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The draining bathtub flow, a cornerstone in the theory of acoustic black holes, is here extended to the

case of exact solutions for compressible nonviscous flows characterized by a polytropic equation of state.

Investigating the analytical configurations obtained for selected values of the polytropic index, it is found

that each of them becomes nonphysical at the so called limiting circle. By studying the null geodesics

structure of the corresponding acoustic line elements, it is shown that such a geometrical locus coincides

with the acoustic event horizon. This region is characterized also by an infinite value of space-time

curvature, so the acoustic analogy breaks down there. Possible applications for artificial and natural

vortices are finally discussed.
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I. INTRODUCTION

General Relativity (GR) deals with curved space-times
of astrophysical interest. Recently the mathematical struc-
ture of this fundamental theory has been linked with the
analog geometries (Analog Gravity) [1–3] emerging in
nonrelativistic contexts of condensed matter physics, under
the inspiration of the seminal theoretical works by Unruh
[4,5]. The acoustic perturbations, both irrotational or not,
for a nonrelativistic classical perfect fluid can be described
as the dynamics of a real massless scalar field in a four
dimensional Lorentzian manifold where the speed of sound
plays the role of the speed of light.

A toy model called the draining bathtub [6] has been
proposed some years ago in order to understand a possible
black hole/white hole dynamics, and plenty different stud-
ies [7–14] have analyzed this simple system in search or
analogies with GR. The draining bathtub is a steady planar
flow with simple radial and tangential velocity components
and constant density, pressure, and speed of sound. The
extrusion of this plane flow on the z direction gives a
simple model for a three dimensional vortex. Standard
hydrodynamics arguments clearly show that this cannot
be a solution of Euler’s equation. In absence of external
forces (as gravity) and for static configurations only in fact,
pressure and density of the fluid can be both constant. If the
fluid is in stationary motion with spatial velocity gradients,
Bernoulli’s theorem states that pressure cannot be constant
in space. This means that a more realistic situation than the
draining bathtub is necessary, possibly including com-
pressibility which is the physical mechanism propagating
acoustic disturbances. Because of the weak compressibility
of ordinary fluids, we must extend our analysis to the realm
of gas-dynamics then.

We have to point out, as a caveat given in Ref. [1], that
the acoustic metrics in this more general case could allow
sets of acoustic perturbations which, although initially
small, may induce the development of shocks, possibly

leading to additional technical complications as a weak-
form formulation of hydrodynamics. We recall moreover
that in the context of Analog Gravity, the de Laval nozzles
have been the classical prototype adopted to numerically
study compressible polytropic flows through the acoustic
metric [15]. These configurations are extremely simplified
reducing the problem to a 1þ 1 transient dynamics on
which extract linear sound waves, while perturbed vortices
are intrinsically of 2þ 1 or 3þ 1 types, showing mani-
festly curvature effects to be taken into account.
We must remark moreover that while the original theo-

retical studies on acoustic black holes have pointed in favor
of quantum condensates at low temperatures (so practically
with zero viscosity) as appropriate experimental counter-
parts, what we want to study here is a classical nonviscous
compressible flow. This is a classical gaseous system
which, in presence of rotation, could describe in a first
approximation macroscopic vortices commonly encoun-
tered in experiments. Clearly we could imagine to include
in this treatment also large scale whirlpools as hurricanes,
tornadoes or typhoons. In fact, although these are quite
complicated systems of nature in which heat transfer and
viscous effects play a prominent role, we may imagine to
perform reasonable simplifications which could allow one
to grasp some of their important physical aspects. In this
spirit, we present in Fig. 1 a sketch of a sufficiently realistic
whirlpool-type gaseous/fluid configuration (a) contrasted
with the even more idealized one (b) as adopted in this
article. A fluid is thought not to exist in the region inside
the hole (what in a generic rotating fluid would be a sharp
air-liquid interface), while in gaseous configurations this
picture is less demarcated but still apparent. We must
anticipate here that in the mathematical theory of gas
dynamics, whose standard references are Courant and
Friedrichs’s volume [16] together with Von Mises’s mono-
graph on compressible flows [17] (both of these are fol-
lowed in this article), the field equations automatically lead
to a minimal critical radius (the so called limiting or limit
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circle for the spiral flow discussed later) beyond which the
solution results complex, and so are nonphysical. For this
reason we have plotted a hole already in the (b) configu-
ration. We shall neglect as a first approximation gravita-
tional effects and as an additional idealization we shall
moreover assume to observe a sufficiently thick slice of the
configuration ðbÞ far enough from the upper and lower
interfaces in order to avoid any border effect. As we shall
see later, the compressible fluid arrives at the last physical
radius with a finite velocity. One may imagine then to cut
and paste this outer solution with another inner more
complicated but regular one. It would be possible in this
case even to consider the acoustic metric formalism for a
rotational flow along the lines of Ref. [18] adopting
Clebsch’s potential theory for Euler’s equations [19–23].
On the other hand, the addition of the viscosity would
result dramatic for the theoretical scheme adopted by in-
ducing a breaking of the analog Lorentz invariance [6], and
so it cannot be considered.

