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We consider a gravitating spherically symmetric configuration consisting of a scalar field nonminimally

coupled to ordinary matter in the form of a perfect fluid. For this system we find static, regular,

asymptotically flat solutions for both relativistic and nonrelativistic cases. It is shown that the presence

of the nonminimal interaction leads to substantial changes both in the radial matter distribution of the star

and in the star’s total mass. A simple stability test indicates that, for the choice of parameters used in the

paper, the solutions are unstable.
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I. INTRODUCTION

In cosmology, scalar fields play a key role in models of
both the inflation era of the early Universe [1] and the
current accelerated expansion [2]. Scalar fields are also
widely used to study smaller scale objects such as the effect
of a dark matter, scalar field on the structure of galaxies [3].
Moving to still smaller scales, there have been studies of
boson stars [4]—compact (usually spherically symmetric)
configurations formed from gravitating scalar field(s). The
sizes of such configurations varies from the microscopic
(‘‘gravitational atom’’) up to sizes corresponding to mas-
sive black holes such as those presumed to exist at the
center of many galaxies including our own. In this connec-
tion, it is quite natural to investigate the role that such
scalar fields may have in the processes of formation and
evolution of galaxies and more compact astrophysical
structure—stars and their clusters. As applied to the stars,
it is possible to imagine a situation where scalar fields can
exist inside usual stars consisting of ordinary matter. The
existence of such scalar fields would undoubtedly have an
impact on the star’s inner structure. One such example is
the model of a star consisting of both ordinary polytropic
matter and a ghost scalar field [5]. The presence of the field
leads to the appearance of a tunnel at the center of such
stellar configurations which provides new geometric and
physical properties to such objects. Another example of
such stellar objects involves fermion fields interacting with
a real scalar field � not only gravitationally but also
through the Yukawa coupling of the type �f �c c�, where
f is a Yukawa type coupling constant [6]. Further examples
of mixed configurations consisting of both boson and
fermion fields can be found in Refs. [7–9].

The investigation in the present work is along the
direction of the above works—we consider a scalar field

interacting nonminimally with ordinary matter in the form
of a perfect polytropic fluid. An interaction similar to this
was used to describe the evolution of dark energy within
the framework of chameleon cosmologies [10,11]. In cha-
meleon cosmologies, the properties of the scalar (chame-
leon) field depend strongly on the environment [12] into
which it is embedded. For example, the mass of the scalar
field can change depending on the background environ-
ment [12]. As will be shown below, the presence of such an
interaction between the polytropic fluid and the scalar field
results in a substantial change of the inner structure of the
polytropic star. This change is related to the fact that the
behavior of the scalar field depends the ‘‘environment’’
(i.e. the fluid) into which it is embedded, as is the case with
chameleon cosmology models. Thus, we call these
configurations chameleon stars.
In building our model of a chameleon star, we will use a

real scalar field. In the bulk of the literature complex
(charged) scalar fields are more often used in constructing
models of boson stars. The charge of the complex scalar
field generically leads to repulsion which counteracts the
attraction of gravity and thus gives a physical basis for the
existence of these boson star solutions. Real scalar fields
have received less attention because they do not carry a
charge, and constructing regular stable solutions is themore
difficult task in this case. The known static solutions for real
scalar fields are either singular [13,14], or use phantom
scalar fields [15–17]. Singular solutions with trivial topol-
ogy and nonphantom fields have been found for both mass-
less fields [13] and for self-interacting fields [14]. The latter
ordinary scalar field solutions are asymptotically flat but the
issue of their stability is not quite clear (for further discus-
sion see Ref. [18]). In [19] regular, static solutions in the
presence of the cosmological constant were found. In this
case, the space-time asymptotically approaches de Sitter
space-time. The linear stability analysis of these solutions
indicate that they are unstable. In contrast, the paper [20]
found regular, static solutions which asymptotically
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approached anti-de Sitter space-time, which were stable
under a linear stability analysis. In the present paper, the
real scalar field nonminimally interacts with the polytropic
fluid. As will be shown below, this leads to the existence of
regular, asymptotically flat solutions.

In the absence of gravity, Derrick’s theorem [21,22]
forbids the existence of nontrivial, stable, regular static
D � 3 dimensional solutions from only scalar fields.
This theorem assumes that the potential energy of the
system is some non-negative function, Vð’iÞ> 0, vanish-
ing only at its absolute minima. A partial extension of
Derrick’s theorem to the case of general relativity has
been studied in [23,24] where it was shown that the ex-
istence of asymptotically flat particlelike solutions with a
regular center and normal (nonphantom) scalar fields is
also impossible if Vð’Þ> 0. The distinction between the
nongravitational form of Derrick’s theorem [21,22] and the
gravitational variant [23,24] is that the latter does not touch
on the stability of the solutions.

If one allows other fields besides just scalar fields (e.g.
vector or fermion fields) then there are static solutions
when the spatial dimensionality is three or more. In the
absence of gravity, one has the ’t Hooft-Polyakov mono-
pole which is a finite energy, stable solution for Yang-Mills
vector fields plus scalar fields [25,26]. In the presence of
gravity plus a real scalar field, there are boson star solu-
tions (for a review see [4]) which however have one or
more of the bad features listed above (e.g. nontrivial to-
pology, not asymptotically flat, not stable).

In this paper, we study the gravitating system of a real
scalar field plus a perfect fluid and show that for this system
there are regular, three-dimensional, static solutions. The
most important feature of this system, aside from the
gravitational interaction, is the presence of the nonminimal
coupling between the scalar field and the perfect fluid. It is
this interaction which allows us to avoid the restrictions of
the gravitational version of Derrick’s theorem [23,24], and
find regular static solutions even if the potential energy of
the scalar field satisfies Vð’Þ> 0. We take a polytropic
equation of state for the perfect fluid. Stellar models using
polytropic fluids were investigated in detail both within the
framework of Newtonian gravitational theory [27] and for
strong gravitational fields [28]. Both of these studies hinted
at the existence of finite size, regular solutions. These
solutions were successfully used to give a description of
both nonrelativistic stars and stars where relativistic effects
were important, e.g. neutron stars. As will be shown below,
the inclusion of the nonminimal interaction between the
polytropic fluid and the scalar field leads to regular solu-
tions which, however, are generally different from usual
polytropic stars.

The paper is organized as follows: In Sec. II, the general
equations describing a static configuration consisting of a
real scalar field coupled to a perfect polytropic fluid are
derived. In Sec. III, these equations are written for a

particular case when the potential energy of the scalar field
is chosen to have a quadratic mass term and a quartic self-
interaction term. For this potential energy, in Sec. IV we
give the results of the numerical calculations for this poten-
tial for both relativistic and nonrelativistic cases, and dis-
cuss the issue of the stability of the solutions obtained.Next,
in Sec. V we present a simple analytical solution for the
nonrelativistic casewith the scalar field taken to bemassless
and for a special choice of the coupling function. Finally, in
Sec. VI we summarize the main results and give some
speculations about the physical applications of these cha-
meleon star configurations to neutron stars and living stars
(i.e. stars still on the main sequence).

