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The recent formulation of the relativistic Thomas-Fermi model within the Feynman-Metropolis-Teller

theory for compressed atoms is applied to the study of general relativistic white dwarf equilibrium

configurations. The equation of state, which takes into account the �-equilibrium, the nuclear and the

Coulomb interactions between the nuclei and the surrounding electrons, is obtained as a function of the

compression by considering each atom constrained in a Wigner-Seitz cell. The contribution of quantum

statistics, weak, nuclear, and electromagnetic interactions is obtained by the determination of the chemical

potential of the Wigner-Seitz cell. The further contribution of the general relativistic equilibrium of white

dwarf matter is expressed by the simple formula
ffiffiffiffiffiffiffi
g00

p
�ws ¼ constant, which links the chemical potential

of the Wigner-Seitz cell �ws with the general relativistic gravitational potential g00 at each point of the

configuration. The configuration outside each Wigner-Seitz cell is strictly neutral and therefore no global

electric field is necessary to warranty the equilibrium of the white dwarf. These equations modify the ones

used by Chandrasekhar by taking into due account the Coulomb interaction between the nuclei and the

electrons as well as inverse � decay. They also generalize the work of Salpeter by considering a unified

self-consistent approach to the Coulomb interaction in each Wigner-Seitz cell. The consequences on the

numerical value of the Chandrasekhar-Landau mass limit as well as on the mass-radius relation of 4He,
12C, 16O and 56Fe white dwarfs are presented. All these effects should be taken into account in processes

requiring a precision knowledge of the white dwarf parameters.
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I. INTRODUCTION

The necessity of introducing the Fermi-Dirac statistics
in order to overcome some conceptual difficulties in ex-
plaining the existence of white dwarfs leading to the con-
cept of degenerate stars was first advanced by Fowler in a
classic paper [1]. Following that work, Stoner [2] intro-
duced the effect of special relativity into the Fowler con-
siderations and he discovered the critical mass of white
dwarfs

MStoner
crit ¼ 15

16

ffiffiffiffiffiffiffi
5�

p M3
Pl

�2m2
n

� 3:72
M3

Pl

�2m2
n

; (1)

where MPl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=G

p � 10�5 g is the Planck mass, mn is
the neutron mass, and � ¼ A=Z � 2 is the average mo-
lecular weight of matter which shows explicitly the depen-
dence of the critical mass on the chemical composition of
the star.

Following the Stoner’s work, Chandrasekhar [3] pointed
out the relevance of describing white dwarfs by using an
approach, initiated by Milne [4], of using the mathematical
method of the solutions of the Lane-Emden polytropic
equations [5]. The same idea of using the Lane-Emden
equations taking into account the special relativistic effects
to the equilibrium of stellar matter for a degenerate system
of fermions, came independently to Landau [6]. Both the

Chandrasekhar and Landau treatments were explicit in
pointing out the existence of the critical mass

MCh-L
crit ¼ 2:015

ffiffiffiffiffiffiffi
3�

p
2

M3
Pl

�2m2
n

� 3:09
M3

Pl

�2m2
n

; (2)

where the first numerical factor on the right-hand side
of Eq. (2) comes from the boundary condition
�ðr2du=drÞr¼R ¼ 2:015 (see last entry of Table 7 on
p. 80 in [5]) of the n ¼ 3 Lane-Emden polytropic equation.
Namely, for M>MCh-L

crit , no equilibrium configuration

should exist.
Some of the basic assumptions adopted by

Chandrasekhar and Landau in their idealized approach,
e.g. the treatment of the electron as a free gas without
taking into due account the electromagnetic interactions,
as well as the stability of the distribution of the nuclei
against the gravitational interaction led to some criticisms
by Eddington [7]. It was unfortunate that the absence of
interest of Fermi on the final evolution of stars did not
allow Fermi himself to intervene in these well-posed theo-
retical problems [8]. Indeed, we are showing in this article
how the solution of the conceptual problems of the white
dwarf models, left open for years, can be duly addressed by
considering the relativistic Thomas-Fermi model of the
compressed atom (see Secs. II E and IV.).
The original work on white dwarfs was motivated by

astrophysics and found in astrophysics strong observatio-
nal support. The issue of the equilibrium of the electron
gas and the associated component of nuclei, taking into*ruffini@icra.it
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account the electromagnetic, the gravitational and the
weak interactions is a theoretical physics problem, not
yet formulated in a correct special and general relativistic
context.

One of the earliest alternative approaches to the
Chandrasekhar-Landau work was proposed by Salpeter in
1961 [9]. He followed an idea originally proposed by
Frenkel [10]: to adopt in the study of white dwarfs the
concept of a Wigner-Seitz cell. Salpeter introduced to the
lattice model of a pointlike nucleus surrounded by a uni-
form cloud of electrons, corrections due to the nonuni-
formity of the electron distribution (see Sec. II C for
details). In this way Salpeter [9] obtained an analytic
formula for the total energy in a Wigner-Seitz cell and
derived the corresponding equation of state of matter com-
posed by such cells, pointing out explicitly the relevance of
the Coulomb interaction.

The consequences of the Coulomb interactions in the
determination of the mass and radius of white dwarfs, was
studied in a subsequent paper by Hamada and Salpeter [11]
by using the equation of state constructed in [9]. They
found that the critical mass of white dwarfs depends in a
nontrivial way on the specific nuclear composition: the
critical mass of Chandrasekhar-Landau which depends
only on the mass to charge ratio of nuclei A=Z, now
depends also on the proton number Z.

This fact can be seen from the approximate expression for
the critical mass of white dwarfs obtained by Hamada and
Salpeter [11] in the ultrarelativistic limit for the electrons

MH&S
crit ¼ 2:015

ffiffiffiffiffiffiffi
3�

p
2

1

�2
eff

M3
Pl

m2
n

; (3)

where

�eff ¼ �

�
PS

PCh

��3=4
; (4)

being PS the pressure of the Wigner-Seitz cell obtained by
Salpeter in [9] (see Sec. II C) and PCh is the pressure of a
free-electron fluid used by Chandrasekhar (see Sec. II A).
The ratio PS=PCh is a function of the number of protons Z
(see Eq. (20) in [9]) and it satisfies PS=PCh < 1. Conseq-
uently, the effective molecular weight satisfies �eff >�
and the critical mass of white dwarfs turns to be smaller
than the original one obtained by Chandrasekhar-Landau
[see Eq. (2)].

In the mean time, the problem of the equilibrium gas in a
white dwarf taking into account possible global electro-
magnetic interactions between the nucleus and the elec-
trons was addressed by Olson and Bailyn in [12,13]. They
well summarized the status of the problem: Traditional
models for the white dwarf are nonrelativistic and electri-
cally neutral. Although an electric field is needed to sup-
port the pressureless nuclei against gravitational collapse,
the star is treated essentially in terms of only one charge
component, where charge neutrality is assumed. Their

solution to the problem invokes the breakdown of the local
charge neutrality and the presence of an overall electric
field as a consequence of treating also the nuclei inside the
white dwarf as a fluid. They treated the white dwarf matter
through a two-fluid model not enforcing local charge neu-
trality. The closure equation for the Einstein-Maxwell
system of equations was there obtained from a minimiza-
tion procedure of the mass energy of the configuration.
This work was the first pointing out the relevance of the
Einstein-Maxwell equations in the description of an astro-
physical system by requiring global and non local charge
neutrality. As we will show here, this interesting approach
does not apply to the case of white dwarfs. It represents,
however, a new development in the study of neutron stars
(see, e.g. [14])
An alternative approach to the Salpeter treatment of

a compressed atom was reconsidered in [15] by applying
for the first time to white dwarfs a relativistic Thomas-
Fermi treatment of the compressed atom introducing a
finite size nucleus within a phenomenological description
(see also [16]).
Recently, the study of a compressed atom has been

revisited in [17] by extending the global approach of
Feynman, Metropolis and Teller [18] taking into account
weak interactions. This treatment takes also into account
all the Coulomb contributions duly expressed relativisti-
cally without the need of any piecewise description. The
relativistic Thomas-Fermi model has been solved by im-
posing in addition to the electromagnetic interaction also
the weak equilibrium between neutrons, protons and elec-
trons self-consistently. This presents some conceptual dif-
ferences with respect to previous approaches and can be
used in order both to validate and to establish their
limitations.
In this article we apply the considerations presented in

[17] of a compressed atom in a Wigner-Seitz cell to the
description of nonrotating white dwarfs in general relativ-
ity. This approach improves all previous treatments in the
following aspects:
(1) In order to warranty self-consistency with a relativ-

istic treatment of the electrons, the pointlike as-
sumption of the nucleus is abandoned introducing
a finite sized nucleus [17]. We assume for the mass
as well as for charge to mass ratio of the nucleus
their experimental values instead of using phenome-
nological descriptions based on the semi-empirical
mass-formula of Weizsacker (see, e.g. [15,16]).

