriguing properties. It contains a

single-horizon at rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2GMÞ2 þ k2

p
so that the analyti-

cally continued spatial slices are topologically equivalent
to the Einstein-Rosen wormhole. As with Einstein gravity,
the radius of the throat of the wormhole is time dependent.
The maximum is rh, but instead of shrinking to a singu-
larity in the black hole interior in finite time, the throat
radius reaches a minimum at r ¼ k, before reexpanding
indefinitely to a Kantowski-Sachs spacetime. The resulting
complete, single-horizon, nonsingular black hole space-
time scenario is therefore reminiscent of past proposals
for universe creation via quantum effects inside a black
hole [9].
To find the QNMs we insert the QC metric (3.1) into

Eq. (2.1). Using the substitution 	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � k2

p
and extend-

ing the domain of 	 to ð�1<	<1Þ (which effectively
negates the need for �), we obtain the differential equation

d2c

d	2
þ ~Rð	Þc ¼ 0; (3.2)

where c is our rescaled wavefunction and our new poten-
tial function ~Rð	Þ is given by
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~Rð	Þ ¼ !2ð	2 þ k2Þ
ð	� 2GMÞ2 þ

k4 � 6	2k2

4	2ð	2 þ k2Þ2

þ GM

ð	2 þ k2Þð	� 2GMÞ �
GM

	2ð	� 2GMÞ

� 	

ð	2 þ k2Þð	� 2GMÞ þ
ðGM� 	Þ2

	2ð	� 2GMÞ2 :
(3.3)

We immediately notice that this function has poles at
	 ¼ 0 and 	 ¼ �ik. It also has a pole at the point
	 ¼ 2GM, which corresponds to the event horizon. Note
that in the infinite damping limit, the relevant part of this
potential is simply

~Rð	Þ ¼ !2ð	2 þ k2Þ
ð	� 2GMÞ2 þ

1

	2
� 7k2

4ð	2 þ k2Þ2 : (3.4)

This is because the last two terms on the right hand side of
the above equation dominate all the other terms near the
poles whereas the term containing ! cannot be neglected
elsewhere. The two linearly-independent WKB solutions
to this equation are given by (2.8) with

~Q2ð	Þ ¼ ~Rð	Þ � 1

4ð	þ ikÞ2 �
1

4	2

� 1

4ð	� ikÞ2 �
1

4ð	� 2GMÞ2 : (3.5)

The last term above can be neglected for large damping
rates.

Finally, we want to point out that in an intermediate
damping region of

1 � GMj!j � ðGMÞ2
k2

(3.6)

the potential (3.4) reduces to the Schwarzschild potential
given in Eq. (2.7). Therefore, in the above intermediate
region of the spectrum, the Schwarzschild value of
lnð3Þ is expected to appear in the real part of the QNM
frequency !.

A. The Andersson-Howls method applied to the
quantum corrected black hole

In Fig. 3, we show schematically the topology of Stokes
and anti-Stokes lines in two different damping regions for
the QC black hole under consideration. The topology on
the right appears in higher damping rates compared to the
topology on the left. Figure 3 is plotted based on numeri-
cally generated figures of Stokes and anti-Stokes lines,
some of which are shown in Figs. 4 and 5. After inves-
tigating the numerically generated topology of Stokes and
anti-Stokes lines for different values of M and k, we
conclude that in the topology shown on the right in
Fig. 3 the anti-Stokes line that connects the poles at
	 ¼ �ik misses the pole at 	 ¼ 0 by a minimum distance

of � k2

2GM . When we lower the damping, the zeros of the

function ~Qð	Þ shown with hollow circles in Fig. 3 move
away from the poles. Using Eqs. (3.4) and (3.5), it is easy to
show that the distance between the zeros and the pole at
	 ¼ 0 is� 2GM

kj!j . Equating this with the minimum distance

that the anti-Stokes line misses the pole at 	 ¼ 0 leads us
to an approximate location of the damping rate where the
topology changes from the one on the left to the one on the
right in Fig. 3. This damping rate is

j!ij � j!j � ð2GMÞ2
k3

: (3.7)

