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Basic aspects of the background of gravitational waves and its mathematical characterization are

reviewed. The spectral energy density parameter �ðfÞ, commonly used as a quantifier of the background,

is derived for an ensemble of many identical sources emitting at different times and locations. For such an

ensemble,�ðfÞ is generalized to account for the duration of the signals and of the observation, so that one
can distinguish the resolvable and unresolvable parts of the background. The unresolvable part, often

called confusion noise or stochastic background, is made by signals that cannot be either individually

identified or subtracted out of the data. To account for the resolvability of the background, the overlap

function is introduced. This function is a generalization of the duty cycle, which has been commonly used

in the literature, in some cases leading to incorrect results. The spectra produced by binary systems (stellar

binaries and massive black hole binaries) are presented over the frequencies of all existing and planned

detectors. A semi-analytical formula for �ðfÞ is derived in the case of stellar binaries (containing

white dwarfs, neutron stars or stellar-mass black holes). Besides a realistic expectation of the level of

background, upper and lower limits are given, to account for the uncertainties in some astrophysical

parameters such as binary coalescence rates. One interesting result concerns all current and planned

ground-based detectors (including the Einstein Telescope). In their frequency range, the background of

binaries is resolvable and only sporadically present. In other words, there is no stochastic background of

binaries for ground-based detectors.
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I. INTRODUCTION

The gravitational wave background [1,2] is formed by a
large number of independent gravitational wave sources.
This paper focuses on the background produced by coales-
cing binary systems. These are isolated pairs of massive
objects that inspiral towards each other by emitting gravi-
tational radiation until they coalesce.

We review the characterization of the background, for
which the spectral energy density parameter, or simply
spectral function, �ðfÞ, is often used. This function gives
the present fractional energy density (per logarithmic fre-
quency interval) of gravitational radiation at an observed
frequency f. A formula for�ðfÞ is obtained in a clear, self-
consistent way, for an ensemble of many identical sources
emitting at different times and locations. This formula is
generalized to distinguish whether the signals are resolv-
able or not, or whether they are observed continuously or
sporadically.

The resolvability of the signals is an important topic of
this work. Roughly speaking, signals are unresolvable if
their waveforms are observed simultaneously at similar
frequencies (differing less than the frequency resolution).
Many unresolvable signals form an unresolvable back-
ground. If such a background dominates in a certain fre-
quency interval, one cannot see the waveforms of its
components, but a pattern that rather looks like instrumen-
tal noise. For that reason it is often called confusion noise.

The other part of the background is resolvable. The wave-
forms of the resolvable part can be distinguished and in
some circumstances subtracted out of the data of a detector
[3,4].
There are many studies in the literature about astrophys-

ical sources that contribute to the background at present. A
few examples of these sources are: core-collapse supernovae
[5], rotating neutron stars [6,7], formation of neutron stars
[8,9], inspiralling or coalescing stellar binaries [10–14],
inspiralling or coalescing massive black hole binaries
[15,16] and magnetars [17]. But there are inconsistencies
in the literature; for example, according to [18], the results
of some of the previous papers [8,9] (and also [13,19], as
pointed out in [20]) are incorrect, due to a wrong (1þ z)
factor in the calculations. Besides, according to [21], the
definition of the spectral function used in many papers is
misleading or misinterpreted. Finally, as we discuss further
on, in some of the mentioned papers, the continuous and
unresolvable backgrounds are not properly defined. To avoid
possible misunderstandings or mistakes we tend to present
all calculations and definitions as clearly as possible.
We calculate the contributions to the background of the

strongest emitting binary systems. These are the ones
composed of white dwarfs, neutron stars, stellar-mass
black holes or massive black holes. The resulting energy
spectra are given as maximum, most likely, and minimum
expectations, taking into account the present uncertainties
in the quantities involved.
We show that ground-based detectors do not encounter
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(the frequency range in which they reach their optimal
sensitivity). This applies to present detectors, such as
TAMA300 [22], GEO600 [23], Virgo [24], and LIGO
[25], but also to planned detectors, such as the advanced
versions of LIGO and Virgo [25,26], LCGT [27], and ET
[28]. At these frequencies, there is not even a resolvable
continuous background, i.e., signals are not always present.
Whether or not these signals can be subtracted out of the
data is an issue we do not deal with in this paper.

This paper considers a frequency range wider than the
frequency windows of ground-based detectors. It includes
the windows of all existing and future detectors, such as
LISA [29] or BBO [30], and also reaches the frequency
range of interest for the PTA [31].

The obtained unresolvable background turns out to be
dominated by white dwarf binaries (at frequencies below
�0:1 Hz) and by massive black hole binaries (below
�10�4 Hz). This confusion noise could enter the band of
LISA and would certainly enter the band of BBO and the
complete Parkes PTA [32].

The outline of the paper is as follows:
In Sec. II we first explain our notation and give some

relevant terminology. We then give a simple heuristic proof
of the fact that there is neither an unresolvable nor a con-
tinuous background in the frequency window of ground-
based detectors. The formula of the spectral function is
derived for an ensemble of many identical sources emitting
at different times and locations. The obtained formula
agrees with that of [33]. The concept of resolvability is
studied, and the spectral function is generalized to account
for it. To get to that point, we introduce the overlap function
N ðf;�f; zÞ. This function gives the average number of
signals observed with redshifts smaller than z and frequen-
cies between f and fþ �f, where �f is the frequency
resolution. We then use the overlap function to distinguish
the continuous and discontinuous parts of the background.

In Sec. III we present the models used to quantify the
background of stellar binaries and massive black hole
binaries. The main physical quantities involved in the cal-
culations (such as mass ranges and coalescence rates) are
presented in this section. A semi-analytical formula for the
spectral function is derived in the case of stellar binaries.

Section IV contains the main results of the paper. The
spectral function is shown in the different regimes of
resolvability and continuity. The curves in the plots are
given as maximum, most likely, and minimum expected.

In Sec. V we justify some of the approximations and
assumptions of the previous sections. We compare our
results with others from the literature. Our notions of
continuous background and unresolvable background are
compared with the ones of previous work. We also show
that the overlap function, which turns out to be a general-
ization of the duty cycle, is a proper quantifier of the
resolvability and continuity of the background.

The main conclusions and results are summarized in
Sec. VI. Those readers who are short of time, or primarily

interested in the main results, are suggested to go directly
to this section.

II. CHARACTERIZATION OF THE BACKGROUND

A. Notation

All magnitudes are measured in the frame of the cos-
mological fluid, since massive objects that are not subject
to external forces come quickly to rest with respect to this
frame.
We use the index ‘‘e’’ (for emission) for quantities

measured close to the system at the time of the emission
of the radiation. For example, fe (emitted frequency) is the
frequency of a wave, measured soon after its emission,
before the expansion of the Universe stretches its wave-
length. Quantities measured here and now (which are
called observed quantities) have no index. The frequency
of the wave of the previous example, measured today, is
thus denoted by f.
We use the indices ‘‘low’’, ‘‘upp’’, ‘‘min’’ and ‘‘max’’ to

refer to lower, upper,minimum andmaximum, respectively.

B. Terminology

We now introduce some terminology to avoid confusion
or ambiguity throughout the paper.
By system we mean a certain configuration of physical

objects that is a source of gravitational waves. An example
of system is a pair of neutron stars inspiralling towards
each other.
We use the term ensemble for the collection of systems,

all having similar properties and behavior, formed from the
big bang until now. An example is the population of
coalescing neutron star binaries in the Universe.
By signal we refer to the total gravitational radiation

emitted by a system. One system emits only one signal,
that can range over a large frequency interval and exist over
a long interval of time. Despite the interval of time it lasts,
a signal is assumed to be characterized by a certain red-
shift, which remains the same from the beginning until the
end of the signal (in Sec. VB we discuss the validity of this
assumption). A signal is composed of signal elements, each
characterized by a certain infinitesimal frequency interval.
The total (gravitational wave) background is the collec-

tion of all gravitational waves in the present Universe. It
can be divided into different parts, according to different
criteria. For example, primordial and contemporary parts,
resolvable and unresolvable parts or continuous and dis-
continuous parts. One can also divide the total background
into many different parts, each conformed by the contribu-
tion of a certain ensemble. By extension, we use the word
backgroundwhen referring to both the total background and
to its different parts. Hence, we can talk about the back-
ground of neutron star binaries, which is the collection of
signals of the ensemble of neutron star binaries. The part of
this background that fulfills the condition of unresolvability
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would be the unresolvable background of neutron star
binaries.

1. Primordial versus contemporary background

The primordial background [2,34] is composed of gravi-
tational radiation emitted in the early Universe, at very large
redshifts. It is analogous to the background formed by the
cosmic electromagnetic radiation [35]. In the case of the
latter, the radiation was released (when photons decoupled
frommatter) roughly a hundred thousand years after the big
bang. On the other hand, the primordial gravitational radia-
tion was produced in a tiny fraction of the first second of the
Universe [36]. In this background might be hidden waves
from inflation and cosmic strings [37,38].

The other part of the total background is still being
produced at present and thus we refer to it as the contem-
porary background. It is made by many different systems
that formed in the past (at redshifts less than�20, which is
the largest redshift assumed for the systems we study) and
can also form today. Examples of such systems are coales-
cing binaries, rapidly-rotating compact objects or core-
collapse supernovae (some references were given in Sec. I).

In certain frequency ranges one can get a clear view of
primordial signals, whereas in others the contemporary
signals dominate. The detection of the primordial back-
ground would be the most direct way to observe processes
of the very early Universe. But valuable information would
also be gained from the detection of the contemporary
background, for example, about binary formation and co-
alescence rates. Furthermore, predictions of the contem-
porary background can set constraints on the frequency
ranges where the primordial one could be detected. The
contemporary background is the main topic of this paper.

In the literature, primordial and contemporary back-
grounds are often called cosmological and astrophysical,
respectively. We do not use this words to avoid ambiguity,
since sometimes both terminologies are used together, for
example, when talking about cosmological populations of
astrophysical sources [39], which might be confusing for
nonspecialized readers.

2. Unresolvable versus resolvable background

It is useful to classify the components of the background
depending on their resolvability. We now briefly comment
on this concept; precise definitions of what we mean by
resolvable and unresolvable backgrounds can be found in
Sec. II F.

Signals spend different intervals of time at different
ranges of frequencies. In the case of binaries, they evolve
much more rapidly at higher than at lower frequencies. At
lower frequencies they will thus overlap (i.e., they will be
observed at the same time) more frequently than at higher
ones. A frequency bin of width �f, which is the frequency
resolution allowed by the detector and by the data analysis
method, will often be filled by one or more signals at low

frequencies. On the other hand, a frequency bin at high
frequencies will be filled by one or more signals only
sporadically, since signals are very short.
An unresolvable part of the background exists as soon as a

frequency bin is constantly occupied by an average of one or
more signals. At frequencies where such a background
dominates, the waveforms of the signals cannot be distin-
guished from each other. When a waveform is not resolv-
able, one cannot obtain information from it, such as the
characteristics of the system that emitted that radiation.
Moreover, such waveforms cannot be subtracted out from
the data.
The rest of the background is the resolvable part. The

waveforms of this part can be distinguished from each
other. One can thus obtain information about the system
by studying the waveform of the emitted radiation.
For some authors, what we call the unresolvable back-

ground is defined as the stochastic background, and the
remaining gravitational radiation is called the total gravi-
tational wave signal [16]. This is a reasonable definition,
but conflicts with what is often called stochastic back-
ground by many other authors (for example in [40] and
other papers cited in Sec. I). A more precise definition for
stochastic background can be found in [1].

3. Continuous versus discontinuous background

We now briefly comment on the concept of continuity
of the background. In Sec. II G we give precise definitions
of what we mean by continuous and discontinuous
backgrounds.
A continuous background exists in a frequency interval

½flow; fupp� (that can be, for example, the frequency win-

dow of a detector) as soon as this interval is constantly
occupied by one or more signals. If in that interval there are
gaps between signals, or the signals occur sporadically, the
background is discontinuous.
The condition of continuity tends to that of unresolv-

ability when fupp � flow tends to �f. If a background is

not continuous in an interval of frequencies, it is not
continuous either in a smaller interval. Therefore, only a
continuous background can be unresolvable.
We point out that the continuity of the background is not

as relevant as the resolvability. However, we include it in
the paper for two reasons:
First, the continuity has been often used in the literature

(for example in the already mentioned papers [13,14]) to
define the different regimes of the background. Once we
know how to account for the continuity, we will realize that
it is not the right tool to be used. Instead, the resolvability is
the fundamental property of the background.
Second, the continuity can be used to determine how

often the background is observed. Suppose we want to
detect a signal of some kind, but there is a background
covering the signal. If the background is discontinuous in a
frequency band, sometimes that signal can be clearly seen,
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without any background. On the other hand, if the back-
ground is continuous, we need to subtract it from the data
in order to see that other signal. As we show in Fig. 6, ET
has no continuous background from binaries in its fre-
quency window; BBO, on the contrary, has a continuous
background of binaries crossing its frequency window, so
the subtraction of background signals is necessary in order
to detect other kinds of signals (this problem has been
treated in [4]).