(2) The electron-electron and electron-nucleus
Coulomb interaction energy is calculated without
any approximation by solving numerically the rela-
tivistic Thomas-Fermi equation for selected energy
densities of the system and for each given nuclear
composition.

(3) The energy density of the system is calculated
taking into account the contributions of the nuclei,
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of the Coulomb interactions as well as of the
relativistic electrons; the latter being neglected in
all previous treatments. This particular contribution
turns to be very important at high densities and, in
particular, for light nuclear compositions, e.g. 4He
and 12C.

(4) The � equilibrium between neutrons, protons, and
electrons is also taken into account leading to a self-
consistent calculation of the threshold density for
triggering the inverse � decay of a given nucleus.

(5) The structure of the white dwarf configurations is
obtained by integrating the general relativity equa-
tions of equilibrium.

(6) Because of (4) and (5) we are able to determine if
the instability point leading to a maximum stable
mass of the nonrotating white dwarf is induced by
the inverse �-decay instability of the composing
nuclei or by general relativistic effects.

Paradoxically, after all this procedure which takes into
account many additional theoretical features generalizing
the Chandrasekhar-Landau and the Hamada and Salpeter
works, a most simple equation is found to be fulfilled by
the equilibrium configuration in a spherically symmetric
metric. Assuming the metric

ds2 ¼ e�ðrÞc2dt2 � e�ðrÞdr2 � r2d�2 � r2sin2�d’2; (5)

we demonstrate how the entire system of equations de-
scribing the equilibrium of white dwarfs, taking into ac-
count the weak, the electromagnetic and the gravitational
interactions as well as quantum statistics all expressed
consistently in a general relativistic approach, is simply
given by

ffiffiffiffiffiffiffi
g00

p
�ws ¼ e�ðrÞ=2�wsðrÞ ¼ constant; (6)

which links the chemical potential of the Wigner-Seitz cell
�ws, duly solved by considering the relativistic Feynman-
Metropolis-Teller model following [17], to the general
relativistic gravitational potential at each point of the con-
figuration. The overall system outside each Wigner-Seitz
cell is strictly neutral and no global electric field exists,
contrary to the results reported in [13]. The same procedure
will apply as well to the case of neutron star crusts.

The article is organized as follows. In Sec. II we sum-
marize the most common approaches used for the descrip-
tion of white dwarfs and neutron star crusts: the uniform
approximation for the electron fluid (see, e.g. [3]); the
often called lattice model assuming a pointlike nucleus
surrounded by a uniform electron cloud (see, e.g. [19]);
the generalization of the lattice model due to Salpeter [9];
the Feynman, Metropolis and Teller approach [18] based
on the nonrelativistic Thomas-Fermi model of compressed
atoms and, the relativistic generalization of the Feynman-
Metropolis-Teller treatment recently formulated in [17].

In Sec. III we formulate the general relativistic equa-
tions of equilibrium of the system and show how, from
the self-consistent definition of chemical potential of the
Wigner-Seitz cell and the Einstein equations, comes the
equilibrium condition given by Eq. (6). In addition, we
obtain the Newtonian and the first-order post-Newtonian
equations of equilibrium.
Finally, we show in Sec. IV the new results of the

numerical integration of the general relativistic equations
of equilibrium and discuss the corrections to the Stoner
critical mass MStoner

crit , to the Chandrasekhar-Landau mass

limit MCh-L
crit , as well as to the one of Hamada and Salpeter

MH&S
crit , obtained when all interactions are fully taken into

account through the relativistic Feynman-Metropolis-
Teller equation of state [17].

II. THE EQUATION OF STATE

There exists a large variety of approaches to model the
equation of state of white dwarf matter, each one charac-
terized by a different way of treating or neglecting the
Coulomb interaction inside each Wigner-Seitz cell, which
we will briefly review here. Particular attention is given to
the calculation of the self-consistent chemical potential of
the Wigner-Seitz cell �ws, which plays a very important
role in the conservation law (6) that we will derive in
Sec. III.

A. The uniform approximation

In the uniform approximation used by Chandrasekhar
[3], the electron distribution as well as the nucleons are
assumed to be locally constant and therefore the condition
of local charge neutrality

ne ¼ Z

Ar

nN; (7)

where Ar is the average atomic weight of the nucleus, is
applied. Here nN denotes the nucleon number density and
Z is the number of protons of the nucleus. The electrons are
considered as a fully degenerate free gas and then de-
scribed by Fermi-Dirac statistics. Thus, their number den-
sity ne is related to the electron Fermi momentum PF

e by

ne ¼ ðPF
e Þ3

3�2ℏ3
; (8)

and the total electron energy density and electron pressure
are given by

E e ¼ 2

ð2�ℏÞ3
Z PF

e

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2 þm2

ec
4

q
4�p2dp

¼ m4
ec

5

8�2ℏ3
½xe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2e

q
ð1þ 2x2eÞ � arcsinhðxeÞ�; (9)
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Pe¼1

3

2

ð2�ℏÞ3
Z PF

e

0

c2p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p2þm2

ec
4

p 4�p2dp

¼ m4
ec

5

8�2ℏ3

�
xe

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2e

q
ð2x2e=3�1ÞþarcsinhðxeÞ

�
; (10)

where we have introduced the dimensionless Fermi mo-
mentum xe ¼ PF

e =ðmecÞ with me the electron rest mass.
The kinetic energy of nucleons is neglected and there-

fore the pressure is assumed to be only due to electrons.
Thus the equation of state can be written as

E unif ¼ EN þ Ee � Ar

Z
Muc

2ne þ Ee; (11)

Punif � Pe; (12)

where Mu ¼ 1:6604� 10�24 g is the unified atomic mass
and Ee and Pe are given by Eqs. (9) and (10).

Within this approximation, the total self-consistent
chemical potential is given by

�unif ¼ ArMuc
2 þ Z�e; (13)

where

�e ¼ Ee þ Pe

ne
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðPF

e Þ2 þm2
ec

4
q

(14)

is the electron free-chemical potential.
As a consequence of this effective approach which does

not take into any account the Coulomb interaction, it is
obtained an effective one-component electron-nucleon
fluid approach where the kinetic pressure is given by
electrons of mass me and their gravitational contribution
is given by an effective mass ðAr=ZÞMu attached to each
electron (see, e.g. [20]). This is even more evident when
the electron contribution to the energy density in Eq. (11) is
neglected and therefore the energy density is attributed
only to the nuclei. Within this approach followed by
Chandrasekhar [3], the equation of state reduces to

E Ch ¼ Ar

Z
Muc

2ne; (15)

PCh ¼ Punif ¼ Pe: (16)

B. The lattice model

The first correction to the above uniform model, corre-
sponds to abandon the assumption of the electron-nucleon
fluid through the so-called ‘‘lattice’’ model which introdu-
ces the concept of Wigner-Seitz cell: each cell contains a
pointlike nucleus of charge þZe with A nucleons sur-
rounded by a uniformly distributed cloud of Z fully degen-
erate electrons. The global neutrality of the cell is
guaranteed by the condition

Z ¼ Vwsne ¼ ne
nws

; (17)

where nws ¼ 1=Vws is the Wigner-Seitz cell density and
Vws ¼ 4�R3

ws=3 is the cell volume.
The total energy of the Wigner-Seitz cell is modified by

the inclusion of the Coulomb energy, i.e.

EL ¼ EunifVws þ EC; (18)

being

EC ¼ Ee�N þ Ee�e ¼ � 9

10

Z2e2

Rws

; (19)

where Eunif is given by Eq. (11) and Ee�N and Ee�e are
the electron-nucleus and the electron-electron Coulomb
energies

Ee�N ¼ �
Z Rws

0
4�r2

�
Ze

r

�
enedr ¼ � 3

2

Z2e2

Rws

; (20)

Ee�e ¼ 3

5

Z2e2

Rws

: (21)

The self-consistent pressure of the Wigner-Seitz cell is
then given by

PL ¼ � @EL

@Vws

¼ Punif þ 1

3

EC

Vws

; (22)

where Punif is given by Eq. (12). It is worth to recall that the
pointlike assumption of the nucleus is incompatible with a
relativistic treatment of the degenerate electron fluid (see
[21,22] for details). Such an inconsistency has been tradi-
tionally ignored by applying, within a pointlike nucleus
model, the relativistic formulas (9) and (10) and their
corresponding ultrarelativistic limits (see, e.g. [9]).
The Wigner-Seitz cell chemical potential is in this case

�L ¼ EL þ PLVws ¼ �unif þ 4
3EC: (23)

By comparing Eqs. (12) and (22) we can see that the
inclusion of the Coulomb interaction results in a decreas-
ing of the pressure of the cell due to the negative lattice
energy EC. The same conclusion is achieved for the chemi-
cal potential from Eqs. (13) and (23).

