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We study the time evolution of the radial perturbation for self-gravitating soliton and black-hole

solutions in a generalized Skyrme model in which a dilaton is present. The background solutions were

obtained recently by some of the authors. For both the solitons and the black holes two branches of

solutions exist which merge at some critical value of the corresponding parameter. The results show that,

similar to the case without a scalar field, one of the branches is stable against radial perturbations and the

other is unstable. The conclusions for the linear stability of the black holes in the generalized Skyrme

model are also in agreement with the results from the thermodynamical stability analysis based on the

turning point method.
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I. INTRODUCTION

Our intuition for the properties of the solutions describ-
ing self-gravitating objects in general relativity is based, to
a large extent, on some exact solutions which belong to the
Kerr-Newman class of black holes. For these solutions
uniqueness theorems, and theorems stating that globally
regular self-gravitating solutions (solitons) do not exist,
have been proven rigorously in the case of vacuum or
linear matter models such as Maxwell electrodynamics
[1–5]. As the investigations in the last two decades re-
vealed, the standard intuition often fails when nonlinear
matter models are considered [6], which makes the study
of self-gravitating solutions in such models vital for fun-
damental physics.

One of the effective nonlinear matter models which has
attracted much attention is Skyrme’s theory [7,8]. In this
theory baryons are described as solitons in an effective
theory of mesons. The interest in Skyrme theory was
revived in the 1980s when it was found that the Skyrme
Lagrangian can be derived from QCD in the low-energy
regime.

Self-gravitating solutions in Skyrme theory were con-
sidered for the first time by Luckock et al. [9]. The solu-
tions in Einstein-Skyrme (ES) theory are nonunique, and
those with a nontrivial Skyrme field can be divided into two
branches. The first branch of solutions has a well-defined
flat-space limit. It was obtained by Droz, Heusler, and
Straumann [10]. The authors found that these solutions

are stable against spherically symmetric perturbations
[11,12]. The second branch of solutions was discovered
by Bizon and Chmaj soon after that [13]. This branch has
no flat-space limit and it is unstable, as the authors’ analy-
sis revealed. The stability of the ES solitons has also been
studied in [14–16]. There is also a branch of solutions that
has a trivial Skyrme field and coincides with the pure
Schwarzschild black hole. Self-gravitating solutions in
Skyrme theory, both black holes and solitons, have also
been studied in a series of papers [17–27].
Different modifications of Skyrme theory have been

considered in order to cure some of its deficiencies which
are present in the original version of the theory [7]. One
possible generalization is the inclusion of a dilaton. The
dilaton is added in the theory to restore scale invariance
which is also characteristic for the underlying QCD. It
has also been considered as a source of additional
intermediate-range attractive forces which are vital for
the formation of stable multisoliton configurations such
as nuclei and baryon stars. A generalized Skyrme model
(GSM) which includes a dilaton has been derived from
QCD in the low-energy regime in [28–30]. In a recent
paper [31] we reported numerical solutions describing
self-gravitating solitons and black holes in the GSM.
They are generalizations of the soliton and black-hole
solutions that have been obtained numerically in [10,13].
The aim of the current paper is to study the response of

the self-gravitating GSM solutions [31], both soliton and
black-hole types, to small radial perturbations and, in
particular, to determine if the inclusion of the dilaton in
Skyrme theory changes the stability properties. We study
the quasinormal modes (QNMs) of the solutions by evolv-
ing the time-dependent wave equations.
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The problem of studying the QNMs and the stability of
the GSM solutions is mathematically more complex than
that of the ES solutions since in the former case a system of
two coupled wave equations for the perturbations of the
Skyrme field and the dilaton has to be solved even though
the considerations are restricted to radial perturbations
(in the ES case the problem is reduced to only one wave
equation for the Skyrme field). What makes the problem
even more difficult is that the wave equation for the per-
turbations of the dilaton contains a potential which is not
vanishing at infinity; i.e. the scalar field is massive and the
time evolution of the perturbations has some specific prop-
erties [32–38].