C. Heuristic proof of the lack of confusion noise for
ground-based detectors

We now justify, in a simple heuristic way, that there is no
continuous background (and therefore no unresolvable
background either) from binary systems at frequencies
larger than 10 Hz.

A neutron star binary takes�103 s to evolve from 10 Hz
to the coalescence [which can be proved by using Eq. (62)].
The most realistic coalescence rate for these binaries
(see Table I) is of �105 yr�1, in the whole observable
Universe. This implies �0:003 coalescences per second.
One could naively say that, on average, one would see
�103 � 0:003 ¼ 3 signals. But that would only be true if
all binaries were close to us, at redshift �0. The farthest
binaries (close to redshift �5) that we observe today at
frequency�10 Hz, emitted at�10� ð1þ zÞ ¼ 60 Hz [us-
ing Eq. (3)] and needed just�8 s to coalesce. An interval of
time of�8 s at redshift�5 is now observed as an interval of
�8� ð1þ zÞ ¼ 48 s [using Eq. (5)]. This implies that an
average of �48� 0:003 � 0:14 signals are observed. The
number of signals expected to be observed is thus a number
between 3 and 0.14, which, after doing the proper calcula-
tion, turns out to be smaller than 1. Hence, neutron star
binaries do not produce a continuous background at
frequencies higher than 10 Hz.

Other binaries whose signals could produce a continu-
ous background in the frequency window of ground-based
detectors are those containing a stellar-mass black hole.
But these binaries have a smaller coalescence rate and need
less time to coalesce, from an initial frequency of 10 Hz.
The product coalescence rate� duration of signal would
thus be even smaller. Therefore they do not produce a
continuous background either.

At frequencies larger than 10 Hz, hence, there is no
continuous background from binary systems. Between 1
and 10 Hz one could have a continuous background, but
it turns out to be well below the realistic sensitivity of a
ground-based detector (see Fig. 6).

D. Cosmological model

1. Metric

We assume a spatially flat, homogeneous and isotropic
universe, described by a Friedmann-Robertson-Walker
metric,

ds2 ¼ �c2dt2e þ a2ðteÞ½dr2 þ r2½d�2 þ sin2ð�Þd�2��; (1)

wherec is the speed of light. The time coordinate te is chosen
to be, for convenience, the look-back time: it is 0 at present
and t0 � 13:7 Gyr at the big bang. The usual look-forward
time would be just t0 ¼ t0 � te, with which the form of the
metric would not change. The dimensionless cosmological
scale factor, aðteÞ, is chosen to be að0Þ ¼ 1 at present. The
coordinates r, � and � are called comoving coordinates,
because theymovewith the cosmological fluid. For example,
two objects at rest with respect to the fluid, at positions r1
and r2 (and equal values of � and �), have a comoving
distance r ¼ r2 � r1. This comoving distance remains the
same at every future time. However, the physical (proper)
distance between them is rphysðteÞ ¼ aðteÞr, and changes

with time as the Universe expands. Setting r ¼ 0 at the
Earth, the coordinate r of a distant object is its comoving
distance from us.

2. Redshifting

The definition of the cosmological redshift z is given by

1þ z ¼ að0Þ
aðteÞ ; (2)

where, as already said, að0Þ ¼ 1. This equation gives the
value of the scale factor at the time of emission of a graviton
(or a photon) that is today observed with a redshift z.
We now see how the expansion of the Universe affects

frequencies and energies of gravitational waves, as well as
infinitesimal intervals of time (a derivation can be found in
Sec. 4.1.4 of [41]). A frequency fe of a wave emitted by a
system at a redshift z corresponds to

f ¼ fe
1þ z

(3)

at the present time. Since the energy of a graviton is
proportional to its frequency, a graviton emitted with an
energy Ee is today observed with

E ¼ Ee

1þ z
: (4)

An infinitesimal lapse of time dte (emitted interval of time)
measured at redshift z is today observed as

dt ¼ dte½1þ z�: (5)

From (3), it follows that an infinitesimal frequency interval
dfe emitted at redshift z is today observed as

df ¼ dfe
1þ z

: (6)

Similarly, from (4), an infinitesimal energy interval dEe

corresponds to

dE ¼ dEe

1þ z
(7)

today.
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3. Volumes

Some important quantities in this work are defined as
densities, i.e. per unit volume (by which we mean the
spatial volume). Because of the expansion, it is convenient
to speak of two different volumes: physical and comoving
volume.

The element of physical volume dV at fixed time te in
the metric (1) is given by a3ðteÞr2 sinð�Þdrd�d�. We con-
sider only sources uniformly distributed in the sky, so we
can integrate for all angles � and �, obtaining

dV ¼ 4�a3ðteÞr2dr: (8)

The factor a3ðteÞ accounts for the expansion in the three
space dimensions.

The element of comoving volume dVc is defined by
dVc ¼ a�3ðteÞdV, which, using (8), gives

dVc ¼ 4�r2dr: (9)

Suppose eight galaxies (that, at large scales, can be thought
as pointlike) are placed at the vertices of a cube. With the
expansion, the galaxies separate from each other and the
physical volume of the cube increases, but its comoving
volume remains always the same. Since we are assuming
that all massive objects are at rest with respect to the fluid,
no system enters or leaves a certain comoving volume.
For this reason it is straightforward to measure densities
(for example, the number density of systems) per unit
comoving volume.

It is useful to write the element of comoving volume in
terms of redshifts, instead of distances. For that, we have to
find a way to transform infinitesimal intervals of comoving
distance dr into infinitesimal intervals of redshift dz.
Suppose we observe today two gravitons, one emitted at
redshift z and the other at zþ dz. Since both reach us at the
same time, and both travel at the same velocity c with
respect to the cosmological fluid, the one with larger
redshift was emitted at a time dte before the other, and
thus at a comoving distance dr further away from us than
the other. The path of the gravitons, moving in a radial
direction (d� ¼ d� ¼ 0), is obtained by setting ds2 ¼ 0
in (1), which gives

dr ¼ c

aðteÞdte: (10)

To write dte in terms of redshifts, we use the definition of
the redshift. One can differentiate Eq. (2) with respect to te,
obtaining dz=dte ¼ � _aðteÞ=a2ðteÞ. Using (2) again and
the definition of the Hubble expansion rate, HðteÞ ¼
� _aðteÞ=aðteÞ (where the minus sign appears because of
the use of a look-back time), one obtains

dte ¼ 1

½1þ z�HðzÞ dz: (11)

Here, the Hubble expansion rate has been written as a
function of the redshift, instead of the time. The form of

HðzÞ is derived further on in this section. Introducing (11)
in (10), we obtain a relationship between dr and dz,

dr ¼ c

aðteÞ
1

½1þ z�HðzÞdz ¼
c

HðzÞ dz; (12)

where the terms aðteÞ and [1þ z] have canceled out, using
(2). Finally, inserting (12) in (9), the element of comoving
volume becomes

dVc ¼ 4�r2ðzÞ c

HðzÞdz: (13)

Here, rðzÞ is obtained by integrating (12),

rðzÞ ¼
Z z

0

c

HðzÞdz: (14)

Gravitons emitted between redshift z and zþ dz define a
shell of comoving volume given by dVc.
The Hubble expansion rate can be written as a function

of the redshift. For that, we use the Friedmann equation
(see Chapter 27 of [42]),

H2ðteÞ ¼ 8�G

3
�ðteÞ � kc2

a2ðteÞ
þ�

3
; (15)

where G and � are the gravitational and cosmological
constants, respectively. This equation is obtained from
the Einstein equation, imposing the metric (1) and the
stress-energy tensor of a perfect fluid (see Chapter 5 of
[42]). We assume a spatially flat universe, which means
with zero curvature, k ¼ 0. The term �ðteÞ is obtained from
the equation of a perfect fluid of density � and pressure p
(which is also obtained from the Einstein equation),

_�� 3HðteÞ
�
�ðteÞ þ pðteÞ

c2

�
¼ 0: (16)

We can solve this equation considering a universe domi-
nated by nonrelativistic matter (also called dust), �ðteÞ ¼
�mðteÞ, with the equation of state pm ¼ 0. One obtains
�mðteÞ / a�3ðteÞ, which, using (2), becomes

�mðzÞ ¼ �0
mð1þ zÞ3; (17)

where �0
m is the current value of the density of matter. One

can also solve (16) using the equation of state of relativistic
matter (radiation), pr ¼ �c2=3. But one can prove that the
resulting density, �rðzÞ ¼ �0

rð1þ zÞ4, dominates in the
Friedmann equation only at very large redshifts. The red-
shift at which both densities, �mðzÞ and �rðzÞ equate is
zeq � 3� 103 (from [43]). Considering the redshifts in-

volved in this work (z < 20) we neglect �rðzÞ compared to
�mðzÞ. Inserting (17) in (15) and rewriting the latter in
terms of the present value of the Hubble expansion rate,
H0 ¼ ½74:2� 3:6� km s�1 Mpc�1 (from [44]),

HðzÞ ¼ H0EðzÞ; (18)

where
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E ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m½1þ z�3 þ��

q
: (19)

Here,

�m ¼ 8�G�0
m

3H2
0

and �� ¼ �

3H2
0

(20)

are two dimensionless quantities called the density pa-
rameters of matter and dark energy, respectively. The
most recent values for the cosmological parameters ob-
tained by theWilkinsonMicrowave Anisotropy Probe after
seven years of measurements are given in [43]. We adopt a
density parameter of matter�m ¼ 0:27 and of dark energy
�� ¼ 0:73. For simplicity we do not consider any uncer-
tainty in these values.

For a better understanding of the relationship between
volumes and redshifts, we can see Fig. 1, where a Penrose
diagram [45] for the metric (1) is shown. Each point of the
diagram represents a two-sphere at a certain conformal
time. The (look-forward) conformal time is defined by

d� ¼ �½1þ z�dte: (21)

The coordinates of Fig. 1 are defined by�
r0 ¼ arctanð�þ rÞ � arctanð�� rÞ
�0 ¼ arctanð�þ rÞ þ arctanð�� rÞ: (22)

Introducing (21) in (1), the path of a graviton fulfills
dr ¼ cd�. In the diagram we use c ¼ 1, so that r ¼ �
and thus r0 ¼ �0 for all null paths. All gravitons that reach
us today have traveled along the null path shown (the
straight solid line connecting z ¼ 0 and zmax). This path
cuts the horizontal axis at the moment of the big bang,

fixing the horizon f our observable Universe. For each
infinitesimal interval of time d� (that describes the differ-
ence between the emission of two gravitons that reach us
today) there is a corresponding interval dz, along the null
path, which represents a shell of infinitesimal comoving
volume dVc.

E. Spectral function

Under the assumptions (discussed in [1]) that the back-
ground is Gaussian, stationary, isotropic and unpolarized,
all the information about it is contained in a dimensionless
function called the spectral function, defined by

�ðfÞ ¼ �lnðfÞ
�c

¼ "lnðfÞ
c2�c

; (23)

where c is the speed of light and f is the observed gravi-
tational wave frequency. The present critical density of the
Universe is

�c ¼ 3H2
0

8�G
: (24)

This is the density that closes a universe with zero cosmo-
logical constant. This means that �c is the density that,
inserted in Eq. (15) (using�� ¼ 0), gives a zero curvature
(k ¼ 0) at present (te ¼ 0). The function "lnðfÞ is defined
in such a way that the total energy density of gravitational
waves in the present Universe is

"T ¼
Z

"lnðfÞd lnf: (25)

In the literature, "lnðfÞ is often written as

"lnðfÞ ¼ d"

d lnf
: (26)

Some other authors [21,46] prefer not to use this notation,
arguing that it may lead to misunderstandings (one could
mistakenly think that the energy density is differentiated).
Regardless of the notation, Eq. (25) must be fulfilled, so
that "lnðfÞd lnf is the energy per unit physical volume of
gravitational waves between lnf and lnfþ d lnf. Thus,
�ðfÞ is the fractional energy density of gravitational ra-
diation, per logarithmic frequency interval, in the present
Universe.
We first describe a system as seen by an observer close to

it at the time of emission. The energy released in gravita-
tional radiation between logarithmic frequencies lnfe and
lnfe þ d lnfe is

dEe ¼ PeðfeÞd lnfe: (27)

This defines PeðfeÞ: the energy spectrum of a system at
the time of emission. From (27) it follows that PeðfeÞ ¼
dEe=d lnfe.
The energy spectrum of a system at the time of emission

can be related to the energy spectrum today. The present

FIG. 1. Penrose diagram of a universe described by the metric
(1). The straight black line crossing z ¼ 0 and z ¼ zmax contains
all the gravitons that we observe today.
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energy dE radiated by that system, with a logarithmic
observed frequency between lnf and lnfþ d lnf, is

dE ¼ PðfÞd lnf; (28)

which defines PðfÞ ¼ dE=d lnf. Applying (6) and (7) to
Eq. (28), one obtains

dEe

1þ z
¼ PðfÞd lnfe: (29)

Comparing it to Eq. (27),

PðfÞ ¼ ð1þ zÞ�1PeðfeÞ ¼ ð1þ zÞ�1Peðf½1þ z�Þ: (30)

The function Peðf½1þ z�Þ is explicitly given for the case of
a binary system in Eq. (59).