FIG. 3. A complete schematic illustration of Stokes (dashed) and anti-Stokes (solid) lines for the QC spacetime in the complex

	-plane when j!j & ð2GMÞ2
k3

(left) and j!j> ð2GMÞ2
k3

(right). The hollow circles are the zeros and the filled circles are the poles of the

function Qð	Þ.
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As we have seen during the Schwarzschild case, one
ideally needs a closed anti-Stokes contour around the pole
at the event horizon, which connects to an outgoing anti-
Stokes line. Critically, however, we require that such a

contour never intersects with any pole. A cursory analysis
of Fig. 3 shows that no such contour exists in either
topology. Therefore, this method appears to be problematic
for this case.

B. The Motl-Neitzke method applied to the quantum
corrected black hole

In this section, we evaluate the highly damped QNMs of
the QC black hole under consideration using the MN
method. In Fig. 6, we show the topology of anti-Stokes
lines far from the poles, which is sufficient for applying the
MN method. As before we construct a simplified contour
(path 1 or path 2 in Fig. 6), where our task is to walk our
solution from an anti-Stokes line, which extends to infinity,
around the pole at the event horizon and back to the same
anti-Stokes line without crossing any of the branch cuts. As
pointed out in the last section, at some damping rate above
ð2GMÞ2

k3
, the anti-Stokes line that connects the poles at

	 ¼ �ik will miss the pole at 	 ¼ 0. However, for physi-
cal reasons, we are interested in the limit where k � GM.

In this limit, the function ~Qð	Þ can be approximated in the
vicinity of the poles at 	 ¼ 0 and 	 ¼ �ik, i.e. when
j	j � k, by

~Qð	Þ � !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ k2

p
�2GM

: (3.8)

The above function leads to the topology shown in Fig. 6,
where the anti-Stokes line that connects the poles at
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0.02 0.01 0.00 0.01 0.02
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0.05

0.00

0.05

0.10

FIG. 4 (color online). Numerically generated anti-Stokes lines for the QC black hole spacetime in 	-coordinate, showing the

change in topology as one goes from j!j & ð2GMÞ2
k3

to j!j> ð2GMÞ2
k3

. The figure on the left shows the structure of the lines near the origin

of the complex plane for k ¼ 0:1, 2GM ¼ 10 and ! ¼ �i105. In the figure on the right, k ¼ 0:1, 2GM ¼ 1 and ! ¼ �i5000. The
filled circles are the poles of ~Q located at �ik and 0 and the smaller hollow circles are the zeros of ~Q.
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0.00
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FIG. 5 (color online). Numerically generated anti-Stokes lines
for the QC black hole spacetime in 	-coordinate for k ¼ 0:1,
2GM ¼ 10 and ! ¼ �i109. The filled circles are the poles
located at �ik and 0.
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	 ¼ �ik goes through the pole at 	 ¼ 0. This is evident in
Fig. 5, where we have numerically generated the topology

of anti-Stokes lines using the function ~Qð	Þ in (3.5), in
which the approximate ~Rð	Þ in (3.4) is used, for the case
where k � GM (k ¼ GM=50). In the rest of this paper, we
do the calculations assuming that k � GM. The procedure
to solve for the QNM frequencies, for the topology shown
in Fig. 6, is as follows:

We evaluate our solution in the immediate vicinity of the
pole at 	 ¼ ik. In this region, differential equation (3.2)
can be expressed as

d2c

d	2
þ

�
!2ð2ikÞð	� ikÞ

ð�2GMÞ2 þ 7

16ð	� ikÞ2
�
c ¼ 0: (3.9)

This is a Bessel differential equation with a solution of the
form

c ¼ Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�

3
ð	� ikÞ

s
J�ðZÞ þ A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�

3
ð	� ikÞ

s
J��ðZÞ;

(3.10)

where A� are constants, � ¼
ffiffiffiffiffi
�1
12

q
, J�� are Bessel functions

of the first kind and

Z ¼ 2

3

�
!

ffiffiffiffiffiffiffi
2ik

p
�2GM

�
ð	� ikÞ3=2: (3.11)

