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We study the particle motion in the space-time of a Kehagias-Sfetsos black hole which is a static

spherically symmetric solution of a Hořava-Lifshitz gravity model. This model reduces to general relativity

in the infrared limit and deviates slightly from detailed balance. Taking the viewpoint that the model is

essentially a (3þ 1)-dimensional modification of general relativity we use the geodesic equation to

determine the motion of massive and massless particles. We solve the geodesic equation exactly by using

numerical techniques. We find that neither massless nor massive particles with nonvanishing angular

momentum can reach the singularity at r ¼ 0. Next to bound and escape orbits that are also present in

the Schwarzschild space-timewe find that new types of orbits exist: manyworld bound orbits as well as two-

world escape orbits. We also discuss observables such as the perihelion shift and the light deflection.
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I. INTRODUCTION

Motivated by the study of quantum critical phase tran-
sitions Hořava introduced a (3þ 1)-dimensional quantum
gravitymodel, later on called Hořava-Lifshitz (HL) gravity,
that is power-counting renormalizable [1,2] (see also [3]
for a recent status report). This model reduces to general
relativity (GR) in the infrared (IR) limit, i.e. at large dis-
tances, however breaks Lorentz symmetry in the ultraviolet
(UV), i.e. at short distances. The reason for this is that
the model contains an anisotropic scaling with dynamical
critical exponent z of the form

~r ! b~r; t ! bzt: (1.1)

In the IR the exponent becomes z ¼ 1 and the theory is
Lorentz-invariant. However, in the UV there is a strong
asymmetry between space and time with z > 1. In (3þ 1)
dimensions z ¼ 3 [2] and the gravity theory becomes
power-counting renormalizable. Concretely, this model
breaks Lorentz invariance at short distances because it
contains only higher order spatial derivatives in the action,
while higher order temporal derivatives (which would lead
to ghost degrees of freedom) do not appear.

A number of explicit solutions of HL gravity have been
found, in particular, spherically symmetric black hole
solutions [4–7]. The most general spherically symmetric
solution has been given in [8] and rotating generalizations

have been studied in [9]. One of the open problems of the
model is how to couple it to matter fields. The question of
how to describe particle motion in HL gravity, i.e. to find
the equivalent to the geodesic equation of GR has been
addressed in [10–12]. In [10] particles were studied as the
optical limit of a scalar field, while in [11] a super
Hamiltonian formalism with modified dispersion relations
was used. In both papers it was found that new features
arise in HL gravity such as superluminal motion and
luminal motion of massive particles. In [12] a particle
action preserving foliation diffeomorphisms was intro-
duced and it was found that massless particles follow
GR geodesics, while the trajectories of massive particles
depend on their mass. In most studies of test particle
motion the hypothetical corrections to the GR geodesics
were neglected [13–24].
In this paper we take the latter viewpoint and study

solutions to the GR geodesic equation in HL black
hole space-times, in particular, in the space-time of a
Kehagias-Sfetsos (KS) solution, a static and spherically
symmetric solution to HL gravity with vanishing cosmo-
logical constant. The geodesicmotion in this space-time has
been studied previously [13–24] and a number of con-
straints on the parameters of HL gravity have been found.
Observables such as the perihelion shift and the light
deflectionwere also studied in these papers, however, either
approximations were used or only circular orbits were
studied. In this paper we are aiming at solving the geodesic
equation exactly by using numerical techniques and
at exploring the complete set of solutions of the geodesic
equation.
Our paper is organized as follows: in Sec. II we give the

model and the black hole solutions. In Sec. III we give
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the geodesic equation, while Sec. IV contains our results.
We conclude in Sec. V.

II. THE MODEL

A. The action

The model proposed by Hořava [1,2] uses the ADM
decomposition of the metric that reads as follows

ds2 ¼ �N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; (2.1)

where Nðt; xiÞ and Niðt; xiÞ are the lapse and shift
functions, respectively, and gijðt; xiÞ is the 3-metric with

i, j ¼ 1, 2, 3. In [2] it was assumed that the theory is
invariant under space-independent time reparametrization
and time-dependent spatial diffeomorphisms, i.e. under

t ! ~tðtÞ; xi ! ~xiðt; xiÞ; (2.2)

which restricts the lapse function to depend only on t. The
action proposed in [2] then reads

S ¼ ~S0 þ S0 þ S1; (2.3)

where

~S0 ¼
Z

dtd3x
ffiffiffi
g

p
N

�
2

�2
ðKijK

ij��K2Þ
�
;

S0 ¼
Z

dtd3x
ffiffiffi
g

p
N

�
�2�2

8ð1� 3�Þ ð�WR� 3�2
WÞ

� (2.4)

and

S1 ¼
Z

dtd3x
ffiffiffi
g

p
N

�
�2�2ð1� 4�Þ
32ð1� 3�Þ R2 � �2

2w4
CijC

ij

þ �2�

2w2
"ijkRilrjR

l
k �
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�
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where

Kij ¼ 1

2N
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@gij
@t

�riNj �rjNi

�
;

Cij ¼ "iklrk

�
Rj
l �

1

4
R�j

l

�
:

(2.6)

g is the determinant of the metric gij and Rij, ri corre-

spond to the spatial components of the covariant derivative
and the Ricci tensor, respectively. Cij is the Cotton tensor
and �, �, �, w and �W are constants. The integrand of
�ðS0 þ S1Þ is interpreted as the potential part, while the

integrand of ~S0 is interpreted as the kinetic part.

