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We conduct a descriptive analysis of the multipolar structure of gravitational-radiation waveforms from

equal-mass aligned-spin mergers, following an approach first presented in the complementary context of

nonspinning black holes of varying mass ratio [J. G. Baker et al., Phys. Rev. D 78, 044046 (2008).]. We

find that, as with the nonspinning mergers, the dominant waveform mode phases evolve together in lock-

step through inspiral and merger, supporting the previous waveform description in terms of an adiabati-

cally rigid rotator driving gravitational-wave emission—an implicit rotating source. We further apply the

late-time merger-ringdown model for the rotational frequency introduced in [J. G. Baker et al., Phys. Rev.

D 78, 044046 (2008).], along with an improved amplitude model appropriate for the dominant (2, �2)

modes. This provides a quantitative description of the merger-ringdown waveforms, and suggests that the

major features of these waveforms can be described with reference only to the intrinsic parameters

associated with the state of the final black hole formed in the merger. We provide an explicit model for the

merger-ringdown radiation, and demonstrate that this model agrees to fitting factors better than 95% with

the original numerical waveforms for system masses above �150M�. This model may be directly

applicable to gravitational-wave detection of intermediate-mass black-hole mergers.
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I. INTRODUCTION

Black-hole-binary mergers are a key target of ground-
based and space-based gravitational-wave observations.
The strongest radiation is produced just as the two black
holes join to become one, and can only be fully understood
through explicit numerical simulations. Since the first sta-
ble evolutions of black-hole-binary mergers [1–4], and
after it was established that the gravitational waveforms
from these evolutions were universal, and consistent across
codes and methodologies [5–7], researchers have turned
their attention to how the results of numerical relativity
can most usefully be supplied to the gravitational-wave
data-analysis community.

After studying the equal-mass nonspinning case, re-
searchers have had to address the complexity problem of
more generic systems. Even allowing for simple scaling by
total massM ¼ M1 þM2, and assuming zero eccentricity,
such systems span a seven-dimensional parameter space:

f�; ~S1; ~S2g, where � ¼ M1M2=M
2 is the symmetric mass

ratio of the binary, and ~Si is the spin angular momentum
vector of hole i.

Early surveys of the waveform parameter space have
restricted themselves to the �-dependence of nonspinning
systems. In [8], the authors investigated the multipole
structure of merger waveforms from such systems, noting
that the strongest subdominant modes shared many

characteristics with the dominant quadrupole, and that
they could be collectively described by an implicit rotating
source model of the binary. The authors used this observa-
tion to construct a multimode gravitational-wave template
family for such binary systems, as an alternative to more
usual effective-one-body (EOB) templates [9,10].

While we may assume that � and j ~Sij remain essentially
constant throughout inspiral and merger, the spin direc-
tions generally evolve, so a useful parametrization of the
system should take care to distinguish components of
the spin-direction space with physically distinct effects
on the waveforms [11].
An obvious cut in parameter space to consider is that of

spins aligned (or antialigned) with the orbital angular

momentum. These systems will not precess, but exhibit

observationally significant spin-orbit effects, distinguish-

ing them from nonspinning binaries in their dynamics and

resulting waveforms [12]. High-accuracy waveforms from

such evolutions have been produced and studied by several

groups [13–16]. Such systems have been partially charac-

terized by [17], using a variant of the frequency model

from [8]. The frequency-domain phenomenological tem-

plates of Ajith et al. have been extended to cover both mass

ratio and total aligned spin [18,19], at least for the domi-

nant modes, and attempts have been made to extend these

to more generic systems [20,21].
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A key result from our investigation of the dominant
modes of nonspinning unequal-mass binary waveforms
[8] was that these modes had phases that evolved together
in lock-step through inspiral and merger. This agreement
was especially impressive for the ‘ ¼ m modes, leading to
the development of a heuristic picture of the binary system
as a rigid rotator (at least in the adiabatic limit) driving
gravitational-wave emission. We dubbed this the implicit
rotating source (IRS) picture.

A secondary result of this picture was the possibility of
developing a simple model for the time-development of the
dominant and leading subdominant modal frequencies!‘m

in terms of a single rotational frequency �ðtÞ:
!‘m ¼ m�ðtÞ:

We also presented a simple model for the corresponding
mode amplitudes, leading to the possibility of a new ap-
proach to time-based gravitational-waveform templates. In
fact, we developed such a template proposal, the IRS-EOB
templates, as an alternative to the effective-one-body tem-
plates of [9,10], which terminate the signals by matching to
a superposition of quasinormal-mode (QNM) frequencies.

In this paper, we look at the dominant waveform modes
from some aligned-spin systems, and ask the following
general questions: Does the general IRS picture still
hold? How do the features of aligned-spin mergers com-
pare with those of nonspinning mergers? Can we quantify
the main features of the merger ringdown with a simple
analytic model?

The rest of this paper is laid out as follows. In Sec. II, we
introduce the binary systems studied and the numerical
methods used to simulate them. In Sec. III, we present
results for the final black-hole states and an IRS descriptive
characterization of the waveforms from our numerical
evolutions. In Sec. IV, we analyze the late portions of these
waveforms in more detail, and apply the analytic modeling
approach of [8] to the dominant-mode frequencies and
(with improvements) to the amplitude model, concluding
with an explicit parametrization approximating the (2, 2)
results of all our simulations. In Sec. V, we investigate the
quality of the new models compared to the numerical
waveforms in the context of the Advanced LIGO detector.

We conclude with some discussion in Sec. VI. Some extra
detail on the convergence of the numerical simulations is
given in the Appendix.

II. SIMULATIONS

To investigate the nature of aligned-spin binary wave-
forms, we carried out a series of numerical evolutions for
equal-mass systems with zero spin (X100), spins aligned
with the initial orbital angular momentum (X1UU), anti-
aligned (X1DD), or mixed (X1UD). We also reran, for
purposes of comparison, the case of a 4:1 nonspinning
binary (X400).
The physical parameters of these evolutions are pre-

sented in Table I. The initial momenta of the equal-mass
binaries, with the exception of X1UU, were chosen by
integrating the post-Newtonian equations of motion, as
outlined in [22,23], with spin contributions to the
Hamiltonian adapted from [24–28] (although we work in
the Arnowitt-Deser-Misner (ADM) gauge, the results from
harmonic gauge using effective-field theory [26] have been
shown to be equivalent [29,30]), and the flux from [31]. For
the X1UU configuration, we used simpler quasicircular
initial parameters with no initial ingoing radial momentum.
For the X400 data, we retained the quasicircular initial
parameters used in [8].
The equal-mass runs were carried out with our HAHNDOL

evolution code [32] using the PARAMESH mesh-refinement
infrastructure [33]. The new X400 data, however, use
HAHNDOL paired with the Einstein Toolkit [34] release of

the Cactus Computational Toolkit [35] and the CARPET

mesh-refinement driver [36].
In all cases, the initial data are of the standard Brandt-

Brügmann type [37], using the Bowen-York [38] prescrip-
tion for extrinsic curvature that exactly satisfies the mo-
mentum constraint. We solve the remaining Hamiltonian
constraint using the TWOPUNCTURES spectral code [39].
This code also supplies the total ADM energy MADM of
the system, as well as the individual ‘‘puncture ADM
masses’’MADM;i, to very high precision. We note, however,

that for highly spinning or boosted Bowen-York-type data,
a measurable amount of radiation energy may be included

TABLE I. Physical and numerical parameters of the initial data for all the runs presented.m1;p andm2;p are the bare puncture masses
of the two premerger holes. r0 and P0 are the initial coordinate separation and (transverse) linear momentum, respectively, giving rise
to a total initial orbital angular momentum L0.MADM is the total energy of the initial data. The total infinite-separation total massM of
the system is estimated by MAH, the sum of the initial (apparent) horizon masses of the two holes, calculated at t ¼ 100. Finally, we
quote the approximate observed eccentricity (1).

Run name m1;p ¼ m2;p S1z S2z r0 P0tð�102Þ P0rð�104Þ L0 MADM

P
iMADM;i MAH e�;max

X100 0.4872312 0.0 0.0 11.0000 9.00993 7.09412 0.991092 0.990514 1.000050 1.000050 0.002

X1UU 0.301805 0.2 0.2 8.2013 10.3248 0.0 0.846768 0.988459 1.000908 1.000550 0.01

X1DD 0.390411 �0:159125 �0:159125 11.9837 8.83600 1.20000 1.058879 0.990453 0.998794 0.998686 0.01

X1UD 0.301805 0.2 �0:2 11.0000 9.00993 7.09412 0.991092 0.990024 0.999222 0.998834 0.002

X400 0.7900, 0.1890 0.0 0.0 8.4702 6.95662 0.0 0.589240 0.992912 1.000310 1.000315 0.02
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in these puncture ADM masses, but then escape to infinity
[7,40–42]; thus the initial puncture ADM mass may not be
the optimal measure of premerger black-hole mass. These
quantities are also listed in Table I.