We will present now the structure of the article. After
this introduction, we give in Sec. II the mathematical
formulation which can permit us to obtain analytical solu-
tions of Euler’s equations. In Sec. III these solutions are
framed in the context of analog space-times by studying
possible event horizons, ergospheres, and curvature singu-
larities. Finally in Sec. IV a general physical discussion of
the results is presented.

II. INCOMPRESSIBLE AND COMPRESSIBLE
POLYTROPIC DRAINING BATHTUB SOLUTIONS

As anticipated in the introduction, we want to model
three-dimensional incompressible and compressible vorti-
cal gaseous/fluid geometries. In presence of gravity this is a
complicated free boundary problem for the air-fluid inter-
face. Free boundary problems still are not a well developed
sector for analytical solution techniques [24] (while

numerically they are well studied), so we must relax our
initial conditions by assuming a flow which is well defined,
a priori, on an entire cylindrical domain. The role of
gravity is neglected in our treatment for the sake of sim-
plicity, in order to make us possible to adopt separation of
variables techniques and work with ordinary differential
equations instead of partial differential ones.
We start studying then a time independent configuration

in cylindrical coordinates ðr; �; zÞ assuming no t, z, and �
dependence of functions as well as vz ¼ 0. The problem
then collapses from a three dimensional to a two dimen-
sional one (but every z ¼ constant plane contains the same
physics, so extruding back along z direction we can get a
steady three dimensional plane motion). Assuming a
purely radial dependence we can write

� ¼ �ðrÞ; p ¼ pðrÞ;
vr ¼ vrðrÞ v� ¼ v�ðrÞ:

(1)

The curl of this velocity field results in r� ~v ¼ ðdv�

dr þ
v�

r Þẑ, while its divergence is r � ~v ¼ ðdvr

dr þ vr

r Þ. From these

conditions we obtain the following field equations (mass
and momentum conservation) [25]

vr

d�

dr
þ �

dvr

dr
þ vr

r
� � 1

r

d

dr
ð�rvrÞ ¼ 0 (2)

�vr

dvr

dr
þ dp

dr
� �v2

�

r
¼ 0 (3)

�vr

r

�
r
dv�

dr
þ v�

�
¼ 0: (4)

Equations (2) and (4) imply

v� ¼ B

r
; vr ¼

�
A

r

�
1

�
; A; B 2 R: (5)

This result leads to an irrotational flow except in the origin
where the velocity field is not defined. We point out that in
this flow the quantity 2�rv� � 2�B represents the con-
stant circulation � on a circle of radius r around the origin.
As expected for an irrotational flow, the circulation is equal
for all circuits surrounding an ‘‘obstacle’’ (the inner region
where, as we will see, the flow is not defined) [17].
Choosing A > 0we have an outgoing flow (a source) while
the case A < 0 gives a sink.
Inserting into Eq. (3) we finally obtain

A2

r2�2

d�

dr
þ A2

r3�
þ �B2

r3
� dp

dr
¼ 0: (6)

In this flow, a supersonic regime occurs where the local
Mach number M satisfies

M � v

cs
> 1; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
r þ v2

�

q
; c2s ¼ dpð�Þ

d�
;

(7)

FIG. 1. Sketch of a somewhat realistic whirlpool-type fluid
configuration (a) and of the even more idealized one (b) dis-
cussed in this article.
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where we have introduced the local speed of sound cs [16].
The equality M ¼ 1 must define the sonic point while
M< 1 leads to subsonic flows instead. We can address
now the analysis of several different types of flows asso-
ciated with this formulation.

A. Incompressible flows

Assuming incompressibility, i.e. �ðrÞ ¼ �0 ¼ constant,
we obtain that vr ¼ A

�0

1
r and this leads, as required, to

div ~v ¼ 0. From Eq. (3) we obtain

pðrÞ ¼ p1 � ðA2 þ �2
0B

2Þ
2�0r

2
; (8)

where p1 is the constant value of pressure present at
infinite distance from the origin. At a finite critical radius

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ �2

0B
2Þ=ð2�0p1Þ

q
(9)

pressure vanishes and beyond this point it changes sign so
that the physical solution terminates here.

The original draining bathtub configuration [6], charac-
terized by

vr ¼
~A

r
; v� ¼ ~B

r
; ~A; ~B 2 R; � ¼ constant;

p ¼ constant; cs ¼ constant (10)

is not a solution of Euler’s equations. It can be linked
however to the incompressible configuration just found
by neglecting the radial dependent term of the pressure.
Because of the r�2 behavior, this is a meaningful operation
sufficiently far from the origin and assuming, moreover, a
constant speed of sound cs. We stress that perturbative
wave propagation in such a configuration is meaningful
only relaxing the initial condition of incompressibility to a
slightly compressible fluid [25] (necessary condition for
having acoustic perturbations). Strictly speaking in fact,
incompressible perturbations of an incompressible fluid
cannot give sound waves, which by definition require
density variations of the medium. In this case then, from
the equation of state p� p0 ¼ Kð�� �0Þwith p0, �0, and
K (the latter very large) being real constants, we get from

usual formula c2s ¼ dpð�Þ
d� j�¼�0

that the constant sound

speed results into cs ¼
ffiffiffiffi
K

p
. It appears more reasonable

then to assume always the possibility of compressibility,
even small. This is done in the next pages.