The paper is organized as follows. The GSM coupled to
gravity is briefly presented in Sec. II. In this section the
time-dependent field equations are given. The system of
coupled equations for the radial part of the perturbations of
the Skyrme field and the dilaton is derived in Sec. III and
solved with the proper boundary conditions numerically in
Sec. IV. In Sec. V a summary of the results is given.

II. THE GENERALIZED SKYRME MODEL

A. Action

Let us briefly introduce the model considered in [31].
We start with the following action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� R

16�G
þ LM

�
: (1)

The flat-space Lagrangian of the GSM can be found in
[30]. When gravity is included the GSM Lagrangian is
naturally generalized to the form

LM ¼ 1

4
f2� expð�2�ÞTr½r�Ur�Uþ�

þNff
2
�

4
expð�2�Þg��@��@��

þ 1

32e2
Tr½ðr�UÞUþ; ðr�UÞUþ�2 þ VGSMð�Þ; (2)

where the derivatives have been substituted with covariant
derivatives. Here U is the SU(2) chiral field, � is the
dilaton, r� is the covariant derivative with respect to the

metric g��, f� is the pion decay constant, e is the Skyrme

constant, Cg is the gluon condensate, Nf is the number of

flavors, and " ¼ 8Nf=ð33� 2NfÞ. The first two terms in

(2) are the kinetic terms for the chiral and the dilaton fields.
The third term is the one introduced by Skyrme for the
stabilization of the soliton solutions. The potential of the
dilaton field is given by

VGSMð�Þ¼�CgNf

48

�
expð�4�Þ�1þ4

"
ð1�expð�"�ÞÞ

�
:

(3)

The dilaton couples only to those terms of Lagrangian
density that break the scale invariance.1

Instead of � it is more convenient to work with the
function � which is defined by

� ¼ expð��Þ: (4)

B. Reduced Lagrangian

We are going to restrict our considerations to the spheri-
cally symmetric case. In [31] the hedgehog ansatz for the
chiral field

U ¼ exp½� � r̂Fðr; tÞ� (5)

was chosen. Here � are the Pauli matrices and r̂ is a unit
radial vector. With the following time-dependent ansatz for
the metric,

ds2 ¼ e�ðt;rÞdt2 � e�ðt;rÞdr2 � r2ðd�2 þ sin2�d’2Þ; (6)

the Lagrangian (2) takes the form2

Lm ¼ a2

b

�
u

x2
ðe�� _F2 � e��F02Þ � v

x2

þ ~Nðe�� _�2 � e���02Þ þ 1

a
~V

�
; (7)

where

u ¼ x2�2 þ 2sin2F; v ¼
�
2�2 þ sin2F

x2

�
sin2F; (8)

~Vð�Þ¼16�Gb

a
VGSMð�Þ¼�� ~Nb

a

�
�4�1þ4

"
ð1��"Þ

�
:

(9)

We have introduced the following constants:

a¼ 8�Gf2�; b¼ 8�G
1

e2
; �¼ 2�G

Cg

3
; ~N¼Nf

2
;

(10)

and dimensionless variables 	 ¼ ef�t, x ¼ ef�r. The de-
rivative with respect to the dimensionless time coordinate 	
is denoted by a dot, while the derivative with respect to the
dimensionless radial coordinate x is denoted by a prime.
Below we will also use the parameter3

Deff ¼ � ~N

2ae2f2�
: (11)

1For more details we refer the reader to [31].
2The notation we choose here is slightly different from that in

[31]. It facilitates the comparison of the equations and the results
to the ES case [10–13].

3The parameter a is 2 times bigger that the parameter � used
in [10–13], and the parameter Deff is chosen to be the same as in
[30].
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For the number of flavors, we fixed the value Nf ¼ 2,

so ~N ¼ 1.