To evolve these initial data, we employ the BSSNOK
3þ 1 decomposition of Einstein’s vacuum equations
[43–45], with the alternative conformal variable suggested
in [46–48], constraint-damping terms suggested in [49],
and the dissipation terms suggested in [50,51]. Our gauge
conditions are the specific 1þ log lapse and gamma-driver
shift described in [52], which constitute a variant of the
now-standard ‘‘moving punctures’’ approach [3,4].

The four equal-mass simulations—X100, X1UU, X1DD,
and X1UD—were conducted with the HAHNDOL/PARAMESH

version of our code using space-only adaptive mesh-
refinement (AMR) with grids placed adaptively, based on
curvature invariants [5]. The 4:1 mass-ratio simulation
X400 was carried out with the same evolution routines,
now ported to run within Cactus/CARPET [34–36], which
applies mesh-refinement in time as well as in space. The
initial grid structures for all runs are given inTable II. For the
equal-mass simulations, the highest-resolution regions clos-
est to the punctures had a grid spacing of 3M=160,M=64, or
3M=224 for the medium-, high-, and ultrahigh-resolution
evolutions (the ultrahigh was performed for X1UD only).
For the X400 simulation, the grid resolution around the
smaller hole was M=96, M=128, and M=160 for the
medium-, high-, and ultrahigh-resolution runs.

The equal-mass simulations exhibit between second-
and fifth-order convergence for the Hamiltonian constraint,
while the momentum constraints only showed clear
second-order convergence in the highest-resolution regions
around the punctures. Nevertheless, waveform amplitudes
and phases were sixth-order convergent over the majority
of the evolution. The remaining simulation, X400, dis-
plays sixth-order convergence in waveform amplitude and
phase until close to merger time. For details, we refer the
reader to the Appendix.

We use the AHFINDERDIRECT code [53,54] to locate the
individual holes, as well as the final post-merger hole. We
deduce the horizon mass from the horizon area AAH via
Christodoulou’s relation [55]

M2
AH ¼ M2

irr þ
J2

4M2
irr

;

where Mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AAH=16�

p
is the irreducible mass of the

hole. We present the sum of the two horizon masses,
MAH � MAH;1 þMAH;2 in Table I, and use it for time-

scaling of gravitational waveforms.
Following [22,56], we estimate eccentricity using the

variation in puncture orbital frequency �punc:

e�ðtÞ �
ð�punc ��circÞ

2�circ

; (1)

where �circ is a monotonic fit to �punc, based on a simple

post-Newtonian expansion. For a good fitting function,
the residual e�ðtÞ should be a sinusoid of slowly decreas-
ing amplitude, and period equal to the orbital period;
the eccentricity is then the (nearly constant) amplitude,
e�;max. In practice, due in part to gauge-dependent be-

havior in the puncture tracks, e�ðtÞ is not perfectly sinu-
soidal. Nevertheless, we quote the derived eccentricity
measure for each run in Table I. This is higher than we
would like for serious data-analysis applications, or for
generating post-Newtonian–numerical-relativity hybrid
waveforms, and we could choose to reduce eccentricity
through methods similar to those presented in [17].
However, our primary purpose in this paper is to inves-
tigate the bulk behavior of the waveform modes across
configurations, and very low eccentricity does not appear
to be necessary for this.
To obtain gravitational waveforms from our simulations,

we begin by calculating the ‘‘outgoing radiation’’ Weyl
scalar c 4 [57], corresponding to the tidal accelerations
that are to be measured by gravitational-wave instruments.
c 4 is a complex quantity related to the wave strain h ¼
hþ þ ih� by two time-derivatives: c 4 ¼ � €hþ þ i €h� [58].
We interpolate c 4 onto a set of coordinate spheres, and
decompose the values on these spheres into spherical har-
monics of spin-weight s ¼ �2,�2Ym

‘ :

rc 4ðt; r; �; �Þ ¼ X
‘m

C‘mðt; rÞ�2Y
m
‘ ð�;�Þ:

To obtain the harmonic modes of the strain h, therefore,
we must integrate C‘mðt; rÞ twice in time, with integration
constants taken to yield zero strain long after the merger
has taken place; we call this process ‘‘detrending’’ the
waveform. Currently, we use the Fourier-domain method
of time-integration presented in [59] to produce a strain

TABLE II. Initial grid structure of the different simulations. The left-most number is the outer extent of the Cartesian grid, with
resolution doubled (grid spacing halved) within each new refinement level.

Run name Outer (fixed) grid structure Inner (moving) grid structure

X100, X1DD, X1UD [1536, 768 384 192, 144, 72, 24, 12, 8] [3.0, 1.5, 0.75]

X1UU [1536, 768, 384, 192, 96, 72, 24, 12, 8] [3.0, 1.5, 0.75]

X400 (larger puncture) [2048, 1024, 512, 256, 160, 96] [20, 10, 5, 2.75, 1.5]

X400 (smaller puncture) [2048, 1024, 512, 256, 160, 96] [20, 10, 5, 2.5, 1.25, 0.6875, 0.375]
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waveform h that is free of unwanted secular trends. This
can also be written as a sum over modes:

rhðt; r; �; �Þ ¼ X
‘m

H‘mðt; rÞei’
h
‘m
ðt;rÞ

�2 Ym
‘ ð�;�Þ: (2)

In fact, we are most interested in an intermediate quan-

tity, _h, which we call the strain-rate. This is of particular
interest because it is most closely related to the rates of
emission of gravitational-wave energy and linear momen-
tum [60,61]. As with the strain and c 4, the strain-rate can
be decomposed into spherical harmonics:

r _hðt; r; �;�Þ ¼ X
‘m

A‘mðt; rÞeið’‘mðt;rÞþ�=2Þ
�2 Ym

‘ ð�;�Þ; (3)

where we have explicitly included a phase offset �=2 so
that the remaining strain-rate phase ’‘m differs from the
strain phase ’h

‘m only by terms of 2.5PN order (see dis-

cussion in [57]).
For the equal-mass cases, our extraction spheres were

rext 2 f45M; 50M; 55M; 60M; 65M; 70Mg, with a consis-
tent extraction-region resolution of 6M=5, M, and 4M=5
for central resolutions of 3M=160, M=64, and 3M=224,
respectively. For the X400 case, the spheres were rext 2
f40M; 50M; 60M; 70M; 80M; 90Mg. In these regions, the
extraction-region resolution was M and 4M=5 for central
resolutions of M=128 and M=160, respectively.

In addition to errors in the strong-field region of the
source, the extracted waveforms will also contain errors
due both to finite extraction radius and finite grid resolution
in the extraction region. To mitigate the former, we have
applied an extrapolation scheme to both waveform ampli-
tude and waveform phase. Specifically, we assume a falloff
model

Arext ¼ A1 þ a2
r2ext

; ’rext ¼ ’1 þ f2
r2ext

: (4)

Of all two-parameter rext-falloff models we have tried, this
model gives the best fit to the amplitude and phase of the
dominant (2,�2) modes. Adding more terms to the falloff
model will introduce overfitting errors, especially given the
limited range of our rext domain. This leading-order be-
havior is consistent with rext-falloff predictions of [62].
This model, however, seems inappropriate for higher-
frequency modes such as (4,�4), where dissipation effects
cause a general loss in amplitude. For these, we include the
possibility of an additional term proportional to rext, at
least for the amplitude:

Arext ¼ a�1rext þ A1 þ a2
r2ext

: (5)

We use this model for all modes with m> 3. We note,
however, that diffusive effects should only act to decrease
the amplitude. If a mode shows apparent growth that does

not converge with some inverse power of rext, then it
cannot be meaningfully extrapolated according to (5).

III. DESCRIPTIVE RADIATION
CHARACTERIZATION

As noted, the main objective of this paper is to character-
ize gravitational waveforms from aligned-spin mergers. In
this section we present the main features of the radiation, in
a spherical-harmonic modal decomposition. Our analysis
follows the same approach developed in [8], which de-
scriptively characterized the radiation from nonspinning
mergers in terms of an implicit rotating source. In this
approach, each modal waveform component is viewed
as the trace of the dynamic development of one of a
superposed set of source moments. To a very good ap-
proximation, each mode’s radiation is circularly polar-
ized, indicating rotational motion. This is registered in
the waveform’s rotational phase �‘m � ’‘m=m, while
the modal amplitudes heuristically indicate the relative
contributions of the source moments.
Our goal is to build on the characterization of nonspin-

ning mergers with additional details revealing the effects of
aligned spins through the merger. We first characterize the
raw content of the radiation in terms of energy and angular
momentum, then comparatively examine how the modal
amplitudes and rotation phases develop in time.