B. Compressible flows for finite values
of the polytropic index n

If no incompressibility constraint is assumed, we must
provide an equation of state which in our case will be the

polytropic one i.e. p ¼ k�1þð1=nÞ with positive real con-
stants k and n. The limit n ! 0 is pathological, but stan-
dard manipulations, commonly adopted in astrophysics
as an example [26,27], show that it corresponds to the

incompressible case already studied. In the general n
case, the local sound speed of acoustic disturbances for
polytropic configurations will be given by

c2s ¼ dpð�Þ
d�

� k

�
1þ 1

n

�
�1=n: (11)

In this case, Eq. (6) becomes��
nþ 1

n

�
k�1=n � A2

r2�2

�
d�

dr
� A2

r3�
� B2�

r3
¼ 0; (12)

whose solution for 0< n<þ1, obtained through stan-
dard symmetry methods for ordinary differential equations
(see Appendix for details), is given by

kðnþ 1Þ�1=n þ A2

2r2�2
þ B2

2r2
¼ C1; (13)

where C1 is a constant of integration. Relation (13) from
Eq. (11), can be written as

c2s � k

�
1þ 1

n

�
�1=n ¼ 1

n

�
C1 � A2

2r2�2
� B2

2r2

�
� 0 (14)

which requires C1 > 0 in order to have a real sound speed.
The solution can be rewritten explicitly in the plane

�� r by isolating in Eq. (13) the r2 quantity, taking the
square root and choosing the positive radius solution
(the physical one) only, i.e.

r � rð�Þ ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ �2B2

2½C1 � kðnþ 1Þ�1=n�

s
: (15)

This is an highly transcendent relation showing that the
origin r ¼ 0, by assuming a non-negative and finite
density � for physical reasons, can never be reached,
i.e. the configuration becomes nonphysical at a certain
critical radius rc. The inversion of the relation (13) in
the more useful form � ¼ �ðrÞ is nontrivial except
for specific values of the polytropic index (specifically
n ¼ 1=2, 1, þ1).
Although we could approach the problem numerically,

we shall try to use analytical methods only in view of the
acoustic metric formalism manipulations. We point out
that in the case of A ¼ 0 (no radial flow) the analytical
solution of the problem is simply

�ðrÞ ¼
�
C1 � B2

2ðnþ 1Þkr2
�
n
; (16)

which becomes nonphysical again at a finite radius rc ¼
B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kC1ðnþ 1Þp

. The other case with B ¼ 0 and A � 0 is
not different qualitatively from the most general case so we
shall not address it further.

C. The case n ¼ 1=2

In this case Eq. (13) gives a fourth order equation in �
which can be solved giving four branches for � ¼ �ðrÞ.
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Moreover for the sound speed we have now that c2s ¼
3k�2. Two physical branches of the solution only must
exist because the remaining ones refer to negative densities
and consequently must be disregarded. We remain then
with the two solutions �� given by

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1

3k
� B2

6kr2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðB2 � 2C1r
2Þ2 � 12kA2r2

p
6kr2

s
: (17)

In the expression just derived the parameters A and B enter
quadratically so the solution will be the same for any signs
choice of these.

In Eq. (17) the two different roots however have a very
different physical meaning. The solution with the plus sign
�þ represents in fact a flow which is subsonic but becomes
supersonic at a specific radius. This solution starts at rest

(i.e. ~v ¼ 0) at radial infinity with density �1þ ¼
ffiffiffiffiffiffi
2C1

3k

q
which monotonically decreases going towards the configu-
ration up to a finite radius rc, discussed below, where the
solution physically terminates but the density remains
finite. In parallel the Mach number for this configuration
is zero at radial infinity, increases going towards the center,
becomes unity at a specific radius rs, and is supersonic at
the final physical radius rc (we call this the mixed case).

The other solution �� instead has a different meaning. It
is associated with a flow with zero asymptotic density
which monotonically increases going towards the center

of the configuration up to a finite value reached at rc. In this
case however the Mach number at infinity is infinite and
decreases monotonically towards the center arriving to a
last finite bigger than one value; this is a flow which is
always supersonic with asymptotic value v1 ¼ ffiffiffiffiffiffiffiffiffi

2C1

p
. The

critical and sonic radii can be even found analytically. A
rapid check shows that solution (17) becomes complex for
radii smaller than

r � rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1

2C1

þ 3kA2

2C2
1

þ
ffiffiffiffiffi
3k

p jAj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kA2 þ 2B2C1

p
2C2

1

vuut
:

(18)

Focusing on the �þ branch, in the limit r ! rc the
associated Mach number results in M ! Mc �
ð1þ 2B2C1

