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We study some features of static and spherically symmetric solutions (SSS) with a horizon in fðRÞ
theories of gravitation by means of a near-horizon analysis. A necessary condition for an fðRÞ theory to

have this type of solution is obtained. General features of the effective potential are deduced, and it is

shown that there exists a limit on the curvature at the horizon, in both cases for any fðRÞ. Finally, we
calculate the expression for the energy of the collision of two massive particles in the center of mass frame.

DOI: 10.1103/PhysRevD.84.084006 PACS numbers: 04.50.Kd, 04.70.Bw

I. INTRODUCTION

Although gravity has been shown to be with high accu-
racy in accordance with General Relativity (GR) in a
number of situations in which the curvature is small [1],
there is no observational evidence of the behavior of the
gravitational field for very large values of the curvature. In
this regard, objects such as black holes and neutron stars
are the ideal places to look for deviations from GR in the
strong regime [2]. The task of understanding what kind of
deviations can be expected, and their relation to observable
quantities is of relevance both theoretically and from the
observational point of view. The latter is important in view
of developments that offer the prospect of surveying phe-
nomena occurring in the vicinity of the horizon in the near
future, such as the possibility of obtaining ‘‘black hole
images’’ [3,4].

As a first step in discussing deviations from GR in
strong-field gravity, we will examine here some features
of static and spherically symmetric (SSS) black hole solu-
tions in theories with a Lagrangian that is a function of the
Ricci scalar R [6]. Different aspects of this type of solu-
tions in fðRÞ theories have been previously in discussed in
[8], mostly resorting to exact solutions and/or phase space
analysis. We will take here a complementary path which
consists in extracting information about relevant quantities
from the behavior of the geometry near the horizon. For an
arbitrary fðRÞ, it will be assumed that a SSS black hole
solution exists, being described by a general metric
adapted to these symmetries. As a result of expanding
the metric functions in series of the distance to the horizon
(whose radius r0 is given by g00ðr0Þ ¼ 0), and using the
equations of motion for the metric, we shall obtain a
necessary condition that the fðRÞ must satisfy for the
existence of the SSS black hole solution. It will also be
shown that the near-horizon geometry is constrained by the
equation-of-motion method (EOM), and the consequences
of these constraints in the redshift, the curvature, and the
energy of a collision of particles in the center of mass
frame will be analyzed. Let us begin by presenting the
relevant equations in the next section.

II. EQUATIONS OF MOTION AT THE HORIZON

The vacuum equations of motion for an fðRÞ theory are
given by

df

dR
R�� � f

2
g�� � ðr�r� � g��hÞ df

dR
¼ 0; (1)

along with the trace of Eq. (1):

3h
df

dR
þ df

dR
R� 2f ¼ 0: (2)

In the case of a SSS metric in Schwarzschild’s coordinates,
the nonzero equations following from Eq. (1) are

df

dR
R00 þ g00A ¼ 0; (3)

df

dR
R11 þ g11A� d3f

dR3
ð@1RÞ2 � d2f

dR2
r1ð@1RÞ ¼ 0; (4)

df

dR
R22 þ g22A ¼ 0; (5)

where

A � � f

2
þ d3f

dR3
g11ð@1RÞð@1RÞ þ d2f

dR2
hR: (6)

To describe the SSS spacetime, the metric

ds2 ¼ �e�2�ðrÞ
�
1� bðrÞ

r

�
dt2 þ dr2

1� bðrÞ
r

þ r2d�2 (7)

will be adopted, where the function � is known as the
anomalous redshift. We shall assume that there is a horizon
at r ¼ r0 [9], where r0 is given implicitly by bðr0Þ ¼ r0.
From this expression, we see that the dependence of r0
with the mass will likely be different from the linear
relation r0 ¼ 2M in Schwarzschild’s solution. We assume
in the following that all the functions in the metric, as well
as the derivatives of fðRÞ, can be developed in series
around the horizon, so that
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bðrÞ ¼ b0 þ b00ðr� r0Þ þ 1
2b

00
0 ðr� r0Þ2 þ . . .