A. Radiated energy and angular momentum
and final states

To calculate the rate of energy and angular momentum
emission via gravitational radiation during merger and
ringdown, we apply the following mode-summation for-
mulas (see Appendix A of [8]):

dE

dt
¼ X

‘m

A2
‘m

16�
; (6)

TABLE III. Radiated energy and z angular momentum from
all merger processes, in units of the infinite-separation total mass
estimated byMAH (final column of Table I). The primary value is
the rext-extrapolated value of the ‘ ¼ 6 mode-sum of the inte-
grals at highest spatial resolution, while the quoted uncertainty is
the linear sum of three contributions: the standard error for the fit
parameter for the ‘ ¼ 6 mode-sum at the highest resolution; the
difference between the ‘ ¼ 4 and ‘ ¼ 6 mode-sums at this
resolution; the difference between the ‘ ¼ 6 mode-sum result
for the highest and next-highest resolutions (for X400, the
‘ ¼ 5 mode-sum was used instead of ‘ ¼ 6).

Run name �EradðMAHÞ �Jz;radðM2
AHÞ

X100 0:038547� 0:000244 0:367786� 0:001117
X1UU 0:075636� 0:001413 0:482665� 0:003874
X1DD 0:027240� 0:000219 0:293735� 0:001084
X1UD 0:039792� 0:000440 0:373655� 0:001581
X400 0:014437� 0:000104 0:136347� 0:000853
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dJz
dt

¼ X
‘m

jmj
16�

A‘mH‘m cosð’‘m � ’h
‘mÞ; (7)

where we terminate the mode-sums at ‘ ¼ 6 for the equal-
mass cases, and ‘ ¼ 5 for X400. We integrate the result in
time to obtain the total energy Erad and angular momentum
Jz;rad (x and y components are zero by symmetry) emitted

during the evolution. In principle, these calculations could
be performed with the full waveforms, rather than the
ð‘;mÞ modes. In practice, however, we only output the
mode-decomposed waveforms for post-evolution analysis,
and an accurate high-order time-integration of c 4 within
the evolution code is difficult. Additionally, post-evolution
analysis with the waveform modes allows us to better
control unphysical high-frequency noise. Rather than di-
rectly summing and integrating the rext-extrapolated
strains and strain-rates, we instead integrate the finite-rext
energy fluxes, and extrapolate the result according to the
three-parameter fit

�Erad;rext ¼ �Erad;1 þ e2
r2ext

þ e4
r4ext

; (8)

and similarly for the radiated angular momentum, �Jz.
However, when dissipation effects are significant, as for
the X1UU data, we must amend this assumption according
to our model (5). Adding an rext-proportional term to the
strain-rate amplitude will introduce several new terms to a
quadratic-in-amplitude quantity like Erad. However, since
this many terms are impossible to fit credibly with only
six extraction radii, we instead extrapolate the waveform
modes first according to (4) (for m< 4) and (5) (for
m � 4), and then perform a mode-sum of the result.
The results are given in Table III.

Now we present our estimates of the final state of the
post-merger Kerr holes, encoded in the two parametersMf

and � � Sz=M
2
f . Our estimates are derived from a number

of sources, and are tabulated in Table IV.
Most directly, the columns marked Mf;rad and �rad are

derived from simple conservation of energy and angular
momentum:

Mf;rad ¼ MADM ��Erad; (9)

�rad ¼ J0 � �Jz;rad
M2

f;rad

¼ L0 þ S1z þ S2z ��Jz;rad
M2

f;rad

; (10)

where �Erad and �Jz;rad are taken from Table III, and the

remaining quantities are as in Table I.
We can compare with an end-state model based on fits

to a range of numerical mergers. One such model for
final mass, appropriate for equal-mass systems, was
given by [14]1:

Mf;AEI=MAH ¼ 1� ~p0 � ~p1ð�1 þ �2Þ � ~p2ð�1 þ �2Þ2;
(11)

where �A � j ~SA=M2
Aj is the initial dimensionless spin of

hole A, and the fitting parameters are (again, determined
by comparison with numerical data):

~p0 ¼ 0:04826� 0:00027; ~p1 ¼ 0:01559� 0:00026;

~p2 ¼ 0:00485� 0:00025: (12)

We note that the uncertainties on the parameters are
incomplete, with an undetermined (but presumably neg-
ligible) post-Newtonian component.
For the final spin, one model with just enough complex-

ity for our data sets here was given by [64,68]2:

�AEI ¼ ~�þ s4�~�2 þ s5�
2 ~�þ t0�~�þ 2

ffiffiffi
3

p
�

þ t2�
2 þ t3�

3;

~� � q2�1 þ �2

q2 þ 1
; (13)

where the coefficients fs4; s5; t0; t2; t3g were determined by
comparison with numerical data:

TABLE IV. End-state Kerr parameters ðM;�Þ of post-merger holes. Mf;rad and �rad, and associated uncertainties, are derived from
radiation balance (9) and (10)—see Table III. Mf;AH and �AH come from the AHFINDERDIRECT code [53,54] and the HAHNDOL spin

calculator [63]; quoted uncertainties are a combination of the post-merger variability of the irreducible mass and spin and the
difference between the measured mass and spin from the highest and second-highest resolutions. Mf;AEIðMAHÞ and �AEI use the

numerically tuned formulas (13) and (11) due to [14,64,65]; quoted uncertainties here are due to uncertainty in the fitting coefficients
(12) and (14).

Run name Mf;radðMAHÞ �rad Mf;AHðMAHÞ �AH Mf;AEIðMAHÞ �AEI

X100 0:9519� 0:0002 0:6878� 0:0013 0:95165� 0:00001 0:68644� 0:00001 0:9517� 0:0003 0:68646� 0:00004
X1UU 0:9123� 0:0014 0:9165� 0:0055 0:91164� 0:00013 0:90720� 0:00015 0:9144� 0:0008 0:9114� 0:0264
X1DD 0:9645� 0:0002 0:4825� 0:0012 0:96303� 0:00002 0:48140� 0:00012 0:9637� 0:0006 0:4794� 0:0256
X1UD 0:9514� 0:0004 0:6847� 0:0019 0:94996� 0:00001 0:68408� 0:00002 0:9517� 0:0003 0:6865� 0:0243
X400 0:9782� 0:0001 0:4726� 0:0009 N/A N/A N/A 0:4748� 0:0093

1Other models for the post-merger mass are available; see, for
instance, Tichy and Marronetti [66] and Lousto et al. [67].

2Note that we have adapted Eq. 4 of [68] to match our
convention for q.
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s4 ¼ �0:1229� 0:0075; s5 ¼ 0:4537� 0:1463;

t0 ¼ �2:8904� 0:0359; t2 ¼ �3:5171� 0:1210;

t3 ¼ 2:5763� 0:4833: (14)

In Table IV we present final masses and spins derived from
values derived from Eqs. (11) and (13), with uncertainties
due only to the parameter uncertainties in Eqs. (12) and
(14). Unfortunately since Eq. (11) only applies to equal-
mass cases, we cannot use it to estimate the X400 end-
state mass. The more complicated formula found in Lousto
et al. [67] covers more generic binaries, but with larger
uncertainties.

We note also from Table IV that the two cases X1DD and
X400 have the same final spin, within the quoted uncer-
tainties. Thus we might expect similarities in the ringdown
portion of their waveforms across all important modes,
though the extent to which each quasinormal mode is
excited will be different in the two cases.

B. Multipolar amplitudes

In Ref. [8] we found strong similarity in the peak-scaled
modal amplitude development through the peak for a range
of nonspinning mergers over a range of masses, and some-
what rougher similarity among the different modes. For
nonspinning mergers, the dominant modes were generally
those with ‘ ¼ m, and these modes were neatly described
with the IRS heuristic.

Strain-rate amplitudes for the strongest modes of our
new simulations are shown in Fig. 1. For all equal-mass
simulations, the strongest subdominant modes are (4, 4)
and (3, 2); other modes never attain 0.1% of the (2, 2)
power [equivalently, 3% of the (2, 2) amplitude]. For
X1DD, the (2, 2) mode is even more strongly dominant:
in this case, all subdominant modes other than (3, 2) show
significant power only at very late times. At R ¼ 45M the
(2, 0) mode shows an amplitude similar to the weaker of
the modes shown here, but this is sensitive to the extraction
radius (our procedure for detrending the strain-rate does
not work well for m ¼ 0).

