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An action principle for the generalized harmonic formulation of general relativity is presented. The

action is a functional of the spacetime metric and the gauge source vector. An action principle for the Z4

formulation of general relativity has been proposed recently by Bona, Bona-Casas, and Palenzuela. The

relationship between the generalized harmonic action and the Bona, Bona-Casas, and Palenzuela action is

discussed in detail.
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I. INTRODUCTION

Einstein’s equations can be expressed as an initial value
problem using the familiar 3þ 1 splitting [1,2]. For nu-
merical applications, one must supplement the 3þ 1 equa-
tions with coordinate conditions. Typically, the full set
of partial differential equations (PDE’s) obtained in this
way is not well-posed (see, for example, Refs. [3,4]).
Equations that are not well-posed can be used for formal
analyses, but they cannot be used for numerical applica-
tions. Generalized harmonic (GH) gravity is a reformula-
tion of Einstein’s theory as a set of PDE’s that is
well-posed. The GH equations are currently in use by a
number of numerical relativity groups (see, for example,
Refs. [5–7]).

Einstein completed development of his general theory of
relativity in a series of papers published in 1915 [8–10]. In
the same year, Hilbert derived the field equations for
general relativity by postulating a simple action principle
motivated by general covariance [11]. The Hilbert action
provides an economical and efficient way to define the
theory. Throughout history, physicists have used varia-
tional principles as a way of organizing and simplifying
their descriptions of dynamical systems. Most physicists
view the action as fundamental, and the classical equations
of motion as derived quantities. The action is typically the
starting point for a quantum analysis.

Generalized harmonic gravity is a generalization of
general relativity in the harmonic gauge. The generaliza-
tion to (in principle) arbitrary gauge conditions was first
pointed out by Friedrich [12], and later by Garfinkle [13].
To my knowledge, the action for GH gravity has not been
previously discussed. An action for general relativity in
harmonic gauge was written down by Stone and Kuchař
[14]. Their action was not complete in the sense that the
harmonic coordinate conditions were not included among
the equations of motion. Other efforts to write well-posed
formulations of Einstein’s equations in terms of a varia-
tional principle can be found in Refs. [15–17].

Although generalized harmonic gravity is not a new
theory, merely a reformulation of general relativity, the
action principle presented in this paper provides a new

perspective on the generalized harmonic system. This
new perspective can help us understand the connection
between GH gravity and other formulations of the
Einstein equations. The GH action can serve as the basis
for practical numerical calculations using variational or
symplectic integrators [18–20].
It is worth noting that any system of equations can be

derived from a variational principle: Simply multiply each
equation by an undetermined multiplier, add them together,
and integrate over spacetime (for PDE’s) or time (for
ordinary differential equations). Such an action principle
does not add any insights, and probably has no practical
benefit. What we want in an action principle is an encoding
of the equations of motion without the addition of extra
unphysical variables that do not appear in the original
differential equations. Not all systems of equations can
be derived from such a variational principle. For example,
it appears that the Baumgarte-Shapiro-Shibata-Nakamura
formulation of Einstein’s theory [21,22] cannot be derived
from an action principle using only the Baumgarte-
Shapiro-Shibata-Nakamura variables.
The action for GH gravity is presented in Sec. II. One of

the features that emerges from this analysis is the need to
introduce a background connection. The GH equations are
not usually written in terms of a background connection;
equivalently, the background connection is usually set to
zero. In numerical relativity applications this can be justi-
fied by choosing the background connection to be flat and
interpreting the coordinates as Cartesian. Note that Kreiss,
Reula, Sarbach, and Winicour introduce a background
metric in their studies of constraint-preserving boundary
conditions for the generalized harmonic equations [23,24].
The Z4 system is a reformulation of Einstein’s equations

that, with suitable coordinate conditions, is well-posed
[25,26]. Bona, Bona-Casas, and Palenzuela (BBP) have
recently proposed an action principle for Z4 [17]. In
Sec. III, I discuss the relationship between the equations
of motion obtained from the BBP action and the Z4 equa-
tions and point out their differences. The differences are
subtle and interesting. The key difference stems from the
fact that the BBP action, like the familiar Palatini varia-
tional principle [27], treats the spacetime metric and the
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connection as independent variables. As a result, the Ricci
tensor that appears in the equations of motion for the BBP
action is constructed from the independent connection and
not from the Christoffel symbols. It is not clear whether or
not the equations of motion for the BBP action have the
nice properties of the Z4 equations. This shortcoming of
the BBP variational principle can be corrected if we make a
suitable change of variables and eliminate the connection
as an independent variable. The result is the GH action.

