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Fourth order spatial derivative gravity
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In this work, we study a modified theory of gravity that contains up to fourth order spatial derivatives as
a model for the Horava-Lifshitz gravity. The propagator is evaluated and, as a result, one extra pole is
obtained, corresponding to a spin-2 nonrelativistic massless particle, an extra term which jeopardizes
renormalizability, besides the unexpected general relativity unmodified propagator. Then unitarity is
proved at the tree level, where the general relativity pole has been shown to have no dynamics, remaining
only the 2 degrees of freedom of the new pole. Next, the nonrelativistic effective potential is determined
from a scattering process of two identical massive gravitationally interacting bosons. In this limit,
Newton’s potential is obtained, together with a Darwin-like term that comes from the extra nonpole
term in the propagator. Regarding renormalizability, this extra term may be harmful by power counting,
but it can be eliminated by adjusting the free parameters of the model. This adjustment is in accord with
the detailed balance condition suggested in the literature and shows that the way in which extra spatial
derivative terms are added is of fundamental importance.
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L. INTRODUCTION

Einstein’s general relativity (GR) generalizations due to
the addition of extra derivative terms was proposed a long
time ago [1,2]. Such modifications became interesting in
the context of quantum gravity, where Einstein’s theory is
known to be perturbatively nonrenormalizable by power
counting [3]. It has been verified that, in the presence of
extra terms containing products of the curvature tensor, the
theory turned out to be renormalizable. However, such
modification introduced pathologies into the theory which
loses unitarity [4].

More recently, in an attempt at constructing a perturba-
tively renormalizable and unitary gravitational theory,
Horava [5] proposed modifications of GR via extra terms
with only spatial derivatives, introduced in a chosen space-
time foliation. The foremost argument for such proposal
lies in the fact that the gravity propagator of the linearized
theory would behave like

1
>, 1.1
R a®? - —a@
a,, * * +, a, being coupling constants, k* = (w, 12) the four-

momentum of the graviton and z > 1 a parameter associ-
ated with the highest order of spatial derivatives. The
absence of higher order time derivatives may transform
the propagator as the one shown in (1.1), with only simple
poles in w?. It has been verified that the theory proposed in
[5] is not so simple and that new degrees of freedom,
among other illness, are present [6—14].

In this work we will be interested to study the exact form
for (1.1). To this end, we propose a prototype for the theory
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in [5]. The model in question, restricting ourselves to
z = 2, is described by the action

1 y
S=— L Jdt /U Bx/=g(RW + aR®? + BROVRY),
(1.2)

defined in the foliation M = N X ¢. There, spacetime
indices w, v, ... run from O to 3, while i, j = 1,2, 3 are
the indices that label spacial coordinates on o. Also,
k2 = 167G, G is the Newton’s constant, and, all over
the paper, ¢ = 2 = 1. The spacetime signature we are

dealing with is (— + ++), Ri‘gfl} (Rﬁ);) is the Riemann
curvature tensor in 4 (3) dimensions for the metric g,,,
(gij)- It will be convenient, in this spacetime signature, to
define RS = aﬁrﬁi‘)f - aMFgL“ + -+, while RY) =

npBr
Rij)ﬁ[i. Similar definitions are valid for the

dimensional curvature tensor.

Notice that, to be as general as possible, we could have

incorporated the term R(3)ijk’R£;,zl into (1.2). However, in

three-

the three-dimensional case the Weyl tensor [1] is identi-
cally zero. As a consequence, the aforementioned term

ROUKRE, can be totally cast as a combination of R®?

and R(3)i-7R§]3-) (see, for instance, the appendix in [15]).

In the next section we will dedicate ourselves to the
computation of the propagator of (1.2) in the weak field
approximation. Section III contains a systematic study of
unitarity at the tree level. At this level, we show that the
dynamic of the theory is governed by a pole that corre-
sponds to a nonrelativistic spin-2 massless particle. The
obtention of the semiclassical nonrelativistic potential for a
boson-boson scattering process, via gravitational interac-
tion, is done in Sec. I'V. Section V contains the conclusions.
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II. THE PROPAGATOR

Let us perform the linearization of (1.2) in the weak field
approximation

Cuv = Muy + Khy,, 2.1

whose inverse is gt” = n*" — kh*”. The background
metric is 7,, = diag(—1,1,1,1) and the h,, are the
gravitational field fluctuations. By collecting terms up to

second order in A, (1.2) gives

1 1 1
S=— | a&* [—h O2hHY — —ho%h
277 / Mo wr 4
+T,T% + 2aRO? + 2BROVRY ] (22)

where 9% = 9#9 - Simple underline means first order in A,

double underline means second order in /4, and so on. The
trace is h = n*”h,,, while