C. Salpeter approach

A further development to the lattice model came from
Salpeter [9] whom studied the corrections due to the non-
uniformity of the electron distribution inside a Wigner-
Seitz cell.
Following the Chandrasekhar [3] approximation,

Salpeter also neglects the electron contribution to the en-
ergy density. Thus, the first term in the Salpeter formula for
the energy of the cell comes from the nuclei energy (15).
The second contribution is given by the Coulomb energy of
the lattice model (19). The third contribution is obtained as
follows: the electron density is assumed as ne½1þ �ðrÞ�,
where ne ¼ 3Z=ð4�R3

wsÞ is the average electron density
as given by Eq. (17), and �ðrÞ is considered infinitesimal.
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The Coulomb potential energy is assumed to be the one of
the pointlike nucleus surrounded by a uniform distribution
of electrons, so the correction given by �ðrÞ on the
Coulomb potential is neglected. The electron distribution
is then calculated at first-order by expanding the relativistic
electron kinetic energy

�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½cPF

e ðrÞ�2 þm2
ec

4
q

�mec
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2c2ð3�2neÞ2=3½1þ �ðrÞ�2=3 þm2

ec
4

q
�mec

2

(24)

about its value in the uniform approximation

�unifk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2c2ð3�2neÞ2=3 þm2

ec
4

q
�mec

2; (25)

considering as infinitesimal the ratio eV=EF
e between

the Coulomb potential energy eV and the electron Fermi
energy

EF
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½cPF

e ðrÞ�2 þm2
ec

4
q

�mec
2 � eV: (26)

The influence of the Dirac electron-exchange correction
[23] on the equation of state was also considered by
Salpeter [9]. However, adopting the general approach of
Migdal et al. [24], it has been shown that these effects are
negligible in the relativistic regime [17]. We will then
consider here only the major correction of the Salpeter
treatment.

The total energy of the Wigner-Seitz cell is then given
by (see [9] for details)

ES ¼ ECh þ EC þ ETF
S ; (27)

being

ETF
S ¼ � 162

175

�
4

9�

�
2=3

�2Z7=3�e; (28)

where ECh ¼ EChVws, EC is given by Eq. (19), �e is given
by Eq. (14), and � ¼ e2=ðℏcÞ is the fine structure constant.

Correspondingly, the self-consistent pressure of the
Wigner-Seitz cell is

PS ¼ PL þ PS
TF; (29)

where

PS
TF ¼ 1

3

�
PF
e

�e

�
2 ETF

S

Vws

: (30)

The Wigner-Seitz cell chemical potential can be then
written as

�S ¼ �L þ ES
TF

�
1þ 1

3

�
PF
e

�e

�
2
�
: (31)

From Eqs. (29) and (31), we see that the inclusion of
each additional Coulomb correction results in a further
decreasing of the pressure and of the chemical potential

of the cell. The Salpeter approach is very interesting in
identifying piecewise Coulomb contribution to the total
energy, to the total pressure and, to the Wigner-Seitz
chemical potential. However, it does not have the full
consistency of the global solutions obtained with the
Feynman-Metropolis-Teller approach [18] and its general-
ization to relativistic regimes [17] which we will discuss in
detail below.

D. The Feynman-Metropolis-Teller treatment

Feynman, Metropolis, and Teller [18] showed how to
derive the equation of state of matter at high pressures by
considering a Thomas-Fermi model confined in a Wigner-
Seitz cell of radius Rws.
The Thomas-Fermi equilibrium condition for degener-

ate nonrelativistic electrons in the cell is expressed by

EF
e ¼ ðPF

e Þ2
2me

� eV ¼ constant> 0; (32)

where V denotes the Coulomb potential and EF
e denotes

the Fermi energy of electrons, which is positive for con-
figurations subjected to external pressure, namely, for com-
pressed cells.
Defining the function 	ðrÞ by eVðrÞ þ EF

e ¼
e2Z	ðrÞ=r, and introducing the dimensionless radial coor-

dinate
 by r ¼ b
, where b ¼ ð3�Þ2=3ð�e=�Þ2�7=3Z�1=3,
being �e ¼ ℏ=ðmecÞ the electron Compton wavelength;
the Poisson equation from which the Coulomb potential
V is calculated self-consistently becomes

d2	ð
Þ
d
2

¼ 	ð
Þ3=2

1=2

: (33)

The boundary conditions for Eq. (33) follow from the
pointlike structure of the nucleus 	ð0Þ ¼ 1 and, from
the global neutrality of the Wigner-Seitz cell 	ð
0Þ ¼

0d	=d
j
¼
0

, where 
0 defines the dimensionless ra-

dius of the Wigner-Seitz cell by 
0 ¼ Rws=b.
For each value of the compression, e.g. 
0, it corre-

sponds a value of the electron Fermi energy EF
e and a

different solution of Eq. (33), which determines the self-
consistent Coulomb potential energy eV as well as the self-
consistent electron distribution inside the cell through

neð
Þ ¼ Z

4�b3

�
	ð
Þ



�
3=2

: (34)

In the nonrelativistic Thomas-Fermi model, the total
energy of the Wigner-Seitz cell is given by (see [18,25]
for details)

Ews ¼ EN þ EðeÞ
k þ EC; (35)

being

EN ¼ MNðZ; AÞc2; (36)
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EðeÞ
k ¼

Z Rws

0
4�r2Ee½neðrÞ�dr

¼ 3

7

Z2e2

b

�
4

5

1=2
0 	5=2ð
0Þ �	0ð0Þ

�
; (37)

EC ¼ Ee�N þ Ee�e

¼ � 6

7

Z2e2

b

�
1

3

1=2
0 	5=2ð
0Þ �	0ð0Þ

�
; (38)

where MNðZ; AÞ is the nucleus mass, Ee½neðrÞ� is given
by Eq. (9) and Ee�N and Ee�e are the electron-nucleus
Coulomb energy and the electron-electron Coulomb en-
ergy, which are given by

Ee�N ¼ �
Z Rws

0
4�r2

�
Ze

r

�
eneðrÞdr; (39)

Ee�e ¼ 1

2

Z Rws

0
4�r2eneð~rÞdr�

Z Rws

0
4�r02

eneð~r0Þ
j~r� ~r0j dr

0:

(40)

From Eqs. (37) and (38) we recover the well-known
relation between the total kinetic energy and the total
Coulomb energy in the Thomas-Fermi model [18,25]

EðeÞ
k ¼ Eunif

k ½neðRwsÞ� � 1
2EC; (41)

where Eunif
k ½neðRwsÞ� is the nonrelativistic kinetic energy of

a uniform electron distribution of density neðRwsÞ, i.e.
Eunif
k ½neðRwsÞ� ¼ 3

5Z
��eðRwsÞ; (42)

with Z� defined by

Z� ¼ VwsneðRwsÞ; (43)

and �eðRwsÞ ¼ ℏ2½3�2neðRwsÞ�2=3=ð2meÞ.
The self-consistent pressure of the Wigner-Seitz cell

given by the nonrelativistic Thomas-Fermi model is (see
[18,25] for details)

PTF ¼ 2

3

Eunif
k ½neðRwsÞ�

Vws

: (44)

The pressure of the Thomas-Fermi model (44) is equal
to the pressure of a free-electron distribution of density
neðRwsÞ. Being the electron density inside the cell a de-
creasing function of the distance from the nucleus, the
electron density at the cell boundary, neðRwsÞ, is smaller
than the average electron distribution 3Z=ð4�R3

wsÞ. Then,
the pressure given by (44) is smaller than the one given by
the nonrelativistic version of Eq. (10) of the uniform model
of Sec. II A. Such a smaller pressure, although faintly given
by the expression of a free-electron gas, contains in a self-
consistent fashion all the Coulomb effects inside the
Wigner-Seitz cell.

