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Astrophysical fluids may acquire nonzero electrical charge because of strong irradiation or charge

separation in a magnetic field. In this case, electromagnetic and gravitational forces may act together and

produce new equilibrium configurations, which are different from the uncharged ones. Following our

previous studies of charged test particles and uncharged perfect fluid tori encircling compact objects, we

introduce here a simple test model of a charged perfect fluid torus in strong gravitational and

electromagnetic fields. In contrast to ideal magnetohydrodynamic models, we consider here the opposite

limit of negligible conductivity, where the charges are tied completely to the moving matter. This is an

extreme limiting case which can provide a useful reference against which to compare subsequent more

complicated astrophysically motivated calculations. To clearly demonstrate the features of our model, we

construct three-dimensional axisymmetric charged toroidal configurations around Reissner-Nordström

black holes and compare them with equivalent configurations of electrically neutral tori.
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I. INTRODUCTION

Equilibrium toroidal configurations of perfect fluid play
an important role in studies of geometrically thick accre-
tion discs around compact objects [1]. The isobaric sur-
faces also have toroidal topology and in order for accretion
to occur there must be a critical, marginally closed isobaric
surface with a cusp through which matter can outflow from
the disc onto the compact object. In the following, we focus
on black hole systems and ignore self-gravity of the disc
material. Shapes and properties of the tori, such as pressure
and density profiles, are then determined by the black hole
spacetime geometry, an appropriately chosen rotation law
(giving the distribution of specific angular momentum),
and the fluid parameters.

Perfect fluid tori in Schwarzschild and Kerr backgrounds
were extensively discussed in the original fundamental
papers establishing this line of work [2,3]. Later on,
many studies appeared generalizing these models and in-
cluding further details [4–10], describing tori also in
Schwarzschild-de Sitter, Kerr-de Sitter and Reissner-
Nordström-de Sitter spacetimes, where presence of the
so-called static radius [11] implies also the existence of
tori with an outer cusp.

The material in accretion discs contains charged parti-
cles (which may or may not be quasineutral in bulk) and
the central black hole might also be charged. The charged
or quasineutral fluid creates its own electromagnetic field
which would then couple with that of the black hole,
leading to a different and much more complicated descrip-
tion of the motion. Using the equations for the dynamics of
the fluid and specifying its ‘‘internal’’ properties (conduc-
tivity, viscosity, equation of state, etc), one can solve the
system so as to obtain profiles for the four-velocity, pres-
sure, matter density and charge density [12]. However, the
system of equations is rather complex, and in general
requires the use of sophisticated numerical approaches
and codes, even if simplifying assumptions are made
such as taking infinite electrical conductivity (the limit of
‘‘ideal magnetohydrodynamics’’), no self-gravity, etc. On
the other hand, some characteristic features of the motion
of quasineutral or charged fluid, can also be studied rela-
tively simply in a semianalytic way [13–20].
The approximation of ideal magnetohydrodynamics

(MHD) is reasonable in many astrophysically relevant
situations involving fluids in motion [21]. However, there
are other physical circumstances in which it is important to
include the effects of finite conductivity [22–24], and there
the behavior becomes more complex, especially when
strong gravitational and external magnetic fields are also*Jiri.Kovar@fpf.slu.cz
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present. In order to address some of these effects in their
mutual interplay, it can be useful to look also at the
opposite limit to that of ideal MHD: the limit of negligibly
small conductivity.

Here, we examine the problem of the interaction be-
tween charged moving matter and the gravitational and
electrostatic fields of the black hole, concentrating on an
idealized situation which allows us to illustrate some oth-
erwise very complicated effects. We consider a simple test
model in which the matter is taken to be slightly charged
and electrically nonconductive (dielectric), with the aim of
providing an extreme reference case against which to
compare subsequent more detailed calculations. We pro-
ceed by first specifying a prescribed form for the angular
momentum distribution, and then solving the dynamical
equations to find the profiles of pressure, mass density and
charge density. This approach can be seen as generalizing
the studies of uncharged perfect fluid tori mentioned above
by adding the charge. Note that, throughout, our tori are
assumed to be composed of test fluids in which both the
self-gravitational and self-electromagnetic fields are ne-
glected. This gives a useful simplification, which is accept-
able for weakly charged, low-mass tori that have hardly
any effect on the spacetime geometry or the ambient
electromagnetic field. This approach helps us in building
a semianalytic model. In principle, inclusion of self-
gravity of the tori (following, e.g. [25–27]) and self-
electromagnetic effects (see, e.g. [16]) would be possible,
but that would enormously complicate the situation.