Z is multivalued. To make Z single-valued, we choose a
branch cut in which Za ¼ jZje2i� along the anti-Stokes
line labeled a. Note that the anti-Stokes lines labeled b and
c are rotated relative to a by �2�

3 and �4�
3 (in the 	-plane),

respectively. Therefore, we get Zb ¼ jZjei� along the anti-
Stokes line labeled b and Zc ¼ jZj along the anti-Stokes
line labeled c in Fig. 6. We now can take the same steps as
in Eqs. (2.23) through (2.26) to show that

c � Aþ2eið2�=�Þ�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2GM

!
ffiffiffiffiffiffiffi
2ik

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	� ik

p
s

cosðe�i�Z� �þÞ

þ A�2eið2�=�Þ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2GM

!
ffiffiffiffiffiffiffi
2ik

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	� ik

p
s

cosðe�i�Z� ��Þ;
(3.12)

where � ¼ argZ and �� ¼ �
4 ð1�

ffiffiffiffiffiffiffi
� 1

3

q
Þ. Note that the

above approximation of Bessel functions is only valid if
jZj � 1. For jZj to be large, we need to stay away from the
pole at 	 ¼ ik at a distance where

j	� ikj �
�
GMffiffiffi
k

p j!j
�
2=3

: (3.13)

In addition, for our calculations to be valid, the above
distance should be much smaller than the polymerization
length scale k, which determines the distance between the
poles at�ik and 0. This way our calculations near the pole
at ik will not get affected by the presence of the pole at
	 ¼ 0. This leads to a lower bound on the size of j!j, i.e.

j!j � GM

k2
: (3.14)

For e�i� ¼ þ1, we get

c ¼ðAþe�i�þð1�ð2�=�ÞÞþA�e�i��ð1�ð2�=�ÞÞÞfðikÞ1

þðAþei�þð1þð2�=�ÞÞ þA�ei��ð1þð2�=�ÞÞÞfðikÞ2 ; (3.15)

and for e�i� ¼ �1, we get

c ¼ ðAþei�þð1þð2�=�ÞÞ þ A�ei��ð1þð2�=�ÞÞÞfðikÞ1

þ ðAþe�i�þð1�ð2�=�ÞÞ þ A�e�i��ð1�ð2�=�ÞÞÞfðikÞ2 ;

(3.16)

where

fðikÞ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2GM

!
ffiffiffiffiffiffiffi
2ik

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	� ik

p
s

eiZ (3.17)

and

fðikÞ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2GM

!
ffiffiffiffiffiffiffi
2ik

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	� ik

p
s

e�iZ (3.18)

−ik

0

+ik

path 2

path 1

d

a

h
g

b

f

c

e
2GM

FIG. 6 (color online). A simplified illustration of anti-Stokes
lines far from the poles for the QC black hole when k � GM.
The outermost pole represents the black hole’s event horizon,
with the three poles at left corresponding to those at �ik and 0.
The dashed lines are the suitable paths that we follow to
determine the QNM spectrum.
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are the approximate WKB solutions to the wave equation

(3.9) at a distance � ð GMffiffi
k

p j!jÞ2=3 from the pole at ik. Using

Eqs. (3.15) and (3.16) we can determine the wave solutions
along the anti-Stokes lines labeled a, b, and c:

c a ¼ ðAþe3i�þ þ A�e3i��ÞfðikÞ1 ðZaÞ
þ ðAþe5i�þ þ A�e5i��ÞfðikÞ2 ðZaÞ;

c b ¼ ðAþe3i�þ þ A�e3i��ÞfðikÞ1 ðZbÞ
þ ðAþei�þ þ A�ei��ÞfðikÞ2 ðZbÞ;

c c ¼ ðAþe�i�þ þ A�e�i��ÞfðikÞ1 ðZcÞ
þ ðAþei�þ þ A�ei��ÞfðikÞ2 ðZcÞ:

(3.19)

