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We assume a GLð4; RÞ space-time symmetry which is spontaneously broken to SOð3; 1Þ. We carry

out the coset construction of the effective theory for the nonlinearly realized broken symmetry in terms

of the Goldstone fields and matter fields transforming linearly under the unbroken Lorentz subgroup.

We then identify functions of the Goldstone and matter fields that transform linearly also under the

broken symmetry. Expressed in terms of these quantities the effective theory reproduces the vierbein

formalism of general relativity with general coordinate invariance being automatically realized

nonlinearly over GLð4; RÞ. The coset construction makes no assumptions about any underlying theory

that might be responsible for the assumed symmetry breaking. We give a brief discussion of the

possibility of field theories with GLð4; RÞ rather than Lorentz space-time symmetry providing the

underlying dynamics.
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I. INTRODUCTION

The discovery of broken chiral symmetry in the sixties
and the subsequent development of chiral Lagrangians
apparently first gave rise to the idea among particle phys-
icists that general gelativity (GR) might also be an effective
theory of the same sort. The similarity of the structure of
GR to that of effective Lagrangians of spontaneously
broken symmetries is indeed rather obvious. Such effective
Lagrangians assume a highly geometrical appearance
being field theories on homogeneous (coset) spaces, and
are formulated in terms of covariant derivatives, curvatures
etc. In this connection, recall also that in GR both the
metric field and its inverse occur in the action, a hallmark
of effective Lagrangians. An inverse for a field quantized
as an elementary field makes of course no sense in general,
but inverse fields occur naturally in effective actions for
broken symmetries with their exponential parametrizations
of Goldstone fields.

The possibility that this analogy holds for GR is attrac-
tive since it obviates quantization of the gravitational field
as an elementary field and, as in the case of broken chiral
symmetry and QCD, might point to a more fundamental,
presumably UV complete, underlying theory responsible
for the symmetry breaking.

The broken symmetry in the case of GR must apparently
be a space-time symmetry. Starting with the work of
Bjorken, it was indeed suggested that the graviton is the
Goldstone boson of spontaneously broken Lorentz invari-
ance [1]. This has been revived in recent years [2,3]. A
gravity theory along these lines, though approximating GR
at low energies, has to fundamentally differ from GR since
it contains actual Lorentz symmetry breaking.

In this paper we pursue the same idea but consider
symmetry breaking leaving Lorentz symmetry intact.

Specifically, we assume a GLð4; RÞ space-time symmetry
which is spontaneously broken to its Lorentz subgroup
SOð3; 1Þ. We then apply the standard particle physics
‘‘coset construction’’ [4,5] of the effective theory in which
the broken symmetry is realized nonlinearly in terms of the
resulting Goldstone bosons and matter fields transforming
linearly under the unbroken subgroup. In this case there are
ten Goldstone bosons transforming like a rank-2 symmet-
ric tensor under SOð3; 1Þ. Having obtained the basic
elements of the construction, we proceed, as it is custom-
ary, to look for functions of the Goldstone and particle
fields that have simpler, in particular, linear transformation
properties under GLð4; RÞ rather than only the unbroken
SOð3; 1Þ. Such functions can indeed be straightforwardly
obtained. There is, in particular, a distinguished rank-2
GLð4; RÞ tensor related to the existence of an invariant
tensor, the Minkowski ���, in the unbroken SOð3; 1Þ.
The effective theory expressed in terms of these new fields
turns out to reproduce the standard GR framework, the
Hilbert-Einstein term being the leading term in the effec-
tive action, and with coordinate invariance automatically
realized over GLð4RÞ.
It should perhaps be pointed out that, though some

mathematical manipulations are similar, this construction
has nothing to do with the many attempts to recast GR as a
gauge theory of sorts—in this extensive and contorted
literature the term ‘‘Goldstone boson’’ is occasionally in-
voked in various guises. In this paper the point of view is
the complete opposite: no fundamental fields or connec-
tions gauging some symmetry groups are introduced.
Instead, spontaneous breaking (by some unknown under-
lying dynamics) is assumed to have occurred, and the
effective theory of the resulting Goldstone degrees of free-
dom is seen, when expressed in the right variables, to
assume the form of gravitational interactions. There are
in fact only two works [6,7] the author is aware of where
GLð4; RÞ spontaneous breaking in connection to gravity as*tomboulis@physics.ucla.edu
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a Goldstone boson is considered in a similar vein. We
comment on the relation to these earlier works in more
detail below.