3kA2 Þ> 1, so as anticipated, the �þ solution ends

supersonic. On the other hand at analytical sonic radius

rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kA2 þ B2C1

p
C1

(19)

the Mach number of �þ reaches value M ¼ 1. The ana-
lytical radius for the sonic point rs is larger than the last
physical radius rc. In the limit r ! rc, using simple algebra
one can show that the ratio jvr=csj ! 1; as we will see, in
analogy with Visser’s study this corresponds to the acoustic
event horizon.
We point out finally that in the limit B ! 0 (purely

radial flows) we have that rc ! rs, so the solution physi-
cally ends at the sonic radius. The solution given by

FIG. 2. Density � versus radius r plot for the n ¼ 0:5 solution
with parameters A ¼ B ¼ k ¼ C1 ¼ 1. The solution has two
branches. One with the plus sign �þ (black solid line) represents
a flow which is subsonic but becomes supersonic at a specific
radius. It starts with finite asymptotic density �1þ and decreases
monotonically up to a critical radius rc. The other minus sign
solution �� (grey solid line) is associated with a flow which has
zero asymptotic density but nonzero asymptotic radial velocityffiffiffiffiffiffiffiffiffi
2C1

p
, which monotonically increases going out the center of the

configuration up to a finite value at the last physical radius rc.
The plot is the same in the case of the ingoing sink-type flux with
A ¼ �1.

FIG. 3. Local Mach number M versus radius r plot for the
n ¼ 0:5 solution with parameters A ¼ B ¼ k ¼ C1 ¼ 1. There
are two branches. The solution with the plus sign �þ represents a
flow which is essentially subsonic and at rest at spatial infinity
but becomes supersonic at a specific radius rh (sonic point with
M ¼ 1) up to a last physical radius rc. The �� branch instead is
always supersonic with infinite Mach number at radial infinity.
The plot is the same in the case of the ingoing sink-type flux with
A ¼ �1.
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Eq. (17) is shown in Fig. 2 for a generic choice of parame-
ters A ¼ B ¼ k ¼ C1 ¼ 1 (other different nonzero choices
lead to similar results). Taking the A < 0 case (the sink)
plots as anticipated are not changed. In Fig. 3 instead for
the same parameter’s choice we plot the Mach number
versus the radius for the same solution. In Fig. 4 we have
the magnitude of velocity v ¼ j ~vj, and in Fig. 5 the radial
dependence of local sound speed. In Fig. 6 instead we draw
the field vectors for parameters B ¼ k ¼ C1 ¼ 1 in the
case: (a) �þ and A ¼ �1, (b) �þ and A ¼ 1, (c) �� and
A ¼ �1, and (d) �� and A ¼ 1. Finally in Fig. 7 we plot
the field lines and arrow plot for the �þ solution with
parameters B ¼ k ¼ C1 ¼ 1 but A ¼ �1 (sink-type con-
figuration). The black region corresponds to the forbidden

region. The sonic circle rh is quasicoincident with the
critical radius rc so it has not be shown.

D. The case n¼1

The n ¼ 1 case leads for Eq. (13) to

4kr2�3 þ ðB2 � 2C1r
2Þ�2 þ A2

2r2�2
¼ 0: (20)

The relation can be inverted by using standard algebra
formulas for the roots of a third order polynomial. More
in detail the transformation

� ¼ ��
�
B2 � 2C1r

2

12kr2

�
(21)

casts our relation into the new form (depressed cubic)

�3 þ P�þQ ¼ 0; P ¼ �ðB2 � 2C1r
2Þ2

48k2r4
;

Q ¼ ðB2 � 2C1r
2Þ3

864k3r6
þ A2

4kr2
;

(22)

and from this point one can use standard algebra (Cardano
formulas or others) to get the explicit form of the roots. We
are not interested more in this case due to its quite lengthy
mathematical expression. What matters here is that the
solution practically behaves qualitatively as in the n ¼
0:5 case already studied with two roots �� and an U-
shaped plot in the plane �� r. For this reason we shall
not continue further its study.

E. Compressible flows in the isothermal limit n ! þ1
Performing instead the n ! þ1 isothermal limit in

Eq. (12) we obtain�
k� A2

r2�2

�
d�

dr
� A2

r3�
� B2�

r3
¼ 0: (23)

Integrating this we get

�ðrÞ ¼ exp

�
1

2

�
W

�
�A2 expðB2þ2C2r

2

kr2
Þ

kr2

�
�
�
B2þ 2C2r

2

kr2

���
;

(24)

where C2 is an integration constant and y ¼ W ðxÞ is the
Lambert (or Product Log) function [28], solution of equa-
tion yey ¼ x, and results complex for x <�1=e, while is
real for bigger values. More in detail, it results negative if
x � �1=e with W ð�1=eÞ ¼ �1 and positive for x > 0
[with W ð0Þ ¼ 0]. This implies that our solution will exist
for radii found by studying the inequality

� A2 expðB2þ2C2r
2

kr2
Þ

kr2
� � 1

e
(25)

which, using simple calculus arguments, implies that it
can exist always a minimum radius, analytically given by

FIG. 4. Velocity magnitude v ¼ j ~vj versus radius r plot for the
n ¼ 0:5 solution with parameters A ¼ B ¼ k ¼ C1 ¼ 1. There
are two branches. The solution with the plus sign �þ is in black
while the �� one is in gray. The plot is the same for A ¼ �1.