In the IR limit the action is dominated by ~S0 þ S0 and
reduces to the Einstein-Hilbert action for

� ¼ 1; c ¼ �2�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W

1� 3�

s
;

GN ¼ �2

32�c
; � ¼ �W;

(2.7)

where c is the speed of light, GN is Newton’s constant and
� is the cosmological constant. Note that for � > 1=3, i.e.
in particular for � ¼ 1, the constant �W and hence �
should be negative. In the following we will set � ¼ 1
(unless otherwise stated) and consider the additional terms
of S1 as a (3þ 1)-dimensional modification of GR. The
action as given above satisfies the requirement of detailed
balance which essentially means that the potential V in the
HL action derives from a superpotential W:

V ¼ EijGijklE
kl; Eij ¼ 1ffiffiffi

g
p �W

�gij
(2.8)

and Gijkl ¼ 1
2 ðgikgjl þ gilgjkÞ � �gijgkl is the DeWitt

metric. The requirement of detailed balance drasti-
cally reduces the number of invariants to consider in the
potential V.
The problem with the theory as stated above is that for

� � 1 it predicts the wrong sign of the 4-dimensional
cosmological constant. Moreover the detailed balance
condition is chosen solely to simplify the theory. Hence,
theories that violate detailed balance have been considered.
In [4] the following term was added to the action

Sv ¼
Z

dtd3x
ffiffiffi
g

p
N

�2�2

8ð3�� 1Þ!R; (2.9)

where ! is an arbitrary constant. In the �W ¼ 0 limit
which we are mainly interested in here the Einstein-
Hilbert action is recovered in the IR for

�¼1; GN ¼ �2

32�c
; c2¼ �4�2

16ð3��1Þ!: (2.10)

B. Spherically symmetric solutions

Kehagias and Sfetsos found a spherically symmetric,
static black hole solution to a HL gravity model with action
Sþ Sv for�W ¼ 0 and � ¼ 1. The Ansatz for the metric is

ds2¼N2ðrÞdt2�f�1ðrÞdr2�r2ðd�2þsin2�d’2Þ (2.11)

and the solution reads

N2 ¼ f ¼ 1þ!r2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2r4 þ 4!mr

p
; (2.12)

where ! ¼ 16�2=�2 and m is an integration constant.
In [15] constraints on the value of !m2 were found by
comparing the perihelion shift in the KS space-time with
observations in the solar system. It was found that !m2 �
7:2� 10�10 for Mercury, !m2 � 9� 10�12 for Mars and
!m2 � 1:7� 10�12 for Saturn. Moreover, a similar com-
parison gave !m2 � 8� 10�10 for the S2 star orbiting
the supermassive black hole in our galaxy as well as
!m2 � 1:4� 10�18 for extrasolar planets [17]. In [13]
constraints from innermost stellar circular orbits (ISCOs)
for certain black holes were considered and it was found
that ! ’ 3:6� 10�24 cm�2 (in appropriate units). In [14]
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the light deflection in the solar system was used to con-
strain the parameter. It was found that !m2�1:17�10�16

for Earth, !m2 � 8:28� 10�17 for Jupiter and !m2 �
8:28� 10�15 for the Sun. The IR limit of (2.12) is given
by the Schwarzschild solution N2 ¼ f ¼ 1� 2m=r. The
Kretschmann scalar K ¼ R���	R

���	 reads

K ¼
�
@2f

@r2

�
2 þ 4

r2

�
@f

@r

�
2 þ 4f2

r4
� 8f

r4
þ 4

r4
; (2.13)

which for small r behaves like 1=r3. Hence the solution
possesses a physical singularity at r ¼ 0 [4] and two
horizons at

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 1

2!

s
(2.14)

as long as !m2 � 1=2. Note that the corrections from HL
gravity now allow for the existence of up to two horizons.
The extremal solution has !m2 ¼ 1=2 and rþ ¼ m. The
Hawking temperature of black hole solutions is given by
TH ¼ �=ð2�Þ, where � is the surface gravity that for static
solutions is given by

�2 ¼ � 1

4
gttgijð@igttÞð@jgttÞ: (2.15)

For the KS solution we find

TH ¼ 1

2�

!ðr� �mÞ
1þ!r2�

; (2.16)

which in the! ! 1 limit tends to the knownSchwarzschild
result TH ¼ ð8�mÞ�1. Obviously, the extremal solutions
with rþ ¼ m have TH ¼ 0. For more details about the
thermodynamics of black holes in HL gravity see e.g. [25].

