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The Pomeransky-Sen’kov solution is well known to describe an asymptotically flat doubly rotating

black ring in five dimensions, whose self-gravity is exactly balanced by the centrifugal force arising from

the rotation in the ring direction. In this paper, we generalize this solution to the unbalanced case, in which

there is in general a conical singularity in the space-time. Unlike a previous form of this solution presented

in the literature, our form is much more compact. We describe in detail how this solution can be derived

using the inverse-scattering method, and study its various properties. In particular, we show how various

known limits can be recovered as special cases of this solution.

DOI: 10.1103/PhysRevD.84.084030 PACS numbers: 04.20.Jb, 04.70.Bw

I. INTRODUCTION

Although space-time appears to be four-dimensional, it
has become apparent in recent years that a more complete
understanding of general relativity can be obtained if the
space-time dimensionality D is made a tunable parameter.
For instance, black holes in four dimensions are known to
be subject to a number of uniqueness theorems, and it is of
interest to see if these theorems are peculiar to four dimen-
sions, or if they can be extended to higher dimensions. The
Schwarzschild black-hole solution was first generalized to
arbitrary dimension D> 4 by Tangherlini in 1963 [1],
while the rotating Kerr black-hole solution was similarly
generalized by Myers and Perry in 1986 [2]. Until a decade
ago, these were the only higher-dimensional vacuum black
holes known; in particular, it was still not clear then if there
were uniqueness theorems to rule out other types of black
holes in higher dimensions.

In 2001, Emparan and Reall [3] made a remarkable
discovery of a new five-dimensional vacuum black hole
with a nonspherical event-horizon topology. Instead, it has
a ring topology S1 � S2, and was therefore called a black
ring. This black ring rotates along the ring direction S1,
which creates a centrifugal force that opposes its self-
gravity. Because of an imbalance of these two forces, there
is a conical singularity in the space-time to stabilize the
solution. However, for a certain value of the angular-
momentum parameter, the forces balance exactly and there
is no conical singularity present. The black ring is thus
completely regular outside the event horizon. It turns out
that, for a certain range of parameters, there are two regular
black rings which share the same mass and angular
momentum as the five-dimensional Myers-Perry black
hole. This result unambiguously shows that the four-
dimensional black-hole uniqueness theorems do not
straightforwardly extend to higher dimensions.

Since black holes in five dimensions can rotate in two
independent directions, it was natural to wonder if the
Emparan-Reall black ring can be generalized to one with
two independent rotations. A first step in this direction was

made in 2005 by Mishima and Iguchi [4] and indepen-
dently by Figueras [5],1 who discovered a solution describ-
ing a black ring that rotates only in the azimuthal direction
of the S2, i.e., there is no rotation along the ring direction.
Because there is no centrifugal force in this case, the
solution necessarily has a conical singularity to counteract
the self-gravity of the black ring. The properties of this
black ring were studied in detail in [6].
It was by then clear that the most general doubly rotating

black ring should contain both the above S1-rotating and
S2-rotating black rings as special cases. It was also quite
apparent that the form of this solution would be compli-
cated, and that it could not be obtained by Wick-rotating a
known solution (as was done in [3]) or by ‘‘educated
guesswork’’ (as was done in [5]). A more systematic
solution-generating technique was needed, and one that
showed early promise was the inverse-scattering method
(ISM) pioneered by Belinski and Zakharov [7–9]. The
usefulness of the ISM to higher-dimensional black holes
was first pointed out by Pomeransky [10], who showed
how to use it to obtain the five-dimensional Myers-Perry
black hole by removing and adding solitons to a certain
seed solution. Subsequently, it was shown in [11] how the
ISM could be used to generate the S2-rotating black ring.
However, using the ISM to generate the S1-rotating black
ring proved to be much subtler. The breakthrough in this
came with the works of Iguchi and Mishima [12] and
Tomizawa and Nozawa [13], who found the correct seed
needed to generate the S1-rotating black ring.
This progress paved the way for the generation of the

doubly rotating black ring using the ISM. By combining
the techniques used to generate the S1-rotating and
S2-rotating black rings, this solution was first obtained by
Pomeransky and Sen’kov [14] in 2006. Although they
mentioned that they had obtained the most general doubly

1The solution was obtained in different coordinates in
Refs. [4,5]. In this paper, we shall use the Figueras form of
the solution, which is the simpler of the two. The equivalence of
the two forms was subsequently proved in [6].
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rotating black ring solution, only the balanced case was
presented in their paper. Furthermore, Pomeransky and
Sen’kov found a form of the balanced doubly rotating
black ring that was remarkably simple, considering the
generality of the solution. The properties of this solution
were further studied in [15].

The unbalanced generalization of the Pomeransky-
Sen’kov black ring was eventually presented in [16].
However, it took a very complicated form which made it
difficult to handle and analyze. The main purpose of this
paper is to present a much more compact form of this
solution, which may be regarded as the natural general-
ization of the simple form found in [14] for the balanced
case. We will also take the opportunity to describe in detail
the ISM construction of this solution, something that was
only briefly described in [14] and not anywhere else to the
best of our knowledge.

We will also present a study of the physical properties of
the unbalanced doubly rotating black ring. In particular, we
show how the various known black-ring solutions, namely,
the Emparan-Reall, Figueras, and Pomeransky-Sen’kov
solutions, can be obtained from it as special cases. We
also explicitly show how the zero and infinite-ring radius
limits of this solution can be taken, to obtain the general
doubly rotating Myers-Perry black hole and general
boosted Kerr black string, respectively. Note that the latter
two limits would otherwise have been impossible to obtain
from the Pomeransky-Sen’kov black ring. The fact that all
these different limits can be obtained from our general
solution is a good check that we have indeed found the
correct unbalanced generalization of the Pomeransky-
Sen’kov black ring.