We now move to the pole at 	 ¼ 0, where the QNM
wave equation takes the form

d2c

d	2
þ

�
!2k2

ð�2GMÞ2 þ
1

	2

�
c ¼ 0; (3.20)

with the Bessel solution

c ¼ Bþ
ffiffiffiffiffiffiffiffiffiffi
2�	

p
J ffiffiffiffiffi�3
p

=2ðZ0Þ þ B�
ffiffiffiffiffiffiffiffiffiffi
2�	

p
J�ð ffiffiffiffiffi�3

p
=2ÞðZ0Þ;

(3.21)

where B� are constants and

Z0 ¼ !k

�2GM
	: (3.22)

To make Z0 single-valued, we choose the branch cut in
which Z0d ¼ jZ0jei� along the anti-Stokes line labeled d.
A�� rotation in the 	-planewill take us to the line labeled
e on which Z0e ¼ Z0de

�i� ¼ jZ0j. Once again, we can use
the asymptotic behavior of Bessel functions (2.26) in the
large Z0 limit to show that

c ¼ Bþ2eið2�0=�Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2GM

!k

s
cosðe�i�0Z0 � 
þÞ

þ B�2eið2�0=�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2GM

!k

s
cosðe�i�0Z0 � 
�Þ;

(3.23)

where �0 ¼ argZ0 and 
� ¼ �
4 ð1�

ffiffiffiffiffiffiffi�3
p Þ. From

Eq. (3.22), it is clear that the condition, which allows Z0

to be large without getting too close to the other poles, is
precisely that given in Eq. (3.14). This is required for the
validity of the calculation.

For e�i�0 ¼ þ1, we get

c ¼ ðBþe�i
þð1�ð2�0=�ÞÞ þ B�e�i
�ð1�ð2�0=�ÞÞÞfð0Þ1

þ ðBþei
þð1þð2�0=�ÞÞ þ B�ei
�ð1þð2�0=�ÞÞÞfð0Þ2 ;

(3.24)

and for e�i� ¼ �1, we get

c ¼ ðBþei
þð1þð2�0=�ÞÞ þ B�ei
�ð1þð2�0=�ÞÞÞfð0Þ1

þ ðBþe�i
þð1�ð2�0=�ÞÞ þ B�e�i
�ð1�ð2�0=�ÞÞÞfð0Þ2 ;

(3.25)

where

fð0Þ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2GM

!k

s
eiZ0 (3.26)

and

fð0Þ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2GM

!k

s
e�iZ0 (3.27)

are the approximate WKB solutions of the wave equation
(3.20) when j	j � GM

kj!j . Using these equations we can

determine the wave solutions along the anti-Stokes lines
labeled d and e to be:

c d ¼ ðBþe3i
þ þ B�e3i
�Þfð0Þ1 ðZ0dÞ
þ ðBþei
þ þ B�ei
�Þfð0Þ2 ðZ0dÞ;

c e ¼ ðBþe�i
þ þ B�e�i
�Þfð0Þ1 ðZ0eÞ
þ ðBþei
þ þ B�ei
�Þfð0Þ2 ðZ0eÞ:

(3.28)

We finally move close to 	 ¼ �ik, where the differen-
tial equation (3.2) can be expressed as

d2c

d	2
þ

�
!2ð�2ikÞð	þ ikÞ

ð�2GMÞ2 þ 7

16ð	þ ikÞ2
�
c ¼ 0

(3.29)

with the solution

c ¼ Cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�

3
ð	þ ikÞ

s
J�ð �ZÞ þ C�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�

3
ð	þ ikÞ

s
J��ð �ZÞ;

(3.30)

where C� are constants and

�Z ¼ 2

3

�
!

ffiffiffiffiffiffiffiffiffiffiffi�2ik
p
�2GM

�
ð	þ ikÞ3=2: (3.31)

To make �Z single-valued, we choose a branch cut in which
�Zf ¼ j �Zjei� along the anti-Stokes line labeled f, �Zg ¼ j �Zj
along the anti-Stokes line labeled g and �Zh ¼ j �Zje�i�

along the anti-Stokes line labeled h. Following similar
steps as in previous cases, we find
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c f ¼ ðCþe3i�þ þ C�e3i��Þfð�ikÞ
1 ð �ZfÞ