�ðrÞ ¼ �0 þ�0
0ðr� r0Þ þ 1

2�
00
0 ðr� r0Þ2 þ . . . ;

df

dR
¼ df

dR

��������0
þ
�
d

dr

�
df

dR

��
0
ðr� r0Þ þ . . . ;

where the subindex zero indicates that the corresponding
quantity is evaluated at the horizon, and the prime denotes
derivative with respect to the coordinate r. Replacing these
expressions in the EOM and taking the limit r ! r0 is a
rather long and straightforward calculation that requires
care, because there will be both finite terms and terms that
diverge as ðr� r0Þ�1 in this limit. The latter arise from the
‘‘11’’ component of the Ricci tensor, given by

R11 ¼ � 1

2r2ð1� b
rÞ
�
2r2

�
1� b

r

�
ð�00 ��02Þ

þ 3�0ðb� rb0Þ þ b00r
�
;

and also from the term hR ¼ g11r1@1R. For the EOM to
be satisfied at the horizon, we must impose that both the
finite and the divergent terms be zero. Doing so leads to the
following relations: from Eq. (3), we obtain

3�0
0r0ð1� b00Þ þ b000r0 � 2b00 ¼ 0: (8)

The finite part of Eq. (4) yields

df

dR

��������0

�
3�0

0b
0
0 � b000 þ 2�0

0 þ 2b00ðr0�00
0 � r0�

02
0 ��0

0Þ

þ 4
b00
r0

�
þ 2b00R

0
0

d2f

dR2

��������0
¼ 0; (9)

with

R0
0¼� 1

r20

�
b000 ð1�3�0

0r0Þþð1�b00Þð5r0�00
0 �2r0�

2
0�2�0

0Þ

þr0b
000
0 �4

b00
r0

�
;

while the divergent part yields

2
df

dR

��������0
b00 þ r20f0 ¼ 0: (10)

From the finite part of Eq. (5), we get

� 2
df

dR

��������0
�0

0 þ r0R
02
0

d3f

dR3

��������0
þr0B0

d2f

dR2

��������0
¼ 0; (11)

where B0 ¼ B0ðb00; b000 ; b0000 ; biv0 ; �0
0; �

00
0 ; �

000
0 Þ is a rather

long expression which we shall not use in this paper.
Finally, the divergent part of Eq. (5) gives

� 5r20�
00
0 ðb00 � 1Þ þ r0�

0
0½�3r0b

00
0 þ 2ðb00 � 1Þ�

þ 2r20�
02
0 ðb00 � 1Þ þ r0ðb0000 r0 þ b000 Þ � 4b00 ¼ 0; (12)

which is equivalent to R0
0 ¼ 0. Assuming df

dR j0 � 0 (we

shall see below that this is a reasonable asssumption), it
follows from Eq. (9) that

3�0
0b

0
0 � b000 þ 2�0

0 þ 2b00ðr0�00
0 � r0�

02
0 ��0

0Þþ 4
b00
r0

¼ 0:

(13)

It can also be shown from these relations that the trace
equation at r ¼ r0, given by

df

dR

��������0
R0 � 2f0 þ 3

2r0
ð1� b00Þ

d2f

dR2

��������0
R0
0 ¼ 0;

is identically zero. These equations and some of their
consequences will be analyzed in the following. Before
closing this section, let us remark that although these
relations were obtained using a series development around
r ¼ r0, they are exact, in the sense that the higher order
terms go to zero when r ! r0.