C. Time-dependent field equations

The Einstein equations have the following form:

G�� ¼ �1
2T��; (12)

T�� ¼ �g��Lm þ 2

Lm


g�� : (13)

The ðttÞ, ðrrÞ, and ðtrÞ components of (12) are

½e��ð1�x�0Þ�1�¼�að12uwþ 1
2vþ 1

2x
2zÞþ 1

2x
2 ~V; (14)

½e��ð1þ x�0Þ � 1� ¼ að12uw� 1
2vþ 1

2x
2zÞ þ 1

2x
2 ~V; (15)

_� ¼ a

x
ðu _FF0 þ x2 ~N _��0Þ; (16)

where

w ¼ e�� _F2 þ e��F02; (17)

z ¼ ~Nðe�� _�2 þ e���02Þ: (18)

The combination of Eqs. (14) and (15) gives the following
useful expression:

�0 � �0

2
¼ e�

x

�
1� 1

2
avþ 1

2
x2 ~V

�
� 1

x
: (19)

The time-dependent field equations for F and � obtained
from (7) are

e���

�
_�� _�

2
u _Fþ ðu _FÞ:

�

¼
�
�0 � �0

2
uF0 þ ðuF0Þ0

�
þ 1

2
uFðe��� _F2 � F02Þ

� 1

2
e�vF ¼ 0; (20)

e���

�
_�� _�

2
x2 _�þ ðx2 _�Þ:

�

¼
�
�0 � �0

2
x2�0 þ ðx2�0Þ0

�
þ 1

2 ~N
u�ðe��� _F2 � F02Þ

� 1

2 ~N
e�v� þ x2

2a ~N
e� ~V� ¼ 0; (21)

where ð. . .Þ� denotes the partial derivative with respect
to �, and ð. . .ÞF denotes the partial derivative with respect
to F.

III. EQUATIONS FOR THE RADIAL
PERTURBATIONS

We reduce our considerations to radial perturbations

�ð	;xÞ¼�0ðxÞþ
�ð	;xÞ; �ð	;xÞ¼�0ðxÞþ
�ð	;xÞ;
Fð	;xÞ¼F0ðxÞþ
Fð	;xÞ; �ð	;xÞ¼�0ðxÞþ
�ð	;xÞ;

and follow the scheme presented in [11]. It turns out that
the evolution of the Skyrme field and the scalar field
perturbations, 
F and 
�, respectively, can be studied
independently from the perturbations of the metric. The
equation for 
F, obtained from (20), is

e�0��0u0 €
F

¼u0
F
00þ

�
�0

0��0
0

2
u0þu00

�

F0þu0�F

0
0
�

0

þu00�F
0
0
�þ

�
F00
0þ

�0
0��0

0

2
F0
0

�

uþu00FF

0
0
F

�1

2
F02
0 
uF�

1

2
e�0
vF�1

2
e�0v0F
�þu0F

0
0


�0�
�0

2
:

(22)

From (21) we obtain the following equation for the pertur-
bations of the scalar field 
�:

e�0��0x2 €
�

¼x2
�00 þ
�
�0

0 ��0
0

2
x2þ2x

�

�0 � 1

~N
u0�F

0
0
F

0

� 1

2 ~N
F02
0 
u�þ 1

2 ~N
e�0

�
�
v�þx2

a

 ~V�

�

þ 1

2 ~N
e�0

�
�v0�þx2

a
~V0�

�

�þx2�0

0


�0 �
�0

2
;

(23)

where


u¼u0F
Fþu0�
�; 
v¼v0F
Fþv0�
�;


uF¼u0FF
Fþu0F�
�; 
vF¼v0FF
Fþv0F�
�;


u�¼u0�F
Fþu0��
�; 
v�¼v0�F
Fþv0��
�;


 ~V�¼ ~V0��
�:

Throughout the paper, the lower index ð. . .Þ0 means that the
corresponding quantity refers to the background static
solution. Lower indices F and� denote the corresponding
partial derivatives. The variation of Eq. (16) gives

_
� ¼ a

x
ðu0F0

0
_
Fþ x2 ~N�0

0
_
�Þ: (24)