III. SOLUTIONS TO THE GEODESIC EQUATION
IN HOŘAVA-LIFSHITZ BLACK HOLE

SPACE-TIMES

For a general static spherically symmetric solution of the
form (2.11) the Lagrangian Lg for a point particle reads

L g ¼ 1

2
g��

dx�

ds

dx�

ds
¼ 1

2
"

¼ 1

2

�
N2

�
dt

d


�
2 � 1

f

�
dr

d


�
2 � r2

�
d�

d


�
2

� r2sin2�

�
d’

d


�
2
�
; (3.1)

where " ¼ 0 for massless particles and " ¼ 1 for massive
particles, respectively.

The constants of motion are the energy E and the angular
momentum (direction and absolute value) of the particle.
We choose � ¼ �=2 to fix the direction of the angular
momentum and have

E :¼ N2 dt

d

; Lz :¼ r2

d’

d

: (3.2)

Using these constants of motion we get�
dr

d


�
2 ¼ f

N2
ðE2 � ~VeffðrÞÞ (3.3)

and �
dr

d’

�
2 ¼ r4

L2
z

f

N2
ðE2 � ~VeffðrÞÞ; (3.4)

where ~VeffðrÞ is the effective potential

~V effðrÞ ¼ N2

�
"þ L2

z

r2

�
: (3.5)

In the following we will consider the KS black hole solu-
tion (2.12). The geodesic Eq. (3.4) then becomes�

1

r

dr

d’

�
4 þ 2

�
1

r

dr

d’

�
2
PðrÞ ¼ QðrÞ; (3.6)

where

PðrÞ ¼ 1

L2
z

ð!"r4 þ ð"� E2 þ!L2
zÞr2 þ L2

zÞ (3.7)

and

QðrÞ¼ 1

L4
z

½�2"!ðE2�"Þr6�4!m"2r5

þð�2!E2L2
zþ4!L2

z"þðE2�"Þ2Þr4�8!mL2
z"r

3

þ2L2
zð!L2

z�E2þ"Þr2�4!mL4
zrþL4

z�: (3.8)

For massive particles (" ¼ 1) the order of the polynomials
PðrÞ and QðrÞ is 4 and 6, respectively, while for massless
particles (" ¼ 0) it is 2 and 4.
Rewriting (3.6) we find

’� ’0 ¼ �
Z r

r0

dr

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þQ
pq : (3.9)

The motion of test particles in KS black hole space-
times has been studied extensively before [13–19], how-
ever, it was not attempted to find the complete set of
solutions. This is what we are aiming at here. The integral
on the right-hand of (3.9) cannot be solved in terms of
hyperelliptic functions, at least not to our knowledge.
However, an analytic treatment seems possible in some
limiting cases. This will be reported elsewhere [26]. In this
paper we solve the geodesic Eq. (3.6) numerically.

IV. RESULTS

A. The effective potential

In order to understand which types of orbits are possible
in the KS space-time, we first study the effective potential.
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To make contact with the Schwarzschild case we rewrite
(3.3) as follows �

dr

d


�
2 ¼ E � VeffðrÞ; (4.1)

where E ¼ E2 � " and

VeffðrÞ¼ ~VeffðrÞ�"

¼
�
!r2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2r4þ4!mr

p ��
"þL2

z

r2

�
þL2

z

r2
: (4.2)

For r � ð4m=!Þ1=3 this effective potential becomes

Veffðr � ð4m=!Þ1=3Þ � �2m"=r � 2mL2
z=r

3 þ L2
z=r

2,
which is just the effective potential in the Schwarzschild
space-time.

The first point to note is that while for ! ! 1 the
potential at r � 1 behaves like Veffðr� 1Þ��2mL2

z=r
3

(this is just the Schwarzschild limit), it behaves like
Veffðr � 1Þ � L2

z=r
2 for generic !. Hence there is a posi-

tive infinite angular momentum barrier for both massive
and massless test particles which does not exist in the
Schwarzschild limit. The first conclusion is hence that

test particles with nonvanishing angular momentum cannot
reach the singularity at r ¼ 0 in the KS space-time.
Moreover, for the extremal solution with r ¼ rþ ¼ m we
find that dVeffðrÞ=drjr¼rþ ¼ 0 and Veffðr ¼ rþÞ ¼ �".

On the other hand, for particles without angular momen-
tum Lz ¼ 0, the effective potential is always negative and

behaves like Veffðr � 1Þ � �"
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4!mr

p
for small r, while

it is equivalent to the Schwarzschild potential for large r:
Veffðr � 1Þ � �2m"=r.