It is worthwhile to briefly consider how the modal
composition varies with aligned spin and mass ratio, as
shown here. Note that the (4, 4) mode amplitude is roughly
the same for all cases shown here, varying even less than
the (2, 2) amplitudes, as was already seen for the non-
spinning runs investigated in [8]. For the equal-mass cases,
the (3, 2) mode amplitude roughly equals the (4, 4) mode at
peak, but for aligned (antialigned) spins it is enhanced
(suppressed) approaching the peak. For the 4:1 mass-ratio
X400, the odd ‘ ¼ m make significant contributions
unseen for equal masses, more so than in the X1UD
asymmetric-spin case. For asymmetric mergers of either
kind, ‘ ¼ jmj þ 1 modes are also significant.

Figure 2 overlays the (2, 2) (top panel) and (4, 4) (bottom
panel) amplitude peaks of all cases (suitably time-shifted
and rescaled) to compare their relative sharpness. It is
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FIG. 1 (color online). Multipolar strain-rate amplitudes for
X1UD (top panel), X1UU (second), X1DD (third), and X400
(bottom panel), evaluated at finite extraction radii (45M for the
equal-mass, 50M for the X400 case). The lack of symmetry for
X1UD and X400 means additional excited (odd-m) modes. For
the X1UD case, we overlay circles to show the nearly identical
even-m mode amplitudes of X100. In each panel, we omit
subdominant amplitudes that never exceed 3% of the (2, 2)
mode.
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interesting that the ‘‘down-down’’ peaks of X1DD are
narrower than the ‘‘up-up peaks’’ of X1UU. The steeper
slope on the t > 0 side can be tied to the generally faster
falloff in QNM modes for the prograde modes of the much
more slowly rotating black hole generated by the down-
down merger. The peaks remain roughly symmetric, with a
faster rise as well. This is particularly striking for the
subdominant modes.

C. Waveform phasing

In our studies of nonspinning mergers [8], we found
strong correspondence in phase development among the
different modes, interpreted as near-‘‘corotation’’ of the
implicit-source moments. Specifically, all significant
modes displayed a common rotational phase �‘m up to
the time of peak power at merger, deviating by less than
0.025 rad during that time. After the merger, the deviations
between modes increased, but for the ‘ ¼ m modes this
deviation was very slow, & 1 rad over the first 100M
following merger. For the weaker ‘ � m modes, the phas-
ing began to differ somewhat earlier and was in some cases
less cleanly described by the IRS heuristic.

Modal phase comparisons are more challenging
for equal-mass spinning mergers than they were for

nonspinning unequal-mass mergers. As noted above, the
symmetries of the configuration and the weakness of ra-
diative spin effects in the inspiral yield only a few signifi-
cant modes and even these tend to be weak, subject to
competition with noise in the simulations, and likely more
sensitive to subtleties in the choice of spherical-harmonic
basis.
The left panel of Fig. 3 shows the phasing of several

strain-rate modes for the up-up case X1UU. Generally, as
was the case for nonspinning systems [8], the different
ð‘;mÞ modes remain approximately in phase up to the
merger. As with the nonspinning mergers, the ‘ ¼ m cases
show the best agreement for t < 0. In this case though,
because exchange symmetry excludes the odd-m modes,
we only have two ‘ ¼ m modes to compare up to ‘ ¼ 5.
Two modes present—(4, 2) and (5, 4)—have amplitudes
below our 3% cutoff in Fig. 1. Such small amplitudes
introduce a lot of noise in the mode’s phase; we include
the phase only when it begins to show acceptable
continuity.
We take a closer look at the relative phasing in the right

panel of Fig. 3, where we present the difference between
each of the three strongest subdominant modes—(4, 4),
(3, 2), and (5, 4)—with the dominant (2, 2) mode. Generally
the phase differences decrease going from a finite extrac-
tion radius (dashed curves) to rext ! 1 (solid curves).
Looking at the inspiral portion (t < 0) of the phase first,

we see that the (2, 2) and (4, 4) rotational phases agree
within �0:05 rad, with a marginal improvement when
we extrapolate rext ! 1. For the (3, 2) mode, there is a
roughly constant offset of about 0.15 rad after
rext-extrapolation. Because of the short extent and noisy
nature of the reliable (5, 4) mode phase, it is difficult to
extract a definite phase offset; it appears to be in the range
0.05–0.10 rad after extrapolation. However, the phase
offset has also flipped sign during extrapolation in rext,
indicating that we may not know the correct phase to high
accuracy. This may not be resolved simply by increasing
grid resolution; we have seen similar extrapolation sign-
flips for the (5, 4) phase offset in our X1UD simulations,
even at the ‘‘ultrahigh’’ 3M=224 resolution. As with the
nonspinning case, the ‘ � m modes show the largest
offset from the (2, 2) modes, and are most affected by
rext-extrapolation effects.
We note that post-Newtonian theory predicts for nearly

constant phase offsets between modes during late inspiral;
these come in at 1.5PN order for certain modes (see, for
example, the polarization amplitudes given in [69]).
However, they are small compared to the phase differ-
ences shown here—less than �0:03 rad up to 100M
before peak.
Looking now at the post-merger period (t > 0), the

phase agreement remains quite tight, better than that seen
in the nonspinning mergers. In the IRS interpretation, all
modes in this case remain nearly rotationally locked right
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FIG. 2 (color online). Comparison of ‘‘sharpness’’ of ampli-
tude peaks for (2, 2) (top panel) and (4, 4) (bottom panel) modes
of all cases. Each amplitude has been rescaled by its maximum
value.
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through the merger. Note, in particular, that the phase
difference between the (2, 2) and (3, 2) modes is roughly
constant for t > 0. The (4, 4) and (5, 4) modes are also in
phase with each other at rext ¼ 45M; they develop a phase
offset when extrapolated to rext ! 1, but maintain the
same slope. All modes agree within & 1 rad even 60M
after peak.

To understand this tight phase agreement, we may look
to perturbation theory for the post-merger Kerr hole. For
rapidly spinning black holes, QNM frequencies depend
primarily on m, approaching M!QNM ¼ m=2 in the

a ! Mf limit [70,71], which suggests a tighter coupling
for the modes in this case. However, the final spin of the
post-merger Kerr hole for X1UU, � � 0:91, is not close
enough to this extremal limit to explain the phase agreement
we see.
In the left panel of Fig. 4 we show the phasing of several

modes for the down-down simulation X1DD. Again, the
(4, 2) and (5, 4) modes are weak, and yield reliable phases
only from�100M before peak. Looking at the right panel,
the (4, 4) mode extrapolated phase difference is�0:02 rad,
while there is a small offset of about 0.1 rad between the
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FIG. 4 (color online). Left: rotational phase �ðtÞ from puncture tracks and different multipolar strain-rate components extrapolated
to rext ! 1 for the down-down case X1DD. The weakest two modes, (5, 4) and (4, 2), arise very suddenly at late times, and are only
measurable for about 100M before merger. Right: the difference in phase with the (2, 2) mode for the next three most important modes
only: (4, 4) (circles), (3, 2) (squares), and (5, 4) (diamonds). In each case, we show the difference at rext ¼ 45M (dashed lines) and
rext ! 1 (solid lines).
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FIG. 3 (color online). Left: rotational phase �ðtÞ from puncture tracks and different multipolar strain-rate components extrapolated
to rext ! 1 for the up-up case X1UU. The weakest two modes, (5, 4) and (4, 2), are only measurable for about 200M before merger.
Right: the difference in phase with the (2, 2) mode for the next three most important modes only: (4, 4) (circles), (3, 2) (squares), and
(5, 4) (diamonds). In each case, we show the difference at rext ¼ 45M (dashed lines) and rext ! 1 (solid lines).
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(3, 2) and (2, 2) modes. As with the X1UU mode, extrapo-
lation in rext appears to increase the phase offset. There is a
slight drift among the ‘ ¼ m modes, similar to that seen in
other cases. Indeed, the phase difference between (2, 2)
and (4, 4) is nearly identical to that of the X1UU case. The
‘ � m modes this time show significantly varying fre-
quencies (slopes). This is unsurprising, consistent with the
differences among the leading normal QNM mode
frequencies.

IV. MODELING THE NEAR-MERGERWAVEFORM

In this section we undertake a more quantitative study of
the late-time waveforms through merger and ringdown,
following the general approach in [8] for an explicit
quantitative representation of the frequency development.
We extend the previous work on modeling the amplitude
with additional parameters to allow more precise fits at
relatively early times.