A salient feature of the coset construction [4,5] is that
only a symmetry breaking pattern is postulated and no
assumptions whatsoever are made concerning the nature
or dynamics of an underlying theory responsible for the
symmetry breaking. An obvious question then is whether
such an underlying theory can be envisioned in the case of
GLð4; RÞ spontaneous breaking. Since this symmetry is
here taken as a space-time symmetry, a natural suggestion
would be to consider a field theory model where the
Lorentz SOð3; 1Þ group is replaced by GLð4; RÞ (or
SLð4; RÞ) as the global symmetry of space-time. Such a
GLð4; RÞ-invariant theory will be physically very different
from Lorentz-invariant theories, the familiar features of the
latter, in particular, the usual notion of single-particle
states, emerging only after symmetry breaking to the
Lorentz subgroup. We give some discussion in the last
section below.

II. SPONTANEOUSLY BROKEN SLð4; RÞ
AND GENERAL RELATIVITY

The generators of GLð4; RÞ can be grouped in the six
antisymmetric J�� generators of its Lorentz subgroup, and
the remaining 10 symmetric linear generators T�� com-
prising nine (shape changing, volume preserving) shear
generators and one (volume changing) dilatation generator.
For brevity, we refer to all linear symmetric transforma-
tions as shears. The Lie algebra is given by

½J��; J��� ¼ �ið���J�� � ���J�� � ���J�� þ ���J��Þ
(1)

½J��;T���¼�ið���T��þ���T������T������T��Þ
(2)

½T��; T��� ¼ ið���J�� þ ���J�� þ ���J�� þ ���J��Þ:
(3)

Adjoining the translations

½J��; P�� ¼ �ið���P� � ���P�Þ (4)

½T��; P�� ¼ �ið���P� þ ���P�Þ; (5)

we have the algebra of the Affine group. The Euclidean
version of these commutation relations are obtained by the
replacement ��� ! ����.

A. Coset construction for GLð4; RÞ breaking
We now consider the spontaneous breaking of the group

G ¼ GLð4; RÞ to its subgroupH ¼ SOð3; 1Þ. We apply the
standard ‘‘coset construction’’ [4]. Group elements g 2 G
are uniquely decomposed as g ¼ �h where h 2 H and

�ð�Þ ¼ exp

�
i

2
� � T

�
2 G=H: (6)

We use the obvious notations � � T ¼ ���T
��, u � J ¼

u��J
��. This decomposition amounts to the ‘‘canonical’’

parametrization of the left cosets G=H by means of the
parameters (‘‘preferred fields’’) ���. (Any other parame-

trization leads of course to equivalent results.) For the
action of g 2 G on the cosets one can then write

gexp

�
i

2
�ðxÞ �T

�
¼ exp

�
i

2
�0ðxÞ �T

�
exp

�
i

2
uð�ðxÞ;gÞ � J

�
:

(7)

Also, let c denote any field transforming under a linear
representation RðhÞ, h 2 H, of the unbroken subgroup.
Then the transformations

g: � ! �0ð�; gÞ; c ! c 0 ¼ Rðeuð�;gÞ�JÞc (8)

give a nonlinear realization of G. If g 2 H, the trans-
formations (8) become linear, with c transforming under
R and � transforming according to the representationR of
H determined from

hTh�1 ¼ RðhÞT; (9)

i.e., in the present case, as a rank-2 symmetric tensor.
So far we actually have treated G as an internal symme-

try (all equations above hold at space-time point x). To
treat it as a space-time symmetry, it is very convenient,
though not essential, to use the extension of the coset
construction for space-time symmetries introduced in [5].
One defines the nonlinear realization of G as a space-time
symmetry by replacing (7) by

g exp½ix�P�� exp
�
i

2
�ðxÞ � T

�

¼ exp½ix0�P�� exp
�
i

2
�0ðx0Þ � T

�
exp

�
i

2
uð�ðxÞ; gÞ � J

�
:

(10)

This defines a nonlinear realization of G ¼ GLð4; RÞ on
the coordinates and the fields �ðxÞ. Indeed, as it is easily
verified by use of (4) and (5), for any g 2 G, (10) implies

x� ! x0� ¼ A�
�ðgÞx�; (11)

with gP�g
�1 ¼ A�

�ðgÞP�, and

gexp

�
i

2
�ðxÞ �T

�
¼ exp

�
i

2
�0ðx0Þ �T

�
exp

�
i

2
uð�ðxÞ;gÞ �J

�
:

(12)

Here AðgÞ ¼ SðqÞ�ðhÞ denotes the vector representation of
g ¼ qh, h 2 H, q 2 G=H. Correspondingly, for fields c
transforming under a linear representation RðhÞ of H,

g: c ðxÞ ! c 0ðx0Þ ¼ Rðeuð�ðxÞ;gÞ�JÞc ðxÞ: (13)
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Again, for g ¼ h 2 H, these nonlinear realizations reduce
to linear transformations under the representations RðhÞ
and RðhÞ for c and �, respectively [8].

To construct the effective Lagrangian one needs cova-
riant derivatives conveniently obtained [4] from the
Maurer-Cartan form ��1d�, or, for space-time symme-
tries, its modification [5] corresponding to (10). So, letting

�¼ exp½ix �P��ð�ðxÞÞ¼ exp½ix �P�exp
�
i

2
�ðxÞ �T

�
; (14)

covariant derivatives are obtained by expanding ��1d� in
the group generators:

��1d� ¼ i!̂�P� þ i

2
D��T

�� þ i

2
!��J

��: (15)

Noting that

��1d� ¼ exp

�
� i

2
� � T

�
ðidx � PÞ exp

�
i

2
� � T

�

þ exp

�
� i

2
� � T

�
d exp

�
i

2
� � T

�
: (16)

a calculation (in the Appendix) gives explicitly:

!̂� ¼ dx�e�
� (17)

D�� ¼ �1
2fe�1; deg�� (18)

!�� ¼ �1
2½e�1; de���: (19)

Here the symmetric matrix e is defined by

e�� � ðe��Þ�� ¼
�
exp

�
i

2
� � Tv

��
��

; (20)

where in the second equality the subscript v denotes gen-
erators in the vector representation:

ðJ��v Þ�� ¼ ið��
��

�� � �����
� Þ (21)

ðT��
v Þ�� ¼ ið��

��
�� þ �����

�Þ: (22)

The one-forms !̂� andD�� transform covariantly, i.e., like

the fields c , whereas !�� transform inhomogeneously

(‘‘like a gauge field’’):

D�� ¼ !̂�D���; !�� ¼ !̂�!���: (23)

D�� gives the Goldstone field ‘‘covariant derivative’’ D.

Thus, one obtains

D��� ¼ �1
2e

�1	
� fe�1; @	eg��: (24)

Similarly,!��� gives the ‘‘spin connections’’ and serves to

define the covariant derivative Dc of any field c trans-
forming as in (13):

D�c ðxÞ ¼ e�1	
� @	c þ i

2
!���J

��c ; (25)

with the generators in the representation of c .
As it is well known, however, this covariant derivative is

not unique. (19), obtained through (15), ensures the right
transformation properties for Dc . But adding to the ex-
pression read off (19) and (23) appropriate covariantly
transforming terms, such as appropriate (linear) functions
ofD, results into equally good definitions of the covariant
derivative of c . Different such choices simply amount to
reshuffling of terms in the effective Lagrangian formed
from D, c and Dc , and are a matter of convenience; a
particular choice may result into a more transparent struc-
ture of the effective Lagrangian [9]. For later reference we
note, in particular, the expression