1. Massive test particles

In Figs. 1(a)–1(c) we show how the effective potential
VeffðrÞ for a massive test particle (" ¼ 1) changes for
different values of Lz and ! and m ¼ 1.
It is obvious that the effective potential at large r

does not change much when decreasing ! from the
Schwarzschild limit ! ¼ 1. Hence, the types of orbits
available for large r are very similar to the Schwarzschild
case. This is not surprising since HL gravity is a gravity
theory that is supposed to modify GR at short distances, but
has no effects on the long-distance physics. In comparison
to the Schwarzschild case, the effective potential possesses
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FIG. 1 (color online). The effective potential VeffðrÞ for a massive ((a)-(c)) and a massless ((d)-(f)) test particle, respectively, for
different values of ! and Lz.
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a further minimum at small r. This is represented by the
curves in Fig. 2. In this latter plot, we assume that E2 � " is
a parameter that can have all possible values to show that
an additional minimum exists, but keep in mind that to find
the zeros of E � VeffðrÞ we need to require E � �1. Note
that the value of this minimum is negative and always
smaller than �1. It increases for decreasing ! and be-
comes equal to �1 in the extremal limit. This is clearly
seen in Figs. 1(a)–1(c).

These observations lead to the following conclusion for
the types of orbits possible which have turning points at the
minimal radius r ¼ rmin close to r ¼ 0: test particles
would move on manyworld bound orbits (MBOs) with
rmin < r < rmax or on two-world escape orbits (TEOs)
with rmin < r 	 1 but can never reach r ¼ 0. In compari-
son to bound orbits (BOs) and escape orbits (EOs), respec-
tively, test particles moving on manyworld or two-world
orbits cross the two horizons in both directions. That this is
always the case for orbits with rmin close to r ¼ 0 can be
seen as follows: since Veffðr�Þ ¼ �" 
 �1 and the turn-
ing points are given by E2 � " ¼ VeffðrÞ, the value of rmin

is always smaller than r� and the value of rmax is always
larger than rþ. In the Schwarzschild space-time many-
world or two-world orbits are not possible: a particle
crossing the horizon would always end at the physical
singularity at r ¼ 0. Note that in the KS space-time we
also have BOs that are comparable to the BOs existing in
the Schwarzschild space-time. The two regions in which
MBOs and BOs, respectively, exist are shown in Fig. 3 for

m ¼ 1 and two different values of !. In region 1 we have
MBOs, while in region 2 we have BOs. The effective
potential varies only little in the region 2 at large r when
changing! from 104 to 0.51, while in region 1 at small r it
varies strongly. The above results are summarized in the
ðE2 � "Þ � ð1=L2

zÞ-plot [see Figs. 4(a) and 4(b)].
The shaded region is bounded by two curves, the one at

larger E2 � " representing the maximum of the potential
and the other one the local minimum of the potential at
large r. The dark shaded region with E2 � " < 0 (region I)
corresponds to the values of E2 and L2

z for which
E � VeffðrÞ has four positive real-valued zeros. Hence,
there are two different types of orbits: an MBO as well
as a BO. The light shaded region with E2 � " > 0 (region
II) corresponds to the values of E2 and L2

z for which
E � VeffðrÞ has three positive real-valued zeros and hence
we have an MBO as well as an escape orbit (EO). In the
white region with E2 � " < 0 (region III) E � VeffðrÞ pos-
sesses two positive, real-valued zeros such that the corre-
sponding orbit is an MBO. Finally in the white region with
E2 � " > 0 (region IV) E � VeffðrÞ has one positive, real-
valued zero and the corresponding orbit is a TEO. These
results are also summarized in Table I.
Note that the orbits existing in this space-time are very

similar to the ones in the Reissner-Nordström space-time
[27,28]. Comparing the case for ! ¼ 5:1 with that for
! ¼ 5:1� 104, we observe that the features of the plot
do not vary much. This is also true for even smaller values
of !.
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FIG. 2 (color online). The values of E2 � " and 1=L2
z corre-

sponding to the absolute minimum of the effective potential
VeffðrÞ at small r for different values of !, m ¼ 1 and " ¼ 1.
Note that while here we treat E2 � " as a parameter that can take
arbitrary values, we should have E2 � " � �1 when looking for
zeros of E � VeffðrÞ.
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FIG. 3 (color online). The two regions of the potential for
which BOs of massive test particles exist. In region 1, we have
MBOs, while in region 2 there exist BOs. Here Lz ¼ 7:0, E2 ¼
0:9787, m ¼ 1:0, while ! ¼ 0:51 and ! ¼ 104, respectively.
The red dotted-dashed line represents the total energy (E2 � ")
of the test particle.
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Massive test particles with Lz ¼ 0 move on radial geo-
desics with ’ ¼ const:. In this case, the minimum of the
effective potential is at r ¼ r0 such that

r0 ¼
�
m

2!