The chemical potential of the Wigner-Seitz cell of the
nonrelativistic Thomas-Fermi model can be then written as

�TF ¼ MNðZ; AÞc2 þ Z��eðRwsÞ þ 1
2EC; (45)

where we have used Eqs. (41)–(43).
Integrating by parts the total number of electrons

Z ¼
Z Rws

0
4�r2neðrÞdr ¼ Z� þ IðRwsÞ; (46)

where

IðRwsÞ ¼
Z Rws

0

4�

3
r3

@neðrÞ
@r

dr; (47)

we can rewrite finally the following semi-analytical ex-
pression of the chemical potential (45) of the cell

�TF ¼ MNðZ; AÞc2 þ Z�unif
e

�
1þ IðRwsÞ

Z

�
2=3

þ�unif
e IðRwsÞ

�
1þ IðRwsÞ

Z

�
2=3 þ 1

2
EC; (48)

where �unif
e is the electron free-chemical potential (14)

calculated with the average electron density, namely, the
electron chemical potential of the uniform approximation.
The function IðRwsÞ depends explicitly on the gradient of
the electron density, i.e. on the nonuniformity of the elec-
tron distribution.
In the limit of absence of Coulomb interaction both the

last term and the function IðRwsÞ in Eq. (48) vanish and
therefore in this limit �TF reduces to

�TF ! �unif ; (49)

where �unif is the chemical potential in the uniform ap-
proximation given by Eq. (13).

E. The relativistic Feynman-Metropolis-Teller
treatment

We recall now how the above classic Feynman,
Metropolis, and Teller treatment of compressed atoms
has been recently generalized to relativistic regimes (see
[17] for details). One of the main differences in the rela-
tivistic generalization of the Thomas-Fermi equation is
that, the pointlike approximation of the nucleus, must be
abandoned since the relativistic equilibrium condition of
compressed atoms

EF
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðPF

e Þ2 þm2
ec

4
q

�mec
2 � eVðrÞ ¼ constant> 0

(50)

would lead to a nonintegrable expression for the electron
density near the origin (see, e.g. [21,22]).
It is then assumed a constant distribution of protons

confined in a radius Rc defined by

Rc ¼ ���Z
1=3; (51)

where �� ¼ ℏ=ðm�cÞ is the pion Compton wavelength. If

the system is at nuclear density � � ðr0=��ÞðA=ZÞ1=3 with
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r0 � 1:2 fm. Thus, in the case of ordinary nuclei (i.e., for
A=Z � 2) we have � � 1. Consequently, the proton den-
sity can be written as

npðrÞ ¼ Z
4
3�R

3
c

�ðr� RcÞ ¼ 3

4�

�
1

���

�
3
�ðr� RcÞ; (52)

where �ðr� RcÞ denotes the Heaviside function centered
at Rc. The electron density can be written as

neðrÞ¼ ðPF
e Þ3

3�2ℏ3
¼ 1

3�2ℏ3c3
½V̂2ðrÞþ2mec

2V̂ðrÞ�3=2; (53)

where V̂ ¼ eV þ EF
e and we have used Eq. (50).

The overall Coulomb potential satisfies the Poisson
equation

r2VðrÞ ¼ �4�e½npðrÞ � neðrÞ�; (54)

with the boundary conditions dV=drjr¼Rws
¼ 0 and

VðRwsÞ ¼ 0 due to the global charge neutrality of the cell.
By introducing the dimensionless quantities x ¼ r=��,

xc ¼ Rc=��, �=r ¼ V̂ðrÞ=ðℏcÞ and replacing the particle
densities (52) and (53) into the Poisson equation (54), it is
obtained the relativistic Thomas-Fermi equation [26]

1

3x

d2�ðxÞ
dx2

¼� �

�3
�ðxc�xÞþ4�

9�

�
�2ðxÞ
x2

þ2
me

m�

�ðxÞ
x

�
3=2

;

(55)

which must be integrated subjected to the boundary
conditions �ð0Þ ¼ 0, �ðxwsÞ � 0 and d�=dxjx¼xws ¼
�ðxwsÞ=xws, where xws ¼ Rws=��.

The neutron density nnðrÞ, related to the neutron Fermi

momentum PF
n ¼ ð3�2ℏ3nnÞ1=3, is determined by impos-

ing the condition of beta equilibrium

EF
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðPF

n Þ2 þm2
nc

4
q

�mnc
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðPF

pÞ2 þm2
pc

4
q

�mpc
2 þ eVðrÞ þ EF

e ; (56)

subjected to the baryon number conservation equation

A ¼
Z Rc

0
4�r2½npðrÞ þ nnðrÞ�dr: (57)

In Fig. 1 we see how the relativistic generalization of the
Feynman-Metropolis-Teller treatment leads to electron
density distributions markedly different from the constant
electron density approximation. The electron distribution
is far from being uniform as a result of the solution of
Eq. (55), which takes into account the electromagnetic
interaction between electrons and between the electrons
and the finite sized nucleus. Additional details are given
in [17].

Popov et al. [27] have shown how the solution of the
relativistic Thomas-Fermi equation (55) together with the
self-consistent implementation of the �-equilibrium con-
dition (56) leads, in the case of zero electron Fermi energy

(EF
e ¼ 0), to a theoretical prediction of the �-equilibrium

line, namely, a theoretical Z-A relation. Within this model
the mass to charge ratio A=Z of nuclei is overestimated,
e.g. in the case of 4He the overestimate is �3:8%, for 12C
�7:9%, for 16O �9:52%, and for 56Fe �13:2%. These
discrepancies are corrected when the model of the nucleus
considered above is improved by explicitly including the
effects of strong interactions. This model, however, illus-
trates how a self-consistent calculation of compressed
nuclear matter can be done including electromagnetic,
weak, strong as well as special relativistic effects without
any approximation. This approach promises to be useful
when theoretical predictions are essential, for example, in
the description of nuclear matter at very high densities,
e.g. nuclei close and beyond the neutron drip line.
The densities in white dwarf interiors are not highly

enough to require such theoretical predictions. Therefore,
in order to ensure the accuracy of our results we use for
ðZ; AÞ, needed to solve the relativistic Thomas-Fermi equa-
tion (55), as well as for the nucleus mass MNðZ; AÞ, their
known experimental values. In this way we take into
account all the effects of the nuclear interaction.
Thus, the total energy of the Wigner-Seitz cell in the

present case can be written as

Erel
FMT ¼ EN þ EðeÞ

k þ EC; (58)

being

EN ¼ MNðZ; AÞc2; (59)

EðeÞ
k ¼

Z Rws

0
4�r2ðEe �meneÞdr; (60)

FIG. 1. The electron number density ne in units of the aver-
age electron number density n0 ¼ 3Z=ð4�R3

wsÞ inside a Wigner-
Seitz cell of 12C. The dimensionless radial coordinate is x ¼
r=�� and Wigner-Seitz cell radius is xws � 255 corresponding
to a density of �108 g=cm3. The solid curve corresponds to the
relativistic Feynman-Metropolis-Teller treatment and the dashed
curve to the uniform approximation. The electron distribution for
different levels of compression as well as for different nuclear
compositions can be found in [17].
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EC ¼ 1

2

Z Rws

Rc

4�r2e½npðrÞ � neðrÞ�VðrÞdr; (61)

where MNðZ; AÞ ¼ ArMu is the experimental nucleus
mass, e.g. for 4He, 12C, 16O and 56Fe we have Ar ¼
4:003, 12.01, 16.00 and 55.84, respectively. In Eq. (61)
the integral is evaluated only outside the nucleus (i.e. for
r > Rc) in order to avoid a double counting with the
Coulomb energy of the nucleus already taken into account
in the nucleus mass (59). In order to avoid another double
counting we subtract to the electron energy density Ee in
Eq. (60) the rest-energy densitymec

2ne which is also taken
into account in the nucleus mass (59).

The total pressure of the Wigner-Seitz cell is given by

Prel
FMT ¼ Pe½neðRwsÞ�; (62)

where Pe½neðRwsÞ� is the relativistic pressure (10) com-
puted with the value of the electron density at the boundary
of the cell.

The electron density at the boundary Rws in the relativ-
istic Feynman-Metropolis-Teller treatment is smaller with
respect to the one given by the uniform density approxi-
mation (see Fig. 1). Thus, the relativistic pressure (62)
gives systematically smaller values with respect to the
uniform approximation pressure (10) as well as with re-
spect to the Salpeter pressure (29).