þ ðCþei�þ þ C�ei��Þfð�ikÞ
2 ð �ZfÞ;

c g ¼ ðCþe�i�þ þ C�e�i��Þfð�ikÞ
1 ð �ZgÞ

þ ðCþei�þ þ C�ei��Þfð�ikÞ
2 ð �ZgÞ;

c h ¼ ðCþe�i�þ þ C�e�i��Þfð�ikÞ
1 ð �ZhÞ

þ ðCþe�3i�þ þ C�e�3i��Þfð�ikÞ
2 ð �ZhÞ;

(3.32)

where

fð�ikÞ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2GM

!
ffiffiffiffiffiffiffiffiffiffiffi�2ik

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	þ ik

p
s

ei
�Z (3.33)

and

fð�ikÞ
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2GM

!
ffiffiffiffiffiffiffiffiffiffiffi�2ik

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	þ ik

p
s

e�i �Z (3.34)

are the approximate WKB solutions to the wave equation

(3.29) at a distance � ð GMffiffi
k

p j!jÞ2=3 from the pole at �ik.

The solutions do not change in character along anti-
Stokes lines. This means that, since the anti-Stokes line
labeled a extends to infinity, we can impose the boundary
condition at infinity on c a. This gives us the condition

Aþe5i�þ þ A�e5i�� ¼ 0: (3.35)

Also, c c and c d, which are on the same anti-Stokes line,
have to be equal. Since we can write

c c ¼ ðAþe�i�þ þ A�e�i��Þe�cdfð0Þ1 ðZdÞ
þ ðAþei�þ þ A�ei��Þe��cdfð0Þ2 ðZdÞ; (3.36)

where

�cd ¼
Z 0

ik

~Qd	 �
Z 0

ik

�
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ k2

p
	� 2GM

�
d	

�
Z 0

ik

�
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ k2

p
�2GM

�
d	 ¼ i�!k2

8GM
(3.37)

appears as a result of changing the lower limit of the phase-
integral of the WKB solutions from ik to 0. We can now
compare (3.36) with c d given in Eq. (3.28), which gives
the following two conditions:

ðAþe�i�þ þ A�e�i��Þei�cd ¼ Bþe3i
þ þ B�e3i
� ;

(3.38)

ðAþei�þ þ A�ei��Þe�i�cd ¼ Bþei
þ þ B�ei
� : (3.39)

The same thing can be done for c e and c f, which results

in two more conditions:

ðBþe�i
þ þ B�e�i
�Þei�ef ¼ Cþe3i�þ þ C�e3i�� ;

(3.40)

ðBþei
þ þ B�ei
�Þe�i�ef ¼ Cþei�þ þ C�ei�� ; (3.41)

where

�ef ¼
Z �ik

0

~Qd	 ¼ �cd: (3.42)

So far, all the conditions above apply to both path 1 and
path 2 in Fig. 6. In the case of path 1, since the anti-Stokes
line h extends to infinity, we can impose the boundary
condition at infinity to c h, which gives us the condition:

Cþe�3i�þ þ C�e�3i�� ¼ 0: (3.43)

This condition however does not impose any WKB condi-
tion on the QNM frequency. We can get another condition
by moving from point h to infinity along the anti-Stokes
line that extends to infinity in the lower half of the complex
	-plane. Then we can rotate at infinity, where we know the
solution due to the boundary condition, to the other anti-
Stokes line which extends to infinity in the upper half of the
complex plane. Finally we can move along this anti-Stokes
line all the way back to point a, where we get

c h ¼ ðCþe�i�þ þ C�e�i��Þei ~�hafðikÞ1 ðZaÞ
þ sub-dominant term

¼ c �a: (3.44)

For this path the coefficient of the subdominant solution f2
is not reliable. Here

~� ha ¼
Z ik

�ik

~Qd	 (3.45)

along the path to the right of the event horizon. By return-
ing back to point a, we have completed a loop around the
event horizon. Therefore, in matching c a and c �a we need
to account for the monodromy of path 1. In other words

c �a ¼ e�i�ccwc a; (3.46)

where �ccw is the integral of ~Q along a contour encircling
the pole at 	 ¼ 2GM in the counter-clockwise (ccw)
direction:

�ccw ¼
I
ccw

~Qd	 � 2�iRes	¼2GM

�
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ k2

p
	� 2GM

�

¼ 2�i!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G2M2 þ k2

p
:

(3.47)

Equation (3.46) gives us the final condition

ðCþe�i�þ þ C�e�i��Þei�ccwe�ið�cdþ�efÞ

¼ ðAþe3i�þ þ A�e3i��Þe�i�ccw ; (3.48)

where we have replaced ~�ha with �ccw � �cd � �ef.

