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In this paper, we discuss massive gravity in Minkowski space via the gravitational Higgs mechanism,

which provides a nonperturbative definition thereof. Using this nonperturbative definition, we address the

issue of unitarity by studying the full nonlinear Hamiltonian for the relevant metric degrees of freedom.

While perturbatively unitarity is not evident, we argue that no negative norm state is present in the full

nonlinear theory.
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I. INTRODUCTION AND SUMMARY

The gravitational Higgs mechanism gives a nonpertur-
bative and fully covariant definition of massive gravity
[1–15]. The graviton acquires mass via spontaneous break-
ing of the underlying general coordinate reparametrization
invariance by scalar vacuum expectation values.1 In this
paper, motivated by the results of [12] for the gravitational
Higgs mechanism in de Sitter space, we study the issue of
unitarity of the gravitational Higgs mechanism in the
Minkowski background within the setup of [5].

Within the perturbative framework, unitarity requires
that, in order not to propagate a negative norm state at
the quadratic level in the action, the graviton mass term be
of the Fierz-Pauli form [39]. Furthermore, higher order
terms should be such that they do not introduce additional
degrees of freedom that would destabilize the background,
and difficulties in achieving this to all orders in perturba-
tive expansion have been known for quite some time (see,
e.g., [27,40], and references therein). In this regard, in
order to circumvent the aforesaid difficulties within the
perturbative expansion, [36] proposed an order-by-order
construction, albeit in a special decoupling limit, such that
higher-than-second-order time derivatives in the equations
of motion are absent.

Here, we propose a different approach. Following [12],
our key observation is that perturbation theory appears to
be inadequate, among other things, for the purposes of

addressing the issue of unitarity.2 Thus, while the theories
of [5] reproduce the Fierz-Pauli action at the quadratic
level, according to [14], at higher orders in perturbative
expansion they do not reduce in the decoupling limit to the
theories studied in [36] (and, according to [14], the same
holds for the models discussed in [9]). However, since the
definition of [5] is intrinsically nonperturbative, we can test
the stability of the Minkowski background in the full non-
linear theory. In this paper, we perform a nonperturbative
Hamiltonian analysis for the relevant metric degrees of
freedom and argue that the full nonlinear theory appears
to be free of ghosts.
Our main result is that, in the gravitational Higgs mecha-

nism, nonperturbatively, the Hamiltonian appears to be
bounded from below in the Minkowski background.3 We
argue that this is indeed the case4 by studying the full
nonlinear Hamiltonian for the relevant conformal and
helicity-0 longitudinal modes with no spatial dependence,
which is the dimensionally reduced diagonal Ansatz of
[12]. We show, however, that within the same Ansatz,
depending on the choice of the field parametrization, a
perturbative decomposition in terms of the conformal and
helicity-0 modes invariably leads to a) equations of motion
with higher-than-second-order time derivatives in agree-
ment with the claim of [36] or b) a ghost already at the
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1For earlier and subsequent related works, see, e.g., [16–38],
and references therein.

2For instance, in the de Sitter case, this becomes evident from
the fact that in the full nonlinear theory no enhanced local gauge
symmetry (or ghost) is present for any value of the Hubble
parameter, while its appearance in the perturbative framework
already at the quadratic order appears to be a mere artifact of
linearization [12].

3We arrived at the same conclusion in [12] in the de Sitter
case.

4Here, we should note that in this regard we only analyze in
detail the simplest example with higher (namely, four) derivative
couplings in the scalar sector (23); however, based on the fact
that in the gravitational Higgs mechanism diffeomorphisms are
broken spontaneously, we believe our conclusions should hold in
the general case as well, albeit we do not have a proof of this
statement.
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quadratic level. We emphasize that the results of [14,36,38]
are obtained in the context of an intrinsically perturbative
field parametrization, which parametrization does not ap-
pear to possess a nonperturbative generalization, and all
‘‘no-go’’ results stemming therefrom appear to be mere
artifacts of perturbative expansion.

We also revisit the gravitational Higgs mechanism in the
simplest case with no higher derivative couplings in
the scalar sector, first discussed in [2], which does not
correspond to the Fierz-Pauli mass term at the quadratic
level. Nonetheless, nonperturbatively, even this case ap-
pears to ‘‘resum’’ into a theory with a positive-definite
Hamiltonian.5 We argue that this is the case using our
dimensionally reduced diagonal Ansatz. We also repro-
duce the same result using the full Hamiltonian analysis
of [11], thereby validating our Ansatz.