In Fig. 2 we show the ratio between the relativistic
Feynman-Metropolis-Teller pressure Prel

FMT (62) and the
Chandrasekhar pressure PCh (10) and the Salpeter pressure
PS (29) in the case of 12C. It can be seen how Prel

FMT is
smaller than PCh for all densities as a consequence of the
Coulomb interaction. With respect to the Salpeter case,

we have that the ratio Prel
FMT=PS approaches unity from

below at large densities as one should expect.
However, at low densities & 104–105 g=cm3, the ratio

becomes larger than unity due to the defect of the Salpeter
treatment which, in the low density nonrelativistic regime,
leads to a drastic decrease of the pressure and even to
negative pressures at densities & 102 g=cm3 or higher for
heavier nuclear compositions, e.g. 56Fe (see [9,17] and
Table I). This is in contrast with the relativistic Feynman-
Metropolis-Teller treatment which matches smoothly the
classic Feynman-Metropolis-Teller equation of state in that
regime (see [17] for details).
No analytic expression of the Wigner-Seitz cell chemi-

cal potential can be given in this case, so we only write its
general expression

�rel
FMT ¼ Erel

FMT þ Prel
FMTVws; (63)

where Erel
FMT and Prel

FMT are given by Eqs. (58) and (62)
respectively. The above equation, contrary to the nonrela-
tivistic formula (45), in no way can be simplified in terms
of its uniform counterparts. However, it is easy to check
that, in the limit of no Coulomb interaction neðRwsÞ !
3Z=ð4�R3

wsÞ, EC ! 0, and Ek ! EChVws and, neglecting
the nuclear binding and the proton-neutron mass differ-
ence, we finally obtain

�rel
FMT ! �unif ; (64)

as it should be expected.
Now we summarize how the equation of state of com-

pressed nuclear matter can be computed in the Salpeter
case and in the relativistic Feynman-Metropolis-Teller
case, parameterized by the total density of the system:
(i) For a given radius Rws of the Wigner-Seitz cell the

relativistic Thomas-Fermi equation (55) is integrated
numerically and the density of the configuration is

FIG. 2. Ratio of the pressures in the different treatments as a
function of the density for 12C white dwarfs (see Table I). The
solid curve corresponds to the ratio between the relativistic
Feynman-Metropolis-Teller pressure Prel

FMT given by Eq. (62)

and the Chandrasekhar pressure PCh given by Eq. (10). The
dashed curve corresponds to the ratio between the relativistic
Feynman-Metropolis-Teller pressure Prel

FMT given by Eq. (62) and

the Salpeter pressure PS given by Eq. (29).

TABLE I. Equation of state for 12C within the different treat-
ments. The pressure in the uniform approximation for � ¼ 2 is
PCh, the Salpeter pressure is PS and the relativistic Feynman-
Metropolis-Teller pressure is Prel

FMT. The units for the density are

g=cm3 and for the pressure dyn=cm2.

� PCh PS Prel
FMT

10 1:467 31� 1014 �1:352 82� 1013 4:549 20� 1014

40 1:478 72� 1015 4:602 43� 1014 7:098 18� 1014

70 3:757 48� 1015 1:608 60� 1015 2:051 97� 1015

102 6:808 02� 1015 3:349 40� 1015 3:900 06� 1015

103 3:154 35� 1017 2:406 46� 1017 2:442 06� 1017

104 1:452 13� 1019 1:289 76� 1019 1:289 65� 1019

105 6:500 10� 1020 6:144 94� 1020 6:133 69� 1020

106 2:627 61� 1022 2:549 32� 1022 2:544 31� 1022

107 8:461 01� 1023 8:288 99� 1023 8:272 85� 1023

108 2:151 11� 1025 2:113 75� 1025 2:108 96� 1025

109 4:862 36� 1026 4:781 70� 1026 4:766 13� 1026

1010 1:059 77� 1028 1:042 39� 1028 1:036 68� 1028
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computed as � ¼ Erel
FMT=ðc2VwsÞ where Erel

FMT is the
energy of the cell given by Eq. (58).

(ii) For that value of the density, the radius of the
Wigner-Seitz cell in the Salpeter treatment is

Rws ¼
�
3ArMu

4��

�
1=3

; (65)

where Eq. (15) has been used. On the contrary, in
the relativistic Feynman-Metropolis-Teller treat-
ment no analytic expression relating Wigner-Seitz
cell radius and density can be written.

(iii) From this Wigner-Seitz cell radius, or equivalently
using the value of the density, the electron density
in the Salpeter model is computed from the as-
sumption of uniform electron distribution and
the charge neutrality condition, i.e. Eq. (15). In
the relativistic Feynman-Metropolis-Teller treat-
ment, the electron number density at the boundary
of the Wigner-Seitz cell is, following Eq. (53),
given by

nrelFMT
e ¼ 1

3�2�3
�

�
�2ðxwsÞ
x2ws

þ 2
me

m�

�ðxwsÞ
xws

�
3=2

;

(66)

where the function �ðxÞ is the solution of the
relativistic Thomas-Fermi equation (55).

(iv) Finally, with the knowledge of the electron den-
sity at Rws, the pressure can be calculated. In the
Salpeter approach it is given by Eq. (29) while in
the relativistic Feynman-Metropolis-Teller case it is
given by Eq. (62).

III. GENERAL RELATIVISTIC EQUATIONS
OF EQUILIBRIUM

Outside each Wigner-Seitz cell the system is electrically
neutral, thus no overall electric field exists. Therefore, the
above equation of state can be used to calculate the struc-
ture of the star through the Einstein equations. Introducing
the spherically symmetric metric (5), the Einstein equa-
tions can be written in the Tolman-Oppenheimer-Volkoff
form [28,29]

d�ðrÞ
dr

¼ 2 G

c2
4�r3PðrÞ=c2 þMðrÞ

r2½1� 2GMðrÞ
c2r

� ; (67)

dMðrÞ
dr

¼ 4�r2
EðrÞ
c2

; (68)

dPðrÞ
dr

¼ � 1

2

d�ðrÞ
dr

½EðrÞ þ PðrÞ�; (69)

where we have introduced the mass enclosed at the dis-

tance r through e�ðrÞ ¼ 1–2 GMðrÞ=ðc2rÞ, EðrÞ is the en-
ergy density and PðrÞ is the total pressure.
We turn now to demonstrate how, from Eq. (69), it

follows the general relativistic equation of equilibrium
(6), for the self-consistent Wigner-Seitz chemical potential
�ws. The first law of thermodynamics for a zero tempera-
ture fluid of N particles, total energy E, total volume V,
total pressure P ¼ �@E=@V, and chemical potential � ¼
@E=@N reads

dE ¼ �PdV þ�dN; (70)

where the differentials denote arbitrary but simultaneous
changes in the variables. Since for a system whose surface
energy can be neglected with respect to volume energy, the
total energy per particle E=N depends only on the particle
density n ¼ N=V, we can assume E=N as an homogeneous
function of first-order in the variablesN and V and hence, it
follows the well-known thermodynamic relation

E ¼ �PV þ�N: (71)

In the case of the Wigner-Seitz cells, Eq. (71) reads

Ews ¼ �PwsVws þ�ws; (72)

where we have introduced the fact that the Wigner-Seitz
cells are the building blocks of the configuration and there-
fore we must put in Eq. (71) Nws ¼ 1. Through the entire
article we have used Eq. (72) to obtain from the knowns
energy and pressure, the Wigner-Seitz cell chemical po-
tential [see, e.g. Eqs. (13) and (23)]. From Eqs. (70) and
(71) we obtain the so-called Gibbs-Duhem relation

dP ¼ nd�: (73)

In a white dwarf the pressure P and the chemical poten-
tial � are decreasing functions of the distance from the
origin. Thus, the differentials in the above equations can be
assumed as the gradients of the variables which, in the
present spherically symmetric case, become just deriva-
tives with respect to the radial coordinate r. From Eq. (73)
it follows the relation

dPws

dr
¼ nws

d�ws

dr
: (74)

From Eqs. (69), (72), and (74) we obtain

nwsðrÞd�wsðrÞ
dr

¼ � 1

2

d�ðrÞ
dr

nwsðrÞ�wsðrÞ; (75)

which can be straightforwardly integrated to obtain the first
integral

e�ðrÞ=2�wsðrÞ ¼ constant: (76)
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The above equilibrium condition is general and it also
applies for nonzero temperature configurations (see, e.g.
[30]). In such a case, it can be shown that in addition to
the equilibrium condition (76) the temperature of the
system satisfies the Tolman isothermality condition

e�ðrÞ=2TðrÞ ¼ constant [31,32].