The charged dielectric perfect fluid tori can also be seen
as generalizing studies of charged test particles orbiting
around black holes [28–36]. Various aspects of the charged
test particle motion were also discussed in [37,38], con-
cerning the possibility of collimated ejection along the axis
of a rotating magnetized black hole, while investigation of
stable off-equatorial lobes of charged particles was dis-
cussed in [39–41]. In general, the motion of test particles is
bounded within effective potential wells and this represents
a model for a very dilute toroidal structure consisting of
noninteracting particles; here, we add the nonelectrical
interaction between them, the pressure. Commonly, pres-
sure leads to geometrically thick structures extending fur-
ther out of the equatorial plane.

In Sec. II, we present the basic equations. In Sec. III, we
apply them to the case of a torus around a charged, non-
rotating black hole described by the Reissner-Nordström
metric. Nevertheless, the presented approach is suitable for
a description of charged tori near to any models of compact
objects with well-defined geometry and electromagnetic
field. We chose the Reissner-Nordström black hole because
of its extremely clear external electric field and geometry,
given in an analytic form. For illustrative purposes we set
the charge of the central black hole considerably exceeding
astrophysically realistic values; our paper presents a
toy model exhibiting the physical mechanism of mutual

interaction between charged fluid and a black hole. In
Sec. IV, we discuss the form of the isobaric surfaces for a
torus with constant specific angular momentum composed
of an uncharged barotropic perfect fluid. This is then ex-
tended to charged tori in Sec. V, where we also present a
comparison between equivalent charged and uncharged
cases. This work involves making a number of simplifying
assumptions, and we discuss the nature and impact of
these (including the zero conductivity limit) in Sec. VI.
Section VII is the conclusion. Throughout the paper, we
use the geometrical system of units (c ¼ G ¼ 1) and met-
ric signature þ2.

II. BASIC EQUATIONS

In general, the motion of charged perfect fluid is de-
scribed by two sets of general relativistic MHD equations.
These are the conservation laws and Maxwell’s equations

r�T
�� ¼ 0; (1)

r�F
�� ¼ 4�J�; (2)

where the 4-current density J�, which satisfies the con-
tinuity equation

r�J
� ¼ 0; (3)

can be expressed in terms of the charge density q,
conductivity � and 4-velocity U� of the fluid by using
Ohm’s law

J� ¼ qU� þ �F��U�; (4)

with the electromagnetic tensor F�� being given in terms
of the vector potential by F�� ¼ r�A� �r�A�. This

electromagnetic tensor describes the vacuum external elec-
tromagnetic field of the compact object (which pervades
the fluid), and also the internal electromagnetic field of the
fluid itself, i.e.,

F�� ¼ F��
EXT þ F��

INT: (5)

The stress-energy tensor T�� consists of matter and elec-
tromagnetic parts

T�� ¼ T��
MAT þ T��

EM; (6)

where

T��
MAT ¼ ð�þ pÞU�U� þ pg��; (7)

T��
EM ¼ 1

4�

�
F�

�F
�� � 1

4
F��F

��g��
�
: (8)

Besides the pressure p and energy density �, the other fluid
variables are the rest-mass density � and the specific
internal energy " ¼ �=�� 1. The thermodynamical de-
scription of the fluid is specified by supplying an appro-
priate equation of state p ¼ pð�; qÞ, which also involves
the charge density of the fluid, describing the contribution
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of the Coulomb interaction between the fluid particles to
the total pressure.

We build our model by considering a nonconductive
(� ¼ 0) charged test fluid (taken to be a perfect fluid) in
an axially symmetric spacetime and use spherical polar
coordinates (t, r, 	,
). The fluid rotates in the
-direction
with 4-velocity U� ¼ ðUt;U
; 0; 0Þ, specific angular mo-
mentum ‘ ¼ �U
=Ut and angular velocity (related to

distant observers) � ¼ U
=Ut, related by the formulae

� ¼ � ‘gtt þ gt

‘gt
 þ g



; (9)

ðUtÞ2 ¼
g2t
 � gttg



‘2gtt þ 2‘gt
 þ g



(10)