This paper is organized as follows: In Sec. II, the ISM
construction of the unbalanced doubly rotating black ring
is described in detail. The final solution and its rod struc-
ture is presented in Sec. III. The physical properties of this
black ring are then discussed in Sec. IV. The paper ends
with a brief discussion and an appendix containing several
more technical results. Some familiarity with the ISM is
assumed of the reader in Sec. II. Those readers interested
only in the solution and its physical properties may skip
directly to Sec. III.

II. ISM CONSTRUCTION

The inverse-scattering method [7–9] is a well-known
technique that generates new solutions from known, sim-
pler seed solutions by means of purely algebraic manipu-
lations called soliton transformations. This, loosely
speaking, refers to a paired process of removing and adding
‘‘solitons’’ to the seed solution, each with different
‘‘Belinski-Zakharov vectors’’. It is these BZ vectors which
can be used to introduce new, nontrivial parameters to the
seed solution. For example, the ISM can be used to in-
troduce rotation to the Schwarzschild solution, thereby
obtaining the Kerr solution. In recent years, it has been

successfully applied to construct five-dimensional rotating
black-hole solutions with R�Uð1Þ �Uð1Þ isometry (see,
e.g., [10,17,18] for reviews).
For such solutions, under suitable conditions, one can

find so-called Weyl-Papapetrou coordinates in which their
local metrics take the form [19]

ds2 ¼ Gijdx
idxj þ e2�ðd�2 þ dz2Þ; (2.1)

where the function � and the 3� 3matrixGij depend only

on the two coordinates � and z, with the latter satisfying the
constraint detG ¼ ��2. The seed solutionwill usually have
a diagonal Gij, and can be characterized by certain rod

sources defined along the z axis known as its rod structure
[20]. The new generated solution will in general have a
nondiagonalGij. However, it can still be analyzed using the

rod-structure formalism developed in [19,21,22]. It turns
out that the ISM and the rod-structure formalism together
provide a powerful means to construct and analyze five-
dimensional black holes with R�Uð1Þ �Uð1Þ isometry.
In [14], Pomeransky and Sen’kov constructed their

black ring in a two-step process. They first generated the
Emparan-Reall black ring from a seed solution with the rod
structure as shown in Fig. 1, using a one-soliton trans-
formation in which a soliton was removed and added at
z1. A two-soliton transformation, in which solitons were
removed and added at z2 and z3, was then performed on the
balanced Emparan-Reall black ring to obtain the balanced
doubly rotating black ring.
In this paper, we will use a three-soliton transformation

on the same seed solution to directly generate the unbal-
anced doubly rotating black ring.2 This has the advantage
of being computationally simpler than the above two-step
process. The explicit solution corresponding to the rod
structure in Fig. 1 can be directly read off [20] as

G0 ¼ diag

�
��1

�3

;
�2�4

�1

;
�2�3

�2�4

�
; (2.2a)

e2�0 ¼ k2
�2�4R12R13R14R23R34

�1R
2
24R11R22R33R44

; (2.2b)

where �i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðz� ziÞ2

p � ðz� ziÞ, Rij��2þ�i�j,

and k is an arbitrary integration constant that can be fixed
by, say requiring asymptotic flatness. An efficient calcu-
lation of the conformal factor e2�0 for a diagonal seed can
be found in, say [23]. Using the ISM, we then perform the
following soliton transformations on the above seed:

2We remark that one can also start with the following seed
solution:

G0 ¼ diag

�
��1

�3

;
�3�4

�2

;
�2�2

�1�4

�
;

in which the rod with negative mass density lies between z2 <
z < z3, and generate the same final solution up to coordinate
transformations and parameter redefinitions.

YU CHEN, KENNETH HONG, AND EDWARD TEO PHYSICAL REVIEW D 84, 084030 (2011)

084030-2



(1) Remove a soliton at each of z1, z2 and z3, with trivial
BZ vectors (0, 1, 0), (0, 0, 1) and (1, 0, 0),
respectively;

(2) Add back a soliton at each of z1, z2 and z3, with
nontrivial BZ vectors ðC1; 1; 0Þ, ð0; C2; 1Þ and
ð1; 0; C3Þ, respectively. Here, C1, C2 and C3 are the
new, so-called BZ parameters.

In the first step, the act of removing a soliton at z ¼ zk
with a trivial BZ vector having a nonvanishing a-th com-
ponent, refers to multiplying the diagonal element ðG0Þaa
of the seed solution by a factor� �2

k

�2 . So in the current case,

after the first step, we obtain the new G-matrix:

~G0 ¼ G0diag

�
��2

3

�2
;��2

1

�2
;��2

2

�2

�

¼ diag

�
�1�3

�2
;��1�2�4

�2
;��2�3

�4

�
: (2.3)

To carry on with the second step, we need to know the

corresponding 3� 3 generating matrix ~�0. It can be
obtained by performing the following replacements to the
~G0 matrix: �i ! �i � �, �2 ! �2 � 2z�� �2 or �2

�i
!

�2

�i
þ �, where � is a spectral parameter. Thus, we have

~�0ð�Þ ¼ diag

�ð�1 � �Þð�3 � �Þ
ð�4 � �Þð�2

�4
þ �Þ

;�ð�1 � �Þð�2 � �Þ
�2

�4
þ �

;

� ð�2 � �Þð�3 � �Þ
�4 � �

�
: (2.4)