1

rs= 77&B£5B = 9 h* — Eaf‘h. (2.3)

Clearly, the action (2.2) is invariant under the gauge

transformations oh,, = —d,¢&, — 9,&, = —29(,&,) for

any arbitrary £,. Then, in order to evaluate the propagator,

we may choose the de Donder gauge, I',, = 0, by introduc-
ing into the action the following term:

A
Sy =75 f d*xT, T, (2.4)
Now, we may rewrite (2.2) as
1
é/\ = é + ng = E [d4xh””(9w,’a5haﬁ, (25)
where the operator O possesses the symmetries O, ,5 =
Oup,uv = O, ap- It is convenient to separate O into
O/‘«V’Q,B = @:LV,UZ,B + @iv,aﬁ’ (26)
where in momentum space, with k* = (o, I;),
- k? 2-A
(9:1,1/,0(,3 = - Eé,u,l/,aﬁ + Tkzn,uvnaﬁ
+ (L= Vnuekpks)
1—A
- T(np,vkakﬁ + naﬁk,u,kv)’ (27)

whereas (Qi v,ap 18 €qual to zero whenever one of its indices
is timelike and

1

~ B >
OZ'JCI = §k46ij,kl + (26! + B)kzk]klkk

+ (_2(1 - g)l?(ﬁ,]kkkl + Bklkikj)
1 (20 + BYets,5, — iP5
a+ 2K 6;du = BK S(iukpky).  (2.8)
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In the above expressions we have set k> = —w? + K,
Ouvap = Mu@Npy» and used the  convention
AuaBp = (1/2)ApwBpy + AvaBp))-

The difficulty of inverting (2.6) comes from the non-
covariant form of the operator @. Our plan is to first
separate the components with pure spatial indices from
the rest. This may be achieved by defining

Apvap = Opyap = 81,0} 488, (2.9a)
Biju = @z!j,kl + (Qizj,kl' (2.9b)
Componentwise,
Ao
Ago,00 = Zk , (2.10a)
1o TA 1—A
Agoij = §5ij[§k2 -k —(1- A)aﬂ] + Tk"kf’
(2.10b)
1—A
Agin = 5 o(=8iky + kidyp), (2.10c)

1 1—2A
M;; = Agio; = Zaij[kz + (1 - MNe?] - Tkikj,
(2.10d)
and zero otherwise. We now may write
O pvap = Apvap + 8By b (2.11)
From the inverse equation
O p1,apO~'PA7 = 847, (2.12)
one obtains
. 1 .
O 100 = (1= Ay ; O7'7%), (2132
00,00
B~ 100mn _ _:;‘oo,kz &1k (2.13b)
00,00
=~ 10i 1 . s
@ 104,00 _ _ EMﬁllqAOq,kl@ lkl,mn, (2130)
=~ l0i 1 . -
@ IOl,mn — _EMfll‘/AOJ’kl@ lkl,mn’ (2.13d)
Cij’kl@*lkl,mn = 6:’}” (2136)

By the definition of M;; in (2.10d), it is straightforward to
get

4

MV =
P+(1-MNo?

., 1—A . .
oV + —— k'K ). 2.14
( = ) (2.14)

In the last line of (2.13) we defined
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Ago,kiAij
_ X j,00 -1
Cijuu=——"—""="A;00M " App11 t Bijui

AOO 00
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2 kik jkik — V2
=5ij,kl(_%+'8k) klk[@ a+ Bkt T U .2

(1 - )32k ]

AKZ MK + (1 — Dw?]
8;ikik, + Sykik; B\rs 1—=An 1—A72-2 L=V 2
A e SR
2 at )T w2 Frim e V2
/3 2-2 1 12— 2 (1- M)
48 kpk S ) 1 — 22wk
+ Pk ’))[—Ek“ " 2 (2 Vo _ ] (2.15)
2 4 4 Ak + (1 - Nw?]