In the Appendix, I discuss the inverse problem of the
calculus of variations. This provides a complementary
perspective to the conclusions reached in Sec. III. In par-
ticular, I argue that the equations of motion that follow
from the BBP functional are not equivalent to the Z4
equations. A brief summary is contained in Sec. IV.

II. ACTION FOR GH GRAVITY

Let g�� denote the spacetime metric and ��
�� denote

the metric-compatible connection (the Christoffel sym-

bols). Let ~��
�� denote a background connection that is

torsion-free and therefore symmetric in its lower indices.
We will use the shorthand notation

���
�� � ��

�� � ~��
��

¼ 1

2
g��ð~r�g�� þ ~r�g�� � ~r�g��Þ (1)

for the difference between these connections. The symbol
~r� denotes the covariant derivative built from ~��

��. Note

that ���
�� is a type ð 1

2
Þ tensor. Throughout this paper,

indices are raised and lowered with the metric g��. Thus,

for example, ����
� ¼ g��g

�����
��.

The generalized harmonic constraints are defined by

C� � H� þ����
�; (2)

where H� is the gauge source vector. The action for

generalized harmonic gravity is the following functional
of g�� and H�

1:

S½g��;H�� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
g��

�
R�� � 1

2
C�C�

�
: (3)

Here, R�� is the Ricci tensor built from ��
��. Also, units

have been chosen so that 16�G ¼ 1, where G is Newton’s
constant.

Before continuing, let me comment on the presence of
the background connection. Since the Lagrangian must be
a scalar density, then C� must be a covector. If we omit
~��

�� from the definition (2), then H� must transform in

such a way that H� þ g��g
����

�� is a covector. Recall

that under a change of spacetime coordinates, the trans-

formation rule for the Christoffel symbols ��
�� includes

an inhomogeneous term. This inhomogeneous term, which
is multiplied by g��g

��, must be canceled by a corre-

sponding term from H�. It follows that the transformation

rule for H� must include an inhomogeneous term that

depends on the metric. It is not possible for the trans-
formation of H� to depend on the metric unless H� itself

depends on the metric. However, for the moment, we
would like to treat the metric g�� and the gauge source

H� as independent variables in the action principle. For

this reason, the background connection is needed to com-
pensate for the inhomogeneity in the transformation rule
for ��

��.

With the background connection included in the defini-
tion of the constraints C�, the gauge source H� is a

covector. Although it is not logically necessary for H� to

transform as a covector, as long as we are willing to give it
a suitable dependence on g��, it is at least convenient for

H� to transform as a covector. For example, we might find

that a certain source H� works well for numerical simula-

tions of black holes with a code that uses a Cartesian
coordinate grid. Perhaps we would like to reproduce these
results with a code that uses a spherical coordinate grid. If
H� is a covector, we can easily determine the correct form

for the gauge source in spherical coordinates.
Also observe that for most practical numerical applica-

tions, it would be natural to choose ~��
�� to be the flat

connection. In this case the background connection com-

ponents ~��
�� would be zero in Cartesian coordinates, but

nonzero in spherical coordinates.
Now consider the variation of the action (3). The func-

tional derivatives of S½g��;H�� are

�S

�H�

¼� ffiffiffiffiffiffiffi�g
p

C�; (4a)

�S

�g��

¼� ffiffiffiffiffiffiffi�g
p �

G�� �rð�C�Þ þ Cð����Þ�
� � C����

��

� 1

2
C�C� þ 1

2
g��r�C� þ 1

4
g��C�C�

�
; (4b)

where G�� � R�� � Rg��=2 is the Einstein tensor.
Parentheses around indices denote symmetrization. Note
that r� is the covariant derivative built from the

Christoffel symbols ��
��. It is related to the background

covariant derivative by r�V� ¼ ~r�V� ����
��V�,

which holds for any covector V�. The vacuum Einstein

equations are obtained by setting the functional derivatives
(4) to zero. Equation (4a) tells us that C� ¼ 0; hence, C�

are constraints for the generalized harmonic system. With
C� ¼ 0, Eq. (4b) reduces to the vacuum Einstein equations
G�� ¼ 0. Matter fields can be included in a straightfor-
ward way.