By writing out the covariant derivative of the electromag-
netic part of the stress-energy tensor (8) appearing the left
hand side of the conservation law (1), moving it to the
right-hand side, and using the Maxwell Eqs. (2), with

r�F
��
EXT ¼ 0; r�F

��
INT ¼ 4�J�; (11)

we obtain the equation r�T
��
MAT ¼ F��J�, with J� being

the 4-current density due to the motion of the charged fluid
torus. We are not here including the effects of the electro-
magnetic field generated by this 4-current: our tori are
considered as being composed of ‘‘test matter’’ from the
electromagnetic point of view as well as from the gravita-

tional one, i.e., F��
INT � F��

EXT and we can write F�� ¼
F��
EXT. Then we get the master equation

r�T
��
MAT ¼ F��

EXTJ�: (12)

Note that in this approach we do not need to solve
Maxwell’s Eqs. (2), since the electromagnetic field is
prescribed. Also, because of the nonconductivity, we have

J� ¼ qU�: (13)

The equations of motion (12) give two nonlinear partial
differential equations for the pressure p, whose profiles we
are wanting to find:

@rp ¼ �ð�þ pÞ
�
@r lnðUtÞ � �@r‘

1��‘

�
� qFr�U

� � R;

@	p ¼ �ð�þ pÞ
�
@	 lnðUtÞ � �@	‘

1��‘

�
� qF	�U

� � T ;

(14)

where R ¼ Rðr; 	Þ and T ¼ T ðr; 	Þ. These equations
are not integrable unless the integrability condition

@	R ¼ @rT (15)

is satisfied, and this is therefore a requirement.
The existence of a solution is guaranteed if q ¼ 0, so

that the last terms in Eqs. (14) vanish and we get the Euler

equation describing a rotating uncharged perfect fluid (see,
e.g., papers [2,3]). In this case, when the angular momen-
tum distribution ‘ ¼ ‘ðr; 	Þ is chosen, a solution of the
Euler equation for any barotropic fluid (having p ¼ pð�Þ)
can be derived from Boyer’s condition [2,3]

Z p

0

dp

pþ �
¼ Win �W; (16)

Win �W ¼ lnðUtÞin � lnðUtÞ þ
Z ‘

‘in

�d‘

1��‘
; (17)

where the subscript ‘‘in’’ refers to the inner edge of the
torus in the equatorial plane. This condition enables us to
straightforwardly determine the isobaric surfaces in the
torus in terms of the equipotential surfaces of the
‘‘gravito-centrifugal’’ potential Wðr; 	Þ: for equilibrium
toroidal configurations composed of barotropic perfect
fluid, the equipotential surfaces of W correspond to sur-
faces of constant pressure (or energy density) in the fluid.
When q � 0, the situation is more complicated and

Eqs. (14) are no longer integrable for arbitrary qðr; 	Þ ¼
const and arbitrarily chosen ‘ ¼ ‘ðr; 	Þ. It is then neces-
sary either to specify ‘ ¼ ‘ðr; 	Þ (with even ‘ ¼ const
being possible) and find an appropriate q ¼ qðr; 	Þ which
is consistent with that or, vice versa, to specify q ¼ qðr; 	Þ
(with even q ¼ const being possible) and find an appro-
priate ‘ ¼ ‘ðr; 	Þ. However, this is strictly ‘‘necessary’’
only if the equation of state is prescribed. Otherwise, one
could also absorb the constraint into that. The charged tori
must clearly have distributions of charge and angular mo-
mentum which satisfy the integrability condition.

III. ISOBARIC SURFACES IN REISSNER-
NORDSTRÖM GEOMETRY

The Reissner-Nordström metric, representing the space-
time outside a charged, nonrotating black hole, provides a
suitable mathematically simple test example for experi-
menting with ideas before moving on to more complicated
examples having direct astrophysical relevance. In the
dimensionless (M ¼ 1) Schwarzschild coordinates, the
only free parameter in the line element of the Reissner-
Nordström geometry

d s2 ¼ �
�
1� 2

r
þQ2

r2

�
dt2 þ

�
1� 2

r
þQ2

r2

��1
dr2

þ r2ðd	2 þ sin2	d
2Þ (18)

is the dimensionless charge Q, which takes values jQj � 1
for black hole spacetimes and jQj> 1 for naked-
singularity spacetimes. The locations of event horizons,
corresponding to the pseudosingularities of the geometry,
are given by solutions of the equation � � r2 � 2rþ
Q2 ¼ 0. The ambient electric field is static and spherically
symmetric, like the space-time, and is described by the
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vector potential A� ¼ ðAt; 0; 0; 0Þ, with the nonzero com-
ponent being given by