We now calculate the energy spectrum per unit comov-
ing volume of an ensemble. The number of systems per
unit comoving volume during a time dte is

dn ¼ _nðzÞdte: (31)

Here, _nðzÞ ¼ dn=dte is the signal comoving density rate
(number of signals per unit emitted interval of time per unit
comoving volume). The comoving energy density spec-
trum of an ensemble is

pðfÞ ¼
Z

PðfÞdn ¼
Z

PðfÞ _nðzÞdte: (32)

Recall that PðfÞ in general depends on z, according to (30).
The integrals in (32) contain all systems formed from the
big bang until today. Thus the limits of the time integral are
0 (today) and t0 (the beginning of the Universe). We can
now change variables to write the previous integral in terms
of redshifts, using the paths of gravitons as explained in
Sec. II D,

pðfÞ ¼
Z 1

0
PðfÞ _nðzÞdte

dz
dz: (33)

Since we have chosen að0Þ ¼ 1, the comoving volume and
the physical volume are identical at present. Therefore,

pðfÞ ¼ "lnðfÞ: (34)

This means, the comoving energy density spectrum pðfÞ
measured today is what in Eq. (23) was called "ln: the
present energy density of gravitational radiation per loga-
rithmic frequency interval (of a certain ensemble). Using
(23), (33), and (34),

�ðfÞ ¼ "lnðfÞ
�cc

2
¼ 1

�cc
2

Z 1

0
PðfÞ _nðzÞdte

dz
dz: (35)

In this formula, only the term dte=dz depends on the choice
of cosmological model.

A similar derivation of (35) (using different notation)
can be found in [33]. In that paper, the formula for
the spectral function, called �gwðfÞ, is given in Eq. (5).

The terms NðzÞ and ½1þ z��1½frdEgw=dfr�jfr¼f½1þz�

corresponds, with our notation, to _nðzÞdte=dz and PðfÞ,
respectively.
In Eq. (33) one can clearly see the assumption of a

homogeneous universe, which is implicitly imposed by
the metric (1). At any position within a shell of width dz
there is the same number of systems. In other words, _nðzÞ is
the same at every point on a line of constant time, in Fig. 1.
The spectral function of an ensemble can be expressed

more conveniently. We write it in terms of the energy
spectrum at the time of emission, Peðf½1þ z�Þ, for our
particular cosmological model. Using (11) and (30),

�ðfÞ ¼ 1

�cc
2H0

Z 1

0

Peðf½1þ z�Þ _nðzÞ
½1þ z�2EðzÞ dz: (36)

The spectral function of the total contemporary back-
ground would be the sum of the spectral functions of all
different types of ensembles.
But �ðfÞ does not include all redshifts and frequencies,

since _nðzÞ and PeðfeÞ have support only for z 2 ½zmin; zmax�
and fe 2 ½fmin; fmax�, respectively. The maximum fre-
quency fmax is the one above which no more gravitational
waves are emitted. The minimum frequency fmin is the one
below which the contribution in gravitational waves is
dismissed. For example, neutron star binaries started to
form at a redshift zmax � 5 (�12 Gyr ago), are still form-
ing at present, so zmin � 0, and emit in a range of frequen-
cies from �0:01 mHz to �1 kHz (these ranges are
justified in Sec. III). These limits in redshift and frequency
must be taken into account in the integral of (36).
To understand how (36) changes with the introduction of

these limits, it is helpful to make a plot of redshifts versus
frequencies. Each horizontal line of such a plot gives the
range of possible frequencies of a signal at a certain
redshift. If we plotted on the horizontal axis the emitted
frequencies fe, the limits fmin, fmax, zmin, and zmax would
define a rectangle, containing all the points (fe, z) where
both _nðzÞ and PeðfeÞ have support. But representing red-
shifts versus observed frequencies f, one obtains the plot
of Fig. 2 (which is no longer a rectangle). The shaded area
represents the support of �ðfÞ.
We insert two redshift functions zlowðfÞ and zuppðfÞ in

the integration limits of (36), in such a way that the integral
is nonzero only in the shaded area of Fig. 2. This is
achieved with

zlowðfÞ ¼

8>>><
>>>:
zmax; f � fmin

1þzmax

fmin

f � 1; fmin

1þzmax
< f < fmin

1þzmin

zmin;
fmin

1þzmin
� f

; (37)

and

zuppðfÞ ¼

8>>><
>>>:
zmax; f � fmax

1þzmax

fmax

f � 1; fmax

1þzmax
< f < fmax

1þzmin

zmin;
fmax

1þzmin
� f

: (38)
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With these limits, only signals emitted with frequencies
between fmin and fmax, at redshifts between zmin and zmax,
contribute to �ðfÞ.

Changing the integration limits in (36), the spectral
function becomes

�ðfÞ ¼ 1

�cc
2H0

Z zuppðfÞ

zlowðfÞ
Peðf½1þ z�Þ _nðzÞ
½1þ z�2EðzÞ dz: (39)

This formula gives the spectral function of the total back-
ground produced by an ensemble, measured at the present
time. In the next section we generalize this formula to
account for the resolvability of the signals.

In several papers, the integral in Eq. (39) contains an
extra ½1þ z��1 factor (see [18], where the origin of this
misleading factor is explained). Recall the definition of
Peðf½1þ z�Þ in Eq. (27), and notice that the integral in (39)
is not equivalent to, for example, that in Eq. (9) of [13],
where the extra ½1þ z��1 factor is introduced.

Notice that the energy spectrum PeðfeÞ does not depend
on time. We are thus adding the contribution of each
system as if it were instantaneous (this means, as if it
were a point in the Penrose diagram of Fig. 1). This is
justified if the inspiral times are much smaller than the
cosmic time scales, so the time a system needs to evolve
from emitting at fmin to fmax is much less than the Hubble
time, H�1

0 � 13 Gyr. In Sec. VB we point out that this

assumption is not always fulfilled, but it turns out to be
irrelevant in practice.

F. Resolvability of the background

In this section we introduce the overlap function,
N ðf;�f; zÞ, that allows us to define and quantify the
resolvability of the background.

We first define some quantities that are necessary for the
definitions of the different parts of the background. Let
Bðf; z1; z2Þ be the collection of signal elements with
observed frequencies between f and fþ df and with red-
shifts between z1 and z2. Let �eðfe;�feÞ be the interval of
time (measured close to the system at the moment of

emission) that a system at z spends emitting between fe
and fe þ �fe. Written in terms of observed frequencies,
this interval of time is �eðf;�f; zÞ. We define _NðzÞ in such a
way that _NðzÞdz is the number of signals produced per unit
emitted interval of time between z and zþ dz. Since _nðzÞ is
the number of signals per unit emitted interval of time per
unit comoving volume at redshift z, _NðzÞ is given by

_NðzÞ ¼ _nðzÞ dVc

dz
: (40)

The value of _NðzÞ at a certain redshift z can be considered
an average over an interval of time that is much longer than
a typical observation time, but much shorter than the
Hubble time. For the sake of simplicity let us assume that
we know precisely this function, and that it gives the exact
number of signals produced per unit emitted interval of
time. For instance, if we have

R
z
0
_NðzÞdz ¼ 1 hour�1, one

signal is assumed to be produced between redshift 0 and z
exactly every hour.
Let us illustrate the resolvability with the following

example: One signal is produced every hour between z
and zþ dz, i.e. _NðzÞdz ¼ 1 hour�1. Each signal spends
one hour between f and fþ �f, i.e. �eðf;�f; zÞ ¼
1 hour. Thus, whenever we see that frequency bin, it will
be occupied by �eðf;�f; zÞ � _NðzÞdz ¼ 1 signal produced
between z and zþ dz. If, for the same _NðzÞdz, we consider
a different range of frequencies, where �eðf;�f; zÞ ¼
2 hours, we will always see in that frequency bin 2 over-
lapping signals, which will not be distinguishable. We can
perform a similar calculation, considering all redshifts
between z1 and z2:

R
z2
z1
�eðf;�f; zÞ � _NðzÞdz gives the

number of signals between redshift z1 and z2 that overlap
in a frequency bin. If that number is larger than 1, those
signals cannot be resolved. This leads us to the definition of
the overlap function.
The overlap function is defined by

N ðf;�f; zÞ ¼
Z z

zlowðfÞ
�eðf;�f; z0Þ _Nðz0Þdz0: (41)

It thus gives the expected number of signals with redshifts
smaller than z and frequencies between f and fþ �f. For
example, N ðf;�f; zÞ ¼ 1 implies that, as soon as one
signal leaves a frequency bin, another signal enters it, so
the bin is constantly occupied by one signal. Hence,
N ðf;�f; zÞ> 1 implies that signals overlap in a fre-
quency bin. We can imposeN ðf;�f; zÞ ¼ N 0 and invert
this equation with respect to the redshift z. The obtained
function,

N �1 ¼ N �1ðf;�f;N 0Þ (42)

is the redshift such that all signals between f and fþ�f
with redshifts smaller thanN �1ðf;�f;N 0Þ sumN 0. To
obtain an overlap larger than N 0 at a certain frequency f,
one has to consider only signals from redshifts larger than

FIG. 2. Redshift versus observed frequency. The spectral func-
tion of the total background of a certain ensemble has support
only within the shaded area.
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N �1ðf;�f;N 0Þ. In Sec. III E 3 we give a formula for
N �1ðf;�f;N 0Þ for an ensemble of binary systems.

We now give some relevant definitions:
The total background of an ensemble between frequency

f and fþ df is Bðf; zlowðfÞ; zuppðfÞÞ. One can assign a

spectral function to it, �totalðfÞ.
The total background can be divided into two parts:

resolvable and unresolvable. If there exists a certain z�
such that zlowðfÞ< z� < zuppðfÞ and N ðf;�f; z�Þ ¼ 1,

the unresolvable part is Bðf; z�; zuppðfÞÞ, and the resolv-

able part is Bðf; zlowðfÞ; z�Þ. If there is no z� such that
zlowðfÞ< z� < zuppðfÞ and N ðf;�f; z�Þ ¼ 1, the resolv-

able part coincides with the total background and the
unresolvable part is the empty set. One can assign a spec-
tral function to the resolvable part of the background,
�resolvableðfÞ, and to the unresolvable part, �unresolvableðfÞ.

The resolvable part dominates at a frequency f when
�resolvableðfÞ>�unresolvableðfÞ. When this happens, even if
there is an unresolvable background present, it is weak
compared to the background of the closer (stronger) sig-
nals, and thus the latter can still be resolved. On the other
hand, the unresolvable part dominates at a frequency f
when �unresolvableðfÞ>�resolvableðfÞ. In this case, even if
there are some close resolvable signals, they cannot be
resolved in practice, since they are obscured by the super-
position of many weak distant signals.

In Sec. VD other possible criteria for the resolvability of
the background are commented on.

In Fig. 3 we give an illustrative example to understand
the definitions of the different parts of the background.
There we plot the evolution in time of the observed fre-
quency of many similar signals, like the ones produced by
an ensemble of binaries. The horizontal axis range is an
interval of time of the order of a typical observation time.

This axis is divided in small intervals �t, which is the time
resolution. The vertical axis can be considered the fre-
quency window of a hypothetical detector, with such a
low instrumental noise that allows us to observe signals
emitted at very large redshifts. This axis is divided into
small intervals �f, the frequency resolution. Darker pixels
in the plot represent stronger backgrounds, i.e. with larger
spectral function. The bin ð�fÞ1 is in a range of frequencies
where the total background is completely resolvable: all
signals can be clearly distinguished from each other. In
ð�fÞ2, an unresolvable part starts to contribute, but close
binaries can still be clearly distinguished from each other,
since the resolvable part dominates. Finally, in ð�fÞ3 the
unresolvable part of the background dominates over the
resolvable one. One should keep in mind that this example
does not accurately follow the definition of unresolvability,
since the spectral function does not account for individual
signals.
We now generalize the formula of the spectral function

to account for the resolvability of the background. We
solve the integral in (39) for the signals that fulfill the
condition N ðf;�f; zÞ 	 N 0. For that, we can retain
the same upper limit of the integral, zuppðfÞ, and change

the lower one, replacing zlowðfÞ by

�zðf;�f;N 0Þ¼

8>>><
>>>:
zuppðfÞ; f<fp;min

N �1ðf;�f;N 0Þ; fp;min�f�fp;max

zuppðfÞ; fp;max<f

:

(43)

We have introduced four limiting frequencies: fp;max

(fp;min) represents the maximum (minimum) frequency at

which the unresolvable part of the background is present,
and fd;max (fd;min) represents the maximum (minimum)

frequency at which the unresolvable part dominates over
the resolvable. Using (43) we obtain the spectral function
of an ensemble with more than N 0 signals per frequency
bin �f,

�ðf;�f;N 0Þ¼ 1

�cc
2H0

Z zuppðfÞ

�zðf;�f;N 0Þ
Peðf½1þz�Þ

� _nðzÞ
½1þz�2EðzÞdz: (44)

This is the main equation of the paper and a generalization
of Eq. (39) with which we can distinguish the different
regimes of the background.
The unresolvable background is fully characterized by

the spectral function �ðf;�f;N 0Þ. It is not easy to de-
termine whether the assumptions mentioned at the begin-
ning of Sec. II E are always fulfilled for such a background.
But it is clear that valuable information is lost when using
the spectral function to characterize a resolvable back-
ground, where signals can be individually distinguished.