1The background connection ~��
�� appears in the action as an

external field and is not varied.
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A convenient form of the equations of motion is ob-
tained by choosing

ffiffiffiffiffiffiffi�g
p

g�� and � ffiffiffiffiffiffiffi�g
p

H� as indepen-

dent variables in the variational principle, rather than g��

and H�. This leads to the vacuum equations

0 ¼ �S

�ð� ffiffiffiffiffiffiffi�g
p

H�Þ ¼ C�; (5a)

0 ¼ �S

�ð ffiffiffiffiffiffiffi�g
p

g��Þ ¼ R�� � ~rð�C�Þ þ 1

2
C�C�: (5b)

Note that the generalized harmonic equation are usually
written in the form R�� �rð�C�Þ ¼ 0. Neither Eq. (4b)

nor Eq. (5b) is identical to the usual equation. The differ-
ences are terms proportional to the constraints C�. These
terms depend on the choice of independent variables and
are not particularly important. As we will see, the presence
or absence of these terms does not affect the properties that
makes the generalized harmonic equations useful.

The equations of motion (4) are equivalent to Einstein’s
equations. Of course, this assumes that each equation holds
for all time. In particular, the constraints C� ¼ 0must hold

for all time. We would like to reinterpret these equations as
an initial value problem. For this purpose we follow the
analysis of Lindblom, Scheel, Kidder, Owen and Rinne [6],
and derive two key results from Eq. (4b). Let n� denote the

unit normal to a foliation of spacetime by spacelike hyper-
surfaces, and let h�� ¼ g�� þ n�n� denote the metric

induced on these hypersurfaces. The first result is obtained
by contracting Eq. (4b) with n�, which yields

G��n� � 1

2
n�r�C� ¼ 1

2
ðh��n� � h��n

�Þr�C�

� n�

�
Cð����Þ�

� � C����
��

� 1

2
C�C� þ 1

4
g��C�C�

�
: (6)

The second result is obtained by letting the covariant
derivative r� act on Eq. (4b) and using the Ricci identity.
This gives

r�r�C� ¼ �R
�
�C� þ 2r�

�
Cð����Þ�

� � C����
��

� 1

2
C�C� þ 1

4
g��C�C�

�
; (7)

where the term r�G
�� has been set to zero by the con-

tracted Bianchi identity.
The first term on the left-hand side of Eq. (6) is

the Hamiltonian and momentum constraints, which we
denote M� � G��n�. The second term on the left-hand
side is proportional to n�r�C� ¼ ð@tC� � �i@iC�Þ=
�þ n���

��C�. Each of the terms on the right-hand side
of Eq. (6) is proportional to the constraints C� or their
spatial derivatives. It follows that Eq. (6) has the form

M � � 1

2�
@tC� ¼ fterms� C; @iCg; (8)

where @iC denotes spatial derivatives of C�.
Now consider the initial value problem. Equation (8)

tells us that if C� and M� vanish initially, then @tC�

vanishes initially. Then Eq. (7) implies that C� will remain
zero throughout the evolution defined by Eq. (4b). In turn,
Eq. (8) tells us that M� will remain zero throughout the
evolution. The same conclusion can be reached by splitting
the derivatives in Eq. (7) into space and time. Together with
Eq. (8) one finds the results

@tC� ¼ fterms�M; C; @iCg; (9a)

@tM� ¼ fterms�M; @iM; C; @iC; @i@jCg: (9b)