III. NEAR-HORIZON BEHAVIOR

It will be shown in this section that information about the
near-horizon geometry and the fðRÞ can be extracted from
Eqs. (8), (10), (12), and (13), and used to study relevant
quantities. To begin with, taking into account that R0 ¼
�4b00=r20, Eq. (10) can be rewritten as

f0
df
dR j0

¼ R0

2
; (14)

which furnishes an easy-to-use, coordinate-independent
necessary condition for a given fðRÞ to have SSS black
hole solutions. In particular, it follows that Schwarzschild’s
metric (for which bðrÞ ¼ constant) is not a solution of
those theories for which

f0
df
dR j0

� 0;

a result which agrees with the conclusions obtained in
[10,11]. This expression can be used to test whether a
given theory has SSS black hole solutions. For instance,
it follows from Eq. (14) that the theory defined by fðRÞ ¼
�Rn may only have SSS black hole solutions for n ¼ 2.
This condition may be strengthened by the use of the

inequality df
dR > 0, which must be satisfied in order to avoid

ghostlike behavior of cosmological perturbations [12].
Using the latter condition along with Eq. (14), we conclude
that for a given fðRÞ theory to be free of ghostlike cosmo-
logical perturbations and to have a SSS solution with
R0 > 0 (R0 < 0), f0 must be positive (negative). In par-
ticular, in the case of Schwarzschild’s spacetime, the con-
dition f0 ¼ 0 must be met.
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Going back to the set of equations obtained in the
previous section, notice that Eqs. (10) and (11) involve
the function f and its derivatives at the horizon, while
Eqs. (8), (12), and (13) are constraints on the geometry
in the neighborhood of r0. In particular, from Eqs. (10) and
(13), the first and second derivatives of� at the horizon can
be expressed as functions of r0, b

0
0, and b000 . Hence, due to

the equations of motion, the near-horizon geometry up to
second order in the distance to the horizon is determined
by the function b. This will be exemplified below in the
case of the effective potential for photons.

Another condition on the near-horizon metric comes
from the redshift, given by

1þ z ¼ �R

�E

¼
�
g00ðEÞ
g00ðRÞ

�
1=2

:

We shall assume here that the reception point R is at
infinity, and the emission point E is near the horizon. It
follows that

1þ z �
�
e�2�0

r0
ð1� b00Þðr� r0Þ

��1=2

sufficiently near the horizon. Hence, the condition

1� b00 > 0 (15)

must be satisfied if the redshift is to be well-defined near
the horizon. In fact, this is the condition for the metric to
have the right sign near the horizon, and also for the tidal
forces at the horizon be coincident in sign (and finite) with
those of Schwarzschild’s black hole (see the Appendix).
Using the relation R0 ¼ �4b00=r

2
0, this condition entails

the existence of a limit for the curvature at the horizon:

R0 >� 4

r20
:

Inequality (15) is also important for the motion of particles
near the horizon. In the case of massless particles, the
effective potential is defined by

Veff ¼ L2

r3
e�2�ðr� bÞ:

With the definition v ¼ V=L2, it follows that the first
derivative at the horizon is given by

dv

dr

��������0
¼ 1

r30
e�2�0ð1� b00Þ: (16)

Hence, due to Eq. (15), the first derivative of the effective
potential is positive, as in the case of Schwarzschild’s
solution. Since at infinity the effective potential must go
to zero, the solution must have at least one unstable circular
orbit for photons. Qualitative differences in the effective
potential appear only to second order in the distance to the
horizon, with the second derivative given by

d2v

dr2

��������0
¼ � 1

r40
e�2�0½2ð1� b00Þð3þ 2�0

0r0Þ þ r0b
00
0 �:

Using Eq. (8), we can eliminate �0
0, yielding

d2v

dr2

��������0
¼ � 1

r40
e�2�0

�
6� 10

3
b00 �

1

3
b000r0

�
; (17)

in such a way that d
2v
dr2

j0 depends of b000 , on which we have

no constraints [13]. Notice also that�0 acts as a scale in the
series development near the horizon.