The appendix contains all the necessary tools to invert
Cijw- The calculation is tedious but straightforward. We
use the Barnes-Rivers operators given in (Al), together
with (A4) and (AS5), and, as a last step in the equation so
obtained, the equalities in (A8) and (A9) are employed. We
then quote the result
s

Ol = W(zpl +4P%;iu

1 20% , K—4K o =
+ —2 <_ —2P + 72 P - P
—k k k ijkl
2P2, i
ij,kl _ " 50
+ o gl 8a +38) k4P
_ QP +4P, P - PO - 3P - PYiin
_/\kZ _k2

1 1 _
+ 2P ,Zlk,( - ) — (Ba +3B)P) 4

2+ Bkt —k
(2.16)

So far we have obtained the part of the propagator with
pure spatial indices. Egs. (2.13a)—(2.13d) enable us to get
the remaining terms, so that
PO
),u,u,ozﬁ

1 - 1)
K+ Bkt —k

- (2P +4P° 2P2— PO 3P0 —
@#Vﬂﬁ - ( — K2 + — k2

+ 8i,84,2P2, k,(

— Ba +3B)9Q 1yap (2.17)
where
Q,l] Kkl = 1] ki
4
Q= | 200 T . 2.18)
Q,OO,mn = an 00>

0, otherwise.

The propagator in (2.17) has two poles besides the term
Q. The first line of that equation is just what one gets from

|

pure GR, and corresponds to the massless pole —k?> =
w? =k =0. By looking at the second line in (2.17), we
notice that this pole, for nonvanishing 3, gains a correction
that is proportional to P? in its spatial indices sector. In the
next section we will analyze the contribution of this cor-
rection to the dynamic of the theory, at the tree level.
Besides this just mentioned pole, there is a new pole
corresponding to a massless spin-2 particle which obeys
a nonrelativistic dispersion relation

= (1 — Bi).

For this pole to have physical meaning, either 8 <0 or
otherwise, there will be a limit in the particle momentum

(B>0=k < 1/B). This is the expected pole in the
propagator, as we wrote in (1.1) that may improve renor-
malizability. Nevertheless, the last term in (2.17), propor-
tional to @, clearly spoils renormalizability, unless we set
8a + 3B = 0. Such choice of the parameters « and S is in
accordance with the detailed balance condition introduced
by Horava in [5]. This can be seen by taking & = — % B so
that the extra spacial derivative terms in the action (1.2)
furnishes

(2.19)

/ d*xJ=g(aR®? + BROVIRY)

3 y
= ﬁ/d4x,/—g(—_R(3)2 + R(S)URE;))

BW[q] 5W[q]
=8 [z 06 (2.20)
where
1
Gijn = k9, — 599k (2.21)
is the inverse of the Weyl metric GiK = gitkghi — gii g,

gi; = g;; while, ¢" is the inverse of ¢,;; and the three-
dimensional action W is given by

Wiq] = [ dx,/gRY. (2.22)
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It is worth mentioning that the detailed balance condition
plays an essential role regarding renormalizability in the
full Horava theory, as shown in [16]. In the present case, it
justifies the removal of a badly behaved term which would
spoil the renormalization of the model.

III. TREE-LEVEL UNITARITY

We can readily check from (2.17) that the linearized theory
described by (1.2) does not contain tachyons. This is already
an improvement compared to the modified theories of gravity
with higher time derivatives [4,17] that, beyond having
tachyons, are not unitary even at the tree level.

In this section, we are going to examine unitarity for the
model (1.2) at the tree level. To this end, it is enough to
study the residue of the poles when we saturate the propa-
gator (2.17) with an arbitrary conserved current [17,18]

T = ak*k” + bk*k¥ + cxyeffe;’ + 2dk - Y

+ 2e Pk + 2f LRV, (3.1)

Here, T#” has been arbitrarily expanded in terms
of the linearly independent four-vectors k* = (w, k),
= (—w, I;), and the orthonormal graviton polarization
vectors € = (0,&,), x, y=1, 2 (¢, -k = 0) with the
coefficients a, b, Cxy = Cyxs d, e, and f,. Conservation
implies T#"k, = 0, so that

ak> +d@? + k) =0,  (3.2a)

di? + b(w? + k) =0,  (3.2b)

ek + fl®+K) =0 (320

ak* + b(w® + k) + 2dk2(0?> + k) = 0. (3.2d)

Egs. (2) and (3.1) enable us to write the amplitude

(cll _ c22)2 + 4(c12)2

T4 0, 0T = -
pep — K2+ B

k= 32K + 3k*)?