The essence of our results is well illustrated by the
following simple ‘‘toy’’ example:

H ¼ �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ�2

p ; (1)

where H is the Hamiltonian, p is the canonical conjugate
momentum, and � is a parameter. Nonperturbatively, this
Hamiltonian is positive definite. On the other hand, in the
‘‘weak-field’’,,’’ small p2 approximation, perturbatively
there is a ghost as the kinetic term proportional to p2 has
a wrong sign: H ¼ �� p2=2�þ . . . ; simply put, in the
above example, the weak-field approximation is invalid in
the regime where the fake perturbative ‘‘ghost,’’ which is
merely an artifact of linearization, would destabilize the
background. The same appears to be the case in the gravi-
tational Higgs mechanism examples we study in this paper.

To summarize, nonperturbatively, the gravitational
Higgs mechanism appears to be free of ghosts.6

The rest of the paper is organized as follows. In Secs. II
and III, we discuss the gravitational Higgs mechanism in
the Minkowski background, which results in massive grav-
ity with the Fierz-Pauli mass term for the appropriately
tuned cosmological constant. In Sec. IV, we derive the
Hamiltonian for the relevant metric modes and show that
it is bounded from below. In Sec. V, we revisit the simplest

case without higher derivative couplings in the scalar
sector and show that there too the Hamiltonian is positive
definite, in spite of the quadratic truncation not being of the
Fierz-Pauli form.

II. MINKOWSKI SOLUTIONS

Consider the induced metric for the scalar sector:

YMN ¼ ZABrM�
ArN�

B: (2)

Here, M ¼ 0; . . . ; ðD� 1Þ is a space-time index, and A ¼
0; . . . ; ðD� 1Þ is a global index. We will choose the scalar
metric ZAB to be the Minkowski metric:

ZAB ¼ �AB: (3)

Let

Y � YMNG
MN: (4)

The following action, albeit not the most general,7 will
serve our purpose here:

SY ¼ MD�2
P

Z
dDx

ffiffiffiffiffiffiffiffi�G
p ½R� VðYÞ�; (5)

where a priori the ‘‘potential’’ VðYÞ is a generic function
of Y.
The equations of motion read:

rMðV0ðYÞrM�
AÞ ¼ 0; (6)

RMN � 1
2GMNR ¼ V 0ðYÞYMN � 1

2GMNVðYÞ; (7)

where prime denotes derivative with respect to (w.r.t.) Y.
Multiplying (6) by ZABrS�

B and contracting indices, we
can rewrite the scalar equations of motion as follows:

@M½
ffiffiffiffiffiffiffiffi�G

p
V0ðYÞGMNYNS� � 1

2

ffiffiffiffiffiffiffiffi�G
p

V 0ðYÞGMN@SYMN ¼ 0:

(8)

Since the theory possesses full diffeomorphism symmetry,
(8) and (7) are not all independent but linearly related due

to Bianchi identities. Thus, multiplying (7) by
ffiffiffiffiffiffiffiffi�G

p
,

differentiating w.r.t. rN , and contracting indices, we arrive
at (8).

5So does a continuous set smoothly connecting this case to the
aforesaid Fierz-Pauli case.

6However, in this paper, we do not attempt to address the
question of whether there is any superluminal propagation of
signals or the related issue of causality. In this regard, we
emphasize that the recent no-go results of [41] are obtained in
the context of the aforesaid intrinsically perturbative field pa-
rametrization, directly rely on the results of [36], and do not
apply to the full nonperturbative definition of the gravitational
Higgs mechanism. To see if there is any superluminal propaga-
tion of signals in the full nonperturbative theory, it appears that
one might have to develop some new nonperturbative methods,
which is clearly beyond the scope of this paper. The non-Fierz-
Pauli model of [2] is the ‘‘least nonperturbative’’ and might
provide a fruitful testing ground in this context.