One can then easily follow [10] to carry out the second
step. When adding back the solitons, we have to compute

some vectorsmðkÞ for the k-th soliton involving the quantity
~��1
0 ð�kÞ, which has infinite components. Such a difficulty

can be circumvented by first multiplying ~��1
0 ð�Þ by an

overall factor ���k and then substituting � ¼ �k into

the expressions. Although such an operation rescales mðkÞ

by an infinite overall factor, it can be shown that it does not
change the final solution. Note that after the first step, the

matrix ~G0 does not satisfy the constraint det ~G0 ¼ ��2 as
required of a physical solution; however, this constraint is
automatically satisfied after we have done the second step.
To complete the construction, we need to calculate the

conformal factor. It can be shown that the ratio of the new
conformal factor to the old one is proportional to the
determinant of the � matrix as defined in [10], and it
depends on the BZ parameters only through this determi-
nant. Observe that in the above two steps the nontrivial BZ
parameters (C1, C2, C3) only appear in the � matrix of the
second step. If we set (C1 ¼ 0, C2 ¼ 0, C3 ¼ 0) so that
the same solitons are first removed and then added back,
we should be able to recover the original seed solution. It is
then not difficult to see that

e2� ¼ e2�0
det�ðC1; C2; C3Þ

det�ðC1 ¼ 0; C2 ¼ 0; C3 ¼ 0Þ ; (2.5)

where the �matrix here is that corresponding to the second
step.
At this stage, we have a new solution whose rod struc-

ture will be different from that in Fig. 1. Although there
will still be four turning points and five rods, the directions
of the rods will have components in all three possible
directions, and will involve the BZ parameters C1, C2

and C3 in a nontrivial way. We now have to find the
minimum conditions onC1,C2 andC3 which would ensure
that this new rod structure describes a black ring with the
correct horizon topology [24]. Firstly, we require that the
first and second rods (as counted from the left) are parallel,
which gives an equation for C2

1. Without loss of generality,
we take the solution

C1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z31

2z21z41

s
; (2.6)

where zij � zi � zj. This condition, in fact, implies an-

other result: the orbits of the Killing vector fields associ-
ated with these two rods have the same periodicity. In the
strengthened rod-structure formalism of [22], these two
rods then have the same normalized direction.
Effectively, it means that the two rods are joined up into
one, and that the point z1 at which they meet is no longer a
real turning point but a ‘‘phantom point’’ [17].
Secondly, we require the first and fourth rods to be

parallel.3 This gives two conditions, one of which is ac-
tually guaranteed to hold by (2.6). The second condition
gives an equation quadratic in C3. Of the two roots of this

FIG. 1. The rod sources of the seed solution for the doubly
rotating black ring. The thin lines denote the z axis and the thick
lines denote rod sources of mass 1

2 per unit length along this axis.

The dashed horizontal line denotes a rod source with negative
mass density � 1

2 . Small circles represent the operations of

removing solitons from the seed, each with a BZ vector having
a single nonvanishing component along the coordinate that
labels the z axis where the circle is placed.

3In general, these two rods will not have the same normalized
direction. As we shall see below, the special case in which they
do corresponds to the Pomeransky-Sen’kov black ring. In this
case, a2 � 4b in (2.7) can be written as a perfect square, and C3

becomes proportional to C2. In this case, the subsequent analysis
becomes much simpler.
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equation, we choose the one which contains as a special
case the solution for the Pomeransky-Sen’kov black ring,
namely

C3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21z

2
42

2z31z41

s
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p

C2

; (2.7)

where

a � 1þ z32
z21

C2
2; b � z32z41z43

z21z
2
42

C2
2: (2.8)

The expression on the right-hand side of Eq. (2.7) is rather
unwieldy, and it would prove to be more convenient to
define the new quantities � and �:

� ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p

2
; � ¼ a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p

2
: (2.9)

Then we can write C2 and C3 quite simply as

C2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21z

2
42��

z32z41z43

s
; C3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z32z43�

z31�

s
: (2.10)

Equation (2.8) will also imply an expression for the loca-
tion of the phantom point, z1:

z1 ¼ z4 � z242
z43

��

�þ �� 1
; (2.11)

in terms of �, � and the other zi’s. Thus, with the use of
(2.10) and (2.11), the solution can be expressed in terms of
these parameters. Although there are apparently five
of them, recall that the zi are only fixed up to an overall
translation, so there are actually just four parameters which
are physically relevant.

The next step involves rotating the solution to standard
orientation [22] where the first and last spacelike rods have
directions (0, 0, 1) and (0, 1, 0), respectively. This will
ensure that the metric takes a simple diagonal form at
infinity, and is accomplished by the linear transformation
G0 ¼ ATGA, where

A ¼ 1

�

� K5½1� K1½1�
0 K5½2� K1½2�
0 K5½3� K1½3�

0
BB@

1
CCA: (2.12)

Here, K1 and K5 are the original directions of the first and
last spacelike rods, respectively, while � is a constant
whose value is determined by the condition that detA ¼
1. These rod directions (not normalized to have unit surface
gravity) are given by

K1 ¼ ð2z32z41C1C2;�z32C2; z42 � z41C1C2C3Þ;
K5 ¼ ðz31C2C3; z42 � z41C1C2C3;�z32C2Þ: (2.13)

Finally, we transform from Weyl-Papapetrou coordi-
nates (�, z) to C-metric-like coordinates (x, y) [25]:

�2¼4ß4ð1�x2Þðy2�1Þð1þ�xÞð1þ�yÞð1þ�xÞð1þ�yÞ
ð1���Þ2ðx�yÞ4 ;

z¼ß2ð1�xyÞ½2þð�þ�ÞðxþyÞþ2��xy�
ð1���Þðx�yÞ2 ; (2.14)

with the locations of the three remaining turning points
fixed to be

z2¼� ���

1���
ß2; z3¼ ���

1���
ß2; z4¼ß2: (2.15)

The key advantage of using C-metric-like coordinates is
that �i, i ¼ 2, 3, 4 become algebraic expressions:

�2 ¼ � 2ß2ð1� xÞð1þ yÞð1þ �xÞð1þ�yÞ
ð1���Þðx� yÞ2 ;

�3 ¼ � 2ß2ð1� xÞð1þ yÞð1þ�xÞð1þ �yÞ
ð1���Þðx� yÞ2 ;

�4 ¼ � 2ß2ð1� y2Þð1þ�xÞð1þ �xÞ
ð1���Þðx� yÞ2 : (2.16)

Note that this particular coordinate transformation intro-
duces one new parameter, and the additional freedom can
be used to simplify the metric components of the resulting
solution. Following the case of the Pomeransky-Sen’kov
black ring [14], we use this freedom to make the numerator
of gt	 linear in y. This fixes � as follows:

� ¼ 1��

2�

�
���

1þ �
�þ�þ �

1� �

�
: (2.17)