~ 16(8a + 3k +34)
(w?+k7)?
3.3)
where we used the identities TPT =0 for P = P!, P,
j’o and

Tij2Pij,k1Tkl = Tr(Q2P? - IPO)MV,aﬁTaB

= (M = ¢2)2 4 4(c12)2 = 0, (3.4)

The last term in (3.3) does not correspond to a pole, so,
there is no particle associated with it. But it clearly preju-
dices the divergent behavior in perturbation theory unless
we fix accordingly the constants « and S, i.e., 8a + 38 =
0. In this situation, we conclude that, at least at the tree level,
the theory is unitary. The cancellation of the term corre-
sponding to the pole at —k* = 0 in (3.3) implies that this
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particle has no dynamics. Yet, the pole at —k* + ,8122 =0
with positive residue is a physical particle with 2 degrees of
freedom (P%,.’ « has only two independent indices). In other
words, apparently, the disappearance of the pole —k* = 0
in favor of the pole —k> + ,8122 = 0 means that the graviton
has become a nonrelativistic particle represented by this
pole. Notice that the residue of this modified pole is the
same as the graviton pole when a = 8 = 0.

IV. SEMICLASSICAL POTENTIAL IN THE
NONRELATIVISTIC LIMIT

Once the propagator of the theory is obtained, we can
analyze the scattering process of two particles interacting
gravitationally within this modified theory. This enables us
to evaluate the effective low-energy potential due to the
gravitational interaction of two identical massive bosons
particles of zero spin described by the Lagrangian density

L = \/ _g(_a,ugoa'u@* - m2¢¢*) = -Ematter + -EI’

4.1)
up to first order in &, where
Lmatter = —8M¢8“go* - ngogo*, (4.2a)
K * @k *
Ly==h" 204,09 ¢" ~1u,(0200"¢" +m* "]
7?;;'
(4.2b)

The amplitude for this scattering process, as illustrated in
Fig. 1, is given by

7= V(g ¢ 0, (VA (p, P,

where k = p’ — p = g — ¢’ is the momentum transfer and
the vertex V,,,(p, p’), drawn in Fig. 2, is

(4.3)

K
V,U,V(p: Pl) = - E[zp(p,p:,) - nuv(p : pl - mz)]y 4.4)

with p - p' = p*p),. For simplicity, we will restrict our
calculation to the center of momentum reference frame
(P'u = (E’ ﬁ)? pl,u = (E’ 51)’ q# = (E) _[3)’ and qlﬂ =
(E, —p')), such that the amplitude (4.3) can be cast as

FIG. 1. Second order Feynman diagram of two bosons inter-
acting via gravitational exchange.
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K
T=—ﬁ[(q'p+Q'p’)(q"p+q"p’)—(q'q’+m2)(p'p’+m2)—2m4]

P A [ P | 1
+7[(¢J'p+q'p’)(q"p+q"p’)—5q'(q+q’)p'(p+p’)]( )

2
— (8a + 3,8)%(2190190’ +pp +m?)

_K
20

K2 1 1
+ _(p . ql + m2)2<_ _
- P K- Bk

The effective potential for the just calculated scattering
amplitude is obtained from the Fourier transform

Vo = o [ exp-if D @6
X) =—= | —=Tvrexp(—ik - X), .
8m? ) 2m)? MR P
by inserting the low-energy limit of (4.5), that is to say,
2,4
Tyr = — % — 8a + 38)k2m*. 4.7)
Collecting all the above results one gets
G 2
V() = — % —2B8a +3B8)Gm26DF).  (4.8)
X

As one can observe, the nonrelativistic limit (4.7) elimi-
nates the pole —k? + BE4 = 0. The pure GR sector obvi-
ously reproduces Newton’s potential. But this is not all.
The extra nonpole term in (2.17) is responsible for the
appearance of a Dirac’s delta in the potential. This is
similar to what happens in QED in the calculation of the
nonrelativistic effective potential of two electrons ex-
changing a photon. In that case, this extra delta term,
also known as Darwin’s term, is interpreted as quantum
fluctuations in the electron’s position due to its position
indeterminancy.

V. SUMMARY AND CONCLUSIONS

In this paper we have studied the propagator of a
Horava-Lifshitz-like theory with quartic spatial derivative

FIG. 2. Boson-boson interaction vertex.

2
94) — (8a + 3'8)%(2E2 +p-p + m?).