The waveform phasing examined in the last section is
fairly featureless. The phase is monotonic, slowly devel-
oping curves with a gentle elbow at merger. This simplicity
is a result of the slow secular development of the under-
lying circular motion which generates the radiation. It also
suggests that we may quantify the phase development with
just a few parameters.

Following the approach in [8] we probe more deeply
into the phasing by taking a time-derivative to study the
frequency evolution. Common features are found among
the leading waveform modes and across a range of
mergers, allowing the results to be summarized with a
simple parametrization. With the same general fre-
quency model as in [8] for nonspinning mergers we
can also describe the phasing of spinning black-hole
mergers.

In Fig. 5, we compare the dominant-mode frequencies of
the three equal-mass cases presented above. Since odd-m
modes are suppressed by symmetry, the relevant modes
are the (2, 2) (quadrupole), (4, 4), and (3, 2) modes.
Unsurprisingly, the frequencies are consistently higher
throughout merger for more-aligned spins, with the final
plateau value matching the dominant QNM frequency. For
the (3, 2) modes, there is significant deviation from the
smooth frequency development generally expected ac-
cording to our IRS heuristic; this amounts to a large
bump in the frequency during the plateau phase. Similar
deviations in the (3, 2) modes have been noted previously
[8,72]. Such effects may arise through mode mixing with
the (2, 2) mode [73], which could arise through ambiguity
in the shape of the sphere on which the radiation is
measured, or on the use of (spin-weighted) spherical
harmonics, rather than the spheroidal harmonics appropri-
ate for the perturbation theory in which the QNM fre-
quencies are defined [74]. The precise cause and
mechanisms of this mixing are open questions, which
we hope to return to in future work.

Also included in Fig. 5 are the equivalent frequencies for
the 4:1 nonspinning merger X400 (note, however, that that
merger had significant odd-m modes not present in the
equal-mass cases here). The spins of the antialigned
X1DD initial data were chosen to yield the same final
Kerr parameters (mass, spin) as the X400 data, according
to (13). As the Kerr parameters determine the QNM fre-
quencies of each mode, it is not surprising that the X1DD
and X400 frequencies level off to the same value after
merger. What is interesting is the difference in behavior
approaching this final state. For t & �20M, X400 hews
closely to the nonspinning X100. The latter could be
expected given the similarity in phasing upon approach
to merger for nonspinning mergers [8]. At the latest times
the frequency development is determined primarily by the
parameters of the final black hole formed, while additional
parameters become important as we look back to earlier
times.

A. Modeling the rotational frequency

In [8], we introduced the following empirical model for
the rotational frequency �‘m � !‘m=m in a short time
window around the merger:
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FIG. 5 (color online). Waveform frequency !‘m for the domi-
nant modes of the equal-mass evolutions. The upper panel shows
the dominant (2, 2) mode, while the middle and bottom panels
show the next strongest modes—(4, 4) and (3, 2), respectively.
We also show the corresponding frequencies for the 4:1 non-
spinning merger X400. At early times, this tracks the X100
waveform, while during merger it approaches the final frequency
of the X1DD case.
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�ðtÞ ¼ �fð1� f̂ðtÞÞ (15)

f̂ð�; b; t0; tÞ ¼ c

2

�
1þ 1

�

�ð1þ�Þ�
1�

�
1þ 1

�
e�2ðt�t0Þ=b

���
�
;

(16)

where the dimensionless parameter c ¼ _�0b=�f replaces

the ‘‘maximum frequency slope’’ _�0 corresponding to the
peak chirp rate. Within this general framework, there are

up to five free parameters for the frequency development:
c, �, b, t0, and �f .
In our previous investigations [8], this functional form

worked well in fitting the dominant frequencies of a se-
quence of nonspinning binaries with mass ratios in the
range f1:0; 6:0g. Unsurprisingly, �f was found to be con-
sistent with the quasinormal frequency of the post-merger
Kerr hole. More interestingly, b was also found to be
approximately consistent with the quasinormal damping
time, meaning that at late times the frequency approaches
its limiting value exponentially at the same rate as ampli-
tude squared. It was also found that the dimensionless ratio

Mf
_�0=�f � 0:021 across all cases.

We usually apply (15) as an ‘‘orbital frequency’’, which
is scaled from the gravitational-wave frequency by the
azimuthal mode number m. The formula may be applied,
with similar results, to strain, strain-rate, or c 4

waveforms.
We consider three increasingly constrained classes of

fits of this form. The most general is a free fit for all five
parameters. Second, we test the late-time frequency/
amplitude relationship noted in [8] with a fit where b is
constrained to agree with the late-time amplitude falloff
rate (and thus with the QNM falloff rate). Finally we
suggest a general fit by which all parameters (other than
t0) are derived from the final black-hole mass and spin.
We focus on the strain-rate fit, as it provides a good

compromise between the baseline drift error that affects
the strain waveforms, and the higher level of noise in the
c 4 waveforms. Figure 6 shows the result of this procedure
for the rext-extrapolated waveforms of the X1UU (top) and
X1DD (bottom) runs (note that the numerical data have
been down-sampled by factors of 20 or more for clarity of
presentation). At the level of precision accessible by eye all
fits appear nearly perfect after t >�20. Parameter fits
conducted only over times t >�20 typically do not ex-
trapolate well to earlier times; a fit over a wider range,
extending over t >�40 appears to be very good over this
entire region though there is some slight degradation in the
quality of the fit near 0< t < 10. For the dashed curves
labeled ‘‘free fit,’’ all five parameters in (16) were fit freely
against the numerical data. In the curves labeled ‘‘b fixed,’’
we test the hypothesis that the exponential decay of
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FIG. 6 (color online). Rotational frequency fits for the (2, 2)
modes of the X1UU (top) and X1DD (bottom) runs, extrapolated
to rext ! 1. The different fits differ primarily in the early part of
the comparison window around tpeak, which runs from �20MAH

toþ40MAH for standard fits, and from�40MAH toþ60MAH for
wide fits.

TABLE V. Best-fit values for the unconstrained parameters c, �, b,�f , and t0 for the frequency model (15), and of A0 and �1 for the
amplitude model (17). All fits are over a time window from tpeak � 40M to tpeak þ 60M. Quoted uncertainties are the direct sum of

three terms: uncertainties in the highest-resolution fits; differences between best-fit values for rext ! 1 and rext ¼ 45M (40M for
X400); and differences between best-fit values at highest and next-highest resolutions runs.

Run name c � t0 b �f A0 �1

X100 0:2489� 0:0040 0:421� 0:015 �3:77� 0:17 11:685� 0:025 0:27655� 0:00021 1:270� 0:022 6:64� 0:35
X1UU 0:2500� 0:0021 0:401� 0:009 �2:15� 0:59 14:296� 0:030 0:37317� 0:00070 1:627� 0:064 2:46� 0:70
X1DD 0:2626� 0:0062 0:473� 0:027 �4:90� 0:12 11:203� 0:034 0:23805� 0:00093 1:157� 0:009 11:12� 0:12
X1UD 0:2458� 0:0038 0:407� 0:014 �3:57� 0:15 11:634� 0:024 0:27643� 0:00017 1:263� 0:016 6:27� 0:38
X400 0:2343� 0:0033 0:439� 0:009 �4:73� 0:52 11:381� 0:033 0:23380� 0:00075 0:740� 0:017 9:96� 1:26
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frequency evolution is related to the amplitude falloff rate,
fixing b first by a fit to the exponential decay rate in the
mode amplitude data, before fitting the other parameters
according to the frequency data. Though the frequency
data are then fit against four parameters instead of five,
the result is still a very good fit, justifying the assumption.
The amplitude/frequency relationship is discussed more in
the next section. With b based on the amplitude data, we
record the best-fit values of the parameters c, �, b,�f , and
t0 in Table V. The final curves in Fig. 6 (labeled ‘‘con-
strained’’) only fit t0, with all other parameters preset, as
discussed below in Sec. IVC.

B. Amplitude modeling

Following [8], our strategy is to describe the wave
amplitudes in relation to the frequency. This is loosely
motivated by the idea that frequency evolves in response
to loss of energy and angular momentum, but energy and
angular momentum fluxes are dependent on the wave
amplitude. For nonspinning systems, we previously found
that dJ=d�was slowly varying in the merger, and could be
approximated as a constant. The result was enough to
provide a coarse quantitative description of the merger-
ringdown amplitude development in reference to the
frequency development. Here we extend that model,
introducing additional parameters to allow more precise
quantitative description of the numerical results.