These equations are consequences of Eq. (4b) alone.
Therefore, if the constraints C� and M� vanish initially,
then the evolution Eq. (4b) will maintain the values
C� ¼ M� ¼ 0 throughout the evolution.
Observe that Eqs. (4b) and (5b) are not equivalent. If we

take the trace-reversed version of Eq. (5b) and raise its
indices, the result differs from Eq. (4b) by terms that are
linear and quadratic in the constraints C�. The difference

does not depend on derivatives of the C’s. As a result, the
arguments that led to Eqs. (9) hold for the evolution
Eq. (5b) as well. In fact, we are free to drop any terms
in Eq. (4b) or (5b) that are linear or quadratic in the
constraints.
The discussion above shows that the relations (9) hold

for any equation of the form

R�� � ~rð�C�Þ ¼ fterms� Cg: (10)

The terms proportional to C� can include, for example,

constraint damping terms. From the definition of the Ricci
tensor we have

R�� ¼ � 1

2
g�� ~r�

~r�g�� þ ~rð����Þ�
�

� g�� ~R�
��ð�g�Þ� þ g��½��������

�
��

þ 2���
�ð����Þ�� þ ���

��������; (11)

where ~R�
��� is the Riemann tensor built from the back-

ground connection ~��
��. Then the evolution Eq. (10)

becomes

g�� ~r�
~r�g�� ¼ �2~rð�H�Þ � 2g�� ~R�

��ð�g�Þ�

þ 2g��½��������
�
��

þ 2���
�ð����Þ�� þ ���

��������
þ fterms� Cg: (12)

This is a wave equation for each component of the space-
time metric. The initial value problem for the GH system is
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described as follows: Specify initial data for g�� and H�

that satisfies C� ¼ M� ¼ 0, then evolve the metric with
the wave equation (12). Observe that the gauge source
vector H� is freely specifiable, apart from the restriction

C� ¼ 0 at the initial time.

III. BBP ACTION

The functional

S½g��; Z�; ��
�
��� ¼

Z
d4x

ffiffiffiffiffiffiffi�g
p

g��½ �R�� þ 2 �r�Z�� (13)

was proposed by Bona, Bona-Casas, and Palenzuela in
Ref. [17] as an action principle for the Z4 formulation of
general relativity. This action is a functional of the space-
time metric g��, a covariant vector Z�, and a torsion-free

connection ���
��. The covariant derivative

�r� is built from

this connection. Likewise, the Ricci tensor that appears in
the Lagrangian is defined by

�R�� ¼ @� ��
�
�� � @� ��

�
�� þ ���

��
���

�� � ���
��

���
��:

(14)

(This definition differs slightly from that of Ref. [17]. As
defined here, �R�� is not necessarily symmetric.) We will

frequently use the abbreviation

��
�� � ���

�� � ��
��; (15)

for the difference between the connection ���
�� and the

Christoffel symbols ��
��. Note that indices are raised and

lowered with g�� and its inverse. Thus, for example,
����� � g�� ��

�
��.

Variation of the BBP action yields the vacuum equations

0 ¼ �S

�ð ffiffiffiffiffiffiffi�g
p

g��Þ ¼
�Rð��Þ þ 2 �rð�Z�Þ; (16a)

0 ¼ 1ffiffiffiffiffiffiffi�g
p �S

�Z�

¼ �2���
�; (16b)

0 ¼ 1ffiffiffiffiffiffiffi�g
p �S

� ���
��

¼ ��
��g

�� � 2�ð��Þ
�

þ �ð�
� ��Þ�

� � 2Z�g
��: (16c)

For convenience, we have chosen the independent varia-

bles to be
ffiffiffiffiffiffiffi�g

p
g��, Z�, and

���
��. It is straightforward to

include matter fields.
Equations (16), which follow from the BBP action, are

equivalent to Einstein’s general relativity. To show this, we

first solve Eq. (16c) for ���
��. This equation can be rear-

ranged to give

2g��Z� ¼ ��
��g

�� � 2�ð��Þ
� þ �

ð�
� ��Þ�

�: (17)

By setting � ¼ � we obtain

���
� ¼ 4

3
Z�; (18)

where the spacetime dimension is assumed to be 4. Now
take the trace over the indices � and � in Eq. (17) to yield

��
�� ¼ 10

3
Z�: (19)

Putting the results (17)–(19) together gives

���� þ���� ¼ 4

3
ðZ�g�� þ Zð�g�Þ�Þ: (20)