Furthermore, it is observed that the metric components
take the simplest form when � is eliminated in favor of
the new parameter � (not to be confused with the spectral
parameter used above) as follows:

� ¼ ð1þ �Þð�� ��þ��� ��2Þ
ð1� �Þð�þ ������ ��2Þ : (2.18)

After making a suitable choice of the integration constant k
in (2.2b) to ensure asymptotic flatness (and a possible sign
change t ! �t), the metric of the resulting solution is
given below in Eq. (3.1) in terms of the final physical
parameters �, �, �, and ß.
We remark that while the above-described procedure

involves only straightforward algebraic manipulations
from start to finish, the expressions involved can become
very complicated in the intermediate stages, making them
a challenge to handle even on modern computers. This is
because they will involve the explicit square-rootffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðz� z1Þ2

p
coming from �1, which cannot be

avoided even after transforming to the C-metric-like coor-
dinates (2.14). Although we know that the final metric will
not depend on this square-root [since z1 will turn into a
phantom point upon imposing the condition (2.6)], the
challenge is to try to cancel out the square-root at
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some stage.4 It is obviously desirable to do this as early in
the computation as possible.

In practice, we have found that the following (supple-
mented) sequence of steps will enable the whole computa-
tion to be done on a modern computer in reasonable time:
The three-soliton transformation is first carried out inWeyl-
Papapetrou coordinates. We then transformed the resulting
solution to the C-metric-like coordinates (u, v) described in
Appendix H of [19]. These C-metric-like coordinates con-
tain one fewer parameter than those in (2.14), but they have
the advantage of being simpler in form. In what turns out to
be the most computationally intensive step, we then im-
posed the condition (2.6) and cancelled out all the square-

roots
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðz� z1Þ2

p
using a similar procedure to that

described in [26]. After this is done, the remaining con-
ditions (2.10) and (2.11) are imposed, and the rotation to
standard orientation performed. Finally, we performed the
following Möbius transformation:

u ¼ xþ �

1þ �x
; v ¼ yþ �

1þ �y
; c ¼ �� �

1���
; (2.19)

to transform from the C-metric-like coordinates of [19] to
those in (2.14), and the expressions (2.17) and (2.18) are
substituted in to obtain the final form of the solution.

III. THE METRIC AND ROD STRUCTURE

The metric of the unbalanced doubly rotating black ring
is given by

ds2 ¼ �Hðy; xÞ
Hðx; yÞ ðdt�!c dc �!	d	Þ2 � Fðx; yÞ

Hðy; xÞ dc
2

� 2
Jðx; yÞ
Hðy; xÞ dc d	þ Fðy; xÞ

Hðy; xÞ d	
2

þ 2ß2ð1��Þ2ð1� �ÞHðx; yÞ
ð1� �Þð1���Þ��ðx� yÞ2

�
dx2

GðxÞ �
dy2

GðyÞ
�
;

(3.1)

where

!c ¼ ßð�þ �Þ
Hðy; xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð���Þð1þ �Þð1� ��Þ��

ð1� �Þð1���Þ�

s
ð1þ yÞ

� f�ð1þ �x2yÞ þ �ð1��Þ½1þ �x� xyðxþ �Þ�g;

!	 ¼ ßð�þ �Þ
Hðy; xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��ð1� �2Þ���

1���

s
ð1� x2Þy; (3.2)

and the functions G, H, J and F are given by

GðxÞ ¼ ð1� x2Þð1þ�xÞð1þ �xÞ; (3.3a)

Hðx; yÞ ¼ ��þ �ð���Þð1þ �Þ�þ ���x2y2 þ �ð�þ �Þð���Þð1� ��Þð1� ��x2y2Þ
þ �ð�þ �Þ½1� ��� �ð���Þxy�½ð1� ��Þxþ �ð���Þy�; (3.3b)

Jðx; yÞ ¼ 2ß2ð�þ �Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð���Þð1� ��Þp ð1� x2Þð1� y2Þ
ð1���Þ�ðx� yÞ f��þ �ð���Þð1þ �Þ�� ���xy

þ �ð�þ �Þð���Þð1� ��Þð1þ �xþ �yþ ��xyÞg; (3.3c)

Fðx; yÞ ¼ 2ß2

��ð1���Þ�ðx� yÞ2 fGðxÞðy
2 � 1Þf�ð1� �2Þ½�þ �ð���Þð1þ �Þ�2

� ð�þ �Þð1� ��Þð1þ �yÞ½��� ��ð���Þ½�þ �ð���Þð1þ �Þ��g
þ �GðyÞfð���Þð1� ��Þ½�ð�þ �Þ2ð1� ��Þ þ ½�þ �ð���Þð1þ �Þ�ð�þ ����xÞx�
þ ½��þ ���ð�� 1Þð���þ�Þ�½1þ ð�þ �Þx�x2 þ���½��� ��ð�þ �Þð���Þð1� ��Þ�x4gg:

(3.3d)

To simplify the above expressions, we have introduced the
following abbreviations:

� � 1� ��� ��þ��;

� � �� ��þ��� ��2;

� � �þ ������ ��2: (3.4)

The C-metric-like coordinates x, y take the ranges �1 �
x � 1 and �1< y � �1, respectively. The metric is
independent of time�1< t <1 and angles 0 � c , 	<
2
. It has four independent physical parameters, �, �, �
and ß, of which the first three are dimensionless and the last
sets the scale of the solution. They satisfy the constraints

0 � � � � � � < 1; ß> 0: (3.5)

In particular, the former constraint ensures that the quan-
tities �, � and � are positive.