FIG. 5. Local sound speed versus radius r plot for the n ¼ 0:5
solution with parameters A ¼ B ¼ k ¼ C1 ¼ 1. The solution
with the plus sign �þ is in black while the �� one is in gray
with asymptotic value c1s . The plot is the same for A ¼ �1.
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rc ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kW ðB2

A2 e
�ð1þð2C2=kÞÞÞ

q ; (26)

beyond which a real solution fails to exist. At this critical
radius, in any case, both the density and the velocity fields
are regular. Finally, as expected from isothermal fluids

physics, the speed of sound, given by Eq. (11) is constant
and results in c2s ¼ k.

As in the previous case, we present here two plots which

show, assuming A ¼ B ¼ k ¼ C2 ¼ 1, the situation more

in detail. In Fig. 8 we plot the density versus radius up to
the critical radius. The density has an asymptotic value of

FIG. 6. Field plots for the n ¼ 0:5 and parameters B ¼ k ¼ C1 ¼ 1 in the case: (a) �þ and A ¼ �1, (b) �þ and A ¼ 1, (c) �� and
A ¼ �1, and (d) �� and A ¼ 1. Note the change of arrows’ slope in the always supersonic branch �� in comparison with the mixed
case �þ.
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�1 ¼ e�C2 while at the critical radius rc the density goes
finite but with a complicated expression which is not
relevant to be given here. The sonic radius rs too has a
complicated explicit form, so we shall consider the nu-
merical plots only. In Fig. 9 instead we have the local Mach

number M versus radius. Because of the constancy of the

sound speed cs ¼
ffiffiffi
k

p
from this plot we can immediately

obtain the behavior of the magnitude of the velocity

v ¼ j ~vj as v ¼ ffiffiffi
k

p
M. The field lines and arrow plots for

this configuration are qualitatively similar to the n ¼ 0:5
already shown so we shall not plot them here again. The
two distinct solution branches �� are not present (we have
only the mixed case), but the behavior of this case is similar
to the other two ones (n ¼ 0:5 and n ¼ 1) previously
discussed. In the limit r ! rc one can show that again, as
in the n ¼ 0:5 case, the ratio jvr=csj ¼ 1.
We point out a peculiar feature of the isothermal case.

Assuming A ¼ 0 in fact, i.e. an irrotational flow with no
radial velocity component, the exact solution of Eq. (12)
results in �ðrÞ ¼ �0 exp½�B2=ð2kr2Þ� with �0 being a
positive constant. This solution is well behaved for any
radius although the velocity field is still pathological at
r ¼ 0. The presence of the ‘‘nonconventional’’ Lambert
functions however prevents us to use the isothermal solu-
tion (24) in the following analysis of the acoustic metrics
focusing instead on the n ¼ 0:5 case, which, due to the
very simple analytical form of the various expressions, is
more amenable of an analytical study.

F. Negative polytropic indices: the case n¼� 1

Polytropic configurations can be defined also for nega-
tive polytropic indices. For a discussion of this physics
we refer to Horedt monograph [27]. Here we analyze the
n ¼ �1 case only which, from the equation of state, leads
to a constant pressure configuration, i.e. an isobaric regime.
In this case Eq. (12) has the positive density solution

� ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1A

2r2 � B2
p (27)

FIG. 7. Zoom of a circular region of the field lines with
associated arrow plots for the n ¼ 0:5 and �þ solution with
parameters B ¼ k ¼ C1 ¼ 1 and A ¼ �1 (sink-type configura-
tion). The black region corresponds to the forbidden region. The
sonic circle rh is quasicoincident with the critical radius rc so in
this plot it has not been shown. The plot in the case of the
outgoing source type flux with A ¼ 1 is analogous with the
arrows pointing outside.

FIG. 8. Density � versus radius r plot for the isothermal
n ! þ1 solution with parameters A ¼ B ¼ k ¼ C2 ¼ 1. The
plot is the same in the case of the ingoing sink-type flux with
A ¼ �1.

FIG. 9. Local Mach number M versus radius r zoomed plot
for the isothermal n ! þ1 solution with parameters A ¼ B ¼
k ¼ C2 ¼ 1. At r ! þ1 the speed goes to zero and so the
Mach’s number does. The plot is the same in the case of the
ingoing sink-type flux with A ¼ �1.
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which has cs ¼ 0 and an infinite density at r ! 1ffiffiffiffi
C1

p B
A . It

results nonphysical then so we do not consider it here
together with the remaining negative polytropic index
cases.