The integration of the above expression with respect to 	
gives


� ¼ a

x
ðu0F0

0
Fþ x2 ~N�0
0
�Þ (25)

and it allows us to relate the perturbations of the metric
functions 
� to the perturbations of the matter fields 
F
and 
�. Another useful relation can be obtained from (19),


�0 � 
�0

2
¼ e�0

x

��
1� 1

2
av0 þ 1

2
x2 ~V0

�

�

� 1

2
a
vþ 1

2
x2
 ~V

�
: (26)

Relations (25) and (26), substituted back into (22) and (23),
allow us to exclude the variations of the metric and to
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obtain a system of two coupled equations (each of them of
second order) for 
F and 
�.

By the following substitution,


F ¼ �ffiffiffiffiffi
u0

p ; 
� ¼ �

x
; (27)

we obtain a system of coupled wave equations

�e�0��0 €�þ� 00 þ�0
0 ��0

0

2
� 0þA1�þA2�

0 þA3�¼0;

(28)

�e�0��0 €�þ�00 þ�0
0 ��0

0

2
�0 þB1�þB2�

0 þB3�¼0:

(29)

The coefficients A1, A2, A3, B1, B2, and B3 are given in the
Appendix. If we multiply (28) and (29) by e�0��0 and
introduce a new radial coordinate

dx� ¼ dx

eð�0��0Þ=2 ; (30)

the system of equations takes the form

� @2�

@	2
þ @2�

@x2�
þ ~A1� þ ~A2

@�

@x�
þ ~A3� ¼ 0; (31)

� @2�

@	2
þ @2�

@x2�
þ ~B1�þ ~B2

@�

@x�
þ ~B3� ¼ 0: (32)

The coefficients ~A1, ~A2, ~A3, ~B1, ~B2, and ~B3 are given in the
Appendix.

Let us describe the qualitative properties of the wave
equations. If we had one wave equation (which could be
transformed to a stationary Schrödinger-like equation by a
proper separation of the time and spatial variables) the
QNM frequencies would depend strongly on the shape of
the potential. In our case we have two coupled wave
equations and the notion of potential is not so clear. Still,
the coefficients in front of the zeroth order derivatives of

the wave functions, ~A1 and ~B1, respectively, determine the
properties of the solutions. Thus we introduce two func-

tions U� and U� which can be expressed by ~A1 and ~B1 and
which we will call potentials of the wave equations for �
and �, respectively. As the results show, the presence of
unstable modes (solutions divergent with time) depends on
whether these potentials have a deep enough negative
minimum.

The potentials U� and U� for the solitons are defined as

U� ¼�e�0��0

�
A1� 2

x2

�
¼�

�
~A1�2e�0��0

x2

�
; U�¼� ~B1;

(33)

where U� is chosen in such a way that it is regular at the
origin (see [11] for a more detailed discussion on that
definition) and U� is also finite at x ¼ 0. The potentials
for the black-hole solutions are simply

U� ¼ � ~A1; U� ¼ � ~B1; (34)

where both U� and U� are zero on the event horizon xH.
It is also important to comment on the asymptotic value

of the potentials at infinity. For both the black holes and the
solitons, U� tends to zero when x ! 1, but U� has a
nonzero value at infinity. The reason is that the scalar field
we are considering is massive because of the specific form
of the potential ~Vð�Þ, defined by Eq. (3). The mass m of
the scalar field can be defined through the asymptotic value
of the potential U�, i.e. as

lim
x!1U

� ¼ �m2: (35)

Using Eq. (23) it can be easily derived that

lim
x!1

� ~V0��

2 ~Na

�
¼ �m2: (36)

One of the main differences in the time evolution of a
massive test scalar field in comparison to the massless case
is that the tail is oscillating with the period [32]

T ¼ 2�

m
: (37)

In the limitm ! 0 the oscillations of the tail disappear and
we are left with the standard power law tail. Even though in
our problem we are dealing with two wave equations—one
for the Skyrme field and one for the massive scalar field—it
is expected (and confirmed by the numerical results) that
the tail will again be oscillatory with period (37).
Another point worth mentioning is the qualitative be-

havior of the QNM frequencies for the stable and the
unstable modes. As it is well known, the frequencies of
the stable modes are complex, where the real part is
inversely proportional to the period of the oscillations
and the imaginary—to the damping time. The picture
changes when the modes are unstable. In this case the
frequencies are purely imaginary; i.e. there is no oscillation
and the modes grow exponentially with time [39,40].