4This step also needs to be carried out in the ISM generation of
the Emparan-Reall black ring, and is described, for example, in
Appendix A.2 of [26].
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As a check, we can calculate the rod structure of this
solution using standard methods [22,24]. It indeed has
three turning points, consistent with the fact that the ISM
construction above has turned one of the original four
turning points into a phantom point. They are located at5

ð� ¼ 0; z ¼ z1 � � ���
1��� ß

2Þ or (x ¼ �1, y ¼ �1=�),

ð� ¼ 0; z ¼ z2 � ���
1��� ß

2Þ or (x ¼ 1, y ¼ �1=�), and

ð� ¼ 0; z ¼ z3 � ß2Þ or (x ¼ 1, y ¼ �1), respectively.
These three turning points partition the z-axis into four
rods; from left to right they are:

(i) Rod 1: a semi-infinite spacelike rod at ðx ¼
�1;�1=� � y <�1Þ, with direction ‘1 ¼ ð0; 0; 1Þ.

(ii) Rod 2: a finite timelike rod at ð�1 � x � 1; y ¼
�1=�Þ, with direction ‘2 ¼ 1

� ð1;�c ;�	Þ, where

�¼ð���Þð1��Þð1þ�Þ
4ßð�þ�Þð1��Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1���Þ��

�ð1þ�Þð1��Þ

s
;

(3.6a)

�c ¼ 1

ßð1��Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð���Þð1��Þð1���Þð1���Þ�

2�ð1þ�Þ��

s
;

(3.6b)

�	¼ 1þ�

ßð�þ�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þð1���Þ�

2�ð1þ�Þ��

s
: (3.6c)

(iii) Rod 3: a finite spacelike rod at ðx ¼ 1;�1=� �
y � �1Þ, with direction ‘3 ¼ 1

�E
ð0; 0; 1Þ, where

�E ¼ 1þ�

1��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þð1þ �Þ�
ð1þ �Þð1� �Þ�

s
: (3.7)

(iv) Rod 4: a semi-infinite spacelike rod at ð�1< x �
1; y ¼ �1Þ, with direction ‘4 ¼ ð0; 1; 0Þ.

This rod structure is shown schematically in Fig. 2, and
much information can already be read off from it using
results from the rod-structure formalism [22,24]. It is clear
that it describes a doubly rotating black ring in an asymp-
totically flat space-time. In the following section, we shall
examine the physical properties of this black ring in more
detail.

IV. PHYSICAL PROPERTIES

We begin by noting that the metric of the unbalanced
doubly rotating black ring (3.1) is asymptotically flat, with
infinity located at ðx; yÞ ! ð�1;�1Þ. This can be explicitly
seen by introducing the coordinates (r, �) defined by

x ¼ �1þ 4ß2ð1��Þð1� �Þ
1���

cos2�

r2
;

y ¼ �1� 4ß2ð1��Þð1� �Þ
1���

sin2�

r2
: (4.1)

In the asymptotic region r ! 1, the metric behaves as

ds2!
�
�1þ 8M

3
r2

�
dt2�8Jc sin

2�


r2
dtdc �8J	cos

2�


r2
dtd	

þdr2þr2ðd�2þsin2�dc 2þcos2�d	2Þ; (4.2)

from which we can read off the Arnowitt-Deser-Misner
mass M and angular momenta Jc , J	 of the space-time:

M¼ 3
ß2�ð�þ�Þð1��Þ�
2ð1��Þð1���Þ� ; (4.3a)

Jc ¼
ß3ð�þ�Þð1��Þ½2�ð1��Þð1��Þþ ð1��Þ��
ð1��Þ3=2ð1���Þ3=2�3=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð���Þð1þ�Þð1���Þ�

�

s
; (4.3b)

J	 ¼ 2
ß3ð�þ�Þð1��Þ
ð1���Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��ð1þ�Þ�
ð1��Þ��

s
: (4.3c)

Although these three physical quantities depend on the
four parameters in a rather nontrivial way, it is possible
to read off some special cases bearing in mind the parame-
ter ranges (3.5). Jc can be made to vanish by setting

� ¼ �, while J	 can be made to vanish by setting

� ¼ 0. When both angular momenta vanish, (3.1) reduces
to the static black ring [20]. All three quantitiesM, Jc and

J	 can be made to vanish by setting � ¼ � ¼ � ¼ 0, in

which case it can be checked that (3.1) reduces to flat
Minkowski space-time.
As can be seen from the rod structure, there is an event

horizon located at y ¼ �1=�. It has a ring topology
S1 � S2, with @=@c generating the S1 and @=@	 generat-
ing the rotational symmetry of the S2. The surface gravity
�, and angular velocities�c and�	, of the event horizon

FIG. 2. The rod structure of the unbalanced doubly rotating
black ring. The location of each rod is indicated below it, while
the direction of each rod is indicated above it. The arrow on the
horizon rod indicates that its direction vector has components in
the c and 	 directions as well.

5There is no longer any need to enumerate the phantom point,
since its position is determined in terms of the other parameters
of the solution.
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are given by (3.6a)–(3.6c), respectively. Its area can be
computed to be6

A¼ 16
2ß3ð�þ�Þð1��Þ�
ð1��Þð1þ�Þð1���Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1þ�Þð1��Þ

��

s
: (4.4)

Although the present coordinates break down at the hori-
zon, it is possible to find good coordinates through it,
following the methods of, say [15,27]. It turns out that
there is an inner horizon at y ¼ �1=�, and a curvature
singularity beyond it where Hðx; yÞ ¼ 0. For the most part,
we will concentrate on the region outside the event hori-
zon, namely �1=� < y � �1.

Note that gt	 vanishes along the two axes x ¼ �1. This

ensures that Dirac-Misner singularities are absent in the
space-time. The absence of such singularities can in fact be
seen from the rod structure, from the fact that the directions
of Rods 1 and 3 do not have timelike components [22,24].
It can also be checked that Hðx; yÞ> 0 everywhere on and
outside the horizon; see Appendix A. Since the curvature
invariants have denominators that are proportional to some
positive power of Hðx; yÞ, there are no curvature singular-
ities on or outside the horizon.