A. The weak-field nonrelativistic limit

In the weak-field limit we have e�=2 � 1þ�, where
the Newtonian gravitational potential has been defined
by �ðrÞ ¼ �ðrÞ=2. In the nonrelativistic mechanics limit
c ! 1, the chemical potential �ws ! ~�ws þMwsc

2,
where ~�ws denotes the nonrelativistic free-chemical poten-
tial of the Wigner-Seitz cell andMws is the rest-mass of the
Wigner-Seitz cell, namely, the rest-mass of the nucleus
plus the rest-mass of the electrons. Applying these consid-
erations to Eq. (76) we obtain

e�=2�ws � Mwsc
2 þ ~�ws þMws� ¼ constant: (77)

Absorbing the Wigner-Seitz rest-mass energyMwsc
2 in the

constant on the right-hand side we obtain

~� ws þMws� ¼ constant: (78)

In the weak-field nonrelativistic limit, the Einstein
equations (67)–(69) reduce to

d�ðrÞ
dr

¼ GMðrÞ
r2

; (79)

dMðrÞ
dr

¼ 4�r2�ðrÞ; (80)

dPðrÞ
dr

¼ �GMðrÞ
r2

�ðrÞ; (81)

where �ðrÞ denotes the rest-mass density. The Eqs. (79)
and (80) can be combined to obtain the gravitational
Poisson equation

d2�ðrÞ
dr2

þ 2

r

d�ðrÞ
dr

¼ 4�G�ðrÞ: (82)

In the uniform approximation (see Sec. II A), the equi-
librium condition given by Eq. (78) reads

~� e þ Ar

Z
Mu� ¼ constant; (83)

where we have neglected the electron rest-mass with re-
spect to the nucleus rest-mass and we have divided the
equation by the total number of electrons Z. This equilib-
rium equation is the classical condition of thermodynamic
equilibrium assumed for nonrelativistic white dwarf mod-
els (see, e.g. [20] for details).

Introducing the above equilibrium condition (83) into
Eq. (82), and using the relation between the nonrelativistic

electron chemical potential and the particle density ne ¼
ð2meÞ3=2 ~�3=2

e =ð3�2ℏ3Þ, we obtain

d2 ~�eðrÞ
dr2

þ 2

r

d ~�eðrÞ
dr

¼ � 27=3m3=2
e ðAr=ZÞ2m2

NG

3�ℏ3
~�3=2
e ðrÞ;
(84)

which is the correct equation governing the equilibrium
of white dwarfs within Newtonian gravitational theory
[20]. It is remarkable that the equation of equilibrium
(84), obtained from the correct application of the
Newtonian limit, does not coincide with the equation given
by [3,33–35], which, as correctly pointed out by [7], is a
mixture of both relativistic and nonrelativistic approaches.
Indeed, the consistent relativistic equations should be
Eq. (76). Therefore a dual relativistic and nonrelativistic
equation of state was used by Chandrasekhar. The pressure
on the left-hand side of Eq. (81) is taken to be given by
relativistic electrons while, the term on the right-hand side
of Eq. (80) and (81) [or the source of Eq. (82)], is taken to
be the rest-mass density of the system instead of the total
relativistic energy density. Such a procedure is equivalent
to take the chemical potential in Eq. (78) as a relativistic
quantity. As we have seen, this is inconsistent with the
weak-field nonrelativistic limit of the general relativistic
equations.

B. The post-Newtonian limit

Indeed, if one were to treat the problem of white dwarfs
approximately without going to the sophistications of
general relativity, but including the effects of relativistic
mechanics, one should use at least the equations in the
post-Newtonian limit. The first-order post-Newtonian ex-
pansion of the Einstein equations (67)–(69) in powers of
P=E and GM=ðc2rÞ leads to the equilibrium equations [36]

d�ðrÞ
dr

¼ � 1

EðrÞ
�
1� PðrÞ

EðrÞ
�
dPðrÞ
dr

; (85)

dMðrÞ
dr

¼ 4�r2
EðrÞ
c2

; (86)

dPðrÞ
dr

¼ �GMðrÞ
r2

EðrÞ
c2

�
�
1þ PðrÞ

EðrÞ þ
4�r3PðrÞ
MðrÞc2 þ 2GMðrÞ

c2r

�
; (87)

where Eq. (87) is the post-Newtonian version of the
Tolman-Oppenheimer-Volkoff equation (69).
Replacing Eq. (74) into Eq. (85) we obtain

�
1� PðrÞ

EðrÞ
�
d�wsðrÞ

dr
þ EðrÞ=c2

nwsðrÞ
d�ðrÞ
dr

¼ 0: (88)

It is convenient to split the energy density as E ¼ c2�þU,
where � ¼ Mwsnws is the rest-energy density and U the
internal energy density. Thus, Eq. (88) becomes
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d�wsðrÞ
dr

þMws

d�ðrÞ
dr

�PðrÞ
EðrÞ

d�wsðrÞ
dr

þ U=c2

nwsðrÞ
d�ðrÞ
dr

¼0;

(89)

which is the differential post-Newtonian version of the
equilibrium equation (76) and where the post-Newtonian
corrections of equilibrium can be clearly seen. Applying
the nonrelativistic limit c ! 1 to Eq. (89): P=E ! 0,
U=c2 ! 0, and �ws ! Mwsc

2 þ ~�ws, we recover the
Newtonian equation of equilibrium (78).

IV. MASS AND RADIUS OF GENERAL
RELATIVISTIC STABLE WHITE DWARFS

A. Inverse �-decay instability

It is known that white dwarfs may become unstable
against the inverse �-decay process ðZ; AÞ ! ðZ� 1; AÞ
through the capture of energetic electrons (see, e.g.
[37–40]). In order to trigger such a process, the electron
Fermi energy must be larger than the mass difference
between the initial nucleus ðZ; AÞ and the final nucleus

ðZ� 1; AÞ. We denote this threshold energy as ��Z .

Usually it is satisfied ��Z�1 < ��Z and therefore the ini-
tial nucleus undergoes two successive decays, i.e. ðZ; AÞ !
ðZ� 1; AÞ ! ðZ� 2; AÞ (see, e.g. [9,41]). Some of the
possible decay channels in white dwarfs with the corre-

sponding known experimental threshold energies ��Z are
listed in Table II. The electrons in the white dwarf may
eventually reach the threshold energy to trigger a given

decay at some critical density ��
crit. Configurations with

� > ��
crit become unstable (see [9,40] for details).

Within the uniform approximation, e.g. in the case of the
Salpeter equation of state [9], the critical density for the
onset of inverse � decay is given by

��;unif
crit ¼ Ar

Z

Mu

3�2ℏ3c3
½ð��Z Þ2 þ 2mec

2��Z �3=2; (90)

where Eq. (15) has been used.

Because the computation of the electron Fermi energy
within the relativistic Feynman-Metropolis-Teller ap-
proach [17] involves the numerical integration of the
relativistic Thomas-Fermi equation (55), no analytic ex-

pression for ��
crit can be found in this case. The critical

density ��;relFMT
crit is then obtained numerically by looking

for the density at which the electron Fermi energy (50)

equals ��Z .
In Table II we show, correspondingly to each threshold

energy ��Z , the critical density both in the Salpeter case

��;unif
crit given by Eq. (90) and in the relativistic Feynman-

Metropolis-Teller case ��;relFMT
crit . It can be seen that

��;relFMT
crit > ��;unif

crit as one should expect from the fact

that, for a given density, the electron density at the
Wigner-Seitz cell boundary satisfies nrelFMT

e < nunife .
This means that, in order to reach a given energy, the
electrons within the relativistic Feynman-Metropolis-
Teller approach must be subjected to a larger density
with respect to the one given by the approximated
Salpeter analytic formula (90).

B. General relativistic instability

The concept of the critical mass has played a major role
in the theory of stellar evolution. For Newtonian white
dwarfs the critical mass is reached asymptotically at infi-
nite central densities of the object. One of the most im-
portant general relativistic effects is to shift this critical
point to some finite density �GR

crit.

This general relativistic effect is an additional source
of instability with respect to the already discussed insta-
bility due to the onset of inverse� decay which, contrary to
the present general relativistic one, applies also in the
Newtonian case by shifting the maximum mass of
Newtonian white dwarfs to finite densities (see, e.g. [40]).

C. Numerical results

In Figs. 3–10 we have plotted the mass-central density
relation and the mass-radius relation of general relativistic
4He, 12C, 16O and 56Fewhite dwarfs. In particular, we show
the results for the Newtonian white dwarfs of Hamada and
Salpeter [11], for the Newtonian white dwarfs of
Chandrasekhar [3] and the general relativistic configura-
tions obtained in this work based on the relativistic
Feynman-Metropolis-Teller equation of state [17].
Since our approach takes into account self-consistently

both �-decay equilibrium and general relativity, we can
determine if the critical mass is reached due either to
inverse �-decay instability or to the general relativistic
instability.
A comparison of the numerical value of the critical

mass as given by Stoner [2], Eq. (1), by Chandrasekhar
[3] and Landau [6], Eq. (2), by Hamada and Salpeter [11]
and, by the treatment presented here can be found in
Table III.