Now assume the waveform strain-rate amplitude takes
the general form:

A‘mðf̂Þ ¼ A0‘mPðf̂Þ
ffiffiffiffiffiffiffiffiffiffiffi
j _̂fðtÞj

q
; (17)

where the adjusting function PðxÞ is some function that
approaches unity as x ! 0. Then assuming that the strain
amplitude H‘m satisfies j _H‘mj 	 jH‘m _’h

‘mj, which is true

at all points of the numerical waveform, we can find an
approximate expression linking strain and strain-rate:

A‘m � H‘m!
h
‘m: (18)

Combining this with (17), we can model the strain ampli-
tude as:

H‘mðf̂Þ ¼ !�1
‘mA‘mðf̂Þ

¼ ðm�fÞ�1ð1� f̂Þ�1A0‘mPðf̂Þ
ffiffiffiffiffiffiffiffiffiffiffi
j _̂fðtÞj

q

¼ H0‘mð1� f̂Þ�1Pðf̂Þ
ffiffiffiffiffiffiffiffiffiffiffi
j _̂fðtÞj

q
: (19)

Similarly, the amplitude of the c 4 ð‘;mÞ mode would be
modeled as:

C‘mðf̂Þ ¼ C0‘mð1� f̂ÞPðf̂Þ
ffiffiffiffiffiffiffiffiffiffiffi
j _̂fðtÞj

q
; (20)

where we are still using the strain sign convention for
phasing of modes (that is, positive-m modes have positive
frequencies).
Parameters including A0 and other parameters in the

definition of Pðf̂Þ allow some tuning for various cases
considered here while preserving the general approach
in [8]. Concretely, consider

Pðf̂Þ�2 ¼ 1þ XN
n¼1

�nðf̂2n � f̂2nþ2Þ: (21)

The simplest possibility, with N ¼ 0 yielding P ¼ 1,
would imply that dE=d! is constant, i.e. that the system
loses radiative energy in linear proportion to the late-time
frequency decay to the quasinormal-ringdown rate; this
is close to the amplitude model used in [8]. Equation
(21) is consistent with quasinormal ringing radiation in
the f ! 0 limit (assuming frequency model parameter
b ¼ 1==!QNM) and can be adjusted for deviations ear-

lier in the waveform where 1> f > 0. The restriction to
even powers was motivated by an empirical observation
that the first helpful correction seems to be at second
order, and the resummed powers in the summand, yields
a more generally regular result as f ! 1. Going back to
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FIG. 7 (color online). Amplitude fits for the (2, 2) modes
(extrapolated to rext ! 1) of the X1UU (top) and X1DD (bot-
tom) runs. The two fits in each panel differ in whether they fit the
parameter �1 or just A0. The fit windows here emphasize the late
tail of the amplitude, running from �20MAH to þ120MAH.
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times more than 20M before merger the model becomes
unrealistic. The model amplitude begins small at early
times, growing exponentially toward the peak.

In practice, we find that we get a good approximation for
the merger-ringdown part of the radiation in the (2, 2)
modes by keeping one term in the expansion (21), and

fitting for A0 and �1. Then using f̂ from (16), the complete
amplitude model used is:

A2
22 � jr _h22ðf̂Þj2 ¼ A2

0

_̂fðtÞ
1þ �1ðf̂2 � f̂4Þ : (22)

The result of this procedure is shown in Fig. 7, for the
rext-extrapolated waveforms of the X1UU and X1DD runs.
For the less-constrained fits, b was first determined using
data in a window from 20MAH to 80MAH; this value was
then fixed, and data over the larger window �20MAH to
110MAH were used to determine A0 and �1. Though not
shown in the figure, we see somewhat less accurate fits
with the model for the amplitudes of the X400 case, with
differences before and near peak at the �5% level.

C. Constraining the models

Working with the results of the free fits for frequency
and amplitude, we note the approximate constancy of the
parameters c and � across all cases. Additionally, we note
that the final frequency and decay parameters�f and b are
close to the expected QNM values. Thus we may be able to
reduce considerably the number of free parameters needed
for the models.

Similar to the dimensionless scaling used for the c
parameter above we seek a scaling of �1 in terms of the
QNM ‘‘quality factor’’ Q ¼ <!QNM=2=!QNM, as a sim-

ple dimensionless number dependent on the spin of the
final hole. We find that the results for our equal-mass cases
roughly scale withQ2, with the mean result �1 � 72:3=Q2.

We now perform a more constrained version of the fits,
fixing the parameters b, �f to their QNM values, and
replacing c and � with their average values from Table V,

and setting the frequency parameters and �1 as outlined
above. The combined set of constrained parameters is:

c ¼ 0:252; � ¼ 0:426; �f ¼ <!QNM=2;

b ¼ 1:0==!QNM; �1 ¼ 72:3=Q2: (23)

Thus we are left with just two free parameters to fit: t0 and
A0. These (as well as the constrained parameters) are
recorded in Table VI.
We may consider attempting to constrain the remaining

parameters as well. The A0 parameter has units M1=2
f and

seems to scale approximately with ��1=2
f . Using the mean

fit for the equal-mass cases we get:

A0 � 9:9��1=2
f : (24)

We include � in the fit since the overall amplitude coeffi-
cient must vanish linearly as the mass-ratio goes to zero.
Though we have not focused on mass-ratio dependence,
this scaling is consistent with the nonspinning 4:1 result.

D. Subdominant modes

As noted above the most significant modes for equal-
mass mergers are the (4, 4) and (3, 2) modes. Even these
have amplitudes of no more than about one-tenth that of
the (2, 2) mode. While the (3, 2) mode shows more
complicated features that do not lend themselves to this
fitting analysis, the (4, 4) mode is phenomenologically
similar to the (2, 2) mode. Figure 8 shows the frequency
and amplitude fits for the (4, 4) mode of the X1DD run. The
frequency fit is clearly still very close to the numerical data
over the domain of interest, but the amplitude’s overall
peak is �10% too low, with a poor fit to the slope of the
numerical data before the peak. This suggests that our
ansatz for the mode amplitude does not carry over to
subdominant modes, and requires further work.
Nevertheless, we will see in the next section that the
dominant mode may already be useful in detection studies.
To contrast the quality of the fit performance for the

(2, 2) and (4, 4) modes, we present in Fig. 9 the associated

TABLE VI. Values for the parameters c, �, b, �f , and t0 for the frequency model (15), and of
A0 and �1 for the amplitude model (17). Unlike in Table V, only t0 and A0 are freely fit; the
remaining parameters have been fixed, as given in Eq. (23). All fits are over a time window from
tpeak � 40M to tpeak þ 60M. Quoted uncertainties are the direct sum of three terms: uncertainties

in the highest-resolution fits; differences between best-fit values for rext ! 1 and rext ¼ 45M
(40M for X400); and differences between best-fit values at highest and next-highest resolutions
runs.

Run name c � t0 b �f A0 �1

X100 0.252 0.426 �3:99� 0:29 11.712 0.27661 1:271� 0:013 6.7934

X1UU 0.252 0.426 �2:31� 0:58 14.404 0.37133 1:633� 0:032 2.4924

X1DD 0.252 0.426 �4:41� 0:36 11.222 0.23820 1:143� 0:006 9.9784

X1UD 0.252 0.426 �3:91� 0:30 11.681 0.27661 1:272� 0:006 6.8296

X400 0.252 0.426 �6:67� 0:72 11.465 0.23305 0:732� 0:009 9.9867
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strain-rate (real parts) over the range of the fit. We also
plot in the upper panel the (2, 2) mode resulting from a
fully constrained model for amplitude and phase, using
Eqs. (23) and (24).

V. FAITHFULNESS OF THE FREQUENCY MODEL

One way to quantify how much of the merger informa-
tion we have captured by the modeling above is to compare
the results of the model with the original fully numerical
waveforms in a detector context. We consider an explicit
waveform model restricted to the (2, �2) modes, which
contain most of the power. The waveform phase is derived
from integrating the model IRS frequency given by (15)
and (16), while the amplitude is given by (22).