III. THE ACOUSTIC GEOMETRY

The acoustic analogy can be developed both for irrota-
tional and rotational perfect fluid configurations. Its main
outcome is that the perturbations of a perfect barotropic
fluid can be rewritten in the form

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��@��1Þ ¼ ðsource termsÞ; (28)

(here Greek indices run from 0 to 3) which is a scalar field
equation on a curved four dimensional Lorentzian mani-
fold called the acoustic metric, built with background
hydrodynamical quantities, which are exact solutions of
Euler’s equations. If one studies irrotational configurations
[4–6], then the field �1 is the perturbed velocity potential
together with a zero source term. If instead rotation is
present, the field �1 is a gauge invariant combination of
background and perturbed quantities meaningful in the
already mentioned Clebsch’s potentials formalism, and
the source term contains other dynamical variables to be
coupled with additional differential equations coming from
the perturbed hydrodynamics [18]. We do not explain here
further all the details referring to the references listed
above. What matters is that, in conclusion, for a generic
nonviscous problem, the perturbations about an exact so-
lution are essentially described through the acoustic metric
tensor g��.

In particular, passing from Cartesian to cylindrical co-
ordinates, the general acoustic line element of Ref. [6]
results in

ds2 � g��dx
�dx�

¼
�
�

cs

�
½�ðc2s � v2Þdt2 � 2vrdrdt� 2rv�d�dt

� 2vzdzdtþ dr2 þ r2d�2 þ dz2�; (29)

where as usual v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
r þ v2

� þ v2
z

q
. The inverse of the

associated metric tensor is fundamental in order to under-
stand the characteristics of the partial differential equation
governing the evolution of perturbations [17,29].

We specialize the ds2 given by Eq. (29), to our configu-
ration in which all fields depend on radius r only with
moreover vz ¼ 0. We can construct from the Riemann
tensor R��	
 the Khretschmann invariant [30] for this

line element K ¼ R��	
R
��	
 in the case of the velocity

field chosen in this article and insert then the solutions
found for n ¼ 0:5 discovering that K ! 1 for r ! rc in
both cases, i.e. the last physical radius corresponds to an
infinite curvature singularity. Monotonically this invariant

decreases in the outgoing direction, having a finite value at
the sonic radius rs and then approaching zero at radial
infinity for the �þ branch. On the other hand the �� branch
has a nonflat asymptotic limit. The divergence is present
clearly even if we work in a 2þ 1 space-time suppressing
the z dimension. In Fig. 10 we plot the logarithm to base
10 of this invariant. In Fig. 11 we perform the same study
but for the isothermal case instead. We point out that in
General Relativity, when a totally collapsed body (a
Kerr black hole) is rotating, the curvature singularity is

FIG. 10. Plot of LogK (K is Khretschmann curvature invari-
ant) versus radius r for the n ¼ 0:5 solution with parameters A ¼
B ¼ k ¼ C1 ¼ 1 for the two branches �þ and ��. At critical
radius rc both of these go to infinity (curvature singularity). At
radial infinity the �þ branch leads to a vanishing value (asymp-
totic flat space-time) while the �� one leads to a constant value
(a nonflat situation). The plot is the same in the A ¼ �1 case.

FIG. 11. Plot of LogK (K is Khretschmann curvature invari-
ant) versus radius r for the n ! þ1 (isothermal case) solution
with parameters A ¼ B ¼ k ¼ C2 ¼ 1. At critical radius rc the
invariant goes to infinity (curvature singularity). At radial infin-
ity instead it leads to a vanishing value (asymptotic flat space-
time). The plot is the same in the A ¼ �1 case.
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concentrated in a ring. We notice then that in this hydro-
dynamical case too a nonpointlike structure of the singu-
larity occurs (this happens in two dimensions while in
three dimensions, by extruding along the z direction, we
have a cylindrically shaped singularity).

We can study now the null geodesics of the general class
of acoustic space-times of Eq. (29) again, with pure radial
dependence only for the hydrodynamical quantities and no
vz. The four-dimensional wave-vector k� ¼ dx�=d� (� is
the affine parameter) satisfies the geodesic equations

dk�

d�
þ ��

�
k
�k
 ¼ 0; (30)

but this vector must be also null i.e. k�k� ¼ 0, so replacing
k� ¼ @�S in the latter we obtain the eikonal equation

g��@�S@�S ¼ 0: (31)

The very simple Killing vectors structure of our acoustic
metric, whose fields depend on radius only, allows us to
adopt standard Hamilton-Jacobi treatment of geodesics
commonly used in GR black hole physics [31–33].

We impose, for null (i.e. massless) geodesics

Sðt; r; �; zÞ ¼ �Etþ fðrÞ þL�þZz; (32)

where E, L, and Z are real constants.
Inserting in the eikonal equation we get

c2s � v2
r

�cs|fflfflffl{zfflfflffl}
�1

�
df

dr

�
2 þ 2vrðEr� v�LÞ

�csr|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
�2

�
df

dr

�

þ
�
cs
�r2

L2 � ðEr� v�LÞ2
�csr

2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�3

¼ 0: (33)

This is a biquadratic equation which can be solved in terms
of df=dr leading to the two differential equations

df

dr
¼ � �2

2�1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�2

2�1

�
2 � �3

�1

s
� k�r : (34)

Something problematic here occurs when �1 ! 0, i.e.
when vr ! cs and our quadratic algebraic equation degen-
erates into a linear relation. This is Visser’s condition
which locates the event horizon in the acoustic draining
bathtub but generalized here for more general compress-
ible configurations.