In the case of path 2, we first need to match the solution
at g with the solution at b, which are on the same anti-
Stokes line. This matching results in two conditions:
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ðCþe�i�þ þ C�e�i��Þei�ccwe�ið�cdþ�efÞ

¼ �Aþe3i�þ þ �A�e3i�� ; (3.49)

ðCþei�þ þ C�ei��Þe�i�ccweið�cdþ�efÞ ¼ �Aþei�þ þ �A�ei�� :

(3.50)

Here we have used the fact that

~� gb ¼
Z ik

�ik

~Qd	 ¼ �ccw � �cd � �ef; (3.51)

where ~�gb is taken along the anti-Stokes line to the right of

the pole at the event horizon. We finally can return to anti-
Stokes line awhere we can impose the boundary condition
at infinity to the coefficient of the subdominant solution
to get

�Aþe5i�þ þ �A�e5i�� ¼ 0: (3.52)

We can also impose the monodromy condition that c �a ¼
e�i�ccwc a on the coefficient of the dominant solution to
find

�Aþe3i�þ þ �A�e3i�� ¼ ðAþe3i�þ þ A�e3i��Þe�i�ccw :

(3.53)

Finally, we can use Eqs. (3.35), (3.38), (3.39), (3.40), and
(3.41) together with either (3.48) from path 1 or with the
combination of Eqs. (3.49), (3.50), and (3.52) or (3.53)
from path 2 to get a WKB condition on !. All the above
combinations should result in the same WKB condition on
the QNM frequency, which they do. This provides a valu-
able check on the validity of our results. For the case of
path 1, in order to have a nontrivial solution to Eqs. (3.35),
(3.38), (3.39), (3.40), (3.41), and (3.48), the determinant of
the matrix

e5i�þ e5i�� 0 0 0 0
e�i�þei� e�i��ei� �e3i
þ �e3i
� 0 0
ei�þe�i� ei��e�i� �ei
þ �ei
� 0 0

0 0 e�i
þei� e�i
�ei� �e3i�þ �e3i��

0 0 ei
þe�i� ei
�e�i� �ei�þ �ei��

e3i�þ e3i�� 0 0 �e�i�þe2i�ccwe�2i� �e�i��e2i�ccwe�2i�

2
666666664

3
777777775

(3.54)

has to vanish. This leads to the WKB condition

e�2i�ccw þ K1e
�4i� þ K2e

�2i� þ K3 ¼ 0; (3.55)

where

� ¼ �cd ¼ �ef;

K1 ¼ 4cos2ð�þ � ��Þ;
K2 ¼ 4 cosð�þ � ��Þ cosð
þ � 
�Þ;
K3 ¼ 4cos2ð�þ � ��Þ � 1:

(3.56)

Since �ccw � 4�i!GMþ 4�, the above equation can be
written as

e8�!GM þ K1e
�ð�!k2=2GMÞ þ K2e

�ð3�!k2=4GMÞ

þ K3e
�ð�!k2=GMÞ ¼ 0: (3.57)

We now take y ¼ 8�!GM to get

ey þ K1e
�2gy þ K2e

�3gy þ K3e
�4gy ¼ 0 (3.58)

where g ¼ k2

32G2M2 . We then take y ¼ � � i
, which
leads to

e� cos
þ K1e
�2g� cosð2g
Þ þ K2e

�3g� cosð3g
Þ
þ K3e

�4g� cosð4g
Þ ¼ 0 (3.59)

and

� e� sin
þ K1e
�2g� sinð2g
Þ þ K2e

�3g� sinð3g
Þ
þ K3e

�4g� sinð4g
Þ ¼ 0: (3.60)

From the last two equations, we see that for the solution to
be periodic in 
, we must require simultaneously


 ! 
þ 2n� and gð
þ 2n�Þ ¼ g
þ 2m�;

(3.61)

where n and m are integers. In other words, periodicity in
the damping term is only possible if

g ¼ m

n
: (3.62)

Note that since g ¼ k2

32G2M2 , we require
m
n � 1.