7One can consider a more general setup where the scalar
action is constructed not just from Y, but from YMN , GMN , and
�M0...MD�1

, see, e.g., [5,8–10,12]. However, a simple action con-
taining a scalar function VðYÞ suffices to capture all qualitative
features of the gravitational Higgs mechanism. In particular, if
this function is quadratic as in (23), the cosmological constant �
must be negative in the context of the Minkowski background
(but not in the de Sitter case—see [12]); however, generically
there is no restriction on �, which can be positive, negative, or
zero even in the context of the Minkowski background, once we
allow cubic and/or higher order terms in VðYÞ, or consider
nonpolynomial VðYÞ. As a side remark, let us note that no choice
of polynomial VðYÞ constructed from Y only reduces in the
decoupling limit to the theories studied in [36] (cf. [14]).
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We are interested in finding solutions of the form:

�A ¼ m�A
Mx

M; (9)

GMN ¼ �MN; (10)

where m is a mass-scale parameter. The equations of
motion (7) imply that

Y� � Dm2 (11)

is the solution of the following equation:

VðY�Þ ¼ 2
DY�V 0ðY�Þ; (12)

which determines the mass scale m.

III. MASSIVE GRAVITY

In this section, following [5], we study linearized fluc-
tuations in the background given by (9) and (10). Since
diffeomorphisms are broken spontaneously, the equations
of motion are invariant under the full diffeomorphism
invariance. The scalar fluctuations ’A can therefore be
gauged away using the diffeomorphisms:

�’A ¼ rM�
A�M ¼ m�A

M�
M: (13)

However, once we gauge away the scalars, diffeomor-
phisms can no longer be used to gauge away any of the
graviton components hMN defined as:

GMN ¼ �MN þ hMN: (14)

Moreover, we will use the notation h � �MNhMN.
After setting ’A ¼ 0, we have

YMN ¼ m2�MN; (15)

Y ¼ YMNG
MN ¼ m2½D� hþ . . .� ¼ Y� �m2hþ . . . ;

(16)

where the ellipses stand for higher order terms in hMN .
Because of diffeomorphism invariance, the scalar equa-

tions of motion (6) are related to (7) via Bianchi identities.
We will therefore focus on (7). Let us first rewrite it as
follows:

RMN � 1
2GMNR ¼ m2½�MNV

0ðYÞ �GMNV
0ðY�Þ�

� 1
2GMN½VðYÞ � VðY�Þ�: (17)

Linearizing the right-hand side of this equation, we obtain:

RMN � 1

2
GMNR ¼ M2

2
½�MNh� �hMN� þ . . . ; (18)

where

M2 � m2V 0ðY�Þ � 2m4V 00ðY�Þ; (19)

�M2 � 2m2V 0ðY�Þ: (20)

This corresponds to adding a graviton mass term of the
form

�M2

4
½�hMNh

MN � h2� (21)

to the Einstein-Hilbert action, and the Fierz-Pauli combi-
nation corresponds to taking � ¼ 1. This occurs for a
special class of potentials with

V 0ðY�Þ ¼ �2
DY�V00ðY�Þ: (22)

Thus, as we see, we can obtain the Fierz-Pauli combination
of the mass term for the graviton if we tune one combina-
tion of couplings. In fact, this tuning is nothing but the
tuning of the cosmological constant—indeed, (22) relates
the cosmological constant to higher derivative couplings.
Thus, consider a simple example:

V ¼ �þ Y þ �Y2: (23)

The first term is the cosmological constant, the second term
is the kinetic term for the scalars (which can always be
normalized such that the corresponding coefficient is 1 by
normalizing the scalars�A accordingly), and the third term
is a four-derivative term. We then have:

Y� ¼ � D

2ðDþ 2Þ�
�1; (24)

which relates the mass parameterm to the higher derivative
coupling �:

m2 ¼ Y�=D ¼ � 1

2ðDþ 2Þ�
�1; (25)

and the graviton mass is given by:

M2 ¼ � 2

ðDþ 2Þ2 �
�1: (26)

Note that we must have � < 0. Moreover, we have:

� ¼ D2 þ 4D� 8

4ðDþ 2Þ2 ��1: (27)

So, the cosmological constant in this case must be nega-
tive, which is due to the choice of the potential (23);
however, as we already emphasized above, for generic
choices of the potential there is no restriction on the
cosmological constant, which can be positive, negative,
or zero.