Collisions

Another phenomenon for which there may be differ-
ences between the type of black hole under study here
and Schwarzschild’s is the collision of two particles. As
shown in [14], the maximal collision energy in the center
of mass system for two particles of mass m moving in

Schwarszchild’s geometry, given by ECMðr0Þ ¼ 2
ffiffiffi
5

p
m, is

reached at the horizon, and is attained when the two
particles have angular momentum equal in magnitude
and opposite in sign. Let us see how this result changes
for the case at hand.
The energy in the center of mass system is given by [15]

ECM ¼ ffiffiffi
2

p
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g��v

�
ð1Þv

�
ð2Þ

q
;

where v�
ðiÞ is the 4-velocity of each particle. In turn, the

4-velocities are furnished by the geodesic equations, which
in the case of the metric (7) are:

dr

d�
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2� �

�
1� b

r

��
1þ ~L2

r2

�s
;

d�

d�
¼ ~L

r2
;

dt

d�
¼ e2�

1� b=r
;

where ~L is the angular momentum per unit mass, we are
taking � ¼ �=2 and assuming that the particles start from
rest at infinity. Using these equations and the metric given
in Eq. (7) in the expression for ECM, a straightforward
calculation shows that at the horizon,

ECMðr0Þ ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ð ~L1 � ~L2Þ2

b20

vuut ;

where ~Li is the angular momentum of each particle. This
expression reduces to the one quoted above in the case of
Schwarszchild, b0 ¼ r0 ¼ 2 (with M ¼ 1), and ~L1 ¼
� ~L2 ¼ 4 [16]. We see that in general ECM will be different

ECMðr0Þ ¼ 2
ffiffiffi
5

p
m, due to the fact that the relation that

determines the radius of the horizon (bðr0Þ ¼ r0) is differ-
ent from r0 ¼ 2.
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IV. DISCUSSION

As a first step in the investigation of strong gravity
effects in fðRÞ theories, we have studied the near-horizon
behavior of a static and spherically symmetric black hole
solution. We have obtained a necessary condition for a
given fðRÞ to have such a solution, and showed that the
equations of motion constrain the near-horizon geometry.
These constraints entail that there is a maximum allowed
value for the curvature at the horizon, and also that the
effective potential differs qualitatively from that of
Schwarzschild’s only at second order in the distance to
the horizon. In particular, it was concluded that there must
be an unstable orbit for photons. We have also obtained the
expression for the center of mass energy for the collision of
two particles of mass m at the horizon, which can depends
on the function bðrÞ of the metric, evaluated at r0. Hence,
this energy is different from the analog expression in
GR. All these results were obtained by means of a local

analysis, without any constraint on the curvature scalar or
the behavior at infinity, and are suitable for application in
other problems, such as the Kerr solution and the no-hair
theorems. These issues will be discussed in a future
publication.

APPENDIX

The tidal forces at the horizon in Schwarszchild’s black
hole are such that [17]

R1̂
0̂ 0̂ 1̂

�����0
>0; R2̂

0̂ 0̂ 2̂

�����0
<0:

In the geometry given by Eq. (7),

R1̂
0̂ 0̂ 1̂

�����0
¼ b000r0 � ð2þ 3�0

0r0Þðb00 � 1Þ
2r20

;

R2̂
0̂ 0̂ 2̂

�����0
¼ R3̂

0̂ 0̂ 3̂

�����0
¼ b00 � 1

2r20
:
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(2005) 010; T. Multamäki and I. Vilja, Phys. Rev. D 74,
0640022 (2006); K. Kainulainen, J. Piilonen, V. Reijonen,
and D. Sunhede, Phys. Rev. D 76, 024020 (2007); S.
Capozziello, A. Stabile, and A. Troisi, Classical
Quantum Gravity 24, 2153 (2007); 25, 085004 (2008);
K. Kainulainen and D. Sunhede, Phys. Rev. D 78, 063511

(2008); A. de la Cruz-Dombriz, A. Dobado, and A. L.
Maroto, Phys. Rev. D 80, 124011 (2009); S. K.
Chakrabarti, E. N. Saridakis, and A.A. Sen,
arXiv:0908.0293; W. Nelson, Phys. Rev. D 82, 104026
(2010); L. Sebastiani and S. Zerbini, Eur. Phys. J. C 71,
1591 (2011); Y. S. Myung, T. Moon, and E. J. Son, Phys.
Rev. D 83, 124009 (2011); M. Eingorn and A. Zhuk, Phys.
Rev. D 84, 024023 (2011); G. Cognola, et al.,
arXiv:1104.2814; L. Zhao, arXiv:1105.4838.