However, in general, there will be a conical singularity
present in the space-time, located along the finite axis
x ¼ 1. From the rod-structure viewpoint, this can be seen
from the direction vector of Rod 3, which is not canoni-
cally normalized to (0, 0, 1) like that of Rod 1. There is a
conical excess along this axis, which can be read off to be

�	 ¼ 2
ð�E � 1Þ; (4.5)

where �E is given by (3.7). This conical (strut) singularity
provides a pressure that prevents the black ring from
collapsing under its own gravity. However, when the rota-
tion in the ring direction is sufficiently large, the conical
excess in (4.5) becomes a deficit, and the conical singu-
larity provides a tension that prevents the black ring from
breaking apart due to the centrifugal force.

It is clear by now that (3.1) describes a black ring which
has rotations along two independent directions, with a
conical singularity in the space-time. This physical picture
can be confirmed by seeing how some well-known solu-
tions can be recovered from (3.1) as special cases. The first
limit we shall consider is when there is no conical singu-
larity in the space-time. This is given by the condition
�E ¼ 1, which gives two solutions when solved for �. It
turns out that only one of them,

� ¼ 2�

1þ�2
; (4.6)

lies within the physical range given by (3.5). This limit
should correspond to the Pomeransky-Sen’kov black ring
[14], and indeed we can recover this solution from (3.1)
upon imposing the condition (4.6). This is explicitly shown
in Appendix B (together with the other well-known limits
to be discussed below).
If we set � ¼ 0, we recover from (3.1) the Emparan-

Reall black ring [3], which rotates only in the c direction.
On the other hand, if we set � ¼ �, we recover the
Figueras black ring [5], which rotates only in the 	 direc-
tion. These two results are consistent with the observation
made above that J	 ¼ 0 and Jc ¼ 0 in these two limits,

respectively. Roughly speaking, they also show that the
parameter � governs the rotation of the black ring in the S2

direction, while the parameter � governs its rotation in the
S1 direction. In particular, the upper bound for �, namely
� ¼ �, describes a black ring that is maximally rotating in
the S2 direction. This corresponds to the extremal limit of
(3.1) in which the two horizons coincide, and their surface
gravity becomes zero.
There are two other nontrivial limits of (3.1) that one can

check, namely, the zero and infinite ring-radius limits. As
expected, when the ring radius is shrunk to zero, the black
ring becomes a Myers-Perry black hole that rotates in two
independent directions. On the other hand, when the ring
radius becomes infinite, the S1 decompactifies into an R1

and the black ring becomes an infinitely extended black
string. The original S1 rotation now corresponds to mo-
mentum in the string direction, while the S2 rotation is
orthogonal to the string direction. In other words, we have
a boosted Kerr black string. This conclusion is consistent
with the general interpretation of black rings as black
strings that are bent into a circular shape.
Since rotation is present, therewill be an ergoregion in the

space-time bounded by ergosurfaces on whichHðy; xÞ ¼ 0.
It turns out that the properties of this ergoregion are quali-
tatively similar to that of the Pomeransky-Sen’kov black
ring [27,28]. In particular, it can be checked that the event
horizon is always surrounded by the ergoregion. For suffi-
ciently small � (and fixed � and �), the topology of the
ergosurface is S1 � S2, just like that of the event horizon.
However, there exists a critical value of �, given by

� ¼ 1� ��

1þ �
; (4.7)

beyond which the ergoregion will grow large enough to
merge with itself across the center of the ring. At the same
time, an innerS3 ergosurfacewill appear, so as to exclude the
center of the ring from the ergoregion. The ergoregion will
then encompass the region between the outer and inner S3

ergosurfaces; see, e.g., Fig. 1 of [27]. This means the topol-
ogy of the ergosurface will change from S1 � S2 to S3 [ S3.
It should be noted that the condition (4.7) is not always

6If we identify the temperature and entropy of the event
horizon as T ¼ �=ð2
Þ and S ¼ A=4 respectively, it can be
checked that the Smarr relation

2

3
M ¼ TSþ�c Jc þ�	J	;

is satisfied.
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compatible with the physical range (3.5), i.e., there exist
values of � and� for which the topology of the ergosurface
is always S1 � S2.

It should also be checked if the space-time described by
(3.1) contains closed timelike curves (CTCs). Now, the
requirement for the absence of CTCs is that the 2� 2metric
gij, i; j ¼ c ; 	 be positive semidefinite. Since the metric

components are sufficiently complicated, we have resorted
to checking this numerically. Despite an extensive search,
noCTCswere found anywhere in the space-time outside the
event horizon. It would be desirable to demonstrate the
absence of CTCs analytically, perhaps along the lines of
[29] as done for the Pomeransky-Sen’kov black ring.

V. DISCUSSION

In this paper, we have described how the inverse-
scattering method can be used to derive the unbalanced
doubly rotating black ring, which generalizes the
Pomeransky-Sen’kov black ring [14]. We then presented a
new form of this solutionwhich is muchmore compact than
the one previously presented in [16]. Finally, we studied
some physical properties of this solution, including show-
ing how various well-known limits can be obtained from it.

There are several possible extensions of this work.
While we have studied the main properties of the unbal-
anced doubly rotating black ring, there are other properties
that are worth investigating in more detail, such as
its geodesics and global structure (as was done in
[27,29,30], respectively, for the balanced case). For com-
pleteness, it would also be desirable to map the form of the
solution found in this paper to the one presented in [16].

It should be possible to generalize the black-ring solu-
tion found in this paper to include charge. Unlike black
holes, black rings can carry two kinds of charge: a normal
conserved charge [31] and a nonconserved dipole charge
[32]. It should be straightforward to obtain charged doubly
rotating black rings using standard charging transforma-
tions, such as those used in [31,33–35]. However, obtaining
a dipole-charged doubly rotating black ring might prove to
be more elusive. At present, even the dipole-charged gen-
eralization of the S2-rotating black ring is not known,
although the inverse-scattering formalism developed in
[36] might offer some hope for finding this solution.
Such a solution, if found, could be the starting point to
generate the most general stationary black-ring solution of
Uð1Þ3 supergravity theory [37].