IV. IS THERE A GHOST?

The purpose of this section is to argue that the full
nonlinear theory of massive gravity in Minkowski space
via the gravitational Higgs mechanism is free of ghosts. We
will do this by studying the full nonlinear action for
the relevant modes, which we identify next. In particular,
we will argue that no negative norm state is present for
these modes.
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Let us note that, once we gauge away the scalars, the full
nonlinear action becomes:

SG ¼ MD�2
P

Z
dDx

ffiffiffiffiffiffiffiffi�G
p ½R� ~Vð�MNGMNÞ�; (28)

where ~Vð�Þ � Vðm2�Þ.
To identify the relevant modes in the full nonlinear

theory, let us note that in the linearized theory the poten-
tially ‘‘troublesome’’ mode is the longitudinal helicity-0
mode 	. However, we must also include the conformal
mode ! as there is kinetic mixing between 	 and !. In
fact, 	 and ! are not independent but are related via
Bianchi identities. Therefore, in the linearized language
one must look at the modes of the form

hMN ¼ �MN!þrMrN	: (29)

Furthermore, based on symmetry considerations, namely,
the SOðD� 1Þ invariance in the spatial directions,8 we can
focus on field configurations independent of spatial coor-
dinates [12]. Indeed, for our purposes here we can com-
pactify the spatial coordinates on a torus TD�1 and
disregard the Kaluza-Klein modes. This way, we reduce
theD-dimensional theory to a classical mechanical system,
which suffices for our purposes here. Indeed, with proper
care (see [12]), if there is a negative norm state in the
uncompactified theory, it will be visible in its compactified
version, and vice versa.

Let us therefore consider field configurations of the
form:

GMN ¼ diagðgðtÞ�00; fðtÞ�iiÞ; (30)

where gðtÞ and fðtÞ are functions of time t only. The action
(28) then reduces as follows:

SG ¼ �

Z

dtg�1=2f�ððD�1Þ=2Þf�gU2 þ ~Vðgþ�Þg;
(31)

where


 � MD�2
P WD�1; (32)

� � ðD� 1ÞðD� 2Þ; (33)

U � 1
2@t lnðfÞ; (34)

� � ðD� 1Þf; (35)

andWD�1 is the volume in the spatial dimensions (i.e., the
volume of TD�1). Note that g is a Lagrange multiplier. The
goal is to integrate out g and obtain the corresponding
action for f. It is then this action that we should test for
the presence of a negative norm state.
The equation of motion for g reads:

~Vðgþ�Þ � 2g ~V0ðgþ�Þ ¼ �gU2: (36)

The following discussion can be straightforwardly gener-
alized to general ~V. However, for our purposes here it will
suffice to consider quadratic ~V corresponding to (23). We
then have:

3�m2g2 þ
�
1þ 2�m2�þ �

m2
U2

�
g

�
�
�

m2
þ�½1þ �m2��

�
¼ 0: (37)

We can therefore express g in terms of f and @t lnðfÞ:

6�m2g ¼ �
�
1þ 2�m2�þ �

m2
U2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 2�m2�þ �

m2
U2

�
2 þ 12�m2

�
�

m2
þ�½1þ �m2��

�s
; (38)

where the branch is fixed by the requirement that g � 1
when f � 1. Substituting the so-expressed g into (31), we
obtain an action which is a nonlinear functional of f and
@t lnðfÞ.

For our purposes here, it is more convenient to work with
the canonical variable q, where

q � lnðfÞ; (39)

� ¼ ðD� 1Þeq; (40)

U ¼ 1
2@tq; (41)

and the action reads:

SG ¼
Z

dtL

¼ �

Z

dtg�1=2e�ððD�1Þ=2Þqf�gU2 þ ~Vðgþ�Þg;
(42)

where L is the Lagrangian. This action corresponds to a
classical mechanical system with a lagrange multiplier g.

8Indeed, negative norm states cannot arise from purely space-
like components or spatial derivatives, and are due to timelike
components and/or time derivatives.
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Next, the conjugate momentum is given by

p ¼ @L

@ð@tqÞ ¼ �
e�ððD�1Þ=2Þq

�
�
1

2
g�ð1=2Þĝ�U2 � 1

2
g�ð3=2Þĝ ~Vðgþ�Þ

þ g�ð1=2Þĝ ~V 0ðgþ�Þ þ g1=2�U

�
; (43)

where

ĝ � @g

@ð@�qÞ : (44)