II. DERIVATION OF EQUATIONS
FOR A STATIC CONFIGURATION

As discussed in the introduction, we consider a gravitat-
ing system of a real scalar field coupled to a perfect fluid.
The Lagrangian for this system is

L ¼ � R

16�G
þ 1

2
@�’@

�’� Vð’Þ þ fð’ÞLm: (1)

Here, ’ is the real scalar field with the potential Vð’Þ; Lm

is the Lagrangian of the perfect isotropic fluid i.e. a fluid
with only one radial pressure; fð’Þ is some function de-
scribing the nonminimal interaction between the fluid and
the scalar field. The case f ¼ 1 corresponds to the absence
of the nonminimal coupling, but even in this case the two
sources are still coupled via gravity.
We choose the Lagrangian for the isentropic perfect fluid

to have the form Lm ¼ p [29,30]. Using this Lagrangian,
the corresponding energy-momentum tensor is (details are
given in the Appendix)

Tk
i ¼ f½ð�þ pÞuiuk � �k

i p� þ @i’@
k’

� �k
i

�
1

2
@�’@

�’� Vð’Þ
�
; (2)

where � and p are the density and the pressure of the fluid,
ui is the four-velocity (here and throughout the paper we
set c ¼ 1). We take the static metric of the form

ds2 ¼ e�ðrÞdt2 � e�ðrÞdr2 � r2d�2; (3)

where d�2 is the metric on the unit 2-sphere. The

0

0

 !
and

1

1

 !

components of the Einstein equations for the
metric (3) and the energy-momentum tensor (2) are

G0
0 ¼ �e��

�
1

r2
� �0

r

�
þ 1

r2
¼ 8�GT0

0

¼ 8�G

�
f�þ 1

2
e��’02 þ Vð’Þ

�
; (4)
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G1
1 ¼ �e��

�
1

r2
þ �0

r

�
þ 1

r2
¼ 8�GT1

1

¼ 8�G

�
�fp� 1

2
e��’02 þ Vð’Þ

�
: (5)

The equation for the scalar field ’ coming from the
Lagrangian (1) is

1ffiffiffiffiffiffiffi�g
p @

@xi

� ffiffiffiffiffiffiffi�g
p

gik
@’

@xk

�
¼ � dV

d’
þ Lm

df

d’
:

Using this field equation above with the perfect fluid
Lm ¼ p, and the metric (3), gives the following scalar field
equation

’00 þ
�
2

r
þ 1

2
ð�0 � �0Þ

�
’0 ¼ e�

�
dV

d’
� p

df

d’

�
; (6)

where the prime denotes differentiation with respect to r.
The Einstein field equations are not all independent be-
cause of the relation Tk

i;k ¼ 0. The i ¼ 1 component of this

equation has the form

@T1
1

@r
þ 1

2
ðT1

1 � T0
0Þ�0 þ 2

r

�
T1
1 �

1

2
ðT2

2 þ T3
3Þ
�
¼ 0: (7)

Taking into account the expressions

T2
2 ¼ T3

3 ¼ �fpþ 1

2
e��’02 þ Vð’Þ;

and T0
0 , T

1
1 from (4) and (5) and using (6), allows us to write

(7) as

dp

dr
¼ � 1

2
ð�þ pÞd�

dr
: (8)

The matter Lagrangian used here, Lm ¼ p, is not the only
possibility. Other variants can be found in [31]. However,
the choice Lm ¼ p has the simplifying feature (8) does not
contain additional terms involving the coupling function
fð’Þ.

For a polytropic equation of state, one has

p ¼ k��; (9)

where k, � are constants. Now one can introduce the new
variable � defined as [32]

� ¼ �c�
n: (10)

Here, �c is the central density, and the constant n, the
polytropic index, is related to � via n ¼ 1=ð�� 1Þ.
Putting these definitions together gives Eq. (9) in the form

p ¼ k�� ¼ k�1þ1=n ¼ k�1þ1=n
c �nþ1: (11)

Using (11) in Eq. (8) leads to

2	ðnþ 1Þ d�
dr

¼ �ð1þ 	�Þ d�
dr

; (12)

with	 ¼ k�1=n
c ¼ pc=�c and pc is the pressure of the fluid

at the center of the configuration. This equation may be
integrated to give e� in terms of �:

e� ¼ e�c
�
1þ 	

1þ 	�

�
2ðnþ1Þ

; (13)

where e�c is the value of e� at the center of the configura-
tion where � ¼ 1. The integration constant �c, corresponds
to the value of � at the center of the configuration. It is
determined by requiring e� ¼ 1 at infinity that the space-
time is asymptotically flat.
The gravitating system of a real scalar field interacting

with a perfect fluid is characterized by three unknown
functions—�, � and ’. These three functions are deter-
mined by the three Eqs. (4)–(6), and also by the relation
(13). We now rewrite these equations by the introduction of
a new function uðrÞ [28]

uðrÞ ¼ r

2GM
ð1� e��Þ ! e�� ¼ 1� 2GMu

r
: (14)

Here, M is the mass of the configuration within the range
0 � r � rb, where rb is the boundary of the fluid where
� ¼ 0. Using this function, Eq. (4) becomes

M
du

dr
¼ 4�r2

�
f�þ 1

2

�
1� 2GMu

r

�
’02 þ V

�
: (15)

From (14), one can define MðrÞ � MuðrÞ which can be
interpreted as the total mass of the configuration in the
range ½0; r�. This mass has contributions from both the fluid
and the scalar field, within a sphere of coordinate radius r.
To avoid a singularity in MðrÞ at the origin, one has to put
uð0Þ ¼ 0 [28]. This corresponds to the fact that the mass at
the origin is equal to zero, i.e. Mð0Þ ¼ 0.
In anticipation of analyzing the system of Eqs. (4)–(6)—

numerically, we introduce the following dimensionless
variables:


¼Ar; vð
Þ¼ A3M

4��c

uðrÞ; �ð
Þ¼
�

4�G

	ðnþ1Þ
�
1=2

’ðrÞ;

whereA¼
�

4�G�c

ðnþ1Þk�1=n
c

�
1=2

; (16)

A has the dimensions of an inverse length. With this, one
can rewrite Eqs. (4) and (5) in the form

dv

d

¼ 
2

�
f�n þ 1

2

�
1� 2	ðnþ 1Þv




��
d�

d


�
2 þ ~V

�
; (17)


2
1� 2	ðnþ1Þv




1þ	�

d�

d

¼
3

�
f�nð1�	�Þþ2 ~V� 1


2

dv

d


�
�v;

(18)

where ~V ¼ V=�c is the dimensionless potential energy of
the field.
Next, using (12), one can rewrite Eq. (6) as follows:
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d2�

d
2
þ
�
2



� 	ðnþ 1Þ

1þ 	�

�
d�

d

þ 1þ 	�

1� 2	ðnþ1Þv



1




�
dv

d

� v




���
d�

d

¼
�
1� 2	ðnþ 1Þv




��1
�
d ~V

d�
� 	�nþ1 df

d�

�
: (19)

Thus, the static configuration under consideration is de-
scribed by the three Eqs. (17)–(19).

III. CONFIGURATION WITH A MASS AND A
QUARTIC SELF-INTERACTION TERM

In this section, we will show that there are nonsingular,
finite-mass solutions of Eqs. (17)–(19). First, we specify
the boundary conditions. Using the above dimensionless
variables, we ‘‘normalize’’ � to unity at the center of the
configuration 
 ¼ 0

�0 � �ð0Þ ¼ 1: (20)

From Eq. (17), one can show that v ! 0 like 
3 as 
 ! 0.
Combining this with Eq. (18), one in turn finds d�=d
 ! 0
as 
 ! 0. Bearing in mind that we are looking for regular
solutions, we define the boundary conditions in the vicinity
of 
 � 0 as

���0þ�2
2

2; v�v3


3; ���0þ�2

2

2; (21)

where �0 corresponds to the initial value of the scalar field
�, the parameters �2, v3 are arbitrary, and the value of the
coefficient �2 is defined from Eq. (19) as

�2 ¼ 1

3

��
d ~V

d�

�
0
� 	�nþ1

0

�
df

d�

�
0

�
:

The index 0 denotes that the values of the functions are
taken at 
 ¼ 0.

Using the boundary conditions (21), we proceed to solve
the system (17)–(19) numerically. The behavior of the
solution will depend both on the parameters of the poly-
tropic fluid n, 	 and the form of the potential energy of the
scalar field ~V, and the coupling function f. One of the
simplest and most commonly used choices for the potential
energy is that of a scalar field with mass m and a quartic
self-interaction term (� > 0)

V ¼ 1

2
m2’2 þ 1

4
�’4:

It was pointed out in [14] that the system with such
potential has only singular static solutions. Below, we
show that an inclusion of the nonminimal interaction be-
tween the scalar field and the polytropic fluid allows one to
obtain regular static solutions. As an example, let us
choose the coupling function f in dimensionless form as
follows:

f ¼ 

2
�2;  > 0: (22)

Then, using the dimensionless variables introduced in the
previous section, the potential can be rewritten as

~V ¼ 1

2
�2�2 þ 1

4
��4; (23)

where the new dimensionless constants are given as

� ¼ m2

�c

	ðnþ 1Þ
4�G

; � ¼ �

�c

�
	ðnþ 1Þ
4�G

�
2
:

Using the above potential ~V and the function f, Eqs. (17)–
(19) take the form


2 1�2	ðnþ1Þv=

1þ	�

d�

d


¼
3

�


2
�2�nð1�	�Þþ�2�2þ1

2
��4� 1


2

dv

d


�
�v;