In total there are seven parameters in these expressions,
and one additional parameter ’0 arises as an integration
constant in deriving the phase from our frequency model.
Drawing on the results of Sec. IVC, five of these parame-
ters fc; �; b;�f ; �1g are specified by (23) as functions of
the final black hole’s leading quasinormal-mode frequency,
thus reducing these free parameters to functions of the final
black hole’s mass and spin. Beyond these the only remain-
ing parameters are f’0; t0; A0g, corresponding to phase and
time references, and an overall amplitude scale. For the

X1DD data, we can see the resulting waveform in the top
panel of Fig. 9. For comparison we also show the results of
a ‘‘free’’ fit, where the frequency was fit to the NR data
without the constraints in (23), and the amplitude was fit
based on those results without constraint on �1. This is not
a completely free fit, since the frequency parameters are fit
without regard for the consequences on the amplitude.
We calculate the mismatch for the Advanced LIGO

detector [75]. ‘‘Mismatch’’ here is defined as the deviation
of the normalized overlap integral from unity, usually
optimized over free parameters such as overall phase and
arrival time [76]:

mismatch � 1�max
�i

hhmð�iÞjheiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhmð�iÞjhmð�iÞihhejhei
p ; (25)

where the frequency-space inner product h
j
i is the
overlap between two signals, defined as [77]

hh1jh2i � 2
Z 1

0

½~h1ðfÞ~h2ðfÞ� þ ~h1ðfÞ� ~h2ðfÞ�
SnðfÞ df

¼ 4Re

�Z 1

0

~h1ðfÞ~h2ðfÞ�
SnðfÞ df

�
; (26)
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FIG. 8 (color online). Frequency (top panel) and amplitude
(bottom panel) fits for the (4, 4) mode (extrapolated to rext ! 1)
of the X1DD run. Again, the numerical data are indicated by
circles, with a free fit over the parameters represented by the
dashed line.
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FIG. 9 (color online). Real part of the (2, 2) (top panel) and
(4, 4) (bottom panel) strain-rate modes for the X1DD run (ex-
trapolated to rext ! 1). Again, the numerical data are indicated
by circles, with a free fit over the parameters represented by the
dashed line. For the (2, 2) mode, we also include the result of
the fully restricted waveform [see Eqs. (23)] as a continuous
line.
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where ~h1ðfÞ and ~h2ðfÞ are the Fourier transforms of the
signals, and SnðfÞ is the (one-sided) noise power spectral
density of the detector we are interested in; in this case,
we take the ideal form SnðfÞ for Advanced LIGO given
in Appendix A of [14]:

SnðfÞ ¼ S0

�
x�4:14 � 5x�2

þ 111

�
1� x2 þ x4

2

��
1þ x2

2

��1
�
; (27)

where x � f=f0, S0 ¼ 10�49 and f0 ¼ 215 Hz.
For this test, we pick black-hole binaries of total mass

M 2 f40M�; 300M�g, at a fixed distance of 1 Gpc from the
detector. Furthermore, we assume the system is observed
along the polar axis. The resulting mismatch with the
quadrupole NR signal is shown for all the runs (X100,
X1UU, X1DD, and X400) in Fig. 10. Common to all cases
is a sharp falloff (that is, improvement) in mismatch as the
system mass increases: from * 25% at M ¼ 40M� to
& 1% for M> 200M�. This trend is expected: overall
physical frequencies scale inversely with system mass, so
while the last few premerger orbits’ worth of radiation for a
40M� system might fall in Advanced LIGO’s most sensi-
tive frequency band, only the higher-frequency merger and
ringdown might lie in the same band for a 200M� system.

In Fig. 11 we again show this mismatch for the X100
configuration, along with three other mismatches: with the
full NR signal (all modes) along the polar axis, and on the
equatorial plane, and also against the unconstrainedmodel,
using ‘‘free’’-fit parameters (Table V). This last mismatch
has been scaled up by a factor of 100 for visibility.

For these results we have compared with just the (2, 2)
component of our numerical simulation waveforms. If
applied in an actual observation there would be additional
power, perhaps at the level of up to several percent in other
harmonics. This model makes no attempt to fit those con-
tributions. With a little work we could extend our con-
strained model to approximate the contributions of these
other modes, but this would necessarily require depen-
dence on many additional parameters, including informa-
tion about the component masses and spins and the relative
orientation of source and detector.
We note that the the ‘‘sweet spot’’ of the Advanced

LIGO sensitivity curve (27) is around 200 Hz. For systems
at the low-mass end of our plot, 40M�, this frequency
range is accurately handled by post-Newtonian-based
waveforms. Thus a full waveform model appropriate for
such low-mass systems should really be a combination of
our merger-ringdown model with a PN-based inspiral.
By neglecting this here, and integrating over the full
band, we will suffer from junk numerical radiation and
windowing artifacts at the lower-mass end. It is reason-
able to suspect that we would get a considerably lower
mismatch if we restricted our integration to frequencies
above M!22 � 0:15. The estimates presented in Figs. 10
and 11 are therefore likely to be conservative.
With one detector, signals based on the waveform model

we have constructed here depend only on the intrinsic
parameters describing the final black hole, phase and
time references and overall amplitude, just five of the 17
parameters describing generic black-hole merger observa-
tions. Our results suggest that dominant features of the
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FIG. 10 (color online). Mismatch (25) between quadrupole
(2, �2) constrained IRS and numerical-relativity waveforms
for all simulations in the context of the Advanced LIGO detector,
where the system was observed along the polar axis at a distance
of 1 Gpc.
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and (1) quadrupole numerical-relativity waveforms along the
polar axis (circles), (2) full NR waveforms along the polar axis
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(triangles). All mismatches were calculated in the context of
the Advanced LIGO detector, at a distance of 1 Gpc.
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powerful merger-ringdown radiation may be described
with little or no reference to the details of the component
black holes. This provides a complementary description of
the merger to those based on the binary inspiral parame-
ters. Even without a long inspiral lead-in, such models
may be useful in detecting gravitational waves from high-
mass mergers. Our waveforms are based on the same
parameters as those in ringdown-based approaches to
merger observations in ground-based detector pipelines
[78–81] and may be useful in future versions of these
searches.

VI. DISCUSSION

In this paper, we have investigated the mode-
decomposed gravitational waveforms resulting from the
merger of aligned-spin black-hole binaries. Our primary
purpose was to establish how well the implicit rotating
source picture of the binary as a GW source—first sug-
gested in [8] in the context of nonspinning holes of com-
parable mass—holds in this different branch of parameter
space.

Based on these investigations, we note that the modal
structure of aligned-spin mergers is like that of the equal-
mass nonspinning configuration, dominated by the (2,�2),
(3,�2), and (4,�4) modes. These modes still display IRS-
type behavior, featuring common rotational phase evolu-
tion with little offset through late-inspiral, merger, and into
ringdown. The peak modal amplitudes are similar to those
for the nonspinning case, though the duration of the peak
region (which was roughly independent of mass ratio) is
extended for aligned spins (and shortened for antialigned
spins). A similar time-scale dependence is seen in the rise
to peak frequency.

In applying our late-merger frequency model (with a
slightly modified parametrization) to these new cases, we
have found that the model still performs well for the
dominant modes. We enhance the original mode amplitude
model of [8] to achieve improved behavior, at least for the
leading (2, �2) modes; however it yields up to �10%
mismatches at and before peak for the next most important
modes.

For the (2, �2) modes at least, we have attempted to
constrain all parameters explicitly with reference only to
the state of the final black hole (i.e., its dominant
quasinormal-mode complex frequency). With these con-
straints, we have reduced the additional free parameters to
just three: t0, the time of maximum chirp-rate; ’0, the
phase offset; and A0, the mode’s amplitude scale. This
description provides an approximate fit to the late part of
the waveforms for all our simulations, including equal-
mass spinning cases, and the 4:1 nonspinning case.
Moving back in time to earlier points before the merger,
the quality of this fit degrades and other physical details
of the premerger binary become more significant. We
see evidence of this when comparing the X400 (4:1

nonspinning) and the X1DD (equal-mass down-down
spins) configurations, which result in the same final spin.
We have quantified the quality of this approximation by

calculating Advanced LIGO fitting factors. For system
masses of * 150M�, we have found mismatches of
& 5% between the full numerical-relativity waveform
and the (2, �2)-mode-only model waveforms.
Our results suggest that an approach to gravitational-

wave observation templates with parameters tied first
to the structure of the final black hole may be useful for
Advanced LIGO observations of intermediate-mass merg-
ers. These would be an alternative to the time-domain
effective-one-body templates of [82–84], and the
frequency-domain ‘‘phenomenological’’ templates of
[18,19], similar to ringdown searches currently being ap-
plied to LIGO data [78–81]. In future work we plan to
investigate the quality of this model, or its extensions, for
a broader variety of mergers, including precessing and
eccentric configurations.
In this explicit modeling, we have focused on the

dominant (2, 2) mode. A similar model incorporating
full multimode information can also be applied to com-
plete inspiral-merger-ringdown waveform templates, as
was done for nonspinning systems in [8]. Future work
on this topic will focus on improving and extending the
amplitude model to cover multiple significant modes of
the merging binary.
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APPENDIX: CONVERGENCE

In this appendix, we present the convergence properties
of the evolution fields and extracted waveforms. Our pre-
sentation will model that of [8].
The simulations X100, X1DD, and X1UD used identical

numerical methods and grid structures, with finest (near-
puncture) resolutions of 3M=128, 3M=160, andM=64, and
wave-extraction-region resolutions of 3M=2, 6M=5, and
M, respectively. The X1UD simulation was also carried out
at an ultra-high resolution of 3M=224 (wave-extraction
resolution 6M=7).
The remaining equal-mass simulation, X1UU, uses

identical numerical methods at the same resolutions,
but had a different grid structure in the wave-extraction
zone. This has been seen to result in higher noise levels
in waveform quantities, but should not affect the overall
convergence properties. We will use the X1UD resolu-
tion to assess convergence levels for the HAHNDOL/
PARAMESH code.
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1. Constraints

To establish constraint convergence in the equal-mass
runs, we look at the L1-norms of the Hamiltonian and
momentum constraints both in the strong-field region and
in the region where the waveforms are extracted.