Now write down two more copies of this equation with
index replacements � ! �, � ! �, � ! � in the first
copy and � ! �, � ! �, � ! � in the second. Add the
second copy to Eq. (20), then subtract the first copy. This
yields

��
�� ¼ 4

3
��
ð�Z�Þ (21)

for the solution of Eq. (16c).
The vacuum equation of motion (16b) implies

���
� ¼ 0: (22)

With the result (21) we see that Eqs. (16b) and (16c),
together, have the solution

Z� ¼ 0; (23a)

��
�� ¼ 0: (23b)

The second of these equations tells us that the connection
���

�� is equal to the Christoffel symbols. The results (23)

show that the equation of motion (16a) is equivalent to the
vacuum Einstein equations, R�� ¼ 0.

The Z4 equations are usually written as R�� þ
2rð�Z�Þ ¼ 0 and Z� ¼ 0. The equation R�� þ
2rð�Z�Þ ¼ 0 has the same key properties as Eq. (4b) or

(5b) for the GH system. By the same analysis that led
to Eqs. (9), one can show that the equation R�� þ
2rð�Z�Þ ¼ 0 implies

@tZ
� ¼ fterms�M; Z; @iZg; (24a)

@tM� ¼ fterms�M; @iM; Z; @iZ; @i@jZg: (24b)

Thus, if Z� ¼ 0 and M� ¼ 0 initially, then Z� and M�

will remain zero throughout the evolution defined by
R�� þ 2rð�Z�Þ ¼ 0.

Unfortunately, the equation (16a) that comes from the
BBP action does not appear to have this property, for two
reasons. First, the trace-reversed Ricci tensor �G�� �
�R�� � g��

�R��g
��=2, built with the connection ���

��,

does not satisfy the contracted Bianchi identities. Second,
the Hamiltonian and momentum constraints are not
equivalent to the normal projections of �G��. The argument

showing that Z� andM� will remain zero, assuming they
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are zero initially, does not obviously hold for the equation
�Rð��Þ þ 2 �rð�Z�Þ ¼ 0.

Since Eqs. (16b) and (16c), together, imply ���
�� ¼

��
�� and Z� ¼ 0, we are free to replace the connection

���
�� with the Christoffel symbols ��

�� when solving the

equations of motion. It follows that Eqs. (16) are equivalent
to the system

0 ¼ R�� þ 2rð�Z�Þ; (25a)

0 ¼ �2Z�g
��; (25b)

obtained by setting ���
�� ¼ ��

�� in Eqs. (16a) and (16c).

These are the Z4 equations. However, these equations do
not appear to coincide with the extrema of any action
functional. In other words, there is no functional (to my
knowledge) whose functional derivatives are linear combi-
nations of R�� þ 2rð�Z�Þ and �2Z�g

��. This point is

discussed more thoroughly in the Appendix.
Note, in particular, that the functional obtained by set-

ting ���
�� ¼ ��

�� in the BBP action (13) does not yield

Eqs. (25) for its extrema. This is an example of a general
rule: One cannot always reduce an action principle by
using results from the equations of motion. Consider an
action S½u; v� that is a functional of two sets of variables, ui
and va. If the equations of motion �S=�ui ¼ 0 can be
solved for the variables ui as functions of va, then it is
indeed permissible to use the solutions ui ¼ uiðvÞ to elimi-
nate ui from the action. On the other hand, one or more of
the equations �S=�ui ¼ 0 might yield, for example, v1 as
a function of the other v’s and the u’s. It is not permissible
to use this result to eliminate v1 from the action.

In light of these remarks, consider the BBP action (13)
and the equations of motion (16). As the result (21) shows,
the equation (16c) has the solution

�� �
�� ¼ ��

�� þ 4

3
��
ð�Z�Þ: (26)

In this case we have solved the equation �S=� ���
�� ¼ 0

for ���
�� and we are allowed to use this solution to simplify

the action. The result is

S½g��; Z�� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
g��

�
R�� � 4

3
Z�Z�

�
; (27)

and the equations of motion become

0 ¼ �S

�ð ffiffiffiffiffiffiffi�g
p

g��Þ ¼ R�� � 4

3
Z�Z�; (28a)

0 ¼ 1ffiffiffiffiffiffiffi�g
p �S

�Z�

¼ � 8

3
Z�: (28b)

These equations are physically correct—they are equiva-
lent to vacuum general relativity. They do not, however,
have the form of the usual Z4 equations.