[9] In case of multiple horizons, r0 designates the radius of the
most external one.

[10] D. Psaltis, et al., Phys. Rev. Lett. 100, 091101 (2008).
[11] A.M. Nzioki, et al., Phys. Rev. D 81, 084028

(2010).
[12] See A. De Felice and S. Tsujikawa, Living Rev. Relativity

13, 3 (2010).
[13] Going to third order, the second derivative of � evaluated

at the horizon that would appear can be expressed in terms
of the derivatives of b at the horizon using Eq. (12).

[14] A. N. Baushev, Int. J. Mod. Phys. D 18, 1195 (2009).
[15] M. Banados, J. Silk, and S.M. West, Phys. Rev. Lett. 103,

111102 (2009).
[16] These are the maximum allowed values such that particles

reach the horizon with maximum tangential velocity [14].
[17] See for instance M. P. Hobson, G. P. Efstathiou, and A.N.

Lasenby, General Relativity—An Introduction for
Physicists (Cambridge University Press, Cambridge,
2006).

BERGLIAFFA AND NUNES PHYSICAL REVIEW D 84, 084006 (2011)

084006-4

http://arXiv.org/abs/0806.1531
http://dx.doi.org/10.1088/1742-6596/54/1/070
http://dx.doi.org/10.1088/1742-6596/54/1/070
http://dx.doi.org/10.1103/PhysRevD.79.083004
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1103/RevModPhys.82.451
http://dx.doi.org/10.1103/PhysRevD.46.1475
http://dx.doi.org/10.1103/PhysRevD.46.1475
http://dx.doi.org/10.1103/PhysRevD.72.103005
http://dx.doi.org/10.1103/PhysRevD.72.103005
http://dx.doi.org/10.1088/1475-7516/2005/02/010
http://dx.doi.org/10.1088/1475-7516/2005/02/010
http://dx.doi.org/10.1103/PhysRevD.74.064022
http://dx.doi.org/10.1103/PhysRevD.74.064022
http://dx.doi.org/10.1103/PhysRevD.76.024020
http://dx.doi.org/10.1088/0264-9381/24/8/013
http://dx.doi.org/10.1088/0264-9381/24/8/013
http://dx.doi.org/10.1088/0264-9381/25/8/085004
http://dx.doi.org/10.1103/PhysRevD.78.063511
http://dx.doi.org/10.1103/PhysRevD.78.063511
http://dx.doi.org/10.1103/PhysRevD.80.124011
http://arXiv.org/abs/0908.0293
http://dx.doi.org/10.1103/PhysRevD.82.104026
http://dx.doi.org/10.1103/PhysRevD.82.104026
http://dx.doi.org/10.1140/epjc/s10052-011-1591-8
http://dx.doi.org/10.1140/epjc/s10052-011-1591-8
http://dx.doi.org/10.1103/PhysRevD.83.124009
http://dx.doi.org/10.1103/PhysRevD.83.124009
http://dx.doi.org/10.1103/PhysRevD.84.024023
http://dx.doi.org/10.1103/PhysRevD.84.024023
http://arXiv.org/abs/1104.2814
http://arXiv.org/abs/1105.4838
http://dx.doi.org/10.1103/PhysRevLett.100.091101
http://dx.doi.org/10.1103/PhysRevD.81.084028
http://dx.doi.org/10.1103/PhysRevD.81.084028
http://dx.doi.org/10.1142/S0218271809014509
http://dx.doi.org/10.1103/PhysRevLett.103.111102
http://dx.doi.org/10.1103/PhysRevLett.103.111102