At ¼ �Q

r
: (19)

In this background, the pressure equations (14) reduce to
the form

@rp ¼ �ðpþ �Þ
�
@r lnjUtj � �@r‘

1��‘

�
þ qUt@rAt;

@	p ¼ �ðpþ �Þ
�
@	 lnjUtj � �@	‘

1��‘

�
;

(20)

where

Ut ¼ � r sin	
ffiffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4sin2	� ‘2�

p : (21)

To proceed further, it is then necessary to choose an
equation of state. For an uncharged perfect fluid, a suitable
choice is to have a polytropic relation between the pressure
and the rest-mass density

p ¼ ���; (22)

with � and � being a polytropic constant and index.
This widely used relation is a convenient simple form
which embodies conservation of entropy (as appropriate
for a perfect fluid). For our calculations, we have used
� ¼ 1012 and � ¼ 2. This value of � is mathematically
convenient for making analytic integrations and, while it is
rather high for physical applications, the convenience
makes its use consistent within the spirit of the present
simple model. We have chosen a high value of �, because
electrostatic corrections to the equation of state then be-
come negligible, so that we can continue to use this poly-
tropic equation of state consistently even in the charged
case (we comment further on this in Sec. VIC). Moreover,
we use values of � which are sufficiently low so that the
medium is nonrelativistic and the contribution of the inter-
nal energy to the total energy density is then negligible as
well, i.e., � � �. This approximation is consistent also
with the assumption of negligible self-electromagnetic-
field.

In order to find a solution for the pressure p, it is useful
to rewrite Eqs. (20) as equivalent equations for the density

@r� ¼ ð��� þ �Þð@r lnjUtj � �@r‘
1��‘Þ � qUt@rAt

������1
;

@	� ¼ ð��� þ �Þð@	 lnjUtj � �@	‘
1��‘Þ

������1
;

(23)

which can be solved more easily than the ones for the
pressure. On the other hand, in the uncharged case, the
pressure profiles are determined from relation (16) which,

for a polytropic equation of state, gives the following
relatively simple analytic formula

p ¼
�
e
��1
� ðWin�WÞ � 1

�1=�

� �
��1

: (24)

(Note that this formula is valid only in the region where
Win � W).
In the next sections, we consider the commonly used

condition of constant specific angular momentum, ‘ ¼
const [2–10]. Tori with ‘ ¼ const are particularly simple
mathematically and are generally representative of those
with a more general angular momentum profile, although
some care needs to be taken when considering perturba-
tions (these configurations are only marginally stable with
respect to convective instability [42]).

IV. UNCHARGED TORI, ‘¼ const

For a barotropic fluid, the isobaric surfaces coincide with
the equipotential surfaces of the potential Wðr; 	Þ, which
are given by the formula

Wðr; 	Þ ¼ lnjUtj ¼ ln
r

ffiffiffiffi
�

p
sin	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4sin2	� ‘2�
p : (25)

One of the reality conditions here, � � 0, restricts the
existence of equipotential surfaces to the stationary region
of the spacetime. The other one, r4sin2	� ‘2�> 0, eval-
uated in the equatorial plane (	 ¼ �=2), corresponds to the
restriction that nonmassless particles must move more
slowly than photons

‘2 < ‘2phðr;Q2Þ � r4

�
; (26)

where the function ‘2phðr;Q2Þ plays the role of the effective
potential governing photon geodesic motion in the equa-
torial plane (see [43] where the more general case with a
nonzero cosmological constant is discussed). For the pur-
pose of classification, we only need to consider positive

values of ‘phðr;Q2Þ, i.e., we define ‘phðr;Q2Þ � r2ffiffiffi
�

p . The

function ‘phðr;Q2Þ has one local extremum (a minimum)

outside of the outer black hole horizon, ‘ph;cðQ2Þ, located
at rph;c ¼ 1

2 ð3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8Q2

p Þ, corresponding to the circular

photon orbit in the equatorial plane.
The character of the equipotential surfaces is well

represented by the behavior of the potential Wðr; 	Þ in
the equatorial plane, i.e., by the function W�=2ðrÞ �
Wðr; 	 ¼ �=2Þ. Since the orbits with vanishing gradient
of W, i.e. those satisfying the conditions @rWðr; 	Þ ¼
@	Wðr; 	Þ ¼ 0, correspond to loci with zero pressure gra-
dients, the fluid has to follow geodesic motion there. The
local extrema ofW are located only in the equatorial plane.
Evaluating the necessary condition @rW�=2ðrÞ ¼ 0, these
extrema are given by the condition
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‘2 ¼ ‘2cðr;Q2Þ � r4ðr�Q2Þ
�2