Another option is to solve the equations of motion (16b)

and (16c), together, for ���
�� and Z�. The solution is listed

in Eqs. (23). If we use these results to eliminate ���
�� and

Z� from the action we are left with the Hilbert action. The

equations of motion are the vacuum Einstein equations
which are, of course, physically correct. However, they
are not the usual Z4 equations.
The equation of motion (16c), by itself, does not imply

���
�� ¼ ��

�� due to the presence of the fields Z�. We can

try to eliminate Z� from the functional derivative

�S=� ���
�� by changing the independent variables in the

action principle. Since a change of independent variables
will merely mix the equations of motion, it will not be

possible to eliminate Z� from �S=� ���
�� unless Z� ap-

pears undifferentiated in one of the other equations of
motion. With a simple modification of the action, the fields
Z� will appear in the functional derivatives �S=�Z�.

Thus, let

S½g��; Z�; ��
�
���

¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
g��½ �R�� þ 2 �r�Z� þ 	Z�Z��; (29)

so that the equations of motion become

0 ¼ �S

�ð ffiffiffiffiffiffiffi�g
p

g��Þ ¼
�Rð��Þ þ 2 �rð�Z�Þ þ 	Z�Z�; (30a)

0 ¼ 1ffiffiffiffiffiffiffi�g
p �S

�Z�

¼ �2���
� þ 2	Z�; (30b)

0 ¼ 1ffiffiffiffiffiffiffi�g
p �S

� ���
��

¼ ��
��g

�� � 2�ð��Þ
� þ �

ð�
� ��Þ�

� � 2Z�g
��: (30c)

Here, 	 is a constant parameter.
We can now look for a change of independent variables

that will mix the equation of motion (30b) with (30c), and,
in the process, eliminate Z� from the functional derivatives

�S=� ���
��. This is accomplished by replacing Z� with a

combination of ���
�� and a new independent variable, a

covariant vector that we call H�. For example, we can

replace Z� with the linear combination

Z� ¼ 1

	
ðH� þ��

�
�Þ (31)

in the action (29). The resulting equations of motion are

0¼ �S

�ð ffiffiffiffiffiffiffi�g
p

g��Þ
¼ �Rð��Þ þ	Z�Z�þfterms���

��g; (32a)

0¼ 1ffiffiffiffiffiffiffi�g
p �S

�H�

¼�2

	
���

�þ2Z�; (32b)

0¼ 1ffiffiffiffiffiffiffi�g
p �S

� ���
��

¼��
��g

���2�ð��Þ
�þ�

ð�
� ��Þ�

�� 2

	
��

�
�g

��; (32c)
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with Z� given by Eq. (31). Equation (32c) has the desired

property—its solution is ���
�� ¼ ��

�� (assuming 	 �

4=3). However, Eq. (32a) no longer includes the term
proportional to rð�Z�Þ that characterizes the Z4 equa-

tion (25a). This is because the change of variables (31)
contains derivatives of the metric through the Christoffel
symbols.

We can eliminate the Christoffel symbols ��
�� from the

change of variables (31) by replacing them with a back-

ground connection ~��
��. Therefore, let

Z� ¼ 1

	
ðH� þ ���

�
� � ~��

�
�Þ (33)

in the action (29). The equations of motion become

0¼ �S

�ð ffiffiffiffiffiffiffi�g
p

g��Þ
¼ �Rð��Þþ2 �rð�Z�Þ þ	Z�Z�þfterms�ð���

��	Z�Þg;
(34a)

0¼ 1ffiffiffiffiffiffiffi�g
p �S

�H�

¼�2

	
���

�þ2Z�; (34b)