!��� ¼ �1
2e

�1	
� ½e�1; @	e��� �D��� þD���

¼ �1
2e

�1	
� ½e�1; @	e��� þ 1

2e
�1	
� fe�1; @	eg��

� 1
2e

�1	
� fe�1; @	eg�� (26)

which augments the expression following from (19) by the
addition of the second and third terms in (26). Note that
(24) and (25) and (26) are given, in accordance with (23),
in the basis provided by the !̂�’s.
Any Lagrangian that is invariant under H and is con-

structed from D, c and Dc will now be invariant under
the full group G. The most general effective Lagrangian
describing the interactions of the Goldstone bosons and the
particle fields at scales below the symmetry breaking scale
is then given by the most general H-invariant function of
c , Dc , D, and their higher covariant derivatives such as
DDc and DD.
It is often the case that a simpler or more transparent

form of the effective Lagrangian is obtained by actually not
using the above canonical parametrization for the
Goldstone fields �, but instead introducing functions of �
and c with simpler transformation properties under G
[10]. In particular, one may find appropriate functions
that transform linearly under the full group G rather than
only the unbroken group H. This is discussed in detail in
[4], where a characterization of such functions is given;
here we apply the results in [4] in the present context.
Take for c a covector under H ¼ SOð3; 1Þ with compo-

nents v� and let

V� ¼ e�
�v�: (27)

Then, as can be seen from (10)–(13), the quantities
(27) transform linearly as a covariant vector under
G ¼ GLð4; RÞ. Indeed:
V 0ðx0Þ ¼ ðe��0ðx0ÞÞv0ðx0Þ ¼ ðe��0ðx0ÞÞ�ðuð�ðxÞ; gÞÞvðxÞ

¼ AðgÞðe��ðxÞÞvðxÞ ¼ AðgÞVðxÞ:
Similarly, it is seen that, given a vector under H with
components v�, the quantities V� ¼ e�1�

�v
� transform
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linearly as the contravariant components of a vector under
G. More generally, from any Lorentz tensor with compo-
nents c �1����k

�1����l
, one may obtain a GLð4; RÞ tensor with

components given by

��1����k
�1����l

¼e�1
�1 ���e�l

�le�1�1
�1
���e�1�k

�k
c �1����k

�1����l
: (28)

For fields c in spinor representations of the Lorentz group,
no corresponding quantities transforming linearly under
GLð4; RÞ can be constructed, since there are no finite-
dimensional spinor representations of GLð4; RÞ.

Of particular importance is the case when (28) is applied
to the invariant tensor ��� of the Lorentz group. Defining

g�� � e�
�e�

����; (29)

one obtains a GLð4; RÞ symmetric rank-2 tensor:

g: g��ðxÞ ! g0��ðx0Þ ¼ ðe��0ðx0ÞÞ��ðe��0ðx0ÞÞ�����

¼ ðe��0ðx0ÞÞ��ðe��0ðx0ÞÞ����
�ðuð�; gÞÞ

���
�ðuð�; gÞÞ���

¼ A�
	ðgÞA�


ðgÞg	
ðxÞ: (30)

Its inverse g��, defined by g�	g	� ¼ ��
� , then also trans-

forms linearly, and is, equivalently, given by g�� ¼
e�1�

�e
�1�

��
��.