IV. NUMERICAL RESULTS

A. Solitons

The background soliton solutions have been obtained in
[31]. These solutions are topologically nontrivial, and the
integer n that occurs in the boundary condition for the
Skyrme field at the origin Fx¼0 ¼ n� is interpreted as
the baryon number. Once n is fixed, the soliton solutions
obtained in [31] are labeled by the values of the shooting
parameters F0

x¼0 and�x¼0, where the index ð. . .Þx¼0 refers

to the value of the function calculated at the origin x ¼ 0.
An example of the F0

x¼0ðaÞ and �x¼0ðaÞ phase diagrams,

presenting sequences of soliton solutions for n ¼ 1, is
shown in Fig. 1. From the figure it can be seen that the
solutions are divided into two branches—the so-called
upper and lower branches—and the two branches merge
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at some critical value of the parameter acrit.
4 Their stability

is described below.
We will start with the lower branch of solutions which is

stable for ES solitons, i.e. in the case without a scalar field.
The so-called potentials defined by Eqs. (33) are given in
Fig. 2 for some of the soliton solutions which belong to the
lower branch in Fig. 1. As it can be seen, the potential U�

is positive and cannot lead to instabilities, but U� is nega-
tive near the origin which means that unstable modes
could exist. The asymptotic value at infinity of U� is
zero, and for the chosen parameters, U� tends to U�1 ¼
�0:003 46 which means that the mass of the scalar field is
m ¼ 0:0589 and the period of the oscillation of the tail is
T ¼ 107 according to Eq. (37).

We evolve the coupled wave equations (28) and (29)
with the appropriate QNM boundary conditions—the per-
turbations should be regular at the origin x ¼ 0 (i.e. in our

case �x¼0 ¼ 0 and �x¼0 ¼ 0) and have the form of an
outgoing wave at infinity. It turns out that all of the studied
solutions which belong to the lower branch are stable
against the considered perturbations. The time evolution
of a Gaussian initial perturbation is presented in Fig. 3. The
wave form consists of quasinormal oscillations in early
times and an oscillatory tail for late times, where the period
of the tail oscillations is the same as the period predicted by
Eq. (37) within numerical errors.
Now let us consider the upper branch of soliton solutions

which is unstable for the ES solitons. The two potentials
U� and U� are shown in Fig. 4. Again U� is positive and
U� is negative near the origin, but on this branch the
negative part is deeper than on the lower branch. This
may lead to instabilities in the wave equation for � , which
will also affect the perturbations of the scalar field �
through the coupling terms. When we evolve Eqs. (28) and
(29), it turns out that all of the studied upper-branch
solutions are unstable. The time evolution of a Gaussian
initial perturbation is presented in Fig. 5. As it can be seen,
the perturbations � and � grow exponentially with time;
i.e. the QNM frequencies are purely imaginary.

FIG. 1. The F0
x¼0ðaÞ and �x¼0ðaÞ phase diagrams for sequences of soliton solutions for n ¼ 1 and different values of Deff .

FIG. 2. The potentials U� and U� of the lower-branch solitons for Deff ¼ 0:000 25 and for several values of a.

4There is a discrete infinite series of copies of these branches
corresponding to higher excitations with n > 0 [31], but they
will not be discussed here since they are energetically unstable
[13,17].
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The calculated frequencies for both of the branches
are shown in Fig. 6. The error of the obtained frequencies
is big and can reach up to 20% in some cases. The reason
for this is the more complicated wave form which is

due to the coupling of the wave equations and the presence
of a mass term in the wave equation for the perturbations
of the scalar field �. Also, the background solutions
are known only numerically, which is an additional

FIG. 3. The time evolution of the perturbations � and � of a lower-branch soliton solution with Deff ¼ 0:000 25 and a ¼ 0:2.