(24)

dv

d

¼ 
2

2

�
�2�n þ

�
1� 2	ðnþ 1Þv




�

�
�
d�

d


�
2 þ�2�2 þ 1

2
��4

�
; (25)

d2�

d
2
þ
�
2



�	ðnþ1Þ

1þ	�

�
d�

d

þ 1þ	�

1� 2	ðnþ1Þv



1




�
dv

d

�v




���
d�

d


¼
�
1�2	ðnþ1Þv




��1½ð�2�	�nþ1Þ�þ��3�:
(26)

The parameter � can be absorbed by introducing the

rescalings x ¼ �
, �v ¼ �v, � ¼ =�2, �� ¼ �=�2.
Bearing this in mind, we assume � ¼ 1 in further calcu-
lations. One can see from these equations that the presence
of the interaction between the scalar field and the fluid is
defined by the parameter . In the absence of the fluid, this
system only has singular solutions [14]. The inclusion of
the fluid changes the situation since the presence of
the term 	�nþ1 on the right-hand side of (26) for the
scalar field corresponds to an effective mass term (�2 �
	�nþ1) whose sign depends both on the behavior of the
fluid density � and the values of the parameters  and 	.
We note that the present system of gravitating real scalar
field plus perfect fluid turns out to be similar to the grav-
itating complex scalar field system considered in [33]. The
gravitating complex scalar field studied in [33] had a
potential of the type (23) and it gave regular,
stationary solutions. Thus, this is already a hint that we
can expect regular, stationary solutions for the present
system.
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IV. NUMERICAL RESULTS

A. Relativistic case

The results of the numerical calculations for the
system (24)–(26) with the boundary conditions (21) are
presented in Tables I and II. The solutions were started near
the origin (i.e. near 
 � 0) and solved out to a point 
 ¼ 
1

where the function � becomes zero. From Eqs. (9) and (10)
this is where the fluid vanishes and it is this point, 
 ¼ 
1,
that we define to be the surface of the star. Beyond the point

 ¼ 
1, we continued the numerical solutions with only
the gravitational and scalar fields while the fluid was set to
zero. The interior and exterior solutions were then

connected to one another. Details of this are given below.
Previous numerical studies with a fluid having a polytropic
equation of state [28] found regular, relativistic starlike
configurations. These starlike solutions of [28] were found
for the values of the parameters 0 � 	 � 0:75 and 1 �
n � 3. Since our system has two additional parameters
(�, ), we restrict ourselves to examine just two sets of
the parameters (i.e. 	 ¼ 0:2, n ¼ 1:0 and 	 ¼ 0:2,
n ¼ 1:5) at different values of � and  when looking for
regular solutions. Below, we show that these two sets of
solutions differ considerably in the behavior of their physi-
cal characteristics.

TABLE I. The parameters of the relativistic configurations with the constant central value of
the scalar field �0 ¼ 0:45.

�  
1
�
1 vð
1Þ �c= �� ��=M

	 ¼ 0:2, n ¼ 1:5

1500 10 200 0.37 0.4017 0.0269 0.6273 0.1344

1250 8500 0.41 0.4450 0.0295 0.7786 0.1344

1000 6900 0.47 0.5092 0.0326 1.0609 0.1341

750 5200 0.54 0.5851 0.0376 1.3972 0.1341

500 3500 0.66 0.7150 0.0458 2.0939 0.1340

250 1800 0.95 1.0277 0.0637 4.4834 0.1337

150 1130 1.25 1.3494 0.0801 8.1296 0.1331

100 790 1.58 1.7012 0.0955 13.7681 0.1326

75 620 1.83 1.9678 0.1075 19.0029 0.1322

60 525 2.13 2.2830 0.1160 27.7771 0.1316

41 395 2.70 2.8820 0.1330 49.3308 0.1308

30 325 3.35 3.5573 0.1449 86.4977 0.1299

20 260.5 4.70 4.9472 0.1594 217.0848 0.1287

10 195.24 9.00 9.3259 0.1798 1351.2011 0.1269

5 162.1683 21.00 21.4257 0.1983 15 568.1073 0.1229

3 148.834 521 6 30.00 30.4723 0.2102 42 819.2173 0.1192

	 ¼ 0:2, n ¼ 1:0

1500.0 8700 0.210 0.2315 0.0313 0.0985 0.1229

1250.0 7250 0.230 0.2535 0.0343 0.1181 0.1229

1000.0 5800 0.257 0.2833 0.0384 0.1473 0.1230

500.0 2910 0.362 0.3992 0.0543 0.2909 0.1231

350.0 2050 0.430 0.4742 0.0648 0.4090 0.1231

200.0 1200 0.567 0.6250 0.0846 0.7181 0.1229

150.0 920 0.655 0.7216 0.0965 0.9712 0.1227

100.0 640 0.800 0.8805 0.1152 1.4810 0.1222

50.0 350 1.110 1.2204 0.1559 2.9250 0.1217

30.0 238 1.400 1.5362 0.1880 4.8644 0.1209

20.0 180 1.650 1.8084 0.2160 6.9318 0.1203

10.0 126 2.160 2.3567 0.2551 13.1668 0.1185

6.8 109 2.442 2.6577 0.2724 17.8189 0.1175

5.0 100 2.670 2.8992 0.2825 22.4626 0.1167

3.0 90 3.000 3.2474 0.2950 30.5069 0.1157

1.0 80 3.500 3.7719 0.3094 46.1887 0.1145

0.3 76 3.670 3.9511 0.3169 52.0002 0.1141

0.1 75 3.750 4.0345 0.3186 55.1796 0.1140
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The parameters of the system under consideration for
the chosen values of 	 and n are given in Tables I and II.
The procedure for finding these parameters is the follow-
ing: given the values of 	 and n, we seek eigenvalues (i.e.
values of the parameters� and ) for which the function �
goes to zero at some finite value of 
 ¼ 
1 which as
mentioned above we take to correspond to the surface of
the star. Then since MðrÞ ¼ MuðrÞ (where M is the total
mass of the star between r ¼ 0 and its surface at r ¼ rb) it
is required that uðrbÞ ¼ 1. Using this, we can evaluate the
function vð
Þ from (16) at 
 ¼ 
1

vð
1Þ ¼ A3M

4��c

: (27)

This quantity defines the total massM of the configuration
through the parameters of the fluid 	, n and �c which
determine the parameter A.

The value 
1 of the coordinate 
, corresponding to the
boundary of the configuration, does not represent the ra-
dius of the star as measured by a distant observer. To define
this radius, it is necessary to make a coordinate trans-
formation to a new dimensionless variable �
 which is
defined as follows:

�
 ¼
Z 


0
e�=2d
;

or taking into account (14) and (16)

�
 ¼
Z 


0
½1� 2	ðnþ 1Þvð
Þ=
��1=2d
: (28)

Then the observable radius of the configuration �R in di-
mensional variables is defined as �R ¼ �
1=A in accordance
with the data presented in Tables I and II.
Also, the ratio of the central density �c (of the fluid only)

to the average density �� (of both the fluid and the scalar
field) is presented in the tables. We define the average
density as [28]

�� ¼ M

ð4=3Þ�R3
¼ 3MA3

4�
3
1

:

Using the expression for vð
Þ from (27), one can express
the quantityMA3=4� in terms of the central density �c and
the boundary value vð
1Þ of the mass function. Then we
obtain the relation

TABLE II. The parameters of the relativistic configurations as a function of the central value
of the scalar field �0 for fixed observable radius of the star �
1 and for given values of 	 and n.