B. General relativity as the effective theory

We now note that the passage to the linearly transform-
ing quantities (28) has the form of passage from the (non-
holonomic) frame provided by the basis one-forms !̂� and
their dual basis vectors ê�—defined through h!̂�; ê�i ¼
��
�—to a coordinate basis fd�; @�g. The relation between

these frames being fixed by (17), i.e.,

!̂� ¼ e	
�dx	; ê� ¼ e�1	

�@	; (31)

the relation between tensor components is then indeed that
given by (28). Taking this geometric point of view, con-
sider the covariant derivative r acting on, say, a vector
v ¼ v�ê� ¼ V�@�:

rê�v ¼ rê�v
�ê� ¼ ê�ðv�Þê� þ v�!��

�ê�

¼ ½e�1
�
	v�

;	 þ!��
�v��ê� (32)

with the standard definition of connection coefficients

rê� ê� ¼ !��
�ê�; (33)

and commas denoting, as usual, partial derivatives with
respect to x	. Taking the generators J�� in (25) in the
vector representation (21) and comparing to (32) one
then gets

rê�v ¼ ðD�v
�Þê�: (34)

Specification of the connection coefficients!��
� defines a

choice of a particular connection structure. Here they are

specified by (19), or any other equivalent choice in the
sense described above—note that these satisfy !��� ¼
�!���. On the other hand, in terms of covariant derivative

components in the coordinate frame one has

rê�v ¼ re�1
�
�@�

V�@�

¼ e�1
�
�V�

;�@� þ V�e�1
�
���

��@�

¼ e�1
�
�½V�

;� þ ��
�	V

	�@� (35)

¼ e�1
�
�r�V

�@� (36)

with the standard notations

r@	@
 ¼ ��
	
@� (37)

for the coordinate frame connection components, and
r@� � r� for the covariant derivative operator along a

coordinate basis vector direction. From (34) and (36) we
then get the relation between the covariant derivatives in
the two frames:

r
V
� ¼ e


�e�1�
�D�v

�: (38)

Similarly, for any type of tensor one obtains

r
�
�1����k
�1����l

¼ e

�e�1

�1 � � � e�l

�le�1�1
�1
� � � e�1�k

�k

�D�c
�1����k

�1����l
; (39)

and the obvious extension involving any number of deriva-
tives. Note that (39) is consistent with (28) as it should,
since, by construction, covariant derivativesDc of tensors
c transform as tensors. Furthermore, comparing (32) and
(35) [or, equivalently, combining (33), (37), and (31)] gives
the relation between the connection components in the two
frames:

��

	 ¼ ðe�1e;
Þ�	 � e


�e�1��!���e
�
	: (40)

Applying (39) now to the tensor g�� defined in (29)

gives

r
g�� ¼ e

�e�

�e�
�D���� ¼ 0 (41)

since, from (25), D���� ¼ 0.

Solving (41) for the ��
	
’s in the familiar way gives

then

��

	 ¼ 1

2
g��ðg�	;
 þ g�
;	 � g	
;�Þ; (42)

i.e., the Christoffel symbols. This in turn determines a set
of spin connection coefficients through (40). Indeed, in-
serting (42) into (40) determines !��� to be given by (26).

Defining a curvature tensor in the usual way, i.e.,

r����v
�ê� ¼ ½ðrê�rê� �rê�rê�Þ � r½ê�;ê���v; (43)

a straightforward computation gives
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ðrê�rê� �rê�rê�Þv�r½ê�;ê��v

¼ e�1
�
�e�1

�
�½ðr�r� �r�r�ÞV��@�: (44)

Hence, with

R�
���V

� ¼ ðr�r� �r�r�ÞV� (45)

defining the curvature tensor components in the coordinate
frame, one has the relation

e�1�
�e�

�e�

e	

�r���
 ¼ R�
	��; (46)

as indeed required by (28). Note that the last term on the
right-hand side in (43) is crucial for consistency in the
nonholonomic frame, whereas, by (45), R�

��	 is given by

the familiar Riemann tensor expression in terms of the
��


	’s.
To recapitulate, we carried through the standard coset

construction of the spontaneously breaking of G ¼
GLð4; RÞ, as a space-time symmetry, to its Lorentz sub-
group H ¼ SOð3; 1Þ in terms of massless Goldstone fields
and matter fields. These provide a nonlinear realization of
G and a linear realization of H. We then proceeded to look
for functions of these fields with linear transformation
properties also under G. Having obtained such quantities
we found that their relation to the original fields, as given
by (28) and (39), is that of the transition from a non-
holonomic frame to a coordinate frame, the transformation
being determined by the Goldstone fields. Furthermore, the
existence of the invariant tensor ��� in SOð3; 1Þ translates
into the existence of rank-2 tensor transforming linearly
under GLð4; RÞ whose covariant derivative vanishes. This
in turn, selects a connection, which in the coordinate frame
description is given by the Christoffel symbols. We noted
that this transition to (finite-dimensional) fields linearly
transforming under GLð4; RÞ is possible only for tensor,
but not spinor, representations of SOð3; 1Þ.

It is clear that we have recovered the basic elements of
the general relativity formalism with g��, defined in (29),

serving as the metric tensor. To make this explicit we
introduce some further notational conventions. All quanti-
ties introduced above have been defined as functions of the
SOð3; 1Þ tensor fields c and � with all indices raised and
lowered by ���. In particular, GLð4; RÞ tensors have been
defined as such functions. We now write

E�
� ¼ e�

�; E�
� ¼ e�1�

�; (47)

and agree to raise and lower indices from the middle of the
greek alphabet by g��, and indices from the beginning of

the greek alphabet by ���. This is easily seen to be a

consistent convention since, as it is easily verified, one has

E��E�� ¼ ��
� ; E��E�� ¼ ��

�; E�
�E�� ¼ g��;

E�
�E

�� ¼ g��; E�
�E�� ¼ ���; (48)

and relations such as, for example,

g�	V
	¼V�; g�	V	¼V�; ��

�	g
	
¼��

�

;

c �
���

��¼ c �
�
�¼E�

�E�
�E

�

�

�
�



are equivalent in content to (27) and (28).
With these conventions then, E�

� serve as a symmetric

tetrad (vierbein) connecting a local orthonormal frame to
a ‘‘world’’ coordinate system with metric g��. The gen-

eral effective Lagrangian in terms of these fields, rather
than the original nonlinearly transforming �’s, is now
given by the sum over all possible G-invariant functions
of the metric, � and r�, the only possible leading term
being the Hilbert-Einstein action. Spinor fields couple in
the effective action through the vierbein in the usual
manner.
One may ask how the general coordinate invariance

present in this effective action came about since such
invariance was not input in the original setup; only the
spontaneous breaking of G ¼ GLð4; RÞ was postulated at
the outset. The answer [11] is implicit in the fact that G is
treated as a space-time symmetry. After going over to
variables giving a linear realization of G, this means that
any tensor obtained by covariant differentiation from
another tensor, such as r
�

�1����k
�1����l

, transforms linearly
(homogeneously) as a G tensor also with respect to
space-time indices, such as 
, introduced by the differen-
tiation. Any G-invariant monomial then remains invariant
when the tensors in it are subjected to transformations by
matrices AðgÞ, g 2 G which have been made space-time
dependent, in particular A�

� ¼ @x0�=@x�, for any differ-
entiable x0ðxÞ. In this manner one effectively ends up with a
nonlinear realization of general coordinate transformations
over their linearly realized GLð4; RÞ subgroup, which is
indeed how they appear in the GR formalism.
In summary, the argument is based solely on: (i) the

assumption that there is a space-time GLð4; RÞ symmetry
which is spontaneously broken to SOð3; 1Þ; (ii) the fact that
SOð3; 1Þ possesses an invariant constant tensor, i.e., ���.

With no other assumptions or inputs, application of the
coset formalism of spontaneously broken symmetries then
leads, by straightforward derivation, to the conclusion
above.