FIG. 4. The potentials U� and U� of the upper-branch solitons for Deff ¼ 0:000 25 and for several values of a.

FIG. 5. The time evolution of the perturbations � and � of an upper-branch soliton solution with Deff ¼ 0:000 25 and a ¼ 0:2.
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complication. But even if we take into account the error,
the numerical values of the QNM frequencies differ
significantly from the case without a scalar field [15]
(the absolute values of the real and the imaginary parts
of the QNM frequencies can be several times bigger here
than in the ES case).

The qualitative behavior of the frequencies as we vary
the parameter a, which is shown in Fig. 6, is the one we
expected from the case without a scalar field [15]. When
we increase the value of the parameter a, the real !R and
the imaginary !I parts of the frequencies of the stable
lower branch decrease, while the frequencies !I of the
unstable modes of the upper branch increase (as we already
said, !R ¼ 0 for the unstable upper branch). In the limit
a ! acrit (i.e. when we approach the value of the parameter
a where the two branches merge), the !I of the upper and
the lower branches tend to zero; i.e. they indicate a stability
change.

When we increase the value of the parameter Deff , the
errors of the obtained QNM frequencies increase mainly
because the background solutions become more difficult to

obtain and the change in the frequencies as we vary Deff is
within numerical errors.

B. Black holes

Because of the presence of an event horizon, the Skyrme
black holes are topologically trivial. The shooting parame-
ters for the background black-hole solutions are the values
of the Skyrmion and the scalar fields at the horizon
xH—FH and �H, respectively. The FHðxHÞ and �HðxHÞ
phase diagrams for sequences of black-hole solutions,
obtained in [31], are shown in Fig. 7. As we can see, again
two branches of solutions exist (upper and lower) which
merge at some critical value of the radius of the horizon
rHcrit.

5 The stability of the two branches is described below.

FIG. 6. The real (left panel) and the imaginary (right panel) parts of the frequencies as a function of the parameter a for the lower and
the upper branches of soliton solutions (Deff ¼ 0:000 25). The frequencies are obtained using the time evolution.

FIG. 7. The FHðxHÞ and�HðxHÞ phase diagrams for sequences of black-hole solutions forDeff ¼ 0:005 and for different values of a.

5The upper and the lower branch are defined using theFHðxHÞ
diagram. This is obviously different from the soliton case, and
actually, the upper branch for black holes will have properties
(such as stability and finiteness/divergency of some of the
functions as a ! 0) similar to the lower branch for solitons
and vice versa.
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We will start with the upper branch which is stable for
the ES black holes, i.e. in the case without a scalar field.
The potentials U� and U� for some of the upper-branch
solutions are given in Fig. 8. Similar to the soliton case, the
potential U� is positive and U� has a negative minimum
near the horizon. We evolve Eqs. (31) and (32) with the
standard boundary conditions—purely ingoing waves at
the horizon and purely outgoing waves at infinity. It turns
out that all of the studied black holes of the upper branch
are stable against the considered perturbations, and the
time evolution of a Gaussian perturbation is shown in
Fig. 9. Again, two stages of the time evolution are ob-
served—the quasinormal ringing and the oscillatory tail
with a period given by Eq. (37).