FIG. 3. Observed frequency versus time. Each line represents
the evolution of one signal (like the one produced by a binary).
Closer signals, as well as the superposition of many signals, are
plotted darker than distant individual signals. Three frequency
bins are distinguished: in ð�fÞ1 the total background is com-
pletely resolvable, in ð�fÞ2 there is an unresolvable part and a
dominating resolvable part, and in ð�fÞ3 there is a dominating
unresolvable part and a resolvable part.
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The spectral function of the unresolvable part of the
background is, according to the definitions given at the
beginning of this section,

�unresolvableðfÞ ¼ �ðf;�f; 1Þ; (45)

where �f can be chosen as the inverse of the observation
time. On the other hand, the spectral function of the
resolvable part is

�resolvableðfÞ ¼ �totalðfÞ ��unresolvableðfÞ; (46)

where

�totalðfÞ ¼ �ðf;�f; 0Þ: (47)

Here, �ðf;�f; 0Þ coincides with the �ðfÞ given in
Eq. (39), and the value of �f becomes irrelevant.

Another picture that illustrates the distinct parts of the
background is in Fig. 4. This graph is the same as that
in Fig. 2, but also represents the redshift function
�zðf;�f;N 0Þ that defines the frontier between the resolv-
able (light-shaded area) and unresolvable (dark-shaded)
parts of the background.

The mathematical definitions of the limiting frequencies
can be understood by looking at the graph in Fig. 4. The
frequencies fd;min and fd;max are the ones at which the

resolvable and the unresolvable parts have equal spectral
function, so

�unresolvableðfd;min =maxÞ ¼ �resolvableðfd;min =maxÞ; (48)

The frequencies fp;min and fp;max are the ones at which the

function N �1ðf;�f;N 0Þ intersects zuppðfÞ, so
N �1ðfp;min =max;�f;N 0Þ ¼ zuppðfp;min =maxÞ: (49)

In Sec. III E 4 we calculate these limiting frequencies for
an ensemble of binary systems.
So far we have distinguished the regimes of resolvability

by using the frequency resolution �f, but not the time
resolution �t. In Sec. VE we show how to redefine the
overlap function to account for the time resolution. In
practice, the effect of introducing a realistic �t in the
calculations turns out to be irrelevant for our work.
In Sec. V F 3 we show that the overlap function is a

generalization of what in the literature is often called the

FIG. 4. Redshift versus observed frequency. Each horizontal line contains the possible observed frequencies of a signal. The
light-shaded (dark-shaded) area represents the resolvable (unresolvable) part of the background. The redshift functions zlowðfÞ,
�zðf;�f;N 0Þ, and zuppðfÞ are shown with dashed, dotted, and solid lines, respectively. The frequencies fp;min and fp;max delimit the

interval where the unresolvable part is present. The frequencies fd;min and fd;max delimit the interval where the unresolvable part

dominates.
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duty cycle,DðzÞ. The latter is proven to be a good quantifier
of the unresolvability of the background only for very short
signals (bursts). Furthermore, we use the name overlap
function and not duty cycle, because the latter may be
confusing:DðzÞ can be greater than unity, unlike the typical
duty cycles used in electronics or in gravitational wave
detectors.

G. Continuity of the background

The overlap function can be used to characterize not
only the resolvability but also the continuity of the back-
ground. We now give some definitions, similar to the ones
given in the previous section:

Given a frequency interval ½flow; fupp� (that can be the

frequency window of a detector), the total background
Bðf; zlowðfÞ; zuppðfÞÞ of an ensemble between frequency

f and fþ df (where flow � f � fupp) can be divided

into two parts: discontinuous and continuous. If there
exists a certain z� such that zlowðfÞ< z� < zuppðfÞ and

N ðf;minðfmax; fuppÞ � f; z�Þ ¼ 1, the continuous part is

Bðf; z�; zuppðfÞÞ, and the discontinuous part is

Bðf; zlowðfÞ; z�Þ. If there is no z� such that zlowðfÞ< z� <
zuppðfÞ and N ðf;�f; z�Þ ¼ 1, the discontinuous part co-

incides with the total background and the continuous part is
the empty set. One can assign a spectral function to the
discontinuous part of the background, �discontinuousðfÞ, and
to the continuous part, �continuousðfÞ.

The definitions of resolvable and unresolvable back-
grounds are valid both for signals which frequency in-
creases in time, such as binaries, and for signals which
frequency decreases (for which one could change �f by
��f in the definitions). On the other hand, the given
definitions of discontinuous/continuous backgrounds
assume that the frequency increases in time. For signals
with decreasing frequency, the condition of continuity
would be N ðf; f�maxðflow; fminÞ; z�Þ 	 1.

In the following, when talking about the continuous
background, we will assume flow ¼ 0 and fupp ¼ 1.

This implies that any part of the background that is not
continuous in this circumstance is definitely discontinuous,
for any other choice of flow and fupp. Besides, the unre-

solvable background is necessarily continuous.
So, the spectral function of the continuous background is

�continuousðfÞ ¼ �ðf; fmax � f; 1Þ: (50)

The spectral function of the discontinuous background is

�discontinuousðfÞ ¼ �totalðfÞ ��continuousðfÞ; (51)

where �totalðfÞ is the same of Eqs. (47) and (39).

III. MODELS FOR THE ENSEMBLES

Our work is focused on the contemporary background
produced by coalescing binary systems. These are systems
composed of two objects that inspiral towards each other,

producing gravitational waves with an increasing fre-
quency until they coalesce. In order to emit gravitational
waves significantly, they must be sufficiently massive
and/or compact. Each binary is assumed to be isolated
and describing an orbit of zero eccentricity. Its components
are assumed to be nonspinning.
We sort the binary systems into two classes: stellar

binaries and massive black hole binaries.
By stellar binary we mean a system whose components

have masses of the order of a solar mass (or tens of it).
We consider those stellar binaries formed by two stellar-
mass black holes (from now on we call this type of binary
BH-BH), a stellar-mass black hole and a neutron star (BH-
NS), two neutron stars (NS-NS), a neutron star and a white
dwarf (NS-WD) or two white dwarfs (WD-WD). The
majority of the star formation rates in the literature vanish
at redshifts larger than 5 or 6 (see for example [47–53]).
If we expect no star formation at higher redshifts, no
coalescence from stellar binaries is expected either. We
choose then a maximum redshift for binary coalescences of
zmax ¼ 5. The minimum redshift is chosen zmin ¼ 0, since
these binaries can also form at present.
Massive black hole binaries (from now on, MBH-MBH)

are systems believed to exist in the center of many galaxies
[54,55]. Their components have masses that range from
�102M
 to �1010M
. We consider four different models
for massive black hole formation, presented in [56]: two of
them (called SE/SC, for small seeds and efficient/chaotic
accretion) with light-seed black holes produced as rem-
nants of Population III stars, and two with heavy-seed
black holes formed from dynamical instabilities in the
nuclei of protogalaxies (called LE/LC, for large seeds
and efficient/chaotic accretion). These formation models
allow coalescences at redshifts reaching z � 20.

A. Energy spectrum

We assume that the energy lost by a system when emit-
ting gravitational radiation between fe and fe þ dfe is of
the form

dEe;sys ¼ ��½fe�bdfe; (52)

for real constants � and b. This formula is valid for all
systems considered in this work (binaries) and also other
systems (see, for example, the emission model of magne-
tars in [17]). In particular, for a binary system,

� ¼ 1

3
½G2�2M5�1=3 and b ¼ � 1

3
: (53)

Here we have introduced the chirp mass M of the binary,
defined by

M ¼ ½m1m2�3=5
½m1 þm2�1=5

; (54)

where m1 and m2 are the masses of the two components of
the binary.
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This energy spectrum is obtained by assuming that the
energy of the system, as well as the separation of the
bodies, varies slowly with time. This is valid as long as
the orbit is far wider than the last stable one [see Eq. (67)].
In these circumstances, the system is well described by the
Newtonian equations of motion of two point masses in a
circular orbit.

We thus derive Eq. (52) for binary systems using
Newtonian mechanics. The energy of the system, in terms
of the separation s between the stars of masses m1

and m2 is

Ee;sys ¼ � 1

2

Gm1m2

s
: (55)

We reduce the two-body problem to one fictitious body, of
mass equal to the reduced mass of the system,
m1m2=½m1 þm2�, suffering the same force as each of the
real bodies. Applying Newton’s second law,

Gm1m2

s2
¼ m1m2

m1 þm2

½2�fe;orbit�2s; (56)

where fe;orbit is the orbital frequency, that is related to the

frequency of the gravitational waves in the quadrupolar
approximation by

fe ¼ 2fe;orbit: (57)

Introducing it in Eq. (56) one obtains a formula that relates
the separation of the masses with the frequency of the
gravitational waves,

s ¼
�
G½m1 þm2�

�2f2e

�
1=3

: (58)

Replacing (58) in (55) and differentiating, one finally
obtains the energy spectrum (52) with the values of �
and b given in (53). A more detailed derivation of
Eq. (52) can be found in Chapter 4 of [41].

What we need is the energy spectrum of the gravita-
tional radiation at the time of emission, in terms of ob-
served frequencies, Peðf½1þ z�Þ [recall the formula of
�ðf;�f;N 0Þ in Eq. (44)]. Using (3), (27), and (52),

Peðf½1þ z�Þ ¼ dEe

d lnfe
¼

��������dEe;sys

d lnfe

��������¼ fe�½fe��ð1=3Þ

¼ �f2=3½1þ z�2=3: (59)

The absolute value has been introduced because
Peðf½1þ z�Þ is a positive quantity; dEe is the amount of
gravitational wave energy within a frequency interval,
regardless of whether the energy of the system increases
or decreases with the frequency. Equation (59) must be
inserted in Eq. (44),

�ðf;�f;N 0Þ ¼ �f2=3

�cc
2H0

Z zuppðfÞ

�zðf;�f;N 0Þ
_nðzÞ

½1þ z��4=3EðzÞdz;
(60)

to obtain the spectral function of an ensemble of binary
systems.

B. Interval of time per frequency bin

To calculate the overlap function we need the interval of
time that a system spends emitting in a frequency bin. The
frequency of the radiation emitted by a binary evolves in
(look-forward) time following the relation

dfe
dte

¼ 96

5
�8=3

�
GM
c3

�
5=3

f11=3e ; (61)

the derivation of which can be found in Chapter 4 of [41].
Integrating (61) between fe and fe þ�fe one obtains the
interval of time that the signal spends in that frequency
interval,

�eðfe;�feÞ ¼ �2½f�8=3
e � ½fe þ �fe��8=3�; (62)

where

�2 ¼ 5c5

256�8=3½GM�5=3 : (63)

The interval of time �eðfe;�feÞ can be written in terms of
observed frequencies,

�eðf;�f; zÞ ¼ �2Q½f;�f�½1þ z��8=3; (64)

where we have defined

Qðf;�fÞ ¼ f�8=3 � ½fþ �f��8=3: (65)

The function �eðf;�f; zÞ gives the interval of time that a
signal, produced at a redshift z, needs to change from an
observed frequency f to fþ �f. We remark that this is an
absolute (positive) interval of time, and not a look-back
time.
In certain conditions Qðf;�fÞ can be simplified, by

performing a Taylor expansion around �f ¼ 0,

Qðf;�fÞ � 8

3
�ff�11=3; (66)

for �f � f.

C. Maximum frequencies

The energy spectrum of binary systems [Eq. (52)] is
assumed to be zero outside a certain frequency range
½fmin; fmax�. We now present our choices of fmax for each
type of system. We omit the index e to simplify the
notation, but one should keep in mind that fmax is an
emitted frequency.
For all binaries that do not contain a white dwarf, fmax is

reached when both stars are as close to each other as slso.
This is the separation at the last stable orbit (see, for
example, Box 25.6 in [42]),

slso ¼ 6G½m1 þm2�
c2

; (67)
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which is 3 times the Schwarzschild radius of each star.
Using Eq. (58), the frequency of the last stable orbit is

flsomax ¼ 1

6
ffiffiffi
6

p
�

c3

G½m1 þm2� ; (68)

where we have used the index ‘‘lso’’ to distinguish this
maximum frequency from the following ones.

For WD-WD, since the radius of a white dwarf is much
bigger than its Schwarzschild radius, we assume that the
maximum frequency is reached when both stars touch each
other. This happens when the separation between them is
r1 þ r2, the sum of their radii. This separation corresponds
to a frequency [using again Eq. (58)]

fWD-WD
max ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G½m1 þm2�
½r1 þ r2�3

s
: (69)

For r1 and r2 one can use

ri ¼ 0:0112R


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mi

mCha

��2=3 �
�

mi

mCha

�
2=3

s
; (70)

where mCha � 1:44M
 is Chandrasekhar’s mass. This
formula gives the approximate radius ri of a white dwarf
as a function of its mass mi. It is obtained from Eqs. (27)
and (28) [where there is an extra factor M
 on the right
side] in [57].