�0 �  
1 vð
1Þ �c= �� ��=M

	 ¼ 0:2, n ¼ 1:5, �
1 ¼ 3:219

Relativistic star without a scalar field

2.699 0.9604 6.8270 0.2207

Relativistic star with the scalar field

0.30 2101.0 1642.5 3.055 0.1022 92.9763 0.1325

0.35 617.0 868.0 3.040 0.1186 78.9467 0.1323

0.40 184.0 531.0 3.030 0.1306 70.9796 0.1316

0.44 54.5 385.0 3.025 0.1376 67.0397 0.1308

0.45 34.9 355.0 3.025 0.1396 66.0795 0.1304

0.47 6.6 317.0 3.025 0.1402 65.8043 0.1297

	 ¼ 0:2, n ¼ 1:0, �
1 ¼ 2:657

Relativistic star without a scalar field

2.277 1.1430 3.4430 0.2108

Relativistic star with the scalar field

0.27 510.15 275.10 2.424 0.2986 15.8983 0.1262

0.30 300.40 225.90 2.425 0.2947 16.1309 0.1250

0.33 178.90 190.30 2.427 0.2903 16.4159 0.1237

0.35 124.50 169.95 2.430 0.2889 16.5532 0.1228

0.39 57.70 142.00 2.436 0.2794 17.2429 0.1207

0.41 36.00 130.00 2.442 0.2769 17.5278 0.1197

0.43 19.30 119.00 2.442 0.2739 17.7255 0.1185

0.45 6.80 109.00 2.442 0.2724 17.8189 0.1175

0.46 1.90 105.00 2.442 0.2714 17.8864 0.1171
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�c

��
¼ 
3

1

3vð
1Þ :

Finally, in the last column of both tables the gravita-
tional potential energy expressed in units of M is shown
(see [28] for more details):

�

M
¼ 1� 1

vð
1Þ
Z 
1

0

T0
0


2d


½1� 2	ðnþ 1Þvð
Þ=
�1=2 ;

where the expression for the energy density is defined from
(2). Using Eqs. (14), (16), (22), and (23) one can write the
energy density in the following form (in units of �c):

T0
0 ¼ 1

2

�
�2�n þ

�
1� 2	ðnþ 1Þv




��
d�

d


�
2

þ�2�2 þ 1

2
��4

�
: (29)

The absolute value of the potential energy� represents the
work that would have to be done on the system to diffuse
its mass to infinity.

Next, using the data from the tables, in Fig. 1 we plot
vð
1Þ, which is proportional to the total mass of the con-
figurationM, on the value of the self-coupling parameter�
at some constant central�0 ¼ 0:45. In Fig. 2 we plot vð
1Þ
as a function of the value of central �0 for different n
values and 	 ¼ 0:2. From Fig. 1 one can see that, while �
increases, the masses of the configurations decrease both
for n ¼ 1:0 and n ¼ 1:5. Initially, for small �, the masses
are very different for n ¼ 1:0 and n ¼ 1:5; asymptotically,
for large �, they approach comparable values. This is
because for large �, the total mass is defined by the scalar
field but not by the contribution from the fluid. The sizes of
the configurations are different for the two cases n ¼ 1:0
(which has a size characterized by �
 ¼ 2:657) and n ¼ 1:5
(which has a size characterized by �
 ¼ 3:219).

On the other hand, if one fixes the size of the star to equal
the size of a corresponding relativistic configuration with-
out a scalar field, and changes the central value of �0 so as
to get regular solutions, it is necessary to choose appro-
priate eigenvalues of � and . In this case, vð
1Þ as a
function of �0 is given in Fig. 2. From this figure one sees
that as �0 increases, the mass of the configuration can
either increase (for the n ¼ 1:5 case) or decrease (for the
n ¼ 1:0 case).
It follows from Tables I and II and Figs. 1 and 2 that the

masses of the configurations, computed for the values of
the system parameters used here, are considerably smaller
than the masses of the stars without a scalar field. The
maximal dimensionless masses of the configuration with
the scalar field for n ¼ 1:0 and at n ¼ 1:5 are 0.32 and
0.21, respectively; without a scalar field the masses of the
same configurations are 1.14 and 0.96, respectively. Our
attempts to increase the masses of the system by varying
�0 were not successful. From Fig. 2, the implication is that
the masses change only slightly with �0.
Next, in Fig. 3 the metric functions e�, e�, and the mass

distribution Mð �
= �
1Þ (as a function of the dimensionless
radius �
) are given. In plotting these functions, we used the
following procedure:
Inside the Star: The function e� was plotted using (13);

the function e� was plotted from Eq. (14), in terms of the
dimensionless variables from (16). Explicitly,

e� ¼
�
1� 2	ðnþ 1Þv




��1
: (30)

From the interior solution, parts of Fig. 3 (i.e. the region
0< 
< 
1) we see the reason for the terminology
‘‘chameleon star’’ for the present solutions – the scalar
field mimics the behavior of the fluid in the interior region.
Even in the exterior region where the fluid goes to zero, the
scalar field is asymptotically going to zero.

FIG. 1. The dependence of the function vð
1Þ (which is pro-
portional to the total mass M) on the value of the coupling
parameter � from (23) at the fixed central value �0 ¼ 0:45 and
	 ¼ 0:2. The data are taken from Table I.

FIG. 2. The dependence of the function vð
1Þ on the central
value of �0 at the fixed �
1 ¼ 3:219 for n ¼ 1:5 and �
1 ¼ 2:657
for n ¼ 1:0, and 	 ¼ 0:2 for both graphs. The data are taken
from Table II.
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Outside the star: The solution goes to the Schwarzschild
solution

e� ¼ e�� ¼ 1� 2	ðnþ 1Þvð
1Þ



: (31)

The mass function is defined as

Mð �
= �
1Þ ¼ M
vð
Þ
vð
1Þ :

Finally, in Figs. 4 and 5 we plot the energy density, T0
0 ,

from the expression (29). The definition of the mass func-
tion given just above takes into account the energy of the
fluid and the scalar field from 
 ¼ 0 to 
 ¼ 
1. Although
the fluid vanishes at 
 ¼ 
1 the scalar field does not vanish.
Thus, in principle one should include the contribution to
the mass function of the scalar field from 
 ¼ 
1 to 
 ! 1.
However, from the Figs. 3–5 one can see that � and �0
rapidly go to zero as 
 ! 1 and thus the mass function is
given essentially just by the fluid and scalar field energy
density between 
 ¼ 0 and 
 ¼ 
1.

We now turn the question of connecting the interior
region (i.e. 0< 
< 
1 where one has both fluid plus scalar
field as a source) with the exterior region (i.e. 
 � 
1 where
one has only a rapidly vanishing scalar field). For this
purpose, we write down the Einstein equations of (4) and
(5) and the scalar field equation of (6), without the fluid
source, i.e. � ¼ 0 so that from (9) and (10) we have zero
pressure and density. This leads to the following system of
equations:

� e��

�
1

r2
� �0

r

�
þ 1

r2
¼ 8�G

�
1

2
e��’02 þ Vð’Þ

�
; (32)

�e��

�
1

r2
þ �0

r

�
þ 1

r2
¼ 8�G

�
� 1

2
e��’02 þ Vð’Þ

�
; (33)

’00 þ
�
2

r
þ 1

2
ð�0 � �0Þ

�
’0 ¼ e�

dV

d’
; (34)

which, by analogy with the transformations made above,
can be rewritten in terms of the dimensionless variables
vð
Þ, �ð
Þ and �ð
Þ as follows:

dv

d

¼ 
2

�
1

2
e��

�
d�

d


�
2 þ ~V

�
; (35)

d�

d

¼ 2	ðnþ 1Þe�




�
v



þ 
2

�
1

2
e��

�
d�

d


�
2 � ~V

��
; (36)

d2�

d
2
þ 2




�
1þ 	ðnþ 1Þe�

2

�
2v



þ 
2

�
1

2
e��

�
d�

d


�
2 � ~V

�

� dv

d


��
d�

d

¼ e�

d ~V

d�
; (37)

where e� is given by (30), and ~V is taken from (23). Note
that this system of equations (32)–(34) (or (35)–(37)) is
essentially the same as those obtained in [14] which con-
sidered a real scalar field with quartic self-interaction. The
above system contains the parameter 	 as a trace of the
influence of the fluid on the external solution. The solution
sought beginning from the surface of the star at 
 ¼ 
1