C. Relation to previous work

The relation of the formalism of GR to spontaneous
breaking of GLð4; RÞ was previously considered in [6,7].
The authors of [6] note the similarity of the formalism of

GR to that of nonlinear realizations of symmetries, and
identify GLð4; RÞ as the natural relevant group. For some-
what obscure reasons, however, they choose not to follow
through with the complete coset construction forGLð4; RÞ,
and as a result manage only to suggest rather than arrive at
an exact correspondence.
The authors of [7] take two groups, the conformal group

and GLð4; RÞ (actually the affine group) as their symmetry
groups. They first carry out separate coset constructions
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for each group. They then impose what they call the
‘‘simultaneous realization’’ of the two groups by demand-
ing that the GLð4; RÞ covariant derivative is expressed
solely in terms of the conformal group covariant derivative.
They then argue that this constraint uniquely leads to GR.
This procedure, however, is clearly problematic. Such a
constraint does not appear possible or even meaningful
within the usual framework of Lagrangian field theory. In
any event, as we saw, no such externally imposed con-
straints are necessary to relate the effective theory of
broken GLð4; RÞ to GR. Both these papers, however,
make the crucial observation of the existence of linearly
transforming quantities such as (29), and their central role
in establishing a correspondence with GR.

III. DISCUSSION

Our starting point was the assumption that there is a
GLð4; RÞ space-time symmetry which is spontaneously
broken down to SOð3; 1Þ. The explicit form of the effective
action describing physics below the symmetry breaking
scale depends on the choice of field parametrizations and
covariant derivatives. Different choices lead to different
forms of the action which must be equivalent in the sense
that they give the same physical amplitudes. But this may
not always be easy to demonstrate explicitly as it may
involve very nontrivial resummations of interactions.
Starting from the ‘‘canonical’’ parametrization it is com-
mon to seek functions of the Goldstone and matter fields
that transform linearly also under the broken rather than
only the unbroken group. In the case of broken GLð4; RÞ
we found that, expressed in terms of such linearly trans-
forming fields, the effective theory assumes the form of
gravitational theory in the GR framework, the Hilbert
action being the simplest term in the general effective
action. Needless to say, this form would be quite obscured
in the original canonical or other nonlinear parametriza-
tions. In particular, the decoupling of Goldstone bosons not
corresponding to the physical graviton degrees of freedom
would generally not be manifest; and arriving at the
equivalence by direct computation of physical amplitudes
would be rather nontrivial.

By design, the construction of the effective theory of
broken symmetries [4,5] makes no assumptions about the
nature of any underlying theory that may be responsible for
the assumed symmetry breaking pattern. The obvious
question then is whether there is an underlying theory
with good UV behavior, whose dynamics drives GLð4; RÞ
symmetry breaking leading to the effective theory descrip-
tion of its broken GLð4; RÞ phase given above.

Since here we are concerned with space-time symme-
tries, the most straightforward and perhaps natural way to
proceed is to consider field theories with GLð4; RÞ, or
SLð4; RÞ replacing SOð3; 1Þ as the global space-time sym-
metry [12]. We will not examine the ingredients necessary
for constructing field theories with space-time symmetry

group GLð4; RÞ, or more properly its universal covering

group GLð4; RÞ (we will not bother to always make this
distinction for the purposes of this discussion), in any detail
here. We will only point out a couple of apparently generic
features of such field theories.
First, note that since there is no invariant constant tensor

in GLð4; RÞ, i.e., no analog to the invariant ��� of the

SOð3; 1Þ-symmetric case, there is no natural metric. In this
sense, GLð4; RÞ-symmetric space-time is less ‘‘rigid’’ than
Minkowski space-time. A metric could be introduced only
as one of the dynamical fields. Requiring good UV behav-
ior, together with this absence of an invariant metric,
provides very strong constraints. Suppose one looks for
the analog of a gauge theory of fermion and vector fields.