Form and n integers we can introduce z ¼ ey=n to obtain

znþ4m þ K1z
2m þ K2z

m þ K3 ¼ 0; (3.63)

which has nþ 4m roots. (Note that in znþ4m above, one
can neglect 4m since n � m. This is equivalent to neglect-
ing the term 4� in �ccw.) These roots lead to

8�!GM ¼ y ¼ n lnjzj þ in argðzÞ � 2np�i; (3.64)

where p is a large integer. Using the above equation, we
have plotted the QNM frequency spectrum in Fig. 7 for
m ¼ 1 and n ¼ 10, 100, 1000.
In the limit k ! 0, Eq. (3.63) leads us to

e8�!GM ¼ �ðK1 þ K2 þ K3Þ ¼ �59:5392 . . . : (3.65)
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This gives a QNM frequency spectrum of the form

8�!GM ¼ lnð59:5392 . . .Þ � 2�i

�
lþ 1

2

�
; (3.66)

where l is a large integer. This is different than the
Schwarzschild result due to the presence of the quantum
length scale k in the spacetime metric.

We, finally, would like to point out that in the intermedi-
ate damping region of (3.6), our calculations in the com-
plex plane are done at a distance of j	j � k from the origin
of the complex plane. This is the reason why we get
the Schwarzschild value of lnð3Þ for the real part of !. In
this intermediate damping region, our path will not be
affected by the ‘‘fine structure’’ of the poles near 	 ¼ 0
because, for example, in path 1, the jump from anti-Stokes
line a to line h in Fig. 6 is done at a distance scale much
larger than k.

IV. CONCLUSIONS

We have presented an analytic calculation of the highly
damped QNMs of a nonsingular QC black hole using the
methods of Motl and Neitzke. As expected, the spectrum of
highly damped QNMs are sensitive to the metric structure
at the new scale, k, which determines the onset of the
quantum corrections. In analogy with what happens in
the R-N case, the real part of the highly damped QNM
frequency does not reduce to the Schwarzschild value even
in the limit that k ! 0. As in the R-N case, this is explained
by the fact that the limit j!j ! 1 does not commute with
the limit k ! 0. The present calculation suggests that other
nonsingular QC metrics with different small scale behavior
will yield a different answer in this limit. This is currently
under investigation. The implication is that the highly
damped QNMs in principle, if not in practice, contain

information about the underlying theory that is used to
resolve the singularity.
Our analysis is also interesting for the following reason.

We found that, in analogy with the Gauss-Bonnet black
hole [16], the AH method was difficult to implement with
the given topology of Stokes and anti-Stokes lines of the
QC black hole. This is related to the fact that both metrics
have a branch point singularity. While these difficulties
with the AH method are likely surmountable, we have
shown that the MN method does in fact appear to produce
an unambiguous answer in the present case in a rather
straightforward fashion. This suggests that it may be pos-
sible to get a consistent solution for the more complicated
Gauss-Bonnet black hole using the MN method. This
calculation is also under investigation.
Finally, we stress again the fact that the analytically

calculated high overtone QNMs probe the structure of
the black hole exterior down to length scales deter-
mined by the inverse of the magnitude of the QNM
frequency. Whatever corrections to the small scale
structure result from the ultimate quantum gravity the-
ory, QNMs which are large relative to the inverse
horizon length but small compared to other inverse
length squares will be insensitive to these corrections
and can in principle provide information only about the
horizon structure.
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FIG. 7 (color online). Real part of 8�!GM versus the imaginary part for m ¼ 1 and n ¼ 10, 100, 1000 from left to right,
respectively.
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