TABLE II. Onset of inverse beta decay instability for 4He, 12C,
16O and 56Fe. The experimental inverse �-decay energies ��Z are

given in MeVand they have been taken from Table 1 of [42]. The
corresponding critical density for the uniform electron density

model, ��;unif
crit given by Eq. (90), is given in g=cm3 as well as the

critical density ��;relFMT
crit for the relativistic Feynman-

Metropolis-Teller case. The numerical values of ��Z are taken

from [43], see also [41]

Decay ��Z ��;relFMT
crit ��;unif

crit

4He ! 3Hþ n ! 4n 20.596 1:39� 1011 1:37� 1011

12C ! 12B ! 12Be 13.370 3:97� 1010 3:88� 1010

16O ! 16N ! 16C 10.419 1:94� 1010 1:89� 1010

56Fe ! 56Mn ! 56Cr 3.695 1:18� 109 1:14� 109
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From the numerical integrations we have obtained:

(i) 4He and 12C white dwarfs satisfy �GR
crit < ��

crit

(see Figs. 3–6 and Tables II and III), so they are
unstable with respect to general relativistic
effects. The critical density of 12C white dwarfs is
�2:12� 1010 g=cm3, to be compared with the value
2:65� 1010 g=cm3 obtained from calculations
based on general relativistic corrections to the theory
of polytropes (see, e.g. [41]).

(ii) White dwarfs composed of heavier material than
12C, e.g. 16O and 56Fe are unstable due to in-
verse � decay of the nuclei (see Figs. 7–10 and
Tables II and III). It is worth noting that the correct
evaluation of general relativistic effects and of the
combined contribution of the electrons to the energy
density of the system introduce, for 12C white

dwarfs, a critical mass not due to the inverse beta
decay. When the contribution of the electrons to the
energy density is neglected (e.g. Chandrasekhar [3]
and Hamada and Salpeter [11], see Eq. (15)) the
critical density for Carbon white dwarfs is deter-
mined by inverse beta decay irrespective of the
effects of general relativity.

(iii) It can be seen from Figs. 3–10 that the drastic
decrease of the Salpeter pressure at low densities
(see [9,17] and Table I for details) produces an
underestimate of the mass and the radius of low
density (low mass) white dwarfs.

(iv) The Coulomb effects are much more pronounced in
the case of white dwarfs with heavy nuclear com-
positions, e.g. 56Fe (see Figs. 9 and 10).

FIG. 3. Mass in solar masses as a function of the central density in the range (left panel) 105–108 g=cm3 and in the range (right
panel) 108–5� 1011 g=cm3 for 4He white dwarfs. The solid curve corresponds to the present work, the dotted curves are the
Newtonian configurations of Hamada and Salpeter and the dashed curve are the Newtonian configurations of Chandrasekhar.

FIG. 4. Mass in solar masses as a function of the radius in units of 104 km for 4He white dwarfs. The left and right panels show the
configurations for the same range of central densities of the corresponding panels of Fig. 3. The solid curve corresponds to the present
work, the dotted curves are the Newtonian configurations of Hamada and Salpeter and the dashed curve are the Newtonian
configurations of Chandrasekhar.
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FIG. 5. Mass in solar masses as a function of the central density in the range (left panel) 105–108 g=cm3 and in the range (right
panel) 108–1011 g=cm3 for 12C white dwarfs. The solid curve corresponds to the present work, the dotted curves are the Newtonian
configurations of Hamada and Salpeter and the dashed curve are the Newtonian configurations of Chandrasekhar.

FIG. 6. Mass in solar masses as a function of the radius in units of 104 km for 12C white dwarfs. The left and right panels show the
configurations for the same range of central densities of the corresponding panels of Fig. 5. The solid curve corresponds to the present
work, the dotted curves are the Newtonian configurations of Hamada and Salpeter and the dashed curve are the Newtonian
configurations of Chandrasekhar.

FIG. 7. Mass in solar masses as a function of the central density in the range (left panel) 105–108 g=cm3 and in the range (right
panel) 108–1011 g=cm3 for 16O white dwarfs. The solid curve corresponds to the present work, the dotted curves are the Newtonian
configurations of Hamada and Salpeter and the dashed curve are the Newtonian configurations of Chandrasekhar.
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FIG. 8. Mass in solar masses as a function of the radius in units of 104 km for 16O white dwarfs. The left and right panels show the
configurations for the same range of central densities of the corresponding panels of Fig. 7. The solid curve corresponds to the present
work, the dotted curves are the Newtonian configurations of Hamada and Salpeter and the dashed curve are the Newtonian
configurations of Chandrasekhar.

FIG. 9. Mass in solar masses as a function of the central density in the range (left panel) 105–108 g=cm3 and in the range (right
panel) 108–3� 109 g=cm3 for 56Fe white dwarfs. The solid curve corresponds to the present work, the dotted curves are the
Newtonian configurations of Hamada and Salpeter and the dashed curve are the Newtonian configurations of Chandrasekhar.

FIG. 10. Mass in solar masses as a function of the radius in units of 104 km for 56Fe white dwarfs. The left and right panels show the
configurations for the same range of central densities of the corresponding panels of Fig. 9. The solid curve corresponds to the present
work, the dotted curves are the Newtonian configurations of Hamada and Salpeter and the dashed curve are the Newtonian
configurations of Chandrasekhar.
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V. CONCLUSIONS

We have addressed the theoretical physics aspects of the
white dwarf configurations of equilibrium, quite apart from
the astrophysical application.

The recently accomplished description of a compressed
atom within the global approach of the relativistic
Feynman, Metropolis and Teller [17] has been here solved
within the Wigner-Seitz cell and applied to the construc-
tion of white dwarfs in the framework of general relativity.
From a theoretical physics point of view, this is the first
unified approach of white dwarfs taking into account con-
sistently the gravitational, the weak, the strong and the
electromagnetic interactions, and it answers open theoreti-
cal physics issues in this matter. No analytic formula for
the critical mass of white dwarfs can be derived and, on the
contrary, the critical mass can obtained only through the
numerical integration of the general relativistic equations
of equilibrium together with the relativistic Feynman-
Metropolis-Teller equation of state.

The value of the critical mass and the radius of
white dwarfs in our treatment and in the Hamada and
Salpeter [11] treatment becomes a function of the composi-
tion of the star. Specific examples have been given in the
case of white dwarfs composed of 4He, 12C, 16O and 56Fe.
The results of Chandrasekhar, of Hamada and Salpeter and
ours have been compared and contrasted (see Table III and
Figs. 3–10).

The critical mass is a decreasing function of Z and
Coulomb effects are more important for heavy nuclear
compositions. The validity of the Salpeter approximate
formulas increases also with Z, namely, for heavy nuclear
compositions the numerical values of the masses as well as
of the radii of white dwarfs obtained using the Salpeter
equation of state are closer to the ones obtained from the

full numerical integration of the general relativistic treat-
ment presented here.
Turning now to astrophysics, the critical mass of white

dwarfs is today acquiring a renewed interest in view of its
central role in the explanation of the supernova phenomena
[44–47]. The central role of the critical mass of white
dwarfs as related to supernova was presented by F. Hoyle
and W. A. Fowler [48] explaining the difference between
type I and type II Supernova. This field has developed in
the intervening years to a topic of high precision research
in astrophysics and, very likely, both the relativistic and the
Coulomb effects outlined in this article will become topic
of active confrontation between theory and observation.
For instance, the underestimate of the mass and the radius
of low density white dwarfs within the Hamada and
Salpeter treatment [11] (see Figs. 3–10) leads to the pos-
sibility of a direct confrontation with observations in the
case of low mass white dwarfs, e.g. the companion of the
Pulsar J1141-6545 [49].
We have finally obtained a general formula in Eq. (76) as

a ‘‘first integral’’ of the general relativistic equations of
equilibrium. This formula relates the chemical potential of
the Wigner-Seitz cells, duly obtained from the relativistic
Feynman-Metropolis-Teller model [17] taking into ac-
count weak, nuclear and electromagnetic interactions, to
the general relativistic gravitational potential at each point
of the configuration. Besides its esthetic value, this is an
important tool to examine the radial dependence of the
white dwarf properties and it can be also applied to the
crust of a neutron star as it approaches to the physical
important regime of neutron star cores.
The formalism we have introduced allows in principle to

evaluate subtle effects of a nuclear density distribution as a
function of the radius and of the Fermi energy of the
electrons and of the varying depth of the general relativistic
gravitational potential. The theoretical base presented in
this article establishes also the correct framework for the
formulation of the more general case when finite tempera-
tures and magnetic fields are present. This treatment natu-
rally opens the way to a more precise description of the
crust of neutron stars, which will certainly become an
active topic of research in view of the recent results by
Goriely et al. [50,51] and by Pearson et al. [52] on the
importance of the Coulomb effects in the r-process nucleo-
synthesis of the crust material during its post-ejection
evolution in the process of gravitational collapse and/or
in the merging of neutron star binaries.
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TABLE III. Critical density and corresponding critical mass
for the onset of gravitational collapse of the Newtonian 4He, 12C,
16O and 56Fe white dwarfs of Hamada [11], based on the Salpeter
equation of state [9], and of the corresponding general relativ-
istic configurations obtained in this work based on the relativistic
Feynman-Metropolis-Teller equation of state [17]. Densities are
in g=cm3 and masses in solar masses. For the sake of compari-
son, the critical mass of Stoner (1) and of the one of
Chandrasekhar-Landau (2) are MStoner

crit � 1:72M� and MCh-L
crit �

1:45M�, for the average molecular weight � ¼ Ar=Z ¼ 2.