�
1=3

and Veffðr0Þ ¼ �ð2!m2Þ1=3: (4.3)

Note that for Lz ¼ 0 we can write the effective potential as
VeffðrÞ ¼ N2ðrÞ � 1. This leads to the observation that the
value of the effective potential at the horizons r� is given
by Veffðr�Þ ¼ �1. Since for black hole solutions we will
always have Veffðr0Þ 	 �1 we find that for massive parti-
cles r� 	 r0 	 rþ. We show the effective potential for
" ¼ 1, m ¼ 1 and different values of ! in Fig. 5. We thus
find two different possible radial orbits depending on the
value of E2. For E2 � 1> 0 the particle moving on a radial
geodesic will be able to reach the physical singularity at

r ¼ 0, while that with �1< E2 � 1< 0 cannot reach
r ¼ 0 and will be deflected at a finite value of r ¼ rmin.
Moreover, this latter particle cannot reach r ¼ 1 and will
be deflected at r ¼ rmax. The turning points are at rmin;max

with
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FIG. 5 (color online). The effective potential VeffðrÞ for radial
trajectories (Lz ¼ 0) of massive particles (" ¼ 1) in the space-
time of a KS black hole with m ¼ 1 and different values of !.
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FIG. 4. The values of E2 � " and 1=L2
z corresponding to the maximum (thick upper line) and relative minimum at large r (thin lower

line) of the effective potential VeffðrÞ are given for m ¼ 1, " ¼ 1, ! ¼ 5:1 (left) and ! ¼ 5:1� 104 (right), respectively. In the dark
shaded region (region I) there exist MBOs and BOs, while in the light shaded region (region II) MBOs as well as EOs exist. In region
III there are MBOs, while there are TEOs in region IV.

TABLE I. Types of orbits of massive test particles in the KS
space-time. The thick lines represent the range of the orbits. The
turning points are shown by thick dots. The horizons are in-
dicated by double vertical lines.

VICTOR ENOLSKII et al. PHYSICAL REVIEW D 84, 084011 (2011)

084011-6



rmin;max¼1

2

2
42!m� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4!2m2þ2!ðE2�1Þ3p
!ð1�E2Þ

3
5: (4.4)

Since Veffðrmin;maxÞ ¼ E2 � 1 � �1, we find that rmin 	
r� 	 r0 	 rþ 	 rmax. The particles are thus trapped on
radial manyworld orbits moving from rmax to rmin and back
to rmax and crossing the horizons in both directions while
doing so.

2. Massless test particles

In Figs. 1(d)–1(f) we show how the effective potential
VeffðrÞ for a massless test particle (" ¼ 0) changes for
different values of Lz and ! with m ¼ 1. The potential
possesses always two extrema: one maximum, which for
! ¼ 1 is located at r ¼ 3m and a minimum. The value of
this minimum is negative and increases with decreasing !
becoming equal to zero in the extremal limit. The existence
of a minimum is a new feature as compared to the
Schwarzschild case. Again, we have an infinite potential
barrier at r ¼ 0. Hence, in contrast to the Schwarzschild
case we can now have three positive, real-valued zeros of
E � VeffðrÞ if E2 is smaller than the maximum of the
potential. The possible orbits are an MBO on which the
particle crosses both horizons with rmin < r < rmax. In
addition there is an EO with rmin<r	1, where the value
of rmin fulfills rmin>rþ. These EOs are very similar to the
ones existing in the Schwarzschild space-time. For E2

larger than the maximum of the potential there is only
one positive, real-valued zero of E � VeffðrÞ and the parti-
cle moves on a TEO. The argument that the particle should
always cross both horizons for the MBO and the TEO,
respectively, is similar to the massive case: since
Veffðr�Þ ¼ �" 
 0 and the turning points are given by
E2 ¼ VeffðrÞ we find that rmin is always smaller than r�
and rmax is always larger than rþ. Again, test particles with
nonvanishing angular momentum cannot reach the singu-
larity at r ¼ 0. Our results are summarized in Table II.

The effective potential for radially moving test particles
(Lz ¼ 0) is VeffðrÞ 
 0. Hence, all massless test particles
will reach the singularity at r ¼ 0 on radial geodesics.

B. Examples of orbits

In order to find the motion of massive and massless
particles in the KS space-time, we have solved the
Eq. (3.6) numerically using the ODE solver of MATLAB

that has a 4th order Runge-Kutta method implemented. The
relative (resp. absolute) errors of the solution are on the
order of 10�12 (10�15).

1. Massive test particles

In Fig. 6 we show MBOs and BOs (region 1 and 2, see
Fig. 3), respectively, for E ¼ 0:99 and Lz ¼ 7:0. In region
2 the test particle moves on a nearly circular orbit with a
radius much larger than the horizon radii. The shape of the
orbit varies only little when changing!. In region 1, on the
other hand, the orbit is quite different for !¼ 104 as
compared to !¼ 0:51. For both values of !, the test
particle crosses the two horizons in both directions sug-
gesting that these BOs are MBOs. Note that this is similar
to the case of test particles moving in the Reissner-
Nordström space-time [27,28].
Because of the infinite potential barrier at r ¼ 0 a test

particle with nonvanishing angular momentum coming
from infinity would be reflected at a finite value of r and
would not be able to reach r ¼ 0 in the KS space-time.
This is shown in Fig. 7, where we give examples of TEOs
of a massive test particle with angular momentum Lz ¼ 4
and energy E ¼ 1:8 for different values of ! and m ¼ 1.
For all values of !, the particle crosses both horizons, but
does not reach r ¼ 0, i.e. the particle approaches the KS
black hole from an asymptotically flat region, crosses both
horizons twice and moves away into another asymptoti-
cally flat region.