FIG. 3. The density � and the pressure p of the fluid, the scalar field �, the metric functions e�, e� and the current mass M as
functions of the relative invariant radius �
= �
1 for n ¼ 1:5 and n ¼ 1:0 respectively. To provide the asymptotic flatness of the solutions,
i.e. e�, e� ! 1 as �
 ! 1, the value of the constant �c needed to be chosen as �c � �0:958 for n ¼ 1:5 and �c � �0:822 for n ¼ 1:0.
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using, as the boundary conditions, the values of vð
1Þ,
’ð
1Þ and �ð
1Þ obtained from the solution of Eqs. (24)–
(26) for the internal part of the configuration. This allows
one to determine the value of the integration constant �c

from (13) by requiring e� to be equal to unity at infinity,
providing asymptotical flatness of the space-time. (The

values of �c for the examples shown in Fig. 3 are given in
the caption.) Thus, the complete solution for the configura-
tion under consideration is derived by matching of the
internal fluid solutions given by Eqs. (24)–(26) with the
external solutions obtained from the system (35)–(37).
The system (35)–(37) has obvious asymptotically flat

solutions in the form v ! const � vð
1Þ, with vð
1Þ taken
from (31) that corresponds to the fact that, by choosing the
eigenvalues of the parameters � and  presented in
Tables I and II, the external scalar field makes negligible
contribution to the total mass of the configuration. It allows
using the solution for the metric functions in the form of
(31) as a good approximation; � ! const, where the con-
stant is made equal to zero by the corresponding choice of
�c (see above); � ! conste��
=
. The numerical calcu-
lations of the system (35)–(37) confirm this asymptotic
behavior.
From Figs. 3–5, we can draw the following conclusions

about the metric functions, e�, e� and the mass distribution
Mð �
= �
1Þ:
(1) Asymptotically, as 
 ! 1, the space-time becomes

flat, i.e. e�, e� ! 1. To get this asymptotic behavior
of the metric function e�, it is necessary to choose a
specific value for the central value, �c (see the
caption of Figs. 3). The asymptotic behavior of
e� ! 1 follows from Eq. (30) and the fact that
vð
Þj
!0 ! 0 as 
3.

(2) As shown in [28], the relativistic configurations
without a scalar field are characterized by a greater
concentration of matter toward the center than in the
nonrelativistic case. By including a scalar field, we
obtain even greater concentration of matter toward
the center. This can be seen by comparing Fig. 3
with Figs. 1 and 2 from the paper [28]. The main
reason for the increased concentration of mass is the
nonminimal coupling between the scalar field and
the fluid with the choice of the coupling function
given by (22). The functional form of this coupling
gives the required regular solutions, lying in the
range 0< 
< 
1, only for the eigenvalues of the
parameter  � 1 (see Tables I and II). This leads to
the fact that near the origin, when 
 � 0, a greater
concentration of mass occurs due to the presence of
the term �2�n in the expression for the energy
density (29). At the same time, both � and �0 give
relatively small contributions to the energy density
compared to the term coming from the nonminimal
scalar-fluid coupling. This fact will become impor-
tant, below, when we consider the stability of the
solutions.

(3) The total energy density presented in Figs. 4 and 5
strongly depends on the polytropic index n. At
comparable central values of the scalar field �0,
the energy density for the case n ¼ 1:5 is several
times greater than for the case n ¼ 1:0. In turn, both

FIG. 5. The distributions of the total energy density in units of
�c from (29) for the different initial values of �0 ¼ 0:45, 0.35,
0.27, from top to bottom.

FIG. 4. The distributions of the total energy density in units of
�c from (29) for different the initial values of �0 ¼ 0:30, 0.35,
0.40, 0.45, from top to bottom.

CHAMELEON STARS PHYSICAL REVIEW D 84, 084025 (2011)

084025-9



values of n yield a greater energy density at the
center of the configurations than in the case of
the relativistic stars without a scalar field [28]
when the energy density was found to be 1.

(4) Despite the higher concentration of matter at the
center of the configurations with the addition of the
scalar field, their masses are considerably smaller
than the masses of the relativistic stars of the same
size but without a scalar field (see Table II). This
occurs as a consequences of the fact that the external
region of the stars, with only the scalar field as a
source, is strongly rarefied due to the rapid vanish-
ing of the scalar field in the region 
 � 
1.

B. Nonrelativistic case

In this section, we consider the nonrelativistic limit of
the system (24)–(26). The nonrelativistic limit corresponds
to 	 ! 0, and p 	 �. First, we recall some results about
this system in the absence of the scalar field [32]. With no
scalar field, the system of Eqs. (24)–(26) reduces to the
well-known Lane-Emden equation

1


2

d

d


�

2 d�

d


�
¼ ��n: (38)

This equation has solutions which describe finite size
configurations for different values of the parameter n
[32]. The nonrelativistic limit for the case when there a
scalar field is obtained by omitting all terms with 	 in
Eqs. (24)–(26) except for the term 	�nþ1 in the scalar
field Eq. (26). This term must be kept since the product 	
is generally a nonzero quantity even for 	 ! 0. Taking all
the above into account, we rewrite the system (24)–(26) in
the following form:


2 d�

d

¼ 
3

�


2
�2�n þ�2�2 þ 1

2
��4 � 1


2

dv

d


�
� v;

(39)

dv

d

¼ 
2

2

�
�2�n þ

�
d�

d


�
2 þ�2�2 þ 1

2
��4

�
; (40)

d2�

d
2
þ 2




d�

d

¼ ð�2 � 	�nþ1Þ�þ��3: (41)

Here, as in the relativistic case, the presence of the term
	�nþ1 is important—it leads to a change in sign of the
effective mass term (�2 � 	�nþ1) for certain values of
. This feature is important for the existence of regular
solutions.

Proceeding as in the previous section, we obtain numeri-
cal results for the nonrelativistic limit which we present in
Table III. We chose the parameter	 to be 	 ¼ 0:001. Such
a small value of 	 requires that  be large enough so that
the first term on the right-hand side of Eq. (41) is negative,
which is the necessary condition to have regular solutions.

In the nonrelativistic case, as in the relativistic case, we
need to find eigenvalues of two parameters,  and �, in
order to have regular solutions for a given values of the
polytropic index, n, and the central value of the scalar field,
�0. From Table III we do indeed find that there are values
of  large enough to make the first term on the right-hand
side of (41) negative, thus yielding regular solutions.
Using the data from Table III, the dependence of the

vð
1Þ on the central value of the scalar field �0 is given in
Fig. 6. Figure 7 uses the date from Table III to plot the ratio
of the energy density to the central density, T0

0=�c as a

function of the dimensionless, normalized radius. Also
from Table III one can see that we have fixed the radius
of a star R ¼ 
1 to be equal to the size of a nonrelativistic
star without a scalar field. From the figure we can draw the
following observations:
(1) The masses of the stars with a scalar field are con-

siderably smaller than the masses of the stars with-
out a scalar field. In the case n ¼ 1:0 the masses are
4–5 times smaller, and in the case n ¼ 1:5 about
6 times smaller.

(2) The mass is a fairly slowly varying function of �0,
especially when n ¼ 1:5.

(3) There is a greater concentration of the mass density
towards the center of the stellar configurations. This
can be seen explicitly by comparing with the distri-
bution of the mass density for a star without a scalar
field which is also presented in Fig. 7.

All these results are very similar to those of the relativ-
istic case.

C. Stability of the solutions

In this section, we discuss the issue of the stability of the
regular solutions obtained above. There are two basic
approaches to studying the stability: (i) The energy ap-
proach to the theory of equilibrium for a star [32]; (ii) A
more rigorous dynamical stability approach based on
studying the stability of linear and nonlinear time-
dependent perturbations. In this paper we will use the first
approach. Proceeding along the lines of reference [28], we
define the total energy E of the system, including the
internal and gravitational energies, as

E ¼ M ¼ 4�
Z R

0
T0
0r

2dr; (42)

where T0
0 is defined by (2) and corresponds to the total

energy density of the system (recall that c ¼ 1). Next, we
consider a system consisting of a gas of particles having a
rest-mass density �g. Its relativistic energy density is the

sum of the rest energy �g plus the density of internal

energy. For the special case of an adiabatic process which
assumes the absence of heat flow terms in the energy-
momentum tensor (2), it is possible to obtain a relation
between the gas density �g and the total mass density �t �
T0
0 or alternatively between �g and �, ’.
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To do this, we use the first law of thermodynamics
which, in our case, takes the form

d�t þ ð�t þ ptÞ dVV ¼ 0; (43)

where pt � �T1
1 is the total pressure, and V is the specific

volume (this symbol V should not be confused with the
potential energy used earlier). Since dV=V ¼ �d�g=�g,

Eq. (43) gives the following relation:

d�g

�g
¼ d�t

�t þ pt

: (44)

In general, when �t and pt are functions of �, ’, this
equation cannot be integrated. However, for our configu-
ration, the numerical calculations performed in the pre-
vious sections show that the main part of the energy is
provided by the term containing the nonminimal coupling
but not by ’0 and Vð’Þ. This allows us to neglect the terms
containing the scalar field kinetic energy and potential as
compared with f� and fp in the T0

0 and T
1
1 components of

the energy-momentum tensor (2), respectively. In this ap-
proximation we have the following expressions for the
total mass density and the pressure:

�t � f�; pt � fp:

Substituting these expressions into (44) and taking into
account that � ¼ �c�

n and p ¼ 	�c�
nþ1, we have

from (44)

FIG. 6. The dependence of the function vð
1Þ on the central
value of �0 at the fixed �
1 ¼ 3:6560 for n ¼ 1:5 and �
1 ¼
3:1437 for n ¼ 1:0, and 	 ¼ 0:001 for both graphs. The data are
taken from Table III.