0¼ 1ffiffiffiffiffiffiffi�g
p �S

� ���
��

¼��
��g

���2�ð��Þ
�þ�ð�

� ��Þ�
�� 2

	
��

�
�g

��; (34c)

where Z� is given by Eq. (33). The solution of Eq. (34c) is

��
�� ¼ 0 for 	 � 4=3, and we are allowed to use ���

�� ¼
��

�� in the action to eliminate ���
��. In the process, the

definition (33) becomes Z� ¼ C�=	, where C� is the

generalized harmonic constraint (2). The action becomes

S½g��;H�� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
g��

�
R�� þ 1

	
C�C�

�
; (35)

where the term proportional tor�Z� has been integrated to

the boundary and discarded. The equations of motion are

0 ¼ �S

�ð ffiffiffiffiffiffiffi�g
p

g��Þ
¼ R�� þ 2

	
rð�C�Þ þ 1

	
C�C� þ fterms� C�g; (36a)

0 ¼ 1ffiffiffiffiffiffiffi�g
p �S

�H�

¼ 2

	
C�: (36b)

When 	 ¼ �2 these are the GH equations and Eq. (35) is
the GH action.

The preceding analysis shows that we are naturally led
to the GH action when we attempt to reformulate the BBP

action without the connection ���
��. The GH action (3) can

be obtained directly from the BBP action (13) by the
change of variables

Z� ¼ � 1

2
C� þ 1

8
��

�
�: (37)

With this definition, the BBP action becomes

S½g��;H�; ��
�
���

¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
g��

�
�R�� � �r�C� þ 1

4
�r���

�
�

�
: (38)

The equation of motion �S=� ���
�� ¼ 0 has the solution

�� �
�� ¼ ��

�� � ��
ð�C�Þ: (39)

Substituting this result into the action (38) and discarding a
boundary term yields the GH action (3).

IV. SUMMARY

The action for the generalized harmonic formulation of
general relativity has the remarkably simple form dis-
played in Eq. (3). This action can be used as the starting
point for further developments, such as the Hamiltonian
formulation of GH gravity. We can also use the action to
develop variational and symplectic integration schemes.
The BBP action presented in Ref. [17] is closely related
to the GH action, but the equations of motion that follow
from the BBP action are not obviously equivalent to the Z4
equations. After a change of variables, the independent

connection ���
�� can be eliminated from the BBP action,

reducing it to the GH action.
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APPENDIX: THE INVERSE PROBLEM OF THE
CALCULUS OF VARIATIONS

The problem of finding an action for the GH (or Z4)
equations is an example of the inverse problem of the
calculus of variations. This subject has a long history
[28]. In its most basic form, the inverse problem of the
calculus of variations can be stated as follows. Given a set
of differential equations EAð
; @
; . . .Þ ¼ 0 for the varia-
bles 
A, does there exist a functional S½
� whose func-
tional derivatives are EAð
; @
; . . .Þ? If so, is the
functional unique? The index A runs from 1 to N, and
@
 represents the partial derivatives of the dependent
variables 
A with respect to the independent variables.
For ordinary differential equations, there is only one inde-
pendent variable; for partial differential equations, there
are two or more independent variables. The dots in
EAð
; @
; . . .Þ represent higher order derivatives of 
A.
An acceptable action functional for the GH or Z4 equa-

tions does not need to reproduce the differential equations
identically. It is acceptable if the functional derivatives of
the action are a linear combination of EA. This formulation
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of the inverse problem of the calculus of variations is often
referred to as the variational multiplier problem [28,29].
Thus, given a system EAð
; @
; . . .Þ ¼ 0, we seek a func-
tional S½
� that satisfies

MABð
; @
; . . .Þ�S½
�
�
B ¼ EAð
; @
; . . .Þ; (A1)

where MAB is an invertible matrix that depends on 
A and
its derivatives. Equation (A1) says that the expressions EA

are linear combinations of the functional derivatives of
S½
�.

The inverse problem of the calculus of variations as-
sumes that the action is a functional only of those variables

A that appear in the system of equations EA ¼ 0. (It also
assumes that the number of equations is equal to the
number of variables.) As an alternative, consider the func-
tional S½
;�� ¼ R

�AE
Að
; @
; . . .Þ of 
A and �A. The

functional derivatives of S½
;�� include EA. Equivalently,
the conditions for the extremization of S½
;�� imply
EA ¼ 0. In spite of this fact, the functional S½
;�� is not
considered a valid action for the equations EA ¼ 0 because
it depends on the extra unphysical variables �A.