For NS-WD, we use the same criterion as for WD-WD,
but considering that the radius of the neutron star is neg-
ligible with respect to the radius of the white dwarf. Hence,
the maximum frequency is

fNS-WD
max ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G½m1 þm2�

r31

s
; (71)

where r1 is the radius of the white dwarf, that can be
calculated with (70).

D. Minimum frequencies

There is a certain minimum frequency, fmin, such that
the gravitational radiation emitted by a system below this
frequency is disregarded, because other mechanisms of
energy loss are more effective. It is difficult to find a
precise description of these mechanisms for each type of
system. We adopt a simple criterion, for all stellar binaries,
that fixes the value of fmin: the interval of time between the
beginning of the inspiral phase (when the binary emits at
frequency fmin) and the coalescence (when it emits at fmax)
cannot be higher than a certain interval of time Tmax. This
condition is equivalent to �eðfmin; fmax � fminÞ ¼ Tmax.
Using Eq. (62), one obtains

fmin ¼
�
Tmax

�2

þ f�8=3
max

��3=8
: (72)

For all systems considered in this work we can reasonably
perform the approximation

fmin �
�
Tmax

�2

��3=8
: (73)

As we did with the maximum frequencies, we omit the
index e to simplify the notation, but fmin is always an
emitted frequency. The assumption of a maximum inspiral
time is justified in Sec. VB. The maximum inspiral times
chosen are Tmax ¼ 12 Gyr for stellar binaries and 75 Myr
for massive black hole binaries. These choices are now
explained.

1. Maximum inspiral time for stellar binaries

For stellar binaries, Tmax ¼ t5 � 0, where t5 is the look-
back time at which the first stellar binaries coalesced
(at z � 5). Integrating (11),

t5 ¼
Z t5

0
dt ¼

Z 5

0

1

½1þ z�HðzÞdz � 12 Gyr: (74)

This choice of Tmax is somewhat arbitrary and even leads to
an inconsistency: only binaries that coalesced at small
redshifts could have that much time to evolve from an
initial frequency fmin until the coalescence. Moreover, at
frequencies close to the minimum one, the approximation
of short inspiral times compared to the Hubble time, com-
mented at the end of Sec. II E, is not valid anymore. In
Sec. VB we justify our choice of Tmax, the exact value of
which turns out to be unimportant in practice.

2. Maximum inspiral time for massive black hole binaries

The process that leads to two massive black holes co-
alescing can be briefly summarized in three main phases
[58]: dynamical friction, gravitational slingshot and gravi-
tational radiation. When two dark matter halos containing
black holes merge, the black holes suffer dynamical fric-
tion [59] with the environment and sink to the center,
forming a wide binary (with large orbital period). At a
certain distance the dynamical friction phase ceases to be
effective. Then the binary can continue to shrink because
of three-body interactions with surrounding stars [60].
These stars are ejected from the center and subtract some
energy from the binary in the process. This phase is called
gravitational slingshot because of the ejection of stars.
Eventually the dynamical friction plus the slingshot phases
shrink the orbit enough, so that the binary can continue
inspiralling until a coalescence in a finite interval of time
by only emitting gravitational radiation, which constitutes
the third phase. Other possible evolutions involving inter-
action with surrounding gas have been investigated in the
literature [61–63].
We impose that the minimum frequency is the one at

which the gravitational slingshot phase ends and the gravi-
tational radiation starts to dominate (see the discussion in
Sec. VC). As we now show, this condition is reasonably
well fulfilled by imposing the same maximum inspiral time
Tmax ¼ 75 Myr for all masses.
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The frequency at which the slingshot and radiation
phases overlap is the one at which the energy spectra of
the two phases are equal,

dEe

dfe

��������S
¼ dEe

dfe

��������R
: (75)

The variation of the energy of the gravitational waves with
their frequency, in any of the two phases, can be written as

dEe

dfe
¼ dEe

dte

dte
ds

ds

dfe
¼ dEe

dte

�
ds

dte

��1 ds

dfe
: (76)

Here, dte is an interval of time and s is the separation of the
two black holes, which is the semimajor axis of the ellipse
described. Since the orbit is assumed circular, s corre-
sponds to the radius of the orbit. The term dEe=dte is
the same in both phases. Also ds=dfe has the same form
in the two phases. Only the evolution of the semimajor
axis in time, ds=dte, is different. Thus, instead of finding
the frequency that fulfills Eq. (75), we can obtain the
separation s at which

ds

dte

��������S
¼ ds

dte

��������R
; (77)

and then calculate the corresponding frequency using (58).
Following [58] (or similarly [59]), we write the evolu-

tion in time of the semimajor axis of a binary in the two
phases. In the gravitational radiation phase, this evolution
fulfills

ds

dte

��������R
¼ � 64G3m1m2½m1 þm2�

5c5s3
; (78)

whereas in the gravitational slingshot phase,

ds

dte

��������S
¼ �H	�s2

2�r2c
: (79)

In the latter, H is the hardening rate, 	� is the velocity
dispersion of the stars in the bulge of the galaxy, and rc is
the core radius (see [59] for more details). We use the value
of H reached in the limit of a very hard binary, H � 15.
It is known that there is a correlation between 	� and the
mass of the massive black hole mBH hidden in the bulge
(see [64,65]). This relation (from the most recent fits, by
[66]) is

log 10

�
mBH

M


�
¼ c1 þ c2log10

�
	�

200 km s�1

�
; (80)

with ðc1; c2Þ ¼ ð8:12� 0:08; 4:24� 0:41Þ. From this
equation we obtain 	�ðmBHÞ and use mBH ¼ m1 þm2 to
account for the two components of the binary. The core
radius rc, in the limit of a very hard binary, grows during
the gravitational slingshot phase until it reaches

rc � 3G½m1 þm2�
4	2�

ln

�
Gm2

4	2�s

�
; (81)

where m2 is the mass of the lighter black hole.
We now calculate the separation s at which both phases

overlap. Replacing (78) and (79) in (77),

s5ln�2

�
Gm2

4	2�s

�
¼ 72�G5m1m2½m1 þm2�3

5H c5	5�
: (82)

This equation can be numerically solved for each pair of
equal masses m1 ¼ m2 ¼ m, obtaining the separation (let
us call it sR) at which the gravitational radiation phase
starts to dominate. Using (58) one can calculate the fre-
quency fR that corresponds to sR. It turns out that the
obtained dependence of fR with m is very accurately fitted
by fminðmÞ, defined in Eq. (73), using Tmax � 75 Myr. This
is a numerical coincidence that eases further calculations.
The origin of this coincidence is the following: omitting
the logarithm on the left side of Eq. (82), sR / m=	� while
	� / m1=4:24. This leads to sR / m0:764. According to

Eq. (58), f / m1=2s�3=2 and therefore fR / m�0:646. On

the other hand, according to Eq. (73), fmin / m�5=8 ¼
m�0:64. Therefore, the dependences of fR and fmin with
m are almost the same. As a conclusion, setting a maxi-
mum inspiral time of 75 Myr is (almost) equivalent to
considering only waves emitted during the gravitational
radiation phase.

E. Calculations for stellar binaries

1. Coalescence rate

The signal comoving density rate _nðzÞ, that was defined
in Eq. (31), represents, in the case we study now, the
number of binaries per unit emitted interval of time per
unit comoving volume that coalesce at a redshift z. We can
thus call it the coalescence rate or simply rate.
To obtain _nðzÞ, one could choose a star formation rate

from the literature (which is usually a function of the
redshift) and transform it into a coalescence rate, for which
a coalescence probability distribution is necessary. This
procedure is followed, for example, in [67]. In Sec. VAwe
show that the use of a constant coalescence rate is well
justified, given the large uncertainties in the local coales-
cence rate. Therefore, to simplify calculations, we assume
a rate of the form

_nðzÞ ¼

8>><
>>:
0; 0< z < zmin

R; zmin � z � zmax

0; zmax < z

; (83)

for a real constant R. The values of R for each ensemble are
given in Table I.
Some of the coalescence rates in the literature are esti-

mated only within our galaxy. We need to extrapolate those
coalescence rates, given per Milky Way equivalent galaxy,
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MWEG�1, to the rest of the Universe. One simple way to
translate galactic rates into rates per cubic megaparsec,
Mpc�3, is explained in Sec. 3 of [74]. We use the same
conversion factor of [75], which is referred to [76],

1 MWEG�1 ¼ 0:0116 Mpc�3: (84)

A similar factor is given in Eq. (4) of [77]. The conversion
(84) assumes that the blue-light luminosity of the
Milky Way is 1:7� 1010LB;
, where LB;
 is the blue

luminosity of the Sun, while that of the close universe is
0:0198� 1010LB;
 per cubic megaparsec. All these factors

are very uncertain, as discussed, for example, in [78]. We
assume no uncertainty in (84) but then round the coales-
cence rates to one significant figure.

2. Spectral function

We now rewrite �ðf;�f;N 0Þ in a simple way.
Introducing the constant rate R in (60),

�ðf;�f;N 0Þ ¼ �1f
2=3½gðzuppðfÞÞ � gð�zðf;�f;N 0ÞÞ�:

(85)

Here,

�1 ¼ R�

�cc
2H0

(86)

and gðzÞ is the solution of the integral

gðzÞ ¼
Z
½1þ z��ð4=3ÞE�1ðzÞdz: (87)

We solve this integral semi-analytically in Sec. III E 5.

3. Overlap function

We obtain an explicit formula for the overlap function
of binary systems with a constant coalescence rate.
Introducing (13) and (64) in (41),

N ðf;�f; zÞ ¼
Z z

zlowðfÞ
½�2Qðf;�fÞ½1þ z0��8=3�

� R

�
4�

�
c

H0

Z z0

0
E�1ðz00Þdz00

�
2

� c

H0

E�1ðz0Þ
�
dz0: (88)

This intricate equation can be rewritten to obtain a simple
expression for the overlap function,

N ðf;�f; zÞ ¼ �2�3Qðf;�fÞ½ �gðzÞ � �gðzlowðfÞÞ�: (89)

Here we have defined

�3 ¼ 4�R
c3

H3
0

(90)

and

�gðzÞ ¼
Z
½1þ z��8=3

�Z z

0
E�1ðz0Þdz0

�
2
E�1ðzÞdz: (91)

This integral cannot be analytically solved. One can invert
(89) with respect to the redshift, obtaining

N �1ðf;�f;N 0Þ ¼ �g�1

�
N 0

�2�3Qðf;�fÞ þ �gðzlowðfÞÞ
�
:

(92)

In Sec. III E 5 we give a semi-analytical solution for
N ðf;�f; zÞ and N �1ðf;�f;N 0Þ.

4. Limiting frequencies

The limiting frequencies fp;min, fd;min, fd;max and fp;max

are defined in Sec. II F. For the systems we study, fp;min and

fd;min turn out to be close to fmin=½1þ zmax�, which is the

minimum frequency at which the spectral function has
support. For simplicity, we assume

fp;min ¼ fd;min ¼ fmin

½1þ zmax� : (93)

On the other hand, the frequencies fd;max and fp;max must

be calculated using Eqs. (48) and (49), respectively.
We now show how to calculate fp;max. Inserting Eq. (92)

in (49),

TABLE I. Minimum, most likely and maximum coalescence rates assumed for each type of ensemble. The coalescence rates of
BH-BH and BH-NS are taken from [68], where they refer to [69] and [70], respectively. For NS-NS, the values are taken from [71] (our
minimum and maximum values are the minimum and maximum ones allowed by the uncertainties). The rates of NS-WD and WD-WD
are taken from Table 1 in [72]. In Sec. IV we consider also the recent coalescence rates of BH-BH predicted in [73], of
R ¼ 0:36þ0:50

�0:26 Mpc�3 Myr�1. The values given in the literature per Milky Way equivalent galaxy are converted using (84).

All coalescence rates are rounded to one significant figure.

BH-BH BH-NS NS-NS NS-WD WD-WD

Minimum R=½Myr�1 Mpc�3� 1� 10�4 6� 10�4 1� 10�2 2� 10�2 2� 101

Most likely R=½Myr�1 Mpc�3� 5� 10�3 3� 10�2 1 4� 10�1 1� 102

Maximum R=½Myr�1 Mpc�3� 3� 10�1 1 9 9 5� 102
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Qðfp;max;�fÞ ¼ N 0

�2�3½ �gðzuppðfp;maxÞÞ � �gðzlowðfp;maxÞÞ� :
(94)

One can obtain fp;max by solving this equation. However,

one can use a more convenient formula for fp;max, that we

present now. All stellar binaries satisfy fmin=½1þ zmin�<
fp;max, so zlowðfp;maxÞ ¼ zmin. Adopting a frequency

resolution �f ¼ 1 yr�1, the condition �f � fp;max is

fulfilled by all stellar binaries. We can thus use the ap-
proximation of Eq. (66) in (94), obtaining

fp;max �

8>>><
>>>:

�
8�f�2�3½ �gðzmaxÞ� �gðzminÞ�

3N 0

�
3=11

; � � 1

�
8�f�2�3½ �gð fmax

fp;max
�1Þ� �gðzminÞ�

3N 0

�
3=11

; �> 1

; (95)

where the dimensionless parameter � is defined by

� ¼ Qð fmax

1þzmax
;�fÞ�2�3½ �gðzmaxÞ � �gðzminÞ�

N 0

: (96)

If � � 1, we have a simple formula for fp;max. The con-

dition � � 1 is fulfilled by all stellar binaries that do not
contain a white dwarf. For NS-WD and WD-WD, �> 1,
and one has to solve Eq. (95) numerically.