2 -

2
[(g-p+tq-p)g p+q-p)—(qg-q+m>)(p-p +m?—2m*]

4.5)

terms. This propagator has two poles, one corresponding to
the GR graviton pole and other also corresponding to a
spin-2 massless but of nonrelativistic character. Besides the
improvement brought by the spatial quartic terms there are
some points which deserve mentioning. First, the presence
of the unmodified GR sector is potentially dangerous.
Nevertheless, by coupling the model to a scalar field
through a conserved current, we verified that at tree level
the residue of the GR pole is zero and that the only
excitation corresponds to a spin-2 nonrelativistic particle.
In that situation, we also showed that the theory is free of
ghosts and tachyons. Even though at the tree level the
unmodified GR pole has no dynamics, we cannot assert
that it will not contribute to higher order virtual processes.
Moreover, the propagator also possess a nonpole term that
by power counting clearly prejudices renormalizability. In
fact, such term increases the ultraviolet divergence and
may spoil the theory as a whole. The solution for this
problem passes by a choice of the arbitrarily inserted
constants « and B and, as showed, is in the class of
extensions which satisfies the detailed balance condition.

The effective low-energy potential for the scattering
process involving two massive bosons that interact via
this higher spatial derivative theory was also computed
and, as a result, we obtained Newton’s potential plus a
Dirac delta in position, i.e., a Darwin-like term. This term
is well known in QED from the evaluation of the
nonrelativistic potential obtained from electron-electron
scattering and is related to the indeterminancy in electrons’
position. In the quantum gravity case, this imprecision in
the boson position is not present in pure linearized GR and
has appeared in the present case labeled by the constants
a and S.

The relevant information we have obtained with this
model is that higher order spatial derivatives do not ensure
that the GR propagator will be modified as expected, with
higher order in momentum k. In fact, within the modifi-
cations worked in this paper, we have reobtained the un-
wished GR graviton pole plus the desired term like (1.1)
which may improve the ultraviolet behavior of the quan-
tum theory. We also showed that a bad ultraviolet behaving
term has appeared and that only within a specific
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combination of the constants « and 3 it can be eliminated.
This, in fact, shows that the addition of higher order spatial
derivatives is not enough to warrant renormalizability and
that the way one introduces such extra terms is crucial
when renormalizability is at stake.
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APPENDIX A: BARNES-RIVERS OPERATORS

The three-dimensional symmetric Barnes-Rivers opera-
tors [17—-19] are given by

Plix = 20ia @), (Ala)
1

Pzzj,kl = ei(kel)j - Eeijaklr (Alb)

P?j Ko 3 0ij0kl’ (AIC)

P?j Ko ”wkl’ (Ald)

l]kl =00+ w0, (Ale)

where the projection tensors
p 5 kik; kik; (A2)
J J 2 J 2

have been defined. Such operators obey (using AB in the
place of AY¥B, . to the contractions) P'P! = P!,

P?P2 = P2, POPO = PO, pOp0 = p0 POp° = (D — 1) x
(PO + PY), POP° = p°p0 = pbw  pOP° = pOp0 = pwtd,
together with Pl] = 0ijoy and Pu = @;i0y. Any other

contraction is found to be zero. Those operators also obey
the identities

8ij,kl = (I)l + P2 + PO + Po)ij,kl (A3a)
8,00 = 2P+ P° + %) 11 (A3b)

4 _
kﬁ@(i(kkl)kj)) = (2P' + 4P%);; 1, (A3c¢)

1 — —_
?(Bijkkkz + Spkik)) = (P° + 2P%;; ks (A3d)
1

E(k kkkl) z/kl (A3e)

The above tools enable one to write an arbitrary symmetric
operator O as

PHYSICAL REVIEW D 84, 084022 (2011)
O = x,P' + ;P2 + x,P* + 5,20 + 5, 2%, (A4)

whose inverse, if it exists, will be

P P? 1
7_()%1’)0 + xoP° — X, P ).
XoXo — 2%3

(A5)

In four dimensions, the Barnes-Rivers operators may be
written as

Phvap = 20(u@Qpp) (A6a)
1
T,LLV aB G),LL(CY@B)V - g @),U,V@aﬂ! (A6b)
:Z),(l)LV a/B 3 ®,U,V®L‘(‘B) (A6C)
T,U,V af Q,u,vﬂaﬁ’ (A6d)
=0
?,ul/,aﬁ == ®/-LVQOIB + QW,(’BaB. (A6e)
Now, the projection operators are defined by
k,k, k,k,
Ouy =04 — 2—2’ Q= l;cz : (A7)

Eventually, it will be convenient to relate the Barnes-
Rivers operators in three and four dimensions. When only
the spatial indices are being treated, it is possible to obtain
the identities between the P’s and P’s as