TABLE III. The parameters of the nonrelativistic configurations with a variable central value
of the scalar field �0. The observable radius of a star �
1 is fixed. The choice of the parameters 	
and n is indicated in the table.

�0 �  
1 vð
1Þ �c= �� ��=M

	 ¼ 0:001, n ¼ 1:5, �
1 ¼ 3:6560

Nonrelativistic star without a scalar field

3.6538 2.7141 5.9907 0.0000

Nonrelativistic star with the scalar field

0.039 1040 20 600 3.6538 0.4384 37.0928 �0:0009

0.038 1850 21 800 3.6538 0.4373 37.1840 �0:0009

0.036 3980 24 500 3.6538 0.4354 37.3411 �0:0009

0.034 7010 27 600 3.6538 0.4346 37.4105 �0:0009

0.030 17 575 35 500 3.6538 0.4349 37.3895 �0:0009

0.028 25 895 39 500 3.6538 0.4462 36.4388 �0:0009

0.027 31 270 41 700 3.6538 0.4556 35.6855 �0:0009

	 ¼ 0:001, n ¼ 1:0, �
1 ¼ 3:1437

Nonrelativistic star without a scalar field

3.1416 3.1416 3.2899 0.0000

Nonrelativistic star with the scalar field

0.039 190 10700 3.1416 0.6568 15.7364 �0:0008

0.038 595 11000 3.1416 0.6687 15.4556 �0:0008

0.036 1645 12000 3.1416 0.6761 15.2872 �0:0008

0.034 3070 13100 3.1416 0.6868 15.0493 �0:0008

0.030 7645 15700 3.1416 0.7166 14.4227 �0:0008

0.025 20685 21000 3.1416 0.7457 13.8609 �0:0008
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d�g

�g
¼ nd�

�ð1þ 	�Þ þ
df

fð1þ 	�Þ :

This equation differs from the case without a scalar field by
the presence of the second term on the right-hand side
containing the coupling function f. In the absence of the
nonminimal coupling, i.e. when f ¼ 1, this term vanishes.
Integrating, we find

�g ¼ �gc

�ð1þ 	Þ�
1þ 	�

�
n
exp

�Z df

fð1þ 	�Þ
�
; (45)

where �gc is the value of the gas density �g at the center of

the configuration. This constant may be evaluated as fol-
lows [28]: near the boundary of the configuration, where
� 	 1, Eq. (45) becomes approximately

�g � �gcð1þ 	Þn�n exp
�Z 



a

df

f

�
;

where 
a is the point starting from which the approxima-
tion � 	 1 becomes valid. This equation can be rewritten
in differential form as

d

d


�
ln

�
�g

�gcð1þ 	Þn�n
��

� d

d


�Z 



a

df

f

�
: (46)

Since f ¼ fð�ð
ÞÞ is a function of 
, the term on the right-
hand side can be evaluated as follows:

d

d


�Z 



a

df

f

�
� d

d


�Z 



a

ðdf=d
Þd

f

�
¼ d

d

ðlnfÞ:

Taking this expression into account, Eq. (46) takes the
form

�g � �gcð1þ 	Þnf�n:
Near the boundary, the internal energy density is small
compared to the rest-mass-energy density, so that
�t � �g. Comparing the above equation with the expres-

sion �t � f�c�
n, we obtain

�gc ¼ �c

ð1þ 	Þn ;

and Eq. (45) becomes

�g ¼ �c

�
�

1þ 	�

�
n
exp

�Z df

fð1þ 	�Þ
�
: (47)

Using expression (47), the corresponding proper energy
E0g of the gas may be defined as the integral of �g

with respect to proper volume dV ¼ 4�r2e�=2dr for the
metric (3) as follows:

E0g ¼ M0g ¼ 4�
Z R

0
�ge

�=2r2dr: (48)

The quantity M0g is proportional to the total number of

particles N in the configuration, M0g � N=A, where A is

Avogadro’s number. Using the dimensionless variables
(16) and expressions (30) and (47), we obtain the proper
energy of the gas (48) in units of the total energy E ¼ M in
the following form:

E0g

E
¼ 1

vð
1Þ
Z 
1

0

�n expfR
1

0 ½fð1þ 	�Þ��1dfg
2d


½1þ 	��n½1� 2	ðnþ 1Þv=
�1=2 :
(49)

This expression differs from the corresponding expression
in [28] through the presence of an extra factor expf. . .g
under the integral which comes from the nonminimal
coupling in the system. Stability of the configuration can
be tested via the sign of the expression [28,32]

Binding Energy

E
¼ E0g � E

E
¼ E0g

E
� 1: (50)

The necessary (but not a sufficient) condition for stability
of the system that E0g > E i.e. that the total system energy

E is less than the energy of the nongravitationally interact-
ing gas, E0g, making E the energetically preferred state.

The condition in (50) amounts to requiring that the Binding
Energy defined in this equation be positive. In the paper
[34], the question of stability of adiabatic polytropic con-
figurations was considered. It was shown that such con-
figurations may have both positive and negative binding
energies depending on the value of the polytropic index n,

FIG. 7. The plot of the total energy density, T0
0 , in units of �c in

the nonrelativistic case (	 ¼ 0:001) for different central values
of �0 from Table III. The solid lines correspond to the case of
n ¼ 1:5, the dashed lines to the case of n ¼ 1:0. The top two sets
of curves correspond to the configurations with the scalar field.
For comparison, the energy densities of the nonrelativistic con-
figurations without a scalar field T0

0 ¼ �c�
n are also shown by

the two bottom, less peaked curves.
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and the parameter 	 (configurations with 1 � n � 3 and
0:01 � 	 � 100 were considered).

When a nonminimally coupled scalar field is included,
we considered a very narrow range of these parameters,
	 ¼ 0:2 and n ¼ 1:0, 1.5, and also only one choice of the
coupling function f given by the form (22). In this case, the
numerical calculations indicate that E0g=E 	 1, i.e. we

have the negative binding energy, and correspondingly the
configurations under consideration are unstable. The same
values of 	 and n without a scalar field give configurations
with the positive binding energy [34]. Obviously, the dif-
ference between the present results and those of [34] is
connected with the presence of the extra factor expf. . .g
under the integral in the expression (49) whose value, as
numerical calculations indicate, is much less than unity for
the parameters 	, n used in the paper, and for the coupling
function f of the form (22).

The behavior of expf. . .g in (49) can be approximately
estimated as follows: Since we are looking only for solu-
tions with 0 � � � 1, the value of (1þ 	�) may be ap-
proximated as giving a finite contribution to the value of

integral
R
1

0 ½fð1þ 	�Þ��1df in the form of some constant

factor �> 0, i.e.
R
1

0 ½fð1þ 	�Þ��1df � �
R
1

0 d lnf.
Then one can see that

exp

�Z 
1

0
½fð1þ 	�Þ��1df

�
�
�
fð
1Þ
fð0Þ

�
�
:

When the coupling function f is taken in the form (22), we
have the finite value of fð0Þ, and since �ð
1Þ ! 0 then
fð
1Þ ! 0 as well, thereby suppressing the value of E0g=E

in (49). In the nonrelativistic case, where 	 ! 0, we have
� ! 1 and the situation with the instability is the same.