Similarly, one can obtain a formula for the limiting
frequency fd;max, using Eqs. (48), (85), and (66). We point

out that fd;max is by definition smaller than fp;max. In

addition, one can show that fd;max=fp;max cannot be smaller

than a certain factor F, so

F � fd;max

fp;max

< 1: (97)

The value of this factor is

F ¼
�
�gðg�1ð12 ½gðzmaxÞ þ gðzminÞ�ÞÞ � �gðzminÞ

�gðzmaxÞ � �gðzminÞ
�
3=11

: (98)

For zmax ¼ 5 and zmin ¼ 0, one obtains F � 0:6. All stellar
binaries except WD-WD fulfill that fd;max � 0:6� fp;max.

For WD-WD, fd;max and fp;max are almost equal; more-

over, they are almost as large as fmax. This means that the
total background of WD-WD is almost entirely dominated
by its unresolvable part.

One should notice that �ðf;�f; 0Þ is equivalent
to the old definition of the spectral function, �ðfÞ, in
Eq. (39). Setting N 0 ¼ 0, the function N �1ðf;�f; 0Þ
becomes zlowðfÞ [using Eq. (92)]. Then, the limiting fre-
quencies fp;min and fp;max become fmin=½1þzmax� and

fmax=½1þzmin�, respectively, (see Figs. 2 and 4). Using
Eq. (43), �zðf;�f; 0Þ becomes identically zlowðfÞ, and thus
Eqs. (39) and (44) become equivalent.

5. Semi-analytical solutions

In order to obtain a semi-analytical solution for
�ðf;�f;N 0Þ, we need two functions, gðzÞ and �gðzÞ,
that fit accurately the numerical solutions of the integrals
in Eqs. (87) and (91).
A possible choice of the functions gðzÞ and �gðzÞ is

gðzÞ ¼ a1arctan
a4ða2za3Þ (99)

and

�gðzÞ ¼ �a1arctan
�a4ð �a2z �a3Þ; (100)

for certain parameters (a1, a2, a3, a4) and ( �a1, �a2, �a3, �a4)
that must be numerically calculated. The optimal parame-
ters between zmin ¼ 0 and zmax ¼ 5 are

ða1; a2; a3; a4Þ ¼ ð0:5604; 1:235; 1:0047; 0:8364Þ (101)

and

ð �a1; �a2; �a3; �a4Þ ¼ ð0:070 24; 0:8658; 1:3236; 1:511Þ: (102)

These values can be used for all ensembles of stellar
binaries, since the integrals in Eqs. (87) and (91) depend
only on cosmological parameters.
The semi-analytical formula for the overlap function,

using (100), becomes

N ðf;�f; zÞ ¼ �2�3Qðf;�fÞ �a1arctan �a4ð �a2z �a3Þ: (103)

We invert it with respect to the redshift, obtaining

N �1ðf;�f;N 0Þ¼
�
1

�a2
tan

��
N 0

�a1�2�3Qðf;�fÞ
�
1= �a4

��
1= �a3

:

(104)

Introducing it in (43) we obtain a formula for
�zðf;�f;N 0Þ.
Finally, using (99), the semi-analytical formula for the

spectral function of binary systems is

�ðf;�f;N 0Þ ¼ �1a1f
2=3½arctana4ða2za3uppðfÞÞ

� arctana4ða2 �za3ðf;�f;N 0ÞÞ�: (105)

The redshift function zuppðfÞ is given in (38). The limiting

frequency fp;max can be calculated as explained in

Sec. III E 4, using the semi-analytical formula (100)
for �gðzÞ.

6. Mass ranges

We calculate the spectral function of an ensemble
assuming that all similar objects have equal mass. For
example, in the ensemble of NS-WD, all neutron stars
have equal mass mNS and all white dwarfs have equal
mass mWD. For this reason, given a range of possible
masses for an object, we should not consider values of
masses too different from the mean one.
For a neutron star, we assume a mass in the range 1:3 �

mNS=M
 � 1:7. This interval is taken from [79], where the
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lower limit predicted is ð0:878� 1:284ÞM
, and the upper
limit, ð1:699� 2:663ÞM
. We use the highest mass of the
lower limit and the lowest mass of the upper limit and
round all values to two significant figures. The most likely
value is the average of both limits of the interval. So, our
choice for the masses of neutron stars is

ðmmin
NS ; m

med
NS ; mmax

NS Þ ¼ ð1:3; 1:5; 1:7ÞM
: (106)

The mass distribution of white dwarfs of spectral type
DA, according to [80], is described by a Gaussian
distribution with mean 
 ¼ 0:606M
 and standard devia-
tion 	 ¼ 0:135M
. The distribution of white dwarfs of
spectral type DB has 
 ¼ 0:758M
 and 	 ¼ 0:192M
.
Since we do not make a distinction between DA and DB
white dwarfs, we calculate the Gaussian distribution that
best fits the average of both distributions, obtaining 
 ¼
0:663M
 and 	 ¼ 0:177M
. Similar results can be ob-
tained using, for example, the distributions given in [81].
We assume a minimum mass of 
� 	 ¼ 0:49M
 and a
maximum one of 
þ 	 ¼ 0:84M
. Thus,

ðmmin
WD; m

med
WD ; m

max
WDÞ ¼ ð0:49; 0:66; 0:84ÞM
: (107)

For stellar-mass black holes, we calculate the mean 

and standard deviation 	 of the list of masses given in
Table 1 of [82], obtaining
 ¼ 7:8M
 and	 ¼ 3:7M
. We
assume for the minimum mass 
� 	 ¼ 4:1M
 and for
the maximum one 
þ 	 ¼ 12M
. Again, the most likely
value is the average of both. Similar results can be achieved
with the masses of Table 1 of [83]. The masses we use are,
therefore,

ðmmin
BH ; m

med
BH ; mmax

BH Þ ¼ ð4:1; 7:8; 12ÞM
: (108)

F. Calculations for massive black hole binaries

The masses of MBH-MBH range several orders of mag-
nitude. It is reasonable to expect a very different number of
signals produced by binaries of chirp mass 102M
 than by
binaries of 1010M
. To be consistent with the given defi-
nition of ensemble (a population of many systems with
similar properties and behavior), MBH-MBH form a
superensemble composed of many ensembles, each one
characterized by an infinitesimal range of chirp masses.

The coalescence rate now depends on the chirp mass and
the redshift. Instead of _nðzÞ one now has a signal comoving
density rate of the form _�nðM; zÞ. This gives the number of
signals per unit emitted interval of time per unit comoving
volume per unit chirp mass. We do not have an analytical
formula for _�nðM; zÞ [84].

The spectral function of the total background of the
superensemble is

�totalðfÞ¼f2=3
Z zmax

zmin

Z Muppðz0;fÞ

Mlowðz0;fÞ
I1ðM0;z0ÞdM0dz0; (109)

where

I1ðM;zÞ¼8½G�M�5=3
9c2H3

0

_�nðM;zÞ½1þz��4=3E�1ðzÞ: (110)

One can notice that (109) is the same as (60), just changing
_nðzÞ by _�nðM; zÞdM and integrating over chirp mass. The
functions Mlowðz; fÞ and Muppðz; fÞ give, at every fre-

quency and redshift, the minimum and maximum chirp
masses that can contribute, respectively. In other words, the
interval ½Mlowðz; fÞ;Muppðz; fÞ� contains the chirp masses

of those binaries which, at redshift z, have minimum
frequency fmin � f and maximum frequency fmax 	 f.
They are obtained by inverting fmin [Eq. (73)] and fmax

[Eq. (68)], respectively, with respect to M. Hence,

Mlowðz;fÞ¼
�

5c5

256�8=3G5=3Tmax

�
3=5½f½1þz���8=5; (111)

and

M uppðz; fÞ ¼ c3

6
ffiffiffi
6

p
26=5�G

½f½1þ z���1: (112)

In the last equation we have used that, if the two masses of

the binary are equal, then m1 ¼ m2 ¼ m ¼ 21=5M.
The overlap function of the total background of the

superensemble is

N ðf;�f;zÞ¼
Z z

zmin

Z Muppðz0;fÞ

Mlowðz0;fÞ
Qðf;�fÞI2ðM0;z0ÞdM0dz0;

(113)

where

I2ðM;zÞ¼
�

5c5

256�8=3½GM�5=3 ½1þz��8=3

�
_�nðM;zÞ

�
�
4�

�
c

H0

Z z

0
E�1ðz0Þdz0

�
2 c

H0

E�1ðzÞ
�
: (114)

Equation (113) is the same as (88), just changing _nðzÞ by
_�nðM; zÞdM and integrating over chirp mass.
Section 4 of [16] describes a discrepancy between a

semi-analytical calculation of the unresolvable background
of MBH-MBH and a Monte Carlo simulation. The discrep-
ancy occurs because the semi-analytical approach does not
take into account the discrete nature of the systems. To
account for it, they change the range of masses considered
in the semi-analytical calculation. We now proceed in a
similar way, to calculate the unresolvable part of the
background.
The average number of signals with frequency equal or

larger than f and chirp mass equal or larger than M is

N ðf;MÞ ¼
Z Mmax

M

Z zuppðM0;fÞ

zlowðM0;fÞ
Qðf; fmaxðM0Þ � fÞ

� I2ðM0; z0Þdz0dM0: (115)

We impose that a signal, emitted at frequency f by a binary
with chirp mass M, can contribute to the continuous or

the unresolvable background only if N ðf;MÞ 	 1. The
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largest chirp mass MðfÞ that contributes at frequency f is

obtained by solving N ðf;MðfÞÞ ¼ 1. We calculate

MðfÞ numerically, use it as the upper limit of the integral
over chirp mass in Eq. (113), and equateN ðf;�f; zÞ to 1:

N ðf;�f; zÞ ¼
Z z

zmin

Z MðfÞ

Mlowðz0;fÞ
Qðf;�fÞI2ðM0; z0ÞdM0dz0

¼ 1: (116)

Inverting the result of this equation with respect to the
redshift, one obtains N �1ðf;�f; 1Þ. Signals with fre-
quency f emitted by binaries with chirp masses in the

range ½Mlowðz; fÞ;M� form an unresolvable background
if their redshifts are larger than N �1ðf;�f; 1Þ.

The spectral function of the unresolvable background is,
therefore,

�unresolvable¼f2=3
Z zmax

N �1ðf;�f;1Þ

Z MðfÞ

Mlowðz0;fÞ
I1ðM0;z0ÞdM0dz0:

(117)

Similarly, one can solve

N ðf; fmax � f; zÞ ¼
Z z

zmin

Z MðfÞ

Mlowðz0;fÞ
Qðf; fmax � fÞ

� I2ðM0; z0ÞdM0dz0

¼ 1 (118)

and invert it with respect to the redshift, obtaining a
function N �1ðf; fmax � f; 1Þ. Replacing N �1ðf;�f; 1Þ
by N �1ðf; fmax � f; 1Þ in Eq. (117), one gets

�continuous¼f2=3
Z zmax

N �1ðf;fmax�f;1Þ

Z MðfÞ

Mlowðz0;fÞ
I1ðM0;z0ÞdM0dz0;

(119)

which is the spectral function of the continuous background.

IV. RESULTS

The main results of this paper are presented in Figs. 5–8.
In Fig. 5 we show the spectral function of the total

FIG. 5. Spectral function of the total background versus observed frequency. The contributions of the different ensembles are
calculated with the most likely values of masses and coalescence rates. No restrictions in the duration of the signals are assumed in this
plot, which means that also very short and sporadic signals are taken into account. As discussed in the text, the spectral function in such
circumstances should not be compared to the sensitivity curves of a detector.
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background of each ensemble. In Fig. 6, the spectral func-
tion is plotted only in those regions where the background
is continuous. Finally, Fig. 7, which is the most relevant
plot of the three, shows the unresolvable background pro-
duced by the different ensembles, assuming N 0 ¼ 1 and
�f ¼ 1 yr�1. In these three figures, the values of masses
and coalescence rates are the most likely ones.

One can clearly conclude, from Fig. 7, that ground-
based detectors operate (and will operate) in a frequency
range clean of confusion noise from binary systems.
Without taking into account other possible sources of
unresolvable background, this frequency range could
be a good scenario for the detection of primordial
backgrounds.

In Fig. 8 we have plotted the contribution of each
ensemble separately. For each ensemble, there are three
different curves of �ðf;�f;N 0Þ: one maximum, one
minimum and one most likely, depending on the values of
masses and rates.