It is our hope that the ISM construction explicitly pre-
sented in this paper will inspire the construction of other
more general solutions, such as those containing multiple
black rings/holes in five dimensions, with rotations in two
independent directions. An example is a doubly rotating
black ring with a Myers-Perry black hole at its center, a
configuration known as a black saturn [26]. Other possible
configurations consist of two concentric doubly rotating
black rings lying in the same plane (known as a di-ring

[38,39]), or in orthogonal planes (known as a bi-ring
[15,23]). Each of these solutions is expected to have a
regular subclass of solutions, which could have implica-
tions, for example, for the phase structure of black holes in
five dimensions [15].
Finally, we remark that the ISM construction of the

doubly rotating black ring can be extended to obtain a
doubly rotating ‘‘black lens’’ with a lens-space horizon
topology, generalizing the singly rotating black lens found
in [40]. The ISM construction in this case is rather straight-
forward: we use the same seed solution, with a rod struc-
ture as shown in Fig. 1, but now we need to remove a fourth
soliton at z4 with a trivial BZ vector (0, 0, 1) in Step 1
above, and then add it back with a nontrivial BZ vector
(0, C4, 1) in Step 2 together with the other three solitons.
After imposing suitable conditions [40], we obtain a black
lens rotating in two independent directions. We also men-
tion that the ISM construction presented in this paper can
be extended to obtain a doubly rotating black ring on Taub-
NUT (Newman-Unti-Tamburino), generalizing the black
ring on Taub-NUT with a single angular-momentum pa-
rameter found in [41].
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APPENDIX A: POSITIVITY OF Hðx; yÞ
Here, we prove that Hðx; yÞ is positive everywhere on

and outside the event horizon �1 � x � 1, �1=� � y �
�1, and for the range of parameters7 0< � � � � � < 1.
We begin by noting thatHðx; yÞ is a quadratic function in x
that can be written in the form:

Hðx; yÞ ¼ ax2 þ bxþ c; (A1)

where a, b and c are functions of y, given by

a ¼ �y½��y� �ð1� ��Þð���Þð�þ �Þð1þ�yÞ�;
b ¼ �ð�þ �Þ½ð1� ��Þ2 � �2ð���Þ2y2�;
c ¼ �½�þ �ð���Þð1þ �Þ�

þ �ð1� ��Þð���Þð�þ �Þð1þ �yÞ: (A2)

a is manifestly positive for the above-stated physical range.
For later purposes, we note that b is also positive in this
range:

b � �ð�þ �Þ
�
ð1� ��Þ2 � �2ð���Þ2

�
� 1

�

�
2
�

¼ 1

�2
�ð�þ �Þ��> 0: (A3)

7We exclude the Emparan-Reall black-ring limit here, as
Hðx; yÞ is already known to be positive in this case.
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It turns out that c is positive in this range as well, but we
shall show the stronger result that c � a. This can be seen
from the fact that

d

dy
ðc� aÞ ¼ 2�½���yþ �ð1� ��Þ

� ð���Þð�þ �Þð1þ�yÞ�> 0; (A4)

and

ðc� aÞjy¼�1=� ¼ 1

�2
ð�� �Þ�� � 0: (A5)

Now, assume that b2 � 4ac � 0. (Otherwise Hðx; yÞ
will not have any zeros, which would mean it is positive
everywhere since a > 0.) The minimum of Hðx; yÞ with
respect to x is located at

x0 � � b

2a
: (A6)

To prove that Hðx; yÞ is positive in the range �1 � x � 1,
we need to show that (i)Hð�1; yÞ> 0, and (ii) x0 � �1. It
is readily seen that the first condition is satisfied:

Hð�1;yÞ¼ 1

�
ð1��Þ�½ð1þ��y2Þ�

þ��ð1þ�Þð�2y2�1Þ�
� 1

�
ð1��Þ�½ð1þ��Þ�þ��ð1þ�Þð�2�1Þ�

¼ ð1��Þð1��Þ��>0: (A7)

The second condition can be shown as follows: since b > 0
and c � a > 0, it follows from the initial assumption that
b � 2

ffiffiffiffiffiffi
ac

p � 2a, and so � b
2a � �1. Hence Hðx; yÞ is

positive on and outside the event horizon.

APPENDIX B: VARIOUS KNOWN LIMITS

1. Pomeransky-Sen’kov black ring

The Pomeransky-Sen’kov black ring [14] is obtained by
imposing the regularity condition along the finite axis,
namely (4.6). The metric (3.1) then becomes

ds2 ¼ � ~Hðy; xÞ
~Hðx; yÞ ðdt� ~!c dc � ~!	d	Þ2 � ~Fðx; yÞ

~Hðy; xÞ dc
2

� 2
~Jðx; yÞ
~Hðy; xÞ dc d	þ ~Fðy; xÞ

~Hðy; xÞ d	
2

þ 2ß2 ~Hðx; yÞ
ð1���Þ2ðx� yÞ2

�
dx2

GðxÞ �
dy2

GðyÞ
�
; (B1)

where

~!c ¼ 2ßð�þ�Þ
~Hðy;xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ�Þð1þ�Þ
ð1��Þð1��Þ

s
ð1þyÞ½1þ�þ����

þ2��xð1�yÞþ��ð1�������Þx2y�;

~!	 ¼ 2ßð�þ�Þ
~Hðy;xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð1��2Þð1��2Þ

q
ð1�x2Þy; (B2)

and the functions ~H, ~J and ~F are given by

~Hðx; yÞ ¼ 1þ ð�þ �Þ2 ��2�2 þ 2ð�þ �Þðxþ��yÞð1���xyÞ þ��½1� ð�þ �Þ2 ��2�2�x2y2; (B3a)

~Jðx; yÞ ¼ 2ß2ð�þ �Þ ffiffiffiffiffiffiffi
��

p ð1� x2Þð1� y2Þ
ð1���Þ2ðx� yÞ f1þ ð�þ �Þ2 ��2�2

���½1� ð�þ �Þ2 ��2�2�xyþ 2��ð�þ �Þðxþ yÞg; (B3b)

~Fðx; yÞ ¼ 2ß2

ð1���Þ2ðx� yÞ2 fGðxÞð1� y2Þfð1þ��Þ½1� ð�þ �Þ2 � 2��þ�2�2�
þ ð�þ �Þð1��2 � �2 � 3�2�2Þyg þGðyÞf2ð�þ �Þ2 þ ð�þ �Þð1þ�2Þð1þ �2Þx
þ ð1þ��Þ½1� ð�þ �Þ2 � 2��þ�2�2�x2 þ ð�þ �Þ½1� ð�þ �Þ2 ��2�2ð3� 2��Þ�x3
þ��ð1���Þ½1� ð�þ �Þ2 ��2�2�x4gg: (B3c)

To obtain exactly the form used in [14], we have to define the new parameters ~�, ~� and ~k by

~� ¼ �þ �; ~� ¼ ��; ~k ¼ ß; (B4)

swap the coordinates c and 	, and change the signature of the space-time to a mostly minus one.