Using (36), (43) simplifies to

p ¼ �
e�ððD�1Þ=2Þqg1=2�U; (45)

and the Hamiltonian is given by

H ¼ p@tq� L

¼ �
g�1=2e�ððD�1Þ=2Þq½�gU2 � ~Vðgþ�Þ�: (46)

We can now see if this Hamiltonian is bounded from below.
First, using (36), we have:

H ¼ 2
g1=2e�ððD�1Þ=2Þq ~V0ðgþ�Þ
¼ 2m2
g1=2e�ððD�1Þ=2Þq½1þ 2�m2ðgþ�Þ�: (47)

Using (38), we can rewrite this Hamiltonian as follows:

H ¼ 2
3m

2
g1=2e�ððD�1Þ=2Þq½X� Z�; (48)

where

X �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 2�m2�þ �

m2
U2

�
2 þ 12�m2

�
�

m2
þ�½1þ �m2��

�s
; (49)

Z � �

m2
U2 � 4�m2�� 2: (50)

The presence of a ghost would imply that the Hamiltonian
is unbounded from below for large values ofU2 (recall that
U2 contains the ‘‘kinetic’’ term). However, it is not difficult
to show that this Hamiltonian suffers from no such pathol-
ogy. Indeed, we can rewrite it as follows:

H ¼ 2

3
m2
g1=2e�ððD�1Þ=2Þq X

2 � Z2

X þ Z

¼ 2m2
g1=2e�ððD�1Þ=2Þq

� 4��� 1þ 2ð�=m2ÞU2½1þ 2�m2��
Xþ Z

; (51)

which in the large U2 limit reads:

H ¼ 2m2
g1=2e�ððD�1Þ=2Þq½1þ 2�m2�� þOð1=U2Þ:
(52)

Furthermore, from (38) we have

6�m2g ¼ X2 �Q2

X þQ
¼ 12

��þ �m2�½1þ �m2��
X þQ

¼ Oð1=U2Þ; (53)

where

Q � �

m2
U2 þ 2�m2�þ 1: (54)

So, in the largeU2 limit the Hamiltonian actually vanishes.
Note that the above argument implicitly assumes that�

is bounded from above. This is indeed the case as gmust be
at least non-negative, which implies that

��þ �m2�½1þ �m2�� � 0; (55)

and � is bounded as follows (note that we must have
� � 0):

max

�
0;� 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4��
p
2�m2

�
� � � � 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4��
p
2�m2

;

(56)

and we must further have

� � 1

4�
; (57)

which is always satisfied due to (27) as � < 0.
Thus, as we see, there appears to be no ghost in the full

nonlinear theory. The key ingredient here is the parametri-
zation of the conformal and helicity-0 longitudinal modes.
We have been working with (30), while the results of
[14,36] apply to (29). The difference between the two is
that (30) has no derivatives. Thus, at the quadratic order,
the second derivatives introduced by the parametrization
corresponding to (29) can be integrated by parts to arrive at
an action containing only first derivatives of ! and 	.
However, we have explicitly checked that already at the
cubic level the second derivatives introduced by the pa-
rametrization corresponding to (29) cannot be integrated
by parts, so the resulting action invariably includes terms
with second derivatives of 	. This is clearly problematic
already at the cubic level and suggests that the parametri-
zation corresponding to (29) cannot be used beyond the
linearized approximation. Indeed, a nonlinear completion
of (29) is given by:

GMN ¼ �MNfþrMrNu; (58)
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where the covariant derivative is defined w.r.t. the metric
�MN (this choice does not affect our discussion here).
Note, however, that such a parametrization of the metric
is rather problematic in the context of the full nonlinear
theory (28) as it introduces higher derivative terms in u,
which should therefore not be used as the canonical vari-
able in the full nonlinear theory. This suggests that our
parametrization (30) is indeed adequate (while our results
here suggest that the perturbative field parametrization
underlying the results of [14] does not appear to be ade-
quate in the full nonperturbative theory).

V. THE LINEAR POTENTIAL REVISITED

In this section, we consider the linear potential

VðYÞ ¼ �þ Y: (59)

This example was discussed in [2] and worked out in detail
in the Hamiltonian formalism in [11]. The potential (59)
does not satisfy the condition (22) and, therefore, does
not lead to the Fierz-Pauli action at the quadratic order;
consequently, it propagates a negative norm excitation
at that order in perturbation theory. Nonetheless, we will
show that the full nonperturbative Hamiltonian is bounded
from below. This is shown in two ways: in the dimension-
ally reduced parametrization of (30), and in the full
Hamiltonian analysis of [11]. This supports our conclusion
that the Ansatz (30) is fully adequate for analyzing
unitarity.