2. Massless test particles

As stated abovewe now have the possibility ofMBOs for
massless test particles which are not possible in the space-
time of a Schwarzschild black hole. In Fig. 8 we give
examples of MBOs of massless test particles with angular
momentum Lz ¼ 1:75 and energy E ¼ 0:3. The qualitative
features of the orbits are very similar to the massive case.
For all values of ! the particle crosses both horizons, but
due to the infinite potential barrier can never reach the
physical singularity at r ¼ 0. Note that BOs of massless
test particles moving solely outside the black hole do not
exist.
In Fig. 9 we give examples of TEOs of massless test

particles with angular momentum Lz ¼ 4 and energy E ¼
1:8. In this case, the test particle encircles the space-time
singularity at r ¼ 0 and crosses the horizonswhile doing so.
In Fig. 10 we give an example of an EO of a massless test

particle with angular momentum Lz ¼ 2:2 and energy E ¼
0:47 that is deflected by the KS black hole and comes very
close to the horizons, but never crosses them. This is for
m ¼ 1 and ! ¼ 0:51 [see Fig. 10(b)]. For the same values
of energy and angular momentum but much larger values
of! the test particle would cross the horizons and move on
a TEO [see Fig. 10(c)]. These orbits should be compared to
predictions recently made for massless test particles pass-
ing close by a Kerr black hole [29].

TABLE II. Types of orbits of massless test particles in the KS
space-time. The thick lines represent the range of the orbits. The
turning points are shown by thick dots. The horizons are in-
dicated by double vertical lines.
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C. Observables

1. Perihelion shift

The perihelion shift of a BO of a massive test particle in
the space-time of a KS black hole can be calculated by
using (3.4). We find for the perihelion shift �’ and the
period T of the motion of a massive test particle from rmin

to rmax and back again

�’ ¼ 2
Z rmax

rmin

Lzdr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � fð1þ L2

z=r
2Þ

q � 2�;

T ¼ 2
Z rmax

rmin

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � fð1þ L2

z=r
2Þ

q :

(4.5)

Our results for m ¼ 1 are shown in Fig. 11, where we give
the value of the rate of the perihelion shift �’=T in
dependence on!. In Fig. 11(a) we show the perihelion shift
for an MBO, while in Fig. 11(b) we show that of a BO. We
observe that the perihelion shift of the MBO is much larger
than that of the BO. For both types of orbits the perihelion
shift increases with increasing !.
We can compare the perihelion shift of a BO in the KS

black hole space-time with that in the Schwarzschild
space-time. Note that the BOs of test particles with energy
E2 ¼ 0:9787 and angular momentum Lz ¼ 7:00 are nearly
circular [see Figs. 6(c) and 6(d)]. Hence, it is a good
approximation to use the perturbative formula for the
Schwarzschild space-time which gives the perihelion shift
as function of the mass of the central object MS [27]
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FIG. 6 (color online). Examples of MBOs and BOs of a massive test particle (" ¼ 1) with Lz ¼ 7:00, E2 ¼ 0:9787 in the space-time
of a KS black hole with m ¼ 1:00 as well as ! ¼ 0:51 (left) and ! ¼ 104 (right). We show MBOs (region 1, top) and BOs (region 2,
bottom), respectively. The red dashed circles in the plot represent the horizons of the KS black hole. Note that we are plotting two
radial periods during which the particle moves from rmin to rmax and back again.
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FIG. 7 (color online). Examples of TEOs of a massive test particle (" ¼ 1) with E ¼ 1:8, Lz ¼ 4 in the space-time of a KS black
hole with m ¼ 1 and different values of !. The dashed circles correspond to the two horizons of the KS space-time.
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FIG. 8 (color online). Examples of MBOs of a massless test particle (" ¼ 0) with E ¼ 0:3, Lz ¼ 1:75 in the space-time of a KS
black hole withm ¼ 1 and different values of!. The dashed circles correspond to the two horizons of the KS space-time. Note that we
are plotting one radial period during which the particle moves twice from rmin to rmax and back again.
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FIG. 9 (color online). Examples of TEOs of a massless test particle (" ¼ 0) with E ¼ 1:8, Lz ¼ 4 in the space-time of a KS black
hole with m ¼ 1 and different values of !. The dashed circles correspond to the two event horizons of the KS space-time.
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m2
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2

~l2
; mS ¼ GMS

c2
;

1
~l
¼ 1

2

�
1

rmax

þ 1

rmin

�
;