2. Emparan-Reall black ring

The Emparan-Reall black ring, in the simplest form used in [17,32], is obtained by setting � ¼ 0 in (3.1):

ds2 ¼ � ~FðyÞ
~FðxÞ

�
dt� ß

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð���Þð1þ �Þ

1� �

s
1þ y
~FðyÞ dc

�
2 þ 2ß2 ~FðxÞ

ðx� yÞ2
�
�

~GðyÞ
~FðyÞ dc

2 þ
~GðxÞ
~FðxÞ d	

2 þ ð1��Þ2
1� �

�
dx2

~GðxÞ �
dy2

~GðyÞ
��
;

(B5)
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where

~FðxÞ ¼ 1þ �x; ~GðxÞ ¼ ð1� x2Þð1þ�xÞ: (B6)

To obtain exactly the form used in [17], we have to define
the new parameters ~�, ~� and ~R by

~� ¼ �; ~� ¼ �; ~R2 ¼ 2ß2ð1��Þ2
1� �

; (B7)

and the new coordinates

ð ~c ; ~	Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
1��

ðc ; 	Þ: (B8)

3. Figueras black ring

The Figueras black ring [5] is obtained by setting � ¼ �
in (3.1):

ds2 ¼ � ~Hðy; xÞ
~Hðx; yÞ

�
dt� ß

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��

1���

s
ð�þ �Þð1� x2Þy

~Hðy; xÞ d	

�
2

þ 2ß2 ~Hðx; yÞ
ð1���Þðx� yÞ2

�
�ð1� y2Þ ~FðxÞ

~Hðx; yÞ dc 2

þ ð1� x2Þ ~FðyÞ
~Hðy; xÞ d	2 þ ð1��Þð1� �Þ

�
�

dx2

ð1� x2Þ ~FðxÞ �
dy2

ð1� y2Þ ~FðyÞ
��
; (B9)

where

~Hðx; yÞ ¼ 1þ ð�þ �Þxþ��x2y2;

~FðxÞ ¼ ð1þ�xÞð1þ �xÞ: (B10)

To obtain exactly the form used in [5], we have to define

the new parameters ~�, ~a and ~R by

~�¼�þ�;
~a2

~R2
¼��; ~R2 ¼ 2ß2ð1��Þð1��Þ

1���
;

(B11)

and the new coordinates

ð ~c ; ~	Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1��Þð1� �Þp ðc ; 	Þ: (B12)

4. Myers-Perry black hole

The Myers-Perry black hole [2] is obtained by setting
� ¼ 1� cð1��Þ for some parameter 0< c � 1, per-
forming the coordinate transformation

x ¼ �1þ 8ß2cos2�ð1��Þ
2r2 þ a2 þ b2 �m� 4ß2 cos2�

;

y ¼ �1� 8ß2sin2�ð1��Þ
2r2 þ a2 þ b2 �m� 4ß2 cos2�

;

(B13)

where

m¼4ß2ð1þ�Þ
cð1��Þ ; a¼�2ß

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�c2Þð1��Þð1þ�þc�c�Þp
ffiffiffi
c

p ð1��þcþc�Þ ;

b¼�4ß
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�ð1þ�þc�c�Þp

ffiffiffiffiffiffiffiffiffiffiffi
1��

p ð1��þcþc�Þ; (B14)

and then taking the limit � ! 1. If we do this, (3.1)
becomes

ds2 ¼ �dt2 þm

�
ðdt� asin2�dc � bcos2�d	Þ2

þ ðr2 þ a2Þsin2�dc 2 þ ðr2 þ b2Þcos2�d	2

þ �

�
dr2

�
þ d�2

�
; (B15)

where

�¼r2
�
1þa2

r2

��
1þb2

r2

�
�m; �¼r2þa2cos2�þb2sin2�:

(B16)

Here, m is the mass parameter of the Myers-Perry black
hole, while a and b are the angular-momentum parameters
along the c and 	 directions, respectively.

5. Boosted Kerr black string

The boosted Kerr black string is obtained by setting

� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p
ffiffiffi
2

p
ß

; � ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p
ffiffiffi
2

p
ß

;

� ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2

p
ffiffiffi
2

p
ß

cosh
; (B17)

changing coordinates x ¼ cos�, y ¼ � ffiffiffi
2

p
ß=r, c ¼

�z=ð ffiffiffi
2

p
ßÞ, and then sending ß ! 1. If we do this, (3.1)

becomes

ds2¼�
�
1�2mrcosh2


�

�
dt2þ2mrsinh2


�
dtdz

þ
�
1þ2mrsinh2


�

�
dz2þðr2þa2Þ2��a2sin2�

�
sin2�d	2

�4mrcosh


�
asin2�dtd	�4mrsinh


�
asin2�dzd	

þ�

�
dr2

�
þd�2

�
; (B18)

where

� ¼ r2 þ a2 � 2mr; � ¼ r2 þ a2cos2�: (B19)

This is exactly the metric obtained by starting with the
four-dimensional Kerr solution, adding a flat direction z to
it, and then applying a boost dt ! cosh
dtþ sinh
dz,
dz ! sinh
dtþ cosh
dz. Some properties of this boosted
Kerr black string solution were studied in [42].
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