In the variational multiplier problem (A1), MAB can
depend on the fields 
A and their derivatives but it is not
allowed to be a differential operator. This restriction on
MAB is a natural one, since we want the functional deriva-
tives of the action to yield the same system of differential
equations as defined by EA ¼ 0. A derivative operator in
MAB can change the differential order of the functional
derivatives so that the extremum of the action is no longer
equivalent to the original differential system. Although this
can happen when MAB contains differential operators, it
does not always happen.

Let us consider the consequences of this restriction in
the context of the BBP functional (13). The functional
derivatives of the BBP action are displayed in Eqs. (16).
A close examination of the analysis following these equa-
tions shows that the functional derivatives (16b) and (16c)
can be rearranged, by a linear transformation, to form the
left-hand sides of Eqs. (23). In other words, there is a
matrix MAB

1 that mixes the functional derivatives of the
BBP functional, leading to the result (using matrix notation
in place of the indices A and B)

M1

�
�S

�


�
¼

�Rð��Þ þ 2 �rð�Z�Þ
Z�

��
��

0
B@

1
CA: (A2)

We can use the definitions (14) and (15) to write this result
in the form

M1

�
�S

�


�
¼

@� ��
�
�� � @ð� ���

�Þ� þ � � �
Z�

��
�� � ���

��

0
B@

1
CA: (A3)

For simplicity, only two terms are displayed in the first row.

Now we ask whether there exists a further mixing of the
functional derivatives that will yield the Z4 equations
R�� þ 2rð�Z�Þ ¼ 0 and Z� ¼ 0. The mixture must re-

place derivatives of the background connection ���
��

with derivatives of the Christoffel symbols ��
�� in the

first row of Eq. (A3). The matrix that does this is

M2 ¼
1 0 ��

ð��
�
�Þ@� � ��

��
�
ð�@�Þ þ � � �

0 1 0
0 0 1

0
B@

1
CA; (A4)

where each of the 1’s is an identity tensor. In this example
both M1 and M2 are invertible. But because M2 contains a
derivative operator, the matrixM2M1 does not qualify as a
valid variational multiplier for the inverse problem of the
calculus of variations. The conclusion is that the BBP
functional (13) does not qualify as an action principle for
the Z4 equations.
In the present example the differential operatorM2M1 is

invertible, and it does not change the differential order of
the functional derivatives of the BBP action. So perhaps the
restriction that MAB should not contain any derivative
operators is too severe. Perhaps the only restriction on
MAB should be invertibility. Note, however, that if we allow
MAB to be a differential operator, then there exist action
functionals for the Z4 equations that are more simple than
the BBP functional. For example, the action of Eq. (27) has
functional derivatives�

�S

�


�
¼ R�� � 4Z�Z�=3

�8
ffiffiffiffiffiffiffi�g

p
Z�=3

� �
; (A5)

as seen from Eqs. (28). These can be rearranged to give

M

�
�S

�


�
¼ R�� þ 2rð�Z�Þ

Z�

� �
(A6)

with the invertible matrix

M ¼ 1 �ð2g�ð�Z�Þ þ 3g�ð�r�ÞÞ=ð4 ffiffiffiffiffiffiffi�g
p Þ

0 �3g��=ð8 ffiffiffiffiffiffiffi�g
p Þ

 !
: (A7)

If we allow MAB to mix �S=�
A with derivatives of
�S=�
A, then by this criterion the functional (27) would
be a valid action principle for Z4.
The view among researchers who study the inverse

problem of the calculus of variations is that the variational
multiplier should be an invertible matrix that depends only
on the variables and their derivatives [28]. According to
this view, neither the BBP functional (13) nor the func-
tional of Eq. (27) qualify as action principles for Z4. The
GH functional (3), on the other hand, is a valid action
principle for the GH formulation of general relativity. In
particular, the equations of motion (4) or (5) follow directly
from this action and have the desired properties discussed
in Sec. II.
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