(4.6)

whereG is Newton’s constant and c is the speed of light.We
have then computed the value of the perihelion shift
�’ of the BO of a test particle with energy
E2 ¼ 0:9787 and angular momentum Lz ¼ 7:00 in the KS

space-timewithm ¼ 1 and several values of!. Setting this
value equal to ð�’ÞS we can find the corresponding mass
mS that is necessary to obtain the same value of the peri-
helion shift in the Schwarzschild space-time. We find that
mS � 1:109 when comparing with the KS space-time for
values of ! between unity and 104, i.e. mS does not vary
much. This leads to the following observation : to have the
same perihelion shift in the KS space-time as compared to
the Schwarzschild space-time we need a smaller mass of
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FIG. 10 (color online). Examples of EOs of a massless test particle (" ¼ 0) with E ¼ 0:47, Lz ¼ 2:2 that passes very close by a KS
black hole with m ¼ 1 and ! ¼ 0:51 [Fig. 10(b)]. For much larger values of ! (here: ! ¼ 104) the particle crosses the horizon on a
TEO [Fig. 10(c)]. We also show the corresponding effective potential [Fig. 10(a)]. The red dashed line in Fig. 10(a) corresponds to the
value of E2, while the dashed circles in Fig. 10(b) and 10(c) correspond to the two event horizons of the KS space-time.
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FIG. 11 (color online). The value of the perihelion shift per period T as a function of ! for a massive test particle (" ¼ 1) with
energy E2 ¼ 0:9787 and angular momentum Lz ¼ 7:00 in the space-time of a KS black hole with m ¼ 1. We show the perihelion shift
per period T for an MBO (left) and for a BO (right), respectively.
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the central body. Moreover, the value of rmin (respectively
rmax) is larger (smaller) for a BO in the KS space-time as
compared to a BO in the Schwarzschild space-timewith the
same value of the perihelion shift. This would be a way to
distinguish KS from Schwarzschild space-times. This is
shown in Fig. 12(a), where we give the difference �rmin ¼
rmin;KS � rmin;S of the minimal radius in the KS space-time

rmin;KS and in the Schwarzschild space-time rmin;S as func-

tion of ! for two different values of m. We also give the
value of �rmax ¼ rmax;KS � rmax;S of the difference of the

maximal radius in the KS space-time rmax;KS and the maxi-

mal radius in the Schwarzschild space-time rmax;S. Note that

the value of the radius of the black hole is betweenm in the
extremal limit and 2m in the Schwarzschild limit. For a
stellar black hole with radius 10km, this would correspond
to masses between 3.39 solar masses (for! ¼ 1) and 6.78
solar masses (for the extremal limit). We observe that the
difference decreases with increasing ! (as expected).
For increasing m both the difference �rmin as well as the
difference �rmax increase. For this note that �rmax is in fact
negative and we are giving the absolute value here such that
the absolute value of �rmax decreases with increasing m.

2. Light deflection

The deflection of light by a KS black hole can be
calculated by using (3.4) for an EO of a massless test
particle (" ¼ 0). The light deflection then reads

f�’ ¼ 2
Z 1

rmin

Lzdr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � fL2

z=r
2

q � �; (4.7)

where rmin is the minimal radius of the orbit. Our results for
m ¼ 1 are shown in Fig. 13, where we give the value of the
light deflection in dependence on the impact parameter b,
which is equal to Lz=E in the case that the initial value of r

is equal to infinity. Note that for values of f�’ larger than
2� the massless test particle first encircles the black hole
once or several times before going back to infinity. In
Fig. 13(a) we show the light deflection of the TEO, while
in Fig. 13(b) we show the light deflection of the EO.
For the latter case, we observe that the light deflection

increases with decreasing impact parameter. This is very
similar to the Schwarzschild space-time. Lowering the
value of the impact parameter further we find that the
light deflection diverges at a critical value b ¼ bcrit. This
critical value depends on ! and decreases with decreasing
!: at ! ¼ 104 the value is close to the Schwarzschild

value bcrit ¼ 5:1961 � ffiffiffiffiffiffi
27

p
, while bcrit ¼ 5:0950 for

! ¼ 2:00 and bcrit ¼ 4:6937 for ! ¼ 0:50. Lowering
the impact parameter even further we find that the
light deflection now decreases with decreasing impact
parameter. This is a new feature as compared to the
Schwarzschild space-time, which however also exists in
the Reissner-Nordström case [27,28]. This phenomenon
can be explained when considering the form of the
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FIG. 12 (color online). The absolute value of the difference �rmin ¼ rmin;KS � rmin;S (�rmax ¼ rmax;KS � rmax;S) between the minimal
(maximal) radius of the BO of a massive particle in the KS space-time rmin;KS (rmax;KS) and the minimal (maximal) radius of a BO in

the Schwarzschild space-time rmin;S (rmax;S) is shown in dependence on ! for two different values of m (left). We also give the

difference �rmin for an EO of a massless test particle (right). In both cases the energy of the particle is E ¼ 0:99 and the angular
momentum Lz ¼ 7:00.
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effective potential. Lowering the impact parameter b is
comparable to fixing Lz and increasing the energy E. For
small value of E (large values of b) there are three
positive real zeros of E � VeffðrÞ and the corresponding
orbits are anMBOand anEO. IncreasingE (decreasingb) we
would then find a critical value of E for which E2 is equal to
the value of the maximum of the effective potential. This
corresponds to an unstable circular orbit for which the value
of the light deflection diverges. Increasing E (lowering b)
further, E2 has only one intersection point at positive r with
the effective potential and this corresponds to a TEO.