Possible ways of resolving this problem are:
(i) Consider configurations for which �ð
1Þ � 0, and

the function fð
Þ varies slowly in the range 0< 
<

1 to provide a large value of the above expf. . .g. In
this case, one can expect that the configuration will
have a ‘‘tail’’ of a scalar field outside the fluid at

 > 
1 (a similar thing happens for configurations
considered in [5]). In this case, it will be necessary to
perform a stability analysis of both internal solutions
(where the fluid and the scalar field are involved) and
external solutions (where only the scalar field is
involved).

(ii) Since the solutions and their stability are sensitive to
the nature of the scalar field-fluid coupling, which in
this paper was take to have the form given in (22),
one could look for stable solutions by examining
different forms of this coupling; for example, one
could try a nonpolynomial coupling of the form
f ¼ e�. These stability studies will be the focus
of future work.

V. NONRELATIVISTIC CASE: AN ANALYTICAL
SOLUTION FOR A MASSLESS SCALAR FIELD

The numerical results obtained in the previous sections
demonstrate the possibility of obtaining the regular solu-
tions both in relativistic and nonrelativistic cases when the
coupling function f is chosen in the form of (22). This
choice is not the only one possible. It will be shown latter
in this section that, by choosing the special form of the
function f, it is possible to find an analytical solution in a
particular nonrelativistic case when the polytropic index
n ¼ 0, and the scalar field is taken to be massless. This
case corresponds to an incompressible fluid with a constant
mass density, � ¼ �c ¼ const, and a spatial varying pres-
sure, p � const.
To begin, we rewrite the system of Eqs. (24)–(26) for the

massless case and in the nonrelativistic limit (	 ! 0) in
the form


2 d�

d

¼ �
3

2

�
d�

d


�
2 � v; (51)

dv

d

¼ 
2

�
f�n þ 1

2

�
d�

d


�
2
�
; (52)

d2�

d
2
þ 2




d�

d

¼ �	�nþ1 df

d�
: (53)

We have kept the 	-containing-term on the right-hand side
of Eq. (53) since it is does not necessarily small for
arbitrary f. Differentiating the first equation of the system,
and substituting the second and the third equations into this
expression, gives

1


2

d

d


�

2 d�

d


�
¼ �f�n þ 	
�nþ1 df

d

: (54)

The last term of this equation contains the factor df=d
 �
�0df=d�. For f ¼ 1, Eq. (54) reduces to the Lane-Emden
Eq. (38) which has an analytical solution for the case of an
incompressible fluid with a constant mass density � ¼
�c ¼ const, p � const, n ¼ 0—see [32], Eq. (10.3.14).
This solution is

� ¼ 1� 1

6

2: (55)

Equation (54) can also be integrated analytically by choos-
ing the function f to have the following power-law form:

f ¼ f0 þ 

m

m; (56)

where f0,  and m are arbitrary parameters. Using this
function and taking the parameterm to be of order 1 so that
the product 	� 	 j1=mj, we have from (54)

1


2

d

d


�

2 d�

d


�
¼ �

�
f0 þ 

m

m

�
�n:
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When n ¼ 0, this equation can be integrated giving the
following regular solution:

� ¼ �0 � f0
6

2 � 

mðmþ 2Þðmþ 3Þ

mþ2: (57)

Here, �0 is an integration constant. A second integration
constant was set equal to zero to make the solution regular
at 
 ¼ 0. We take �0 ¼ 1 so that in the absence of the
scalar field (i.e. when f0 ¼ 1 and  ¼ 0) Eq. (57) will
reduce to Eq. (55). This solution is regular everywhere,
including the point 
 ¼ 0, when m>�2. The degenerate
case m ¼ 0 corresponds to the classical solution (55)
which can be obtained from (57) by setting f0 ¼ 1 and
 ¼ 0. This choice corresponds to turning Eq. (54) into the
Lane-Emden Eq. (38).

We now analyze the behavior of the solution as 
 ! 0.
To begin, we calculate the first and second derivatives of �:

d�

d

¼ � f0

3

� 

mðmþ 3Þ

mþ1;

d2�

d
2
¼ � f0

3
� ðmþ 1Þ

mðmþ 3Þ

m:

For a spherically symmetric solution with maximal mass
density as 
 ! 0, two conditions must be satisfied: (1) the
first derivative must be equal to zero; (2) the second
derivative must be negative. The former condition gives
m>�1. Given this, the behavior of the second derivative
is

if ð�1<m< 0Þ: �00 !
�þ1 for > 0;

�1 for < 0;

if m> 0: �00 ! �f0=3 for any :

One can see that for (� 1<m< 0) the second condition
is satisfied only if < 0.

On the other hand, the regularity of the solution assumes
the presence of a point on the axis, 
, where � ¼ 0. For the

classical solution (55), this point is 
1j�¼0 ¼
ffiffiffi
6

p
. In

the case of configurations with a scalar field, the location
of the point 
1j�¼0 will depend on the factors in front of the

mþ2 term in (57), i.e. it will be determined by the values of
 and the denominator mðmþ 2Þðmþ 3Þ. In the range
(� 1<m< 0) only negative  are allowed if one wants
�00 < 0 as 
 ! 0, which is one of conditions that the
solution (57) be regular. In the range m> 0, the regularity
of the solution is guaranteed if > 0, since otherwise the
solution grow as a power law of 
.

The above analysis shows that the inclusion of a scalar
field decreases the size of configurations, as compared to
the classical case (55), for all acceptable values of the
parameter m. In this sense, the behavior of the solutions
with a massless scalar field and the coupling function in the
form of (56) differs from the behavior of the solutions
obtained in Sec. IVB when the function f was chosen to
have the form (22). In the latter case, the size of the

configurations for given values of n and 	 depends con-
siderably on the parameters �, , and �0, and it can be
larger or smaller than the size of a configuration without a
scalar field.
Substituting the expression for � from (57) into the

scalar field Eq. (53) with n ¼ 0, we find the following
analytical solution for the scalar field � in the interior of
the configuration

�in ¼ �0 þ 	

6

�
3
2þm

mðmþ 2Þ2ðmþ 3Þð2mþ 3Þ
þ f0


2

ðmþ 3Þðmþ 4Þ �
6

ðmþ 1Þðmþ 2Þ
�

mþ1: (58)

One can see from this expression that the behavior of the
scalar field is defined in large measure by the factor 	 in
front of the square brackets. Since in the nonrelativistic
limit 	 ! 0, this factor will differ appreciably from zero
only for large . For  not large, one can expect that the
field will be practically constant and equal to the central
value �0 up to the boundary of the fluid at 
 ¼ 
1 where
� ¼ 0. The general solution for � for all 
 is obtained by
matching of the internal solution (58) with an external
solution of Eq. (53) where the right-hand side is equal to
zero. The exterior equation has a solution of the form

�ext ¼ C1 þ C2=
;

where C1, C2 are integration constants which are deter-
mined by matching of the external solution �ext with the
interior solution�in solution at the boundary of the fluid at

 ¼ 
1. One can see from this expression that the corre-
sponding mass density, which is proportional to�02

ext, tends
asymptotically to zero.

VI. CONCLUSION

In this article we studied gravitating, spherically sym-
metric, starlike, configurations with a matter source con-
sisting of a normal (i.e. nonghost, nonphantom) scalar field
plus a perfect isotropic fluid. The motivation for studying
such a model is that scalar fields have found broad use in
various cosmological models as well as astrophysical mod-
els. It is natural to postulate that, if scalar fields do really
play a role in the Universe, these scalar fields might play a
role in the structure of compact objects such as main
sequence stars or neutron stars. Proceeding from this as-
sumption, we studied a model of a starlike configuration
supported by a scalar field nonminimally coupled to ordi-
nary matter in the form of a perfect fluid. As an example,
we considered the case when the scalar field had a qua-
dratic mass term and a quartic self-interaction giving a
scalar field potential of the form (23). The coupling be-
tween the scalar field and the perfect fluid, f, was taken to
have the form (22). For this model we studied solutions
both in the relativistic and nonrelativistic limit. Our inves-
tigation showed that the existence of regular solutions is

DZHUNUSHALIEV, FOLOMEEV, AND SINGLETON PHYSICAL REVIEW D 84, 084025 (2011)