The potentials U� and U� for some of the solutions
which belong to the lower branch are shown in Fig. 10.6

U� is again positive but U� has a negative minimum near
the horizon which is much deeper here than for the corre-

sponding black holes of the upper branch, which could lead
to instabilities. Indeed, the time evolution shows that all of
the solutions of the lower branch are unstable. The loga-
rithms of the wave functions are shown in Fig. 11, where
both � and � grow exponentially with time.
The corresponding QNM frequencies for the upper and

the lower branches are shown in Fig. 12. The error is again
big (can reach up to 20%) but we can comment on the
qualitative behavior of the frequencies. The real and the
imaginary parts of the stable upper-branch frequencies
decrease when we approach the critical value xH crit where
the two branches merge. On the lower branch, which is
unstable, the imaginary part of the frequencies increases
when we increase xH (!R ¼ 0 for this branch). So, on both
branches, in the limit xH ! xH crit, the imaginary parts of
the frequencies!I become zero; i.e. a change of stability is
observed.
As discussed in [31], the properties of the black-hole

solutions when we vary a for fixed xH are similar to those
of the solitons—two branches of black holes exist which
merge at some critical value of the parameter acrit. The

FIG. 8. The potentials U� and U� of the upper-branch black holes for Deff ¼ 0:000 25 and for a ¼ 0:1.

FIG. 9. The time evolution of the perturbations � and � of an upper-branch black-hole solution with Deff ¼ 0:000 25, a ¼ 0:1, and
rH ¼ 0:1.

6The lower branch is unstable for the ES black holes, i.e. in the
case without a scalar field.
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FIG. 10. The potentials U� and U� of the lower-branch black holes for Deff ¼ 0:000 25 and for a ¼ 0:1.

FIG. 11. The time evolution of the perturbations � and � of a lower-branch black-hole solution with Deff ¼ 0:000 25, a ¼ 0:1, and
rH ¼ 0:1.

FIG. 12. The real (left panel) and the imaginary (right panel) parts of the frequencies as a function of the radius of the horizon xH for
the lower and the upper branches of black-hole solutions (Deff ¼ 0:000 25 and a ¼ 0:1). The frequencies are obtained using the time
evolution.
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behavior of the QNM frequencies is also similar to the one
shown in Fig. 6 for the soliton case. With the increase of
the parameter a the real and the imaginary parts of the
frequencies of the stable branch decrease, and the imagi-
nary part of the frequencies of the unstable branch in-
creases. The imaginary parts of both the stable and the
unstable branches of black holes tend to zero when acrit is
approached. Similar to the soliton case, the change in the
frequencies when Deff varies is within numerical errors.

V. SUMMARY OF THE RESULTS

As the results indicate, the dilaton does not change the
stability of the solutions. Again, the so-called lower branch
of solitons is stable against radial perturbations while the
upper is unstable. For the black holes the upper branch is
stable and the lower is unstable. The thermodynamical
stability analysis of the black holes presented in [31],
which is based on the turning point method, is also in
agreement with the results from the linear stability
analysis.

The modes of the unstable solutions are purely imagi-
nary, i.e. !R ¼ 0 and !I < 0. The modes of the stable
solutions are damped oscillations with !R � 0 and
!I > 0. Hence, at the point of stability change, both the
imaginary part and the real part of the QNM frequencies
become zero. The time evolution of the black-hole

solutions in the vicinity of the point where the two
branches merge could not be studied accurately, but still
the results presented in Figs. 6 and 12, for the solitons and
the black holes, respectively, show the expected qualitative
behavior. Also, the numerical values of the QNM frequen-
cies can be significantly different from the case without a
scalar field; i.e. the presence of a scalar field significantly
alters the spectrum quantitatively.
One more interesting observation can be made. If we

consider the evolution of a test scalar field on both black-
hole and soliton backgrounds, it turns out that all of the
modes are damped; i.e. they are stable for both branches—
the stable and the unstable ones. Thus the time evolution of
the test scalar field cannot be used to study the stability of
the branches.
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APPENDIX: COEFFICIENTS IN THE WAVE EQUATIONS

The coefficients in the wave equations (28) and (29) are
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and the coefficients in Eqs. (31) and (32) are

~A 1 ¼ e�0��0A1; ~A2 ¼ eð�0��0Þ=2A2; ~A3 ¼ e�0��0A3; (A7)

~A 1 ¼ e�0��0A1; ~B2 ¼ eð�0��0Þ=2B2; ~B3 ¼ e�0��0B3: (A8)
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