Recalling the definitions of Sec. IV, we have ~VðxÞ ¼
�þm2x, and the g equation of motion gives

g ¼ ð�þm2�Þ=ðm2 þ �U2Þ; (60)

thus, the Hamiltonian reads:

H ¼ 2
m2e�ððD�1Þ=2Þqg1=2; (61)

which is in general positive definite (assuming g > 0,
which is the case for f >��=ðD� 1Þm2 ¼ ðD� 2Þ=
ðD� 1Þ, where we have used (11) and (12)). Therefore,
as for the quadratic potential of the previous section, it
appears that nonperturbatively there is no ghost.
Furthermore, let us point out that perturbatively there is a
ghost, since in a weak-field, smallU2 expansion the kinetic
term proportional toU2 has a wrong sign. This is similar to
instructive toy examples discussed in Sec. I hereof as well
as Appendix A of [12].

We arrive at the same result in full generality by intro-
ducing the lapse constraint into the gauge-fixed
Hamiltonian derived for this potential in [11]. The result
reads, in their notation,

H fix ¼
ffiffiffiffiffiffiffiffiffi
deth

p
8G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2
þ

�
8Gffiffiffiffiffiffiffiffiffi
deth

p
�
2
H GR

i �ijH GR
j

s
; (62)

which is positive definite, and reduces to (61) for the
Ansatz (30) since, in that case, H GR

i ¼ 0, 1=N2 ¼ g,
and deth ¼ 1=fD�1.
In fact, there is nothing ‘‘special’’ about the linear poten-

tial (59) in terms of unitarity. The discussion in Sec. IV is
completely independent of (22) (with the exception of the
reference to (27) immediately following (57), which, how-
ever, does not affect our discussion here—see below),
which is the condition corresponding to having the Fierz-
Pauli term at the quadratic order. In particular, the discus-
sion in Sec. IV and its conclusion that nonperturbatively
there appears to be no negative norm state are valid for all
values of�, including those smoothly interpolating between
(27) (which corresponds to the Fierz-Pauli term) and� ¼ 0,
which corresponds to the linear potential (59) as long as (57)
is satisfied along the interpolation path (and this condition
does not pose an obstruction to such interpolation). Simply
put, nonperturbatively there appears to be no negative norm
state for a continuous family of models arising out of the
gravitational Higgs mechanism, and the linear potential
point and the Fierz-Pauli point are not any special in this
regard.
The fact that non-Fierz-Pauli points appear to be unitary

deserves further elaboration. Thus, in the gravitational
Higgs mechanism we start with massless gravity with
DðD� 3Þ=2 degrees of freedom coupled to D scalars, one
of which is timelike. As was explained in [5], at the Fierz-
Pauli point (22) the timelike scalar does not propagate,
so in the scalar sector we have only (D� 1) propagating
spacelike degrees of freedom, which are eaten in the gravi-
tational Higgs mechanism producing ðDþ 1ÞðD� 2Þ=
2ð¼ DðD� 3Þ=2þ ðD� 1ÞÞ degrees of freedom for the
massive graviton, all of which are unitary. What about the
non-Fierz-Pauli points? Here we have an extra timelike
scalar degree of freedom, which in the perturbative lan-
guage in the Higgs phase results in a ghostlike propagating
degree of freedom, namely, the trace of the graviton
h ¼ hMM. However, nonperturbatively the Hamiltonian is
positive definite, and there is no ghost, while if the
Hamiltonian is expanded perturbatively, as we saw above,
a ghost invariably appears. Simply put, the weak-field ap-
proximation is invalid in the regime where the fake pertur-
bative ghost, which is merely an artifact of linearization,
would destabilize the background.9
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9In this regard, let us note a difference between the gravita-
tional Higgs mechanism and its gauge theory counterpart. In the
latter, scalar vacuum expectation values are constant, while in
the former, they depend linearly on spacetime coordinates: (9).
In fact, the background is not even static. It would take infinite
energy to destabilize such a background. This is reminiscent to
infinite-tension domain walls discussed in [42,43].
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