For stellar binaries, the most likely expectation of
�ðf;�f;N 0Þ is obtained by using the most likely chirp

mass and coalescence rate. The upper curve of
�ðf;�f;N 0Þ is the upper envelope of all curves that
are obtained using the maximum rate and sweeping over
all possible values of chirp mass. Similarly, the lower curve
is the lower envelope of all curves obtained with the
minimum rate and sweeping over all chirp masses.
For massive black hole binaries, the most likely

curve is the average of the spectral functions calculated,
as explained in Sec. III F, for each of the four models
considered. The upper and lower curves are 10 and 1=10
times the most likely, respectively. These uncertainties
have not been precisely calculated. Given the lack of
observational information about many of the parameters
involved, any accurate calculation of the uncertainties
would be arbitrary. More precise errors are calculated in
[16], based on the results of different theoretical models.
The ranges of uncertainty given in [16] are similar to the
ones we propose.
One sees in Fig. 7 that the unresolvable background is

clearly dominated by the contribution of WD-WD, below
�10�1 Hz, and of MBH-MBH, below �10�4 Hz.

FIG. 6. Spectral function of the continuous background versus observed frequency. The contributions of the different ensembles are
calculated with the most likely values of masses and coalescence rates. The sensitivity curves of LISA (obtained using [85] with the
standard parameters), ET (from [86]), BBO (from [4]) and the complete Parkes PTA (from [16]) are plotted for comparison.
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The contribution of galactic binaries, which is believed
to produce confusion noise in the frequency window of
LISA, has not been included in the plots, since it cannot
be calculated using �ðfÞ. The spectral function is calcu-
lated assuming signals that are distributed homogene-
ously and isotropically in the Universe. This means,
�ðfÞ is related to the average density of gravitational
waves in the Universe. But within the galaxy the density
is larger than the average. Moreover, galactic binaries are
distributed anisotropically along the galactic disc. If one
uses the spectral function to plot the contribution of
galactic binaries, one is claiming that the density of
gravitational waves in the Universe is as large as the
one inside the galaxy. Some papers in the literature
which deal with the confusion noise produced by
galactic binaries are [87,88]. The most important contri-
bution to this background is the one by WD-WD.
According to [89], galactic WD-WD produce a back-
ground about an order of magnitude larger than that of
extragalactic ones.

One has to be careful when interpreting Fig. 5. That
plot gives us information about the averaged total energy

density of gravitational waves produced by each ensemble.
The curve of the total background of NS-NS, for instance,
enters the window of ET, but that does not mean that
ET will see a constant noise curve like that. The signals
of NS-NS are, in that frequency range, short signals, that
will often (but not constantly) be detected with ET.
The effective sensitivity curve of ET is thus not affected
by NS-NS. On the other hand, an unresolvable background
of WD-WD with a rate larger than the most likely one
would certainly affect the sensitivity of LISA. To avoid
misunderstandings we have not plotted the sensitivity
curves of any detectors together with the total background.
In Fig. 6 we have plotted sensitivity curves just to show that
the background is discontinuous in the frequency band of
ground-based detectors.
At frequencies close to the last stable orbit, the

Newtonian spectrum that we have calculated may differ
considerably from the real one, since the assumption of
slow orbits made in Sec. III A is no longer fulfilled. Thus,
the exact shape of the spectral function at such frequencies
is not accurate. However, the continuous and unresolvable
parts of the background lie safely at lower frequencies.

FIG. 7. Spectral function of the unresolvable background versus observed frequency, using N 0 ¼ 1 and �f ¼ 1 yr�1. The
contributions of the different ensembles are calculated with the most likely values of masses and coalescence rates.
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A new prediction on the coalescence rate of BH-BH was
published [73] during the writing of this paper. The rate
given in that paper, of R ¼ 0:36þ0:50

�0:26 Mpc�3 Myr�1, is

much larger than the one in Table I. This high estimate is

based on the observation of two binaries, both containing a
stellar-mass black hole and a Wolf-Rayet star. Such rates
have also been predicted by simulations [90], considering
low-metallicity galaxies. We show in Fig. 9 the total,

FIG. 8. Spectral function of the total, continuous and unresolvable backgrounds of the different ensembles, versus observed
frequency. In each plot there are nine curves: three of them are calculated with the highest values of coalescence rates, three with
the most likely, and three with the lowest values possible. Three of the curves represent the total background, three the continuous part,
and three the unresolvable part. In the case of NS-WD, the total and continuous curves are almost indistinguishable. The same occurs
for WD-WD with the total, continuous and unresolvable curves.
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continuous and unresolvable backgrounds, respectively,
that such a rate would produce, assuming the same mass
ranges for black holes given in Sec. III E 6. In Fig. 9
we also show the upper and lower limits allowed by the
new rate.

V. DISCUSSION

A. On the coalescence rate of stellar binaries

In Sec. III E 1 we have assumed a coalescence rate that
has the same value during all cosmological epochs [see
Eq. (83)]. We now justify that this assumption is
reasonable, considering the uncertainties in the local co-
alescence rate.
In [14] the coalescence rates of BH-NS and NS-NS are

calculated as a function of the redshift (see Fig. 2 of that
paper). The rates peak at around z � 1 and then decrease,
becoming zero between redshift 5 and 6. The difference
between the rate at the peak and the local rate (at z ¼ 0) is
a factor of � 2:1, for NS-NS, and � 1:7, for BH-NS. One
can calculate gðzÞ [using our Eq. (87)] and �gðzÞ [Eq. (91)]
introducing in the integrals a normalized nonconstant rate
like the ones of Fig. 2 of [14]. The obtained functions gðzÞ
and �gðzÞ differ from the ones calculated with a constant rate
by less than a factor of �2. The value of this factor would
not change significantly if one used other rate functions (as

pointed out in [33] regarding the value of hð1þ zÞ�1=3iÞ.
Since the spectral function and the overlap function are
proportional to gðzÞ and �gðzÞ, respectively, the overall
difference between using a constant and a nonconstant
rate would also be less than a factor of 2. On the other
hand, the value of the local rate has an uncertainty of
several orders of magnitude (see Table I). We thus consider
that a factor of 2 is negligible compared to a factor of (at
least) 100. In addition, we can see in Fig. 16 that our
estimate of the total background agrees with that of [13],
which was calculated using a nonconstant coalescence
rate.
Assuming that the rates of other type of stellar binaries

have a similar behavior than those shown in [14], we can

FIG. 9. Spectral function of the total (top), continuous
(middle) and unresolvable (bottom) background versus observed
frequency. The contributions of the different ensembles
are calculated with the most likely values of masses and coales-
cence rates of Table I, except for the case of BH-BH. The
high rate of BH-BH, taken from the recent paper in [73], is
R ¼ 0:36þ0:50

�0:26 Mpc�3 Myr�1.

FIG. 10. Spectral function of the total, continuous, and unre-
solvable backgrounds of the ensemble of BH-BH, versus ob-
served frequency. This plot is analogous to that in Fig. 8, but
using the rate from [73] of R ¼ 0:36þ0:50

�0:26 Mpc�3 Myr�1, instead

of the one in Table I.
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conclude that the use of a constant rate is a good approxi-
mation for stellar binaries.

B. On the minimum frequency of stellar binaries

In Sec. III D we have defined fmin as the gravitational
wave frequency such that a binary, emitting at this
frequency, needs an interval of time equal to Tmax, the
maximum inspiral time, to reach coalescence. But one
could in principle find, for each type of binary, a more
precise criterion to define fmin.

One could define fmin, for example, as a function of the
velocity kick that the components of the binary experience
at formation. This velocity kick, which can be provoked by
a nonsymmetrical supernova explosion, can push one com-
ponent of the binary with enough energy in a direction
opposite to that of the other component and disrupt the
binary. So fmin could be the frequency at which the orbital
velocity equals the velocity kick. With such a criterion,
using realistic values of these kicks [91–93], one obtains
too long inspiral times, in some cases orders of magnitude
longer than the age of the Universe.

Our choice of Tmax is in fact almost as long as the age of
the Universe. Therefore, only binaries that coalesced re-
cently could have had that much time to evolve from their
formation, as commented on in Sec. III D 1. However,
when considering long inspiral periods, one takes into
account part of the contribution from binaries that have
not yet coalesced.

In Sec. II E we point out that the formula of the spectral
function assumes short inspiral times, so that each signal
starts and finishes at approximately the same redshift. But
each system needs � 12 Gyr to complete the process, and
the expansion of the Universe is indeed relevant during that
interval of time. We now investigate the effect of this
apparent inconsistency.

Our rate R accounts for coalescences (and not for births)
of binary systems. This means that we are counting sys-
tems that are emitting at frequencies close to fmax, the
frequency of the coalescence. What we may be counting
wrong are systems emitting at low frequencies.

Suppose a binary, very close to us, that started inspiral-
ling � 12 Gyr ago and coalesces right now. We only see
the high frequency part of the spectrum, which is not
redshifted. The waves emitted at the beginning of the
inspiral (at low frequencies, � 12 Gyr ago) are now far
from us. But an observer located that far away would
observe those waves today highly redshifted. Our
mistake, assuming short inspiral times, is to claim that
the distant observer measures that low-frequency radiation
without any redshift. So the spectral function should be
more redshifted (and thus have lower amplitude) at low
frequencies.

We now estimate below which frequency this effects
starts to be important. For that, we assume the following:
we assign wrong redshifts as soon as the difference in

redshift between birth and coalescence of a signal is larger
than 1. In units of time [using Eq. (11)], a difference in
redshift of 1 implies time scales larger than � 7 Gyr
at redshifts close to zero and larger than � 0:4 Gyr at
redshifts close to 5. To be conservative, we assume that
these effects are important when inspiral times are larger
than 0.4 Gyr. The lifetime of a binary is larger than 0.4 Gyr
if its minimum frequency is lower than� 4� 10�5 Hz for
BH-BH, � 7� 10�5 Hz for BH-NS, � 1� 10�4 Hz
for NS-NS, and � 2� 10�4 Hz for NS-WD or WD-WD.
These frequencies are in a range where the spectra of all
stellar binaries are covered under an unresolvable back-
ground of MBH-MBH.
We thus conclude that the exact values of the minimum

frequencies are not relevant in practice. Furthermore, the
assumption of short inspiral times is not fulfilled for stellar
binaries at frequencies close to the minimum, but this does
not affect the results.

C. On the minimum frequency of massive
black hole binaries

The minimum frequency of each massive black hole
binary, as explained in Sec. III F, is assumed to be the
frequency fR at which the slingshot and radiation phases
overlap. This means that we dismiss the gravitational
waves radiated during the slingshot phase.
It turns out that the introduction of the slingshot phase

in the calculations has a very small effect (well within the
uncertainty ranges) in the spectral function of the super-
ensemble, at frequencies below �10�9 Hz. The reason is
the following: for each ensemble of masses between M
and Mþ dM, the effect of introducing the slingshot
phase is noticeable only at frequencies below fminðMÞ
[the one calculated using Eq. (73) with Tmax ¼ 75 Myr].
But the main contribution of each ensemble to the super-
ensemble is at high frequencies, where they have larger

spectral functions (because of the f2=3 factor). In the
superensemble, the only appreciable low-frequency con-
tributions are those from ensembles with the largest
masses and with nonzero coalescence rates. Therefore,
the effect of introducing the slingshot phase in the super-
ensemble is noticeable only at frequencies close to
fminðMÞ, when M is in the range of large masses (of
�108 � 109M
). These frequencies are smaller than
�10�9 Hz.

D. On the condition of resolvability

In Sec. II F we state that signals between f and fþ df
with redshifts larger than z� such that zlowðfÞ< z� <
zuppðfÞ and N ðf;�f; z�Þ ¼ 1 are unresolvable. We are

hence imposing a one-bin-rule: we are not able to distin-
guish signals if there are more than one per frequency bin.
Other authors suggest other possible criteria, such as the
three-bin-rule or the eight-bin-rule [94]. According to
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these criteria, the condition of unresolvability is reached
when each three (or eight) frequency bins are occupied by
at least one signal. We now comment on how using one of
these criteria would change our results.