One may, in particular, look for the GLð4; RÞ generaliza-
tion of the Dirac equation. Taking the fermion field c ðxÞ to
transform according to an infinite-dimensional representa-

tion [13] denoted by Sð�Þ (the representation label � typi-
cally comprises four complex numbers), one needs vector
operators X� (analogs of the �� matrices) defined by

Sð�0Þðg�1ÞX�Sð�ÞðgÞ ¼ aðgÞ��X
�; (49)

where aðgÞ denotes the fundamental vector representation,
g 2 GLð4; RÞ. A Dirac operator X�@� can then be con-

structed. In addition, to obtain an invariant Lagrangian, one
needs an intertwining operator � (analog of �0) between
the representations � and �0 connected by the vertex op-
erators (49). Given appropriate choice of representations,
such operators can be constructed. One such construction
was given in [16]. One may then straightforwardly couple
c to a vector field A� transforming as a fundamental

representation covector. Further terms, however, in particu-
lar, kinetic energy terms for the vector field, apparently
cannot be written down in the absence of a metric. Such a
gauge theory would automatically be in the ‘‘superstrong
coupling’’ limit.
Second, adjoining translations to form the general or

special affine group, one may apply Wigner’s argument to
classify states of given momentum. Now, however, the
little group is GLð3; RÞ, or SLð3; RÞ, so the states are
classified according to unitary irreducible representations
of these groups. There is no notion of particle states in the
ordinary sense. The analog of single-particle states here are
excitations of definite momentum classified according to
the infinite-dimensional unitary GLð3; RÞ representations.
Amplitudes and correlation functions can be formally de-
fined in a path integral quantization framework. There is,
however, no physical interpretation in terms of ordinary
particle physics. Such an interpretation emerges only after

symmetry breaking to the SOð3; 1Þ subgroup. SLð4; RÞ
representations generally allow embedding of an infinite
sum of Lorentz spinors describing a tower of physical spins
(see e.g. [17]). Note though that particle fields below the
symmetry breaking scale may, in general, be composites of
the original fields. Also note in this connection that in the
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broken phase the restrictions of [18] on the appearance of
massless spin-2 particles are evaded as in GR; whereas in
the unbrokenGLð4; RÞ phase there is no invariant notion of
helicity, and the argument in [18] cannot be applied. It
remains to be seen, of course, whether any consistent
GLð4; RÞ-symmetric theories with spontaneous breaking
to the Lorentz group can be constructed.
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APPENDIX

Given some algebra of operators A; B; . . . , define
AfBg � ½A; B�, so that A2fBg ¼ ½A; ½A; B�� and so on.
One then has the identities

eiABe�iA ¼ X1
n¼0

in

n!
AnfBg (A1)

and

e�iAð
Þ d

d

eiAð
Þ ¼ i

X1
n¼0

ð�iÞn
ðnþ 1Þ!A

nfdA
d


g: (A2)

Then, from (A1) and repeated use of (5)

e�ði=2Þ��Tðidx � PÞeði=2Þ��T ¼ i
X1
n¼0

in

n!

1

2n
ð�� � TÞnfdx � Pg

¼ i
X1
n¼0

in

n!
inð�nÞ��dx�P�

¼ iðexp½���Þ��dx�P�: (A3)

From (A2) and repeated use of (2) and (3) one gets

e�ði=2Þ��Tdeði=2Þ��T ¼ i
X1
n¼0

ð�iÞn
ðnþ1Þ!

�
1

2
� �T

�
nf1
2
d� �Tg

¼ i

�X1
even
n¼0

ð�iÞn
ðnþ1Þ!

in

2
ð�nfd�gÞ��T��

þX1
odd
n¼1

ð�iÞn
ðnþ1Þ!

in

2
ð�nfd�gÞ��J��

�
(A4)

which, making use of (A2) again, can be written as

e�ði=2Þ��Tdeði=2Þ��T ¼ i

2

�
� 1

2
fe�; de��g��T��

� 1

2
½e�; de�����J��

�
(A5)

with f ; g denoting the anticommutator as usual. From (16)
and (A3) and (A5) one then has (15) and (17)–(19).
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