�H&S
crit MH&S

crit =M� �FMTrel
crit MFMTrel

crit =M�
4He 1:37� 1011 1.440 64 1:56� 1010 1.409 06
12C 3:88� 1010 1.417 45 2:12� 1010 1.386 03
16O 1:89� 1010 1.406 96 1:94� 1010 1.380 24
56Fe 1:14� 109 1.117 65 1:18� 109 1.106 18
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Wärmetheorie auf Kosmologische und Meteorologische
Probleme (Teubner,, Leipzig and Berlin, 1907).

[6] L. D. Landau, Phys. Z. Sowjetunion 1, 285 (1932).
[7] A. S. Eddington, Mon. Not. R. Astron. Soc. 95, 194

(1935).
[8] D. Boccaletti and R. Ruffini, Fermi and Astrophysics

(World Scientific, Singapore, 2010).
[9] E. E. Salpeter, Astrophys. J. 134, 669 (1961).
[10] Y. I. Frenkel, Z. Phys. 50, 234 (1928).
[11] T. Hamada and E. E. Salpeter, Astrophys. J. 134, 683

(1961).
[12] E. Olson and M. Bailyn, Phys. Rev. D 12, 3030 (1975).
[13] E. Olson and M. Bailyn, Phys. Rev. D 13, 2204 (1976).
[14] M. Rotondo, J. A. Rueda, R. Ruffini, and S. Xue, Phys.

Lett. B 701, 667 (2011).
[15] R. Ruffini, in Exploring the Universe: A Festschrift in

Honor of Riccardo Giacconi, edited by H. Gursky, R.
Ruffini, and L. Stella, Advanced Series in Astrophysics
and Cosmology, Vol. 13 (World Scientific, Singapore,
2000).

[16] G. Bertone and R. Ruffini, Nuovo Cimento Soc. Ital. Fis.
B 115, 935 (2000).

[17] M. Rotondo, J. A. Rueda, R. Ruffini, and S.-S. Xue, Phys.
Rev. C 83, 045805 (2011).

[18] R. P. Feynman, N. Metropolis, and E. Teller, Phys. Rev.
75, 1561 (1949).

[19] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170,
299 (1971).

[20] L. D. Landau and E.M. Lifshitz, Statistical Physics: Part1
(Pergamon Press, Oxford, 1980).

[21] J. Ferreirinho, R. Ruffini, and L. Stella, Phys. Lett. 91B,
314 (1980).

[22] R. Ruffini and L. Stella, Phys. Lett. 102B, 442 (1981).
[23] P. A.M. Dirac, Proc. Cambridge Philos. Soc. 26, 376

(1930).
[24] A. B. Migdal, V. S. Popov, and D.N. Voskresenskiı̌, Sov.

Phys. JETP 45, 436 (1977).
[25] J. C. Slater and H.M. Krutter, Phys. Rev. 47, 559

(1935).

[26] R. Ruffini, in Path Integrals—New Trends and
Perspectives (2008), p. 207.

[27] V. S. Popov, M. Rotondo, R. Ruffini, and S. Xue, arXiv:
astro-ph/0903.3727 [Int. J. Mod. Phys. (in press].

[28] R. C. Tolman, Phys. Rev. 55, 364 (1939).
[29] J. R. Oppenheimer and G.M. Volkoff, Phys. Rev. 55, 374

(1939).
[30] O. Klein, Rev. Mod. Phys. 21, 531 (1949).
[31] R. C. Tolman, Phys. Rev. 35, 904 (1930).
[32] R. C. Tolman and P. Ehrenfest, Phys. Rev. 36, 1791

(1930).
[33] S. Chandrasekhar, Mon. Not. R. Astron. Soc. 91, 456

(1931).
[34] S. Chandrasekhar, Mon. Not. R. Astron. Soc. 95, 207

(1935).
[35] S. Chandrasekhar, An Introduction to the Study of Stellar

Structure (University of Chicago Press, Chicago, 1939).
[36] I. Ciufolini and R. Ruffini, Astrophys. J. 275, 867 (1983).
[37] F. Hund, Erg. d. exacten Natwis. 15, 189 (1936).
[38] L. D. Landau, Nature (London) 141, 333 (1938).
[39] I. B. Zel’Dovich, Sov. Phys. JETP 6, 760 (1958).
[40] B. K. Harrison, M. Wakano, and J. A. Wheeler, in Onzieme

Conseil de Physique de Solvay (R. Stoops, Brussels,
1958).

[41] S. L. Shapiro and S. A. Teukolsky, Black Holes, White
Dwarfs, and Neutron Stars: The Physics of Compact
Objects (Wiley-Interscience, New York, 1983).

[42] G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys.
A729, 337 (2003).

[43] A. H. Wapstra and K. Bos, At. Data Nucl. Data Tables 19,
175 (1977).

[44] M.M. Phillips, Astrophys. J. Lett. 413, L105 (1993).
[45] A. G. Riess et al., Astron. J. 116, 1009 (1998).
[46] S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
[47] A. G. Riess et al., Astrophys. J. 607, 665 (2004).
[48] F. Hoyle and W.A. Fowler, Astrophys. J. 132, 565

(1960).
[49] M. Kramer (private communication).
[50] S. Goriely, N. Chamel, H.-T. Janka, and J.M. Pearson,

Astron. Astrophys. 531, A78 (2011).
[51] S. Goriely, A. Bauswein, and H. Thomas Janka,

arXiv:1107.0899.
[52] J.M. Pearson, S. Goriely, and N. Chamel, Phys. Rev. C 83,

065810 (2011).

ROTONDO et al. PHYSICAL REVIEW D 84, 084007 (2011)

084007-16

http://dx.doi.org/10.1086/143324
http://dx.doi.org/10.1086/147194
http://dx.doi.org/10.1007/BF01328867
http://dx.doi.org/10.1086/147195
http://dx.doi.org/10.1086/147195
http://dx.doi.org/10.1103/PhysRevD.12.3030
http://dx.doi.org/10.1103/PhysRevD.13.2204
http://dx.doi.org/10.1016/j.physletb.2011.06.041
http://dx.doi.org/10.1016/j.physletb.2011.06.041
http://dx.doi.org/10.1103/PhysRevC.83.045805
http://dx.doi.org/10.1103/PhysRevC.83.045805
http://dx.doi.org/10.1103/PhysRev.75.1561
http://dx.doi.org/10.1103/PhysRev.75.1561
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1016/0370-2693(80)90457-8
http://dx.doi.org/10.1016/0370-2693(80)90457-8
http://dx.doi.org/10.1016/0370-2693(81)91249-1
http://dx.doi.org/10.1017/S0305004100016108
http://dx.doi.org/10.1017/S0305004100016108
http://dx.doi.org/10.1103/PhysRev.47.559
http://dx.doi.org/10.1103/PhysRev.47.559
http://arXiv.org/abs/astro-ph/0903.3727
http://arXiv.org/abs/astro-ph/0903.3727
http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/RevModPhys.21.531
http://dx.doi.org/10.1103/PhysRev.35.904
http://dx.doi.org/10.1103/PhysRev.36.1791
http://dx.doi.org/10.1103/PhysRev.36.1791
http://dx.doi.org/10.1086/161580
http://dx.doi.org/10.1007/BFb0111968
http://dx.doi.org/10.1038/141333b0
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://dx.doi.org/10.1016/0092-640X(77)90019-5
http://dx.doi.org/10.1016/0092-640X(77)90019-5
http://dx.doi.org/10.1086/186970
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/383612
http://dx.doi.org/10.1086/146963
http://dx.doi.org/10.1086/146963
http://dx.doi.org/10.1051/0004-6361/201116897
http://arXiv.org/abs/1107.0899
http://dx.doi.org/10.1103/PhysRevC.83.065810
http://dx.doi.org/10.1103/PhysRevC.83.065810