Imposing an eight-bin-rule makes the condition
of unresolvability less restrictive: signals become unre-
solvable at higher frequencies than for the one-bin-rule.
The results would be almost unaffected in the case of
WD-WD, since the curve of the unresolvable background
is almost as large as that of the total background. The
spectral function of the unresolvable background for the
remaining stellar binaries would be slightly extended to
higher frequencies. We can calculate the spectral function
with the eight-bin rule, just by changing �f by 8� �f, so
�unresolvableðfÞ ¼ �ðf; 8�f;N 0Þ. In Fig. 11 we compare
the spectral functions of the unresolvable background cal-
culated with the one- and the eight-bin-rule, for the case of

NS-NS with the most likely values of masses and coales-
cence rates.
One can note that imposing an eight-bin-rule, instead of

a one-bin-rule, has the same effect of assuming an obser-
vation time of eight years, instead of one. The expected
observation time of LISA is indeed three years; for the
PTA, longer observation times are feasible. So, for MBH-
MBH, redoing the calculations with the eight-bin-rule is
compensated with the use of longer observation times. As
pointed out in [16], the unresolvable background changes
by less than a factor of 2 for observation times between one
and ten years.
We now discuss another possible definition of unresolv-

able background. In Sec. II F we say that, when the unre-
solvable part of the background dominates, there still exists
a resolvable part. We could consider this resolvable part as
also unresolvable. For that, we could just change the
definition of �zðf;�f;N 0Þ in Eq. (43) to

�zðf;�f;N 0Þ¼

8>>>>>>>><
>>>>>>>>:

zuppðfÞ; f<fp;min

N �1ðf;�f;N 0Þ; fp;min�f�fd;min

zlowðfÞ; fd;min<f<fd;max

N �1ðf;�f;N 0Þ; fd;max�f�fp;max

zuppðfÞ; fp;max<f

:

(120)

On the left side of Fig. 12, a plot of redshifts versus
observed frequencies (analogous to that in Fig. 4) is shown,
using the new definition of �zðf;�f;N 0Þ. There we see
that, between fd;min and fd;max, there is no resolvable

background. On the right side of Fig. 12 we show the
spectral function obtained by inserting (120) in (44), for
the case of NS-NS with the most likely values of masses
and coalescence rates. The difference between the spectral
functions with the old and the new definitions of
�zðf;�f;N 0Þ is just a small peak at frequency fd;max.

FIG. 11. Spectral function of the resolvable and unresolvable
parts of the background of NS-NS, versus observed frequency.
The values of masses and coalescence rates adopted are
the most likely ones. The resolvable and unresolvable parts
calculated with the one- and with the eight-bin rule are
compared.

FIG. 12. Redshift versus observed frequency (left plot, analogous to that in Fig. 4) and spectral function versus observed frequency
(right plot, analogous to that in Fig. 8, corresponding to NS-NS with the most likely values of masses and coalescence rates). The
difference between these plots and the ones in Figs. 4 and 8 is that here, as soon as the unresolvable part of the background dominates,
all signals become unresolvable.
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Since the results are almost unchanged, we prefer the
definition of unresolvable background given in Sec. II F,
because the definition of �zðf;�f;N 0Þ given in Eq. (43) is
simpler than that in (120).

E. On the definition of the overlap function

In Sec. II F we mention that the time resolution, �t,
should be taken into account to define the resolvability, but
in practice it is not important. We now explain how �t
should be introduced in the overlap function and why it is
not necessary, in the circumstances considered in this work.

Signals of binaries evolve more rapidly at higher fre-
quencies, and spend therefore less time in a frequency bin.
Eventually, at frequencies and redshifts larger than certain
f and z, the interval of time �eðf;�f; zÞ can become
smaller than the time resolution �t. When this happens,
all signals spend effectively an interval of time �t in each
frequency bin, and no less than that (since smaller intervals
of time cannot be distinguished). Thus, if the signals are
unresolvable at f and z, they stay unresolvable for any
larger values of frequency and redshift. Equation (41)
could be generalized to take into account this effect,

N ðf;�f;�t; zÞ
¼

Z z

zlowðfÞ
maxð�eðf;�f; z0Þ;�t½1þ z��1Þ _nðz0Þ dVc

dz0
dz0:

(121)

The factor ½1þ z��1 is necessary to compare our time
resolution (which is an observed interval of time) with
the interval of time at emission �eðf;�f; zÞ.

The effect of introducing �t affects our calculations
only if �eðf;�f; zÞ � �t½1þ z��1 when N 	 1, i.e., if
there is more than one coalescence every �t½1þ z��1.
Taking the highest rate of Table I (which is the maximum
rate of WD-WD), we see that

Z 5

0
�t½1þ z0��1R

dVc

dz0
dz0

is greater than one for �t greater than �1=9 s. A reason-
able choice for the time resolution is the inverse of the
sampling rate of a detector, which, in the case of current
ground-based detectors, is much smaller than 1=9 s.
Therefore, the generalization (121) is not necessary; the
overlap function is well defined by (41).
By artificially increasing the time resolution by several

orders of magnitude, we see the effect that the overlap
function of Eq. (121) produces in �zðf;�f;�t;N 0Þ [which
is obtained by inserting Eq. (121) in (43)] and in
�ðf;�f;�t;N 0Þ [inserting (121) in (44)]. This effect is
plotted in Fig. 13. There we see that, above a certain
redshift and a certain frequency, all signals contribute to
the unresolvable background. With this example we see
that a large time resolution would lead to the existence of
an unresolvable background in the frequency band of
ground-based detectors.

F. Comparison with previous work

1. Unresolvable backgrounds

In Fig. 14 we show the unresolvable background pro-
duced by the superensemble of MBH-MBH, and the sum
of the unresolvable backgrounds of all stellar binaries
(which is almost equal to the background made by only
WD-WD). These curves are compared with other predic-
tions from the literature. The curve (a) is obtained from
[16], using its Eq. (14) with the mean values of the pa-
rameters in (45)–(47). That formula is given in terms of the
characteristic amplitude, hc, which is related to the spectral
function by

�ðfÞ ¼ �f2

4�cG
h2cðfÞ: (122)

FIG. 13. Redshift versus observed frequency (left plot, analogous to that in Fig. 4) and spectral function versus observed frequency
(right plot, analogous to that in Fig. 8, corresponding to NS-NS with the most likely values of masses and coalescence rates). These
plots (unlike those in Figs. 4 and 8) are calculated assuming an unrealistic time resolution of �t ¼ 600 s. With such a large time
resolution, an unresolvable background would be present in the frequency band of ground-based detectors.
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In terms of the strain amplitude ShðfÞ, the characteristic
amplitude is

hcðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fShðfÞ

q
: (123)

The curve (b) is taken from Fig. 4 of [15], where hrms also
represents a characteristic amplitude. Finally, the curve (c)
is taken from Fig. 16 of [11]. In all cases we find a good
agreement of our predictions with those from the men-
tioned papers.

In Fig. 15 the unresolvable background of MBH-MBH is
shown, calculated with the four different models (see
Sec. III). The unresolvable backgrounds calculated in
[15,16] are also plotted for comparison.

2. Background of neutron star binaries

In Fig. 16 we see that our estimate of the total back-
ground of NS-NS is in good agreement with the one in
[13]. The curve (a) in Fig. 16 represents what in [13] is
called shot noise (see Fig. 2 of that paper). In that work, the

FIG. 14. Spectral function of the unresolvable background of MBH-MBH (dotted line) and of all stellar binaries (dashed line), versus
observed frequency. These curves are compared with previous predictions from the literature, which correspond to the unresolvable
backgrounds of: (a) MBH-MBH from [16], (b) MBH-MBH from [15] and (c) extragalactic stellar binaries from [11].

FIG. 15. Spectral function of the unresolvable background of
MBH-MBH, calculated with the four different models (LE, LC,
SE and SC), versus observed frequency. For comparison we
include the curves of the unresolvable backgrounds of [15,16].
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existence of a continuous (and Gaussian) background is
also asserted; this corresponds to the curve (b) in Fig. 16. If
we compare (b) with either our continuous or our unre-
solvable curves, we find a big discrepancy.

We now explain the origin of this discrepancy. In
Sec. II C we pointed out that signals of equal observed
frequency but different redshifts need different intervals of
time to coalesce. However, in Sec. 3 of [13], all binaries are
assumed to spend the same amount of time in a certain
frequency interval, leading to the conclusion that the back-
ground is continuous at high frequencies. The same has
been claimed in similar papers, for example [95,96].

In a later work, [14], the continuity of the background is
calculated in a similar manner as we do; the redshift of the
signals is properly taken into account to measure the
interval of time that they spend in the frequency window
of the detector. But in this paper, the continuous back-
ground is treated as unresolvable, which is incorrect, as we
justify now. Suppose there is a continuous background of
NS-NS in the frequency band of ET, such that there is an
average of a few signals present in the band. Even if these
few signals are observed at the same time, they do not
overlap in the frequency domain; the signals can still be
distinguished in frequency, so they are resolvable.

3. Overlap function versus duty cycle

In the literature, the so-called duty cycle is often used. It
is defined by

DðzÞ ¼
Z z

0
��e _nðz0ÞdVc

dz0
dz0; (124)

where ��e is the duration of a signal in the detector window.
If one assumes that ��e is constant, as, for example, in

[13,95,96], DðzÞ does not give any valuable information
(this has just been commented on in the previous section).
If ��e ¼ �eðf1; f2 � f1; zÞ, i.e., if ��e is the time that each
signal of redshift z spends in the frequency window ½f1; f2�
of a certain detector, DðzÞ characterizes the continuity of
the background. But the property of the background that is
indeed relevant is the resolvability, which is measured by
the overlap function, defined in Eq. (41).
An overlap function like the one in Eq. (41) is useful for

quantifying the resolvability of long signals. Now suppose
that there is an ensemble of systems that do not emit
gravitational waves during a long period of time, but rather
in a burst. For such systems one cannot obtain an accurate
function �eðf;�f; zÞ. In this case, the resolvability can
be quantified using the overlap function, by changing
�eðf;�f; zÞ to ��e, the typical duration of a burst. This
overlap function would then coincide with the duty cycle.
In the case that ��e could be smaller than the time resolution
�t, one should rather use the generalized overlap function
of (121).
The overlap function is therefore a generalization of the

duty cycle, that can be used for short or long signals.

VI. SUMMARYAND CONCLUSIONS

We have reviewed basic aspects of the gravitational
wave background. We have derived a formula [Eq. (39)]
for the spectral function, �ðfÞ, for an ensemble of many
similar systems emitting gravitational radiation at different
times and locations. This formula has been generalized
to account for the duration of the signals and the obser-
vation time. With the generalized spectral function,
�ðf;�f;N 0Þ [in Eq. (44)], one can distinguish between
unresolvable and resolvable backgrounds [Eqs. (45) and
(46), respectively], and between continuous and discon-
tinuous backgrounds [Eqs. (50) and (51), respectively].
The resolvability is a fundamental property of the back-

ground. An unresolvable background (often called confu-
sion noise or stochastic background) is fully characterized
by �ðf;�f;N 0Þ. A resolvable background is composed
of signals whose waveforms can be distinguished and in
some circumstances subtracted out of the data. Precise
definitions of resolvable and unresolvable backgrounds
can be found in Sec. II F. Figure 4 illustrates the different
regimes of the background.
The resolvability is characterized by the overlap func-

tion, N ðf;�f; zÞ, which gives the average number of
signals, with frequency f and redshifts smaller than z,
per frequency bin �f (the frequency resolution). A for-
mula for the overlap function is given in Eq. (41). In
Sec. V F we have shown that the overlap function is a
generalization of the duty cycle. The latter has been often
used in the literature to quantify the continuity and even the
resolvability of the background, leading in some cases to
incorrect results.

FIG. 16. Spectral function of the total, continuous and unre-
solvable backgrounds of the ensemble of NS-NS (with the most
likely values of masses and coalescence rates), versus observed
frequency. We compare these curves with those given in [13].
Curves (a) and (b) correspond to what in that paper is called shot
noise and Gaussian background, respectively. In the text we
explain the origin of the discrepancy between (b) and our
continuous or unresolvable backgrounds.
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The continuity is a secondary property of the back-
ground, which just gives an idea of how often the signals
are present in the frequency window of a detector. The
overlap function can also be used to characterize the con-
tinuity of the background, as explained in Sec. II G.

We have calculated the spectral functions of the back-
grounds of stellar binaries (those containing white dwarfs,
neutron stars or stellar-mass black holes) and of massive
black hole binaries. In Table I we have summarized the
values, taken from the literature, of the coalescence rates
of each ensemble. The ranges of masses assumed for
neutron stars, white dwarfs and stellar-mass black holes
are in Eqs. (106), (107), and (108), respectively.
A semi-analytical solution of the generalized spectral func-
tion has been derived for stellar binaries [Eq. (105)]. The
calculations involving massive black hole binaries have
been performed numerically, using the coalescence rates
obtained with the four models of [56].

The spectral functions of the backgrounds produced by
the different ensembles are plotted in Sec. IV, over the
frequencies of all present and planned detectors. The total,
continuous and unresolvable backgrounds are plotted in
Figs. 5 and 6, and 7, respectively, with the most likely
values of masses and coalescence rates. In Fig. 8 the same
curves are plotted separately for each ensemble, with their
uncertainties. The total, continuous and unresolvable back-
grounds, using the rate of BH-BH recently predicted in
[73], are plotted in Figs. 9 and 10.

The unresolvable background is dominated by white
dwarf binaries, below �10�1 Hz, and by massive black
hole binaries, below �10�4 Hz. These backgrounds could
enter the frequency window of LISA, PPTA and BBO. The
continuous background of BH-BH, using the recent coales-
cence rate predicted in [73], becomes more important than
the one made by NS-NS, especially in the band of BBO.
The confusion noise produced by galactic binaries has not
been shown in the figures, since it cannot be calculated
using the spectral function. Some papers in the literature
which cover this issue are [87–89].
Finally, with Figs. 6 and 7, we conclude that present and

planned ground-based detectors are in a frequency range
where no continuous or unresolvable backgrounds from
binary systems are present. Therefore, without considering
other possible sources of confusion noise, this band could
be suitable for searching for primordial backgrounds.
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