Figure 12 shows the L1-norm of the Hamiltonian con-
straint. In the upper panel, level 13 (the region just outside
the punctures) demonstrates between fourth- and fifth-
order convergence; in the lower panel, level 8 (containing
the wave-extraction spheres) demonstrates diminished
convergence—between second and third order. Note that
the resolution in these outer regions is much lower than in
the crucial high-resolution regions, where the black holes
reside. It is our understanding that errors in these distant
regions are dominated by the effects of uninteresting short-
wavelength features (particularly gauge modes), which
propagate out from the center and become poorly resolved
in the coarse regions.

Convergence is more difficult to establish for the mo-
mentum constraint. Figure 13 shows the behavior of the x
component’s L1-norm in level 14 (the region containing
the punctures), and level 8 (containing the wave-extraction
spheres). The very inner zone (level 14)—displays clean
behavior: all components of the momentum constraint are
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FIG. 12 (color online). Convergence of the Hamiltonian con-
straint’s L1-norm for the X1UD simulation: between fourth- and
fifth-order convergence in level 13 (upper panel); between
second- and third-order convergence in level 8 (lower panel).
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FIG. 13 (color online). Convergence of the momentum con-
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FIG. 14 (color online). Amplitude convergence for the (2, 2)
(upper panel) and (4, 4) (lower panel) modes of the X1UD
simulations, based on the central resolutions 3M=160, M=64,
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has been scaled up assuming fourth- and sixth-order conver-
gence. Though noisy, the amplitude differences appear to be
consistent with sixth-order convergence throughout the inspiral,
until �150M before merger.
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roughly 2.6-order convergent. Once we move outside this
finest region, however, convergence drops down precipi-
tously. We note, however, that the momentum constraint in
general is 2 to 3 orders of magnitude lower than the

Hamiltonian constraint, which suggests that there is a small
amount of low-order error present in all constraints, but
which is dominated by higher-amplitude (but convergent)
error only in the Hamiltonian constraint.
Constraint violation information was not available for

the Cactus-based X400 simulations.

2. Waveforms

In Figs. 14 and 15, we demonstrate sixth-order conver-
gence for the (2, 2) and (4, 4) modes’ amplitudes and
phases, respectively.
For the 4:1 data (Fig. 16), we see generally cleaner

waveforms, but also a large oscillation in errors until about
400M into the evolution. After this, convergence appears to
be sixth order until close to amplitude peak time, when it
declines to fourth order. This may be because the overall
error is dominated by uncertainties in the merger time,
which is determined by the fourth-order-accurate Runge-
Kutta time-integration scheme. Unfortunately, we could
not disentangle this effect to sufficient accuracy to estab-
lish sixth-order convergence through the peak time.
The 4:1 waveform phase evolution (Fig. 17) also seems

to display sixth-order convergence until the merger, when
it declines to fifth order. We note that the scale of the errors
is generally less than half those of the X1UD data from
Fig. 15.
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FIG. 15 (color online). Phase convergence for the (2, 2) (upper
panel) and (4, 4) (lower panel) modes of the X1UD simulations,
based on the central resolutions 3M=160,M=64, and 3M=224. In
each case, the (M=64� 3M=224) difference has been scaled up
assuming fourth- and sixth-order convergence. The phase dif-
ferences appear to be consistent with sixth-order convergence
throughout the inspiral, merger, and ringdown.
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FIG. 17 (color online). Phase convergence for the (2, 2) (upper
panel) and (4, 4) (lower panel) modes of the X1UD simulations,
based on the central resolutions M=96, M=128, and M=160. In
each case, the (M=96�M=160) difference has been scaled up
assuming fourth- and sixth-order convergence. The phase dif-
ferences appear to be consistent with sixth-order convergence
through late inspiral, declining to closer to fifth order at merger
and ringdown.
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FIG. 16 (color online). Amplitude convergence for the (2, 2)
(upper panel) and (4, 4) (lower panel) modes of the X400
simulations, based on the central resolutions M=96, M=128,
and M=160. In each case, the (M=96�M=160) difference has
been scaled up assuming fourth- and sixth-order convergence.
The amplitude differences appear consistent with sixth-order
convergence until approximately 60M before peak, when the
rate declines to close to fourth order.
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Gravity 26, 204005 (2009).10.1088/0264-9381/
26/20/204005

[81] A. S. Sengupta, J. Phys. Conf. Ser. 228, 012002

(2010).10.1088/1742-6596/228/1/012002
[82] Y. Pan, A. Buonanno, J. G. Baker, J.M. Centrella, B. J.

Kelly, S. T. McWilliams, F. Pretorius, and J. R. van Meter,
Phys. Rev. D 77, 024014 (2008).10.1103/
PhysRevD.77.024014

[83] Y. Pan, A. Buonanno, L. T. Buchman, T. Chu, L. E.
Kidder, H. P. Pfeiffer, and M.A. Scheel, Phys. Rev. D
81, 084041 (2010).10.1103/PhysRevD.81.084041

[84] Y. Pan, A. Buonanno, R. Fujita, E. Racine, and H. Tagoshi,
Phys. Rev. D 83, 064003 (2011).10.1103/
PhysRevD.83.064003

MERGERS OF BLACK-HOLE BINARIES WITH ALIGNED . . . PHYSICAL REVIEW D 84, 084009 (2011)

084009-19

http://dx.doi.org/10.1103/PhysRevD.65.044001
http://dx.doi.org/10.1103/PhysRevD.65.044001
http://dx.doi.org/10.1088/0264-9381/28/19/195015
http://dx.doi.org/10.1088/0264-9381/28/19/195015
http://dx.doi.org/10.1103/PhysRevD.76.041502
http://dx.doi.org/10.1103/PhysRevD.76.041502
http://dx.doi.org/10.1007/s10714-007-0570-8
http://dx.doi.org/10.1007/s10714-008-0684-7
http://dx.doi.org/10.1007/s10714-008-0684-7
http://dx.doi.org/10.1103/PhysRevD.82.104029
http://dx.doi.org/10.1103/PhysRevD.82.104029
http://dx.doi.org/10.1088/0004-637X/704/1/L40
http://dx.doi.org/10.1088/0004-637X/704/1/L40
http://dx.doi.org/10.1086/528935
http://dx.doi.org/10.1086/528935
http://dx.doi.org/10.1103/PhysRevD.78.081501
http://dx.doi.org/10.1103/PhysRevD.78.081501
http://dx.doi.org/10.1088/0264-9381/27/11/114006
http://dx.doi.org/10.1088/0264-9381/27/11/114006
http://dx.doi.org/10.1103/PhysRevD.78.044002
http://dx.doi.org/10.1103/PhysRevD.78.044002
http://dx.doi.org/10.1103/PhysRevD.77.044016
http://dx.doi.org/10.1086/158109
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://dx.doi.org/10.1103/PhysRevD.75.124018
http://dx.doi.org/10.1103/PhysRevD.75.124018
http://arXiv.org/abs/1106.1021
http://dx.doi.org/10.1086/152444
http://www.ligo.caltech.edu/advLIGO/
http://dx.doi.org/10.1103/PhysRevD.53.6749
http://dx.doi.org/10.1103/PhysRevD.49.2658
num%3E, %3Curl%3E%3CHYP
num%3E, %3Curl%3E%3CHYP
http://dx.doi.org/008%3C/date%3E).%3Cdoi%3E10.1103/P
http://dx.doi.org/010%3C/date%3E).%3Cdoi%3E10.1103/P
http://dx.doi.org/010%3C/date%3E).%3Cdoi%3E10.1103/P
http://dx.doi.org/011%3C/date%3E).%3Cdoi%3E10.1103/P