084025-14



possible exactly because of the presence of the nonminimal
coupling between the scalar field and fluid. In the absence
of such coupling, the potential (23) gives only singular
solutions [14]. From the mathematical point of view, the
existence of regular solutions in our model is possible
because of the appearance in scalar field Eq. (26) of an
effective mass term meff ¼ ð�2 � 	�nþ1Þ whose sign
depends both on the behavior of the fluid density � and
the values of the parameters  and 	. It was shown that
when meff < 0, there were regular solutions with finite
masses and sizes. In some sense the solutions presented
above are a cross between the interacting scalar field
solutions of [33] and the interacting real scalar field solu-
tions of [14]. In the interior region, 0< 
< 
1, we have a
real scalar field and a fluid which interacts with the scalar
field. Because of the chameleonlike behavior of the scalar
field with respect to the fluid (from Fig. 3, one can see that
in the interior region the field mimics the fluid) one might
think of the 2 degrees of freedom associated with the scalar
field and the fluid as being equivalent to the 2 degrees of
freedom of a complex scalar field. While there is certainly
some validity in this analogy (both the present solutions
and those in [33] are nonsingular), one must avoid pushing
the analogy too far since the fluid vanishes exactly at some
point (i.e. � ¼ 0 at 
 ¼ 
1) while the complex scalar field
of [33] and the real scalar of the present solution only go to
zero asymptotically. Thus, after reaching the point 
 ¼ 
1

our solutions become those of [14].
Our results are interesting since they show that by add-

ing such a fluid one can find regular solutions, thus evading
some gravitational version of Derrick’s theorem [23,24]
which prohibits regular solutions for the system of gravity
plus a normal scalar field if the potential Vð’Þ> 0. Thus,
the addition of the fluid was crucial to the existence of
these solutions. The original, nongravitational version of
Derrick’s theorem [21,22] assumes not merely the regular-
ity of solutions, but also their stability. In this paper, we
have performed a preliminary stability analysis based on
energy considerations. In this case, we compared the total
energy of the system (including the internal and gravita-
tional energies) and the rest energy of the gas particles. For
the values of the polytropic index n and the parameter 	,
and the specific coupling function f in the form of (22), this
energy approach showed that the solutions studied in this
paper are unstable. This was because the binding energy of
the system, which was equal to the difference of the rest
energy and the total energy, was negative. But, as it was
shown in [34], even a positive binding energy does not
guarantee stability of a system allowing its transition to an
energetically more advantageous state with the same poly-
tropic index n, but having another parameter 	. Obviously,
such a process is accompanied by an ejection of the excess
of energy. In our case, the possibility is not excluded that
there exist regular solutions with positive binding energy,
for other values of n and 	 and other parameters of the

scalar field , �, �0. There is an additional possibility for
finding stable solutions which was described at the end of
Sec. IVC—since the solutions and their stability are sen-
sitive to the form of the scalar field-fluid coupling (which
in the present work had the form (22)) one could look for
stable solutions by changing the form of the scalar field-
fluid coupling. For example, one could try nonpolynomial
couplings of the form fð�Þ ¼ e�. Finally, the energy
approach to stability which was used in this paper can
and should be supplemented by a study of dynamical
stability along the lines of the linear stability analysis
performed in [14,18,20], or by using the catastrophe theory
method suggested in [35]. In future work, we plan to
perform a stability analysis of the chameleon star solutions
investigated here using both these approaches.
The spherically symmetric solution that we found for the

system considered in this paper were called chameleon
stars in analogy with chameleon cosmological models
[10] because the characteristics of the scalar field (e.g. its
mass) strongly depend the other fields and fluids in its
environment. We characterized the behavior of these cha-
meleon star configurations for both relativistic and non-
relativistic cases. For the relativistic chameleon stars, we
found that in general the mass-energy density tended to be
more concentrated toward the center of the star at 
 ¼ 0.
Despite this greater concentration of mass near the center
of the chameleon star, the total mass of the chameleon star
was lower than the corresponding relativistic stars without
a scalar field. This was the result of the outer regions of the
chameleon star being much less dense than a correspond-
ing nonchameleon, relativistic star. Similar comments
apply to the nonrelativistic chameleon stars. For the non-
relativistic case, we were able to find an analytical solution
for the case when the scalar field was massless. This
analytical solution had similar behavior to the numerically
obtained solutions from Sec. IVB.
We briefly give some speculations about possible physi-

cal applications of the present solutions. Scalar fields are
thought to play a role in cosmological dynamics (dark
energy) and in dynamics at the galactic scale (dark matter).
The present proposal is that a scalar field could play some
role in astrophysics at the stellar scale in the formation of
the chameleon star configurations discussed here. The fluid
in our model would be provided by the star. For example,
one could consider neutron stars which contain a signifi-
cant amount of the scalar field. From the discussion above,
our chameleon stars—both relativistic and nonrelativis-
tic—would be less massive for a given radius despite
having a higher concentration of mass near the center.
Thus, one might look for neutron stars which have a larger
radius for a given mass than would be expected for a
normal neutron star. In this sense, chameleon stars would
have the opposite behavior from hypothetical quark stars
which have a larger mass for a given radius. Another
possibility is that some living stars (i.e. stars which are
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still fusing elements and are on the main sequence) might
have trapped some significant amount of scalar field in
their interior. Such living, chameleon stars would tend to
have a larger density near their center, thus increasing the
rate at which they fused elements. The consequence of this
is that such stars would be hotter and live a shorter than
expected lifespan for their mass. Again, a given chameleon
star would have less overall mass than a nonchameleon star
but would be nevertheless have a higher interior tempera-
ture. The physical applications of the chameleon star
model suggested above would of course require the exis-
tence of stable solutions. A search for such stable solutions
is a goal of future studies.
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APPENDIX: DERIVATION OF THE
ENERGY-MOMENTUM TENSOR

In the case of the isentropic quasipotential flow, the
Lagrangian of the continuous medium has the form [29,30]

Lm ¼ p ¼ W � "; (A1)

where W ¼ ð"þ pÞ is the heat function, and " is the
energy density. Introducing the quasipotential

cSi ¼ c
@S

@xi
¼ W ui;

where c is the velocity of light and S is the action for the
matter, we have

SiS
i ¼ w2

c2
uiu

i ¼ W 2

c2
;

from which it follows

W ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gikSiSk

q
:

The Lagrangian (A1) now takes the form

Lm ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gikSiSk

q
� ": (A2)

The total action (including gravity plus all matter sources)
in curvilinear coordinates is [36]

S ¼ 1

c

Z
L

ffiffiffiffiffiffiffi�g
p

d4x; (A3)

where the Lagrange density, L, above is that given in
Eq. (1). By varying the action (A3) with respect to the
metric, gik, one can obtain the Einstein equations and the
energy-momentum tensor. In this way, the energy-
momentum tensor is given by the expression

1

2

ffiffiffiffiffiffiffi�g
p

Tik ¼
@

ffiffiffiffiffiffiffi�g
p

L

@gik
� @

@xl
@

ffiffiffiffiffiffiffi�g
p

L

@ @gik

@xl

; (A4)

where the Lagrangian, L, contains only the matter compo-
nents of the Lagrangian (1), namely

L ¼ 1

2
gik@i’@k’� Vð’Þ þ fð’ÞLm:

Since
ffiffiffiffiffiffiffi�g

p
L does not depend on @gik

@xl
, the last term in (A4)

equals zero. Then we have

1

2

ffiffiffiffiffiffiffi�g
p

Tik ¼
@

ffiffiffiffiffiffiffi�g
p

L

@gik
¼ L

@
ffiffiffiffiffiffiffi�g

p
@gik

þ ffiffiffiffiffiffiffi�g
p @L

@gik
: (A5)

Taking into account that dg ¼ ggikdgik ¼ �ggikdg
ik and

also using the expressions (A1) and (A2), we find

L
@

ffiffiffiffiffiffiffi�g
p
@gik

¼ � 1

2

ffiffiffiffiffiffiffi�g
p

gikL;

and

ffiffiffiffiffiffiffi�g
p @L

@gik
¼ ffiffiffiffiffiffiffi�g

p �
1

2

cSiSkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gikSiSk

p fþ 1

2
@i’@k’

�

¼ 1

2

ffiffiffiffiffiffiffi�g
p ðfWuiuk þ @i’@k’Þ:

Substituting these expressions into (A5), we finally have

Tik ¼ f½ð"þ pÞuiuk � gikp� þ @i’@k’

� gik

�
1

2
@�’@

�’� Vð’Þ
�
: (A6)
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