From the initial considerations we have

k�� ¼ @�S �
�
�E;

df

dr
;L; 0

�
¼ ð�E; k�r ;L; 0Þ; (35)

which, raised by g��, gives the wave four-vectors
k�� ¼ k��ðrÞ (for visual simplification only the � in these
expressions is bottom placed when we deal with vectors
and vice versa for covectors.). If one is interested instead
in the explicit world lines, from the very early definitions,

the differential equations dx�

d� ¼ k�� must be numerically

integrated. For the aims of our analysis however, we focus
on the relation

ðdrd�Þ
ðdtd�Þ

� dr

dt
¼ kr�

kt�
; (36)

where the affine parameter � has disappeared. This equa-
tion gives the coordinate velocity for (not necessarily
radial) null geodesic rays emanating at a certain initial
space-time location. We have numerically integrated these
equations in the n ¼ 0:5 and �þ case. We have moreover
chosen B ¼ k ¼ C1 ¼ 1 and A ¼ �1 with geodesic pa-
rameters E ¼ 1, L ¼ 0:5, and Z ¼ 0. In Fig. 12 we plot
the associated r� t space-time diagram obtained in the
sink-type configuration, while in Fig. 13 we have repeated
the same plot but in the case of a source. As expected from
standard black hole physics in horizon penetrating coordi-
nates, on the horizon r ! rc we have dr=dt ! 0 or equiv-
alently dt=dr ! 1. The manifold in our analysis results
moreover (null) geodesically incomplete [34,35]: the limit-
ing circle (i.e. the singularity) in fact is reached at a finite
affine parameter value.
We conclude our study focusing on the norm of the

non-normalized (in general nongeodesic) Killing vector
��
ðtÞ ¼ ð@=@tÞ� given by

��
ðtÞ�ðtÞ� ¼ � �

cs
ðc2s � v2

r � v2
�Þ: (37)

In our notations, using simple algebra, one case immedi-
ately verifies that this is timelike up to r ¼ rs. At this point

FIG. 12. Plot of the r-t space-time diagram for the geodesic
light rays close to the critical region in the case n ¼ 0:5, solution
branch �þ with B ¼ k ¼ C1 ¼ 1 and A ¼ �1 (sink-type con-
figuration). We have numerically integrated the equations choos-
ing E ¼ 1,L ¼ 0:5, and Z ¼ 0. We point out the behavior close
to rc, where light rays bending approach what is expected to
occur in an horizon penetrating coordinates black hole diagram
of GR.
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it becomes lightlike and then spacelike up to the critical
radius rc. This shows that the radius rs defines an ergo-
sphere [32]. We have not considered in our study the
�� branch for n ¼ 0:5. Because of its always supersonic
nature in fact, its connection with GR is more delicate and
consequently will be left to a future study. Qualitatively
results very similar to the ones here discussed occur for the
other physically interesting case of n ! þ1 so we do not
show then here the plots for this configuration too. The
existence of a limit critical radius rc for any index n > 0
suggests that also in the other not explicitly solvable cases
a similar space-time structure must occur. These specula-
tions too are left to be numerically confirmed by future
studies however. We now discuss in the next section the
physical implications of the results obtained.

IV. DISCUSSION

In an extremely simplified scenario of interest for clas-
sical gas dynamics [16], we have analytically observed that
the stationary plane irrotational incompressible or com-
pressible flows investigated are characterized by a critical
radius beyond which solutions to gas dynamical field
equations appear to be problematic. This radius cannot
be identified as an obstacle: the matter density and fluid
speed arrive in this limiting region with finite values so we
expect that some of the initial anzatz adopted to derive the
solution must break down there i.e. (1) irrotationality,
(2) absence of gravity, (3) polytropic equation of state,
and (4) no viscosity and heat transfer. Certainly in the inner
region a different solution should exist to be matched
with the exterior ones analyzed here, which however still
continue to have physical relevance because in nature, as

anticipated, rotating flows tend to manifest (see Fig. 1) a
minimal radius beyond which zero (or small) fluid/matter
is present.
What comes immediately in mind are, as an example,

tornadoes, hurricanes and typhoons as well as the usual
flows in a sink. Typical tornadoes can have the damage
path (the thickness of the filamentlike structure) ranging
from tens of meters up to around a kilometer for the most
destructive ones. Their estimated maximum wind speed
ranges from around 112 km=h up to around 640 km=h
[36], but all of these figures remain below the sonic barrier
(we recall that the sound speed in normal atmospheric
conditions is around 340 m=s which corresponds to about
1200 km=h). In these cases an acoustic event horizon does
not seem to be plausible to form then. We may try to
speculate if in more extreme conditions, as in extraplan-
etary contexts, the sonic point could be reached. In
Neptune’s atmosphere is present a great dark spot which
has diameter of around ten thousand kilometers and in this
wind speeds are of around 700 km=h [37]. Regarding
Jupiter, its big red spot is characterized by winds around
the spot’s edge at about 120 m=s, but currents inside it
seem stagnant, with little inner or outer flows [38] (so our
solution with A ’ 0 would be more appropriate in this
situation).
Summarizing, the common characteristic in each of