We also find that the light deflection for the EO de-
creases with decreasing !, while for the TEOs the depen-
dence on ! depends on the value of the impact parameter.
For very small impact parameter, the light deflection de-
creases with decreasing !, while for b close to bcrit it
increases with decreasing !.

We can again compare with the Schwarzschild case. For
large impact parameter b the light deflection in the
Schwarzschild space-time can be approximated by [27]

f�’ S ¼ 4mS

b
: (4.8)

We have then computed f�’ for test particles with Lz ¼
5:1961 and different impact parameters b ¼ Lz=E in the

KS space-time and set these values equal to f�’S to find the
corresponding values mS. We find that for ! ¼ 2, m ¼ 1
we need to choose mS � 1:168 for impact parameter

b ¼ 40 and mS � 1:170 for impact parameter b ¼ 29:85,
respectively, to get the same value of the light deflection.
For increasing ! the corresponding mS decreases, e.g.
mS � 1:15 for !¼ 104. The conclusion is very similar to
the one in the case of the perihelion shift: to find the same
value of the light deflection in the KS space-time as
compared to the Schwarzschild space-time the mass of
the central body has to be smaller. rmin of the EO in the
KS space-time is larger as compared to an EO in the
Schwarzschild space-time for the same value of the light
deflection. This would be another method to distinguish the
KS space-time from the Schwarzschild space-time and is
shown in Fig. 12(b), where we give the difference �rmin ¼
rmin;KS � rmin;S for the EO of a massless test particle in

dependence on !. Again, we observe that �rmin decreases
with increasing ! and increases with increasing m.

V. CONCLUSIONS

In this paper we have studied the motion of massless and
massive test particle in the space-time of the KS black hole,
which is a static, spherically symmetric vacuum solution of
HL gravity. We have taken the viewpoint that Hořava-
Lifshitz gravity is essentially a short-distance modification
of GR and have used the GR geodesic equation. We
observe that there are some new features as compared to
the static, spherically symmetric vacuum solution of GR,
the Schwarzschild solution. For massive test particles we
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FIG. 13 (color online). The value of the light deflection of a massive test particle in the space-time of the KS black hole with m ¼ 1
as a function of the impact parameter b ¼ Lz=E. We give the light deflection for the TEO (left) and for the escape (EO) (right) for three
different values of !. Note that the light deflection diverges at b ¼ bcrit with bcrit ¼ 4:6937 for ! ¼ 0:50, bcrit ¼ 5:0950 for ! ¼ 2:00
and bcrit ¼ 5:1961 � ffiffiffiffiffiffi
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for ! ¼ 104, respectively.
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find that next to BOs there exist MBOs on which the test
particles cross the two horizons in both directions. For
massless test particles we can also have MBOs, which do
not exist in the Schwarzschild case. There exist also EOs,
which are comparable to the ones in the Schwarzschild
case as well as TEOs, which are a new feature. Because of
an infinite angular momentum barrier, test particles
with nonvanishing angular momentum can never reach
r ¼ 0—in contrast to the Schwarzschild case where parti-
cles that have crossed the event horizon unavoidably move
to r ¼ 0. Massless test particles moving on radial geo-
desics will always go to r ¼ 0, while massive test particles
moving on these geodesics are either trapped on a many-
world radial geodesic if their energy E< 1 or they will
reach the singularity at r ¼ 0 for E> 1.

We have also computed the perihelion shift and the
light deflection. The rate of the perihelion shift of the
MBO is much larger than that of the BO and for both orbits
this rate decreases with decreasing !, i.e. it is largest for
both types of orbits in the Schwarzschild limit. The light
deflection increases with decreasing impact parameter for
EOs, but decreases with decreasing impact parameter
for TEOs. For EOs the light deflection is decreasing for
decreasing!, while for TEOs it decreases (resp. increases)

for small (large) impact parameter. Approximate methods
have been used in several other papers to constrain the
value of the parameter !m2 [13–15,17]. Since we believe
that constraints from orbits can only be obtained for large
value of !, i.e. close to the Schwarzschild limit we have
not attempted to recompute the constraints since we be-
lieve that our exact techniques would more or less give the
same numbers as those found in [13–15,17]. The aim of
this paper has been to solve the geodesic equation exactly
and present the complete set of solutions to the geodesic
equation.
Recently, the geodesic equation in another HL black

hole space-time has been solved analytically in terms of
hyperelliptic functions [30]. It seems possible that in some
limiting cases of the KS black hole space-time considered
here, we can also find analytic solutions. This is currently
under investigation [26].
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[1] P. Hořava, J. High Energy Phys. 03 (2009) 020.
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