P [T2+_P1 T i
K 26 287 diju
(A8a)
2w3k>
Pll] M (k P it ?O)ij ki (43b)
PY —<§:p<)+“’_4:7>0+“’_2:7>°) (A8c)
ik 2 20t 20 ijkl
) k4 D0
P; ikl = 124 ?ij,kl’ (A8d)
= K = 2wrk?
o _ 04 0
Pij,kl = (?T k ? )U kl. (A8e)
Such equations enable one to get
QP — P - 3P - P),
202 K -4k =
= 2P2——P1+7P0—P0> A9
( K2 K2 ijkl (&)

084022-6



FOURTH ORDER SPATIAL DERIVATIVE GRAVITY

(1]

(2]
(3]

(4]
(5]
(6]

(71

(9]

H. Weyl, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math.
Phys.) 1918, 465 (1918).

A.S. Eddington, Proc. R. Soc. A 99, 104 (1921).

S. Weinberg, in Ultraviolet Divergences in Quantum
Theories of Gravitation, edited by S.W. Hawking and
W. Israel, General Relativity* (Cambridge University
Press, Cambridge, England, 1980), pp. 790-831.

K.S. Stelle, Phys. Rev. D 16, 953 (1977).

P. Horava, Phys. Rev. D 79, 084008 (2009).

T.P. Sotiriou, J. Phys. Conf. Ser. 283, 012034
(2011).

M. Henneaux, A. Kleinschmidt, and G.L. Gomez, Phys.
Rev. D 81, 064002 (2010).

J.M. Pons and P. Talavera, Phys. Rev. D 82, 044011
(2010).

J. Bellorin and A. Restuccia, arXiv:1004.0055.

[10]
(11]

[12]
[13]

[14]

[15]
[16]

[17]

(18]
[19]

084022-7

PHYSICAL REVIEW D 84, 084022 (2011)

C. Charmousis, G. Niz, A. Padilla, and P. M. Saffin, J.
High Energy Phys. 08 (2009) 070.

I. Kimpton and A. Padilla, J. High Energy Phys. 07 (2010)
014.

A. Padilla, J. Phys. Conf. Ser. 259, 012033 (2010).

C. Bogdanos and E.N. Saridakis, Classical Quantum
Gravity 27, 075005 (2010).

M. Chaichian, S. Nojiri, S. D. Odintsov, M. Oksanen, and A.
Tureanu, Classical Quantum Gravity 27, 185021 (2010).
H.-J. Schmidt, Phys. Rev. D 83, 083513 (2011).

D. Orlando and S. Reffert, Classical Quantum Gravity 26,
155021 (2009).

A. Acciolly and A. Azeredo, J. Math. Phys. (N.Y.) 43, 473
(2002).

P.v. Nieuwenhuizen, Nucl. Phys. B60, 478 (1973).

R.J. Rivers, Nuovo Cimento 34, 386 (1964).


http://dx.doi.org/10.1098/rspa.1921.0027
http://dx.doi.org/10.1103/PhysRevD.16.953
http://dx.doi.org/10.1103/PhysRevD.79.084008
http://dx.doi.org/10.1088/1742-6596/283/1/012034
http://dx.doi.org/10.1088/1742-6596/283/1/012034
http://dx.doi.org/10.1103/PhysRevD.81.064002
http://dx.doi.org/10.1103/PhysRevD.81.064002
http://dx.doi.org/10.1103/PhysRevD.82.044011
http://dx.doi.org/10.1103/PhysRevD.82.044011
http://arXiv.org/abs/1004.0055
http://dx.doi.org/10.1088/1126-6708/2009/08/070
http://dx.doi.org/10.1088/1126-6708/2009/08/070
http://dx.doi.org/10.1007/JHEP07(2010)014
http://dx.doi.org/10.1007/JHEP07(2010)014
http://dx.doi.org/10.1088/1742-6596/259/1/012033
http://dx.doi.org/10.1088/0264-9381/27/7/075005
http://dx.doi.org/10.1088/0264-9381/27/7/075005
http://dx.doi.org/10.1088/0264-9381/27/18/185021
http://dx.doi.org/10.1103/PhysRevD.83.083513
http://dx.doi.org/10.1088/0264-9381/26/15/155021
http://dx.doi.org/10.1088/0264-9381/26/15/155021
http://dx.doi.org/10.1063/1.1415743
http://dx.doi.org/10.1063/1.1415743
http://dx.doi.org/10.1016/0550-3213(73)90194-6
http://dx.doi.org/10.1007/BF02734585