these natural vortex systems is that they are all character-
ized by velocities below the speed of sound: the appear-
ance of acoustic black holes seems difficult. On the other
hand, man-made vortex structures can relatively easily be
created both at low (subsonic) and high (supersonic/hyper-
sonic) speeds. Typical situations of this type occur in high-
speed missile and aircraft generated vortex flows (see
Ref. [39] for a review) and in turbines and jets (see.
Ref. [40] as an example). Standard methods adopted in
fluid dynamics then should allow an experimentalist to
observe if a perturbative acoustic wave is entirely absorbed
by the system beyond a certain limit, i.e. if there exists an
acoustic black hole and if, due to rotation, possibly super-
radiance [41], as already theoretically proven in the drain-
ing bathtub case [9,10,13,14,19,20,42], could occur here.
The presence of compressibility does not prevent one to

look for possible applications of the theory here developed
in the case of compressible quantum system. Typical ex-
amples can be trapped Fermi gases or Bose-Einstein con-
densates (BECs). In both of these systems a polytropic
equation of state p / �1þ	 can be adopted and their poly-
tropic power 	 ¼ 1=n can be fine tuned for different
situations. As an example, in a dilute interaction dominated
BEC, one obtains 	 ¼ 1, but for an ideal Bose gas in the
normal state and under adiabatic conditions one gets
	 ¼ 2=3. Furthermore, a dilute Fermi atoms gas too,
both in the hydrodynamic and superfluid limits, is charac-
terized by the value above. Moreover, Fermi gases and
BECs have 	 ¼ 2=3 in the strongly interacting limit, and

FIG. 13. Plot of r-t space-time diagram for the geodesic light
rays close to the critical region in the casen ¼ 0:5, solution branch
�þ withB ¼ k ¼ C1 ¼ 1 and A ¼ 1 (source type configuration).
We have numerically integrated the equations choosing E ¼ 1,
L ¼ 0:5, andZ ¼ 0. We point out the behavior close to rc, where
light rays bending approachwhat is expected to occur in an horizon
penetrating coordinates white hole diagram of GR.

C. CHERUBINI AND S. FILIPPI PHYSICAL REVIEW D 84, 084027 (2011)

084027-10



finally, near a Feshbach resonance, the (effective) power
index 	 ranges in 0:5< 	< 1:3 [43].

We remark again however that Euler’s equations solu-
tions found in this article, for any value of the polytropic
index, break down at a certain radius, where, as we have
seen, coordinate radial velocity of the simplest acoustic
space-time perturbations (null geodesics) goes to zero
while curvature blows up. The absence of a inner solution
beyond this limit radius, strictly speaking, does not allow
us to classify the configurations here studied as black holes,
lacking of the possibility to have an inner region we cannot
escape from. The presence of a curvature singularity ex-
actly there, totally accessible by sound (in GR light) rays
shows a marked difference in comparison with GR black
holes and naked singularities. For this reason it appears
mandatory to look for more general hydrodynamical solu-
tions, which would allow us to explore the inner fluid
region (if any). Because of the possible complications
arising for analytical techniques, we consider fundamental
then the construction and subsequent light cones inspec-
tion of the numerical acoustic metric tensors built from
realistic three-dimensional numerical simulations of gas/
fluid dynamics. To this aim the authors plan to address
such studies in future adapting the numerical relativity
methods developed previously in the case of the draining
bathtub [11,12,14] on the lines of numerical experiments
performed in the past in the simple case of the de Laval
nozzle [15].

All of these perturbative studies however must be paral-
leled also by extended formulations of the acoustic metric
at fully nonlinear hydrodynamical level [29,44]. Taking
into account acoustic nonlinear waves, this will allow us to
clarify the robustness of the analogy in real world and
moreover better understand the appearance of black holes

and curvature singularities at nonlinear level both in fluid
dynamics and in General Relativity.
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APPENDIX

In this Appendix we show explicitly how to integrate
analytically Eq. (12) for the generic positive index n. The
existence of infinitesimal symmetry generators [45] given
by ½�;
� ¼ ½ð�2r3Þ=ðA2 þ �2B2Þ; 0� for our differential
equation, suggests the introduction of the canonical coor-
dinates transformation

z ¼ �ðrÞ; sðzÞ ¼ �A2 þ �ðrÞ2B2

2r2�ðrÞ2 (A1)

with associated inverse relations

�ðrÞ ¼ z; r ¼ � 1

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A2 þ z2B2

2sðzÞ

s
: (A2)

Inserted into Eq. (12) by assuming positive sign because of
the radius positivity, this simplifies to

dsðzÞ
dz

¼ kðnþ 1Þzð1=nÞ�1

n
; (A3)

which can be immediately integrated leading to

sðzÞ ¼ kðnþ 1Þz1=n � C1; (A4)

where C1 is a generic integration constant. Inserting in
Eq. (A4) the initial transformation (A1) we obtain the
general solution (13).
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