: (27)

Again, for the purpose of classification, we only need to
consider positive values of ‘cðr;Q2Þ. This function has one
local minimum ‘msðQ2Þ corresponding to the specific an-
gular momentum of the marginally stable orbit. In addition
to the limiting values ‘ph;cðQ2Þ and ‘msðQ2Þ, there is also

another one, ‘mbðQ2Þ, corresponding to the specific angular
momentum of a particle moving along the marginally
bound equatorial circular geodesic, determined by the
conditions @rW�=2ðrÞ ¼ 0 and W�=2ðrÞ ¼ 0.

Independently of the charge parameter jQj � 1 (we do
not consider naked-singularity spacetimes here), there is
only one type of mutual behavior for ‘phðr;Q2Þ and

‘cðr;Q2Þ. We show this in Fig. 1, drawn forQ ¼ 0:1which
we take as a standard value in the following. (Note that
while this value for Q is rather high from an astrophysical
point of view [44], it still gives only very small deviations
of the space-time away from that of the Schwarzschild
metric; taking a value this high is useful for clearly dem-
onstrating the effects which we are wanting to investigate.)

Equilibrium toroidal configurations of a barotropic
fluid with constant specific angular momentum exist
only for ‘ > ‘msðQ2Þ, which takes values ranging from

lmsð0Þ ¼ 3:674, corresponding to the Schwarschild limit,
to lmsð1Þ ¼ 3:079, corresponding to the extreme Reissner-
Nordström black hole limit. Moreover, an important fea-
ture of constant specific angular momentum tori is that
those which can form a cusp are limited by l < lmbðQ2Þ,
which takes values ranging from lmbð0Þ ¼ 4 to lmbð1Þ ¼
3:330. The limit lmbð0Þ ¼ 4 for the Schwarzschild case was
also found for self-gravitating tori [26]. The radii given by
the condition ‘ ¼ ‘cðr;Q2Þ then correspond to motion of
fluid elements along the unstable circular geodesic (smaller
radius) and the stable one (larger radius). The stable cir-
cular geodesic represents the ‘‘center’’ of the torus (the
potential Wðr; 	Þ has a local minimum there while the
pressure is maximal there). The unstable circular geodesic
marks a critical point (cusp), where the potential Wðr; 	Þ
has a local maximum; the corresponding equipotential
surface is self-crossing and is referred to as the ‘‘critical
surface’’. As well as this critical equipotential surface,
there is also the characteristic null equipotential surface
Wðr; 	Þ ¼ 0, which crosses the equatorial plane at infinity.
The behavior of the potentialWðr; 	Þ can be summarized

in the following way: For ‘ 2 ð0; ‘msÞ, there are no ex-
trema of the potential W, and there are no closed equipo-
tential surfaces and no critical equipotential surface. The
null equipotential surface is open towards the black hole
(see panels ‘‘A’’ of Fig. 2). For ‘ ¼ ‘ms, there is one
inflexion point of the potential W in the equatorial plane
at which the critical surface has its critical point, corre-
sponding to a ring. The null equipotential surface is open
towards the black hole (see panels ‘‘B’’ of Fig. 2). For
‘ 2 ð‘ms; ‘mbÞ, there is a negative local maximum and a
negative local minimum of the potential W in the equato-
rial plane. In this case, closed equipotential surfaces
exist which are bounded by the critical surface that self-
crosses at the inner cusp. The null equipotential surfaces is
open towards the black hole (see panels ‘‘C’’ of Fig. 2). For
‘ ¼ ‘mb, there is a zero local maximum and a negative
local minimum of the potential W in the equatorial plane.
The closed equipotential surfaces are bounded by the
critical surface which coincides with the null equipotential
surface (see panels ‘‘D’’ of Fig. 2). For ‘ 2 ð‘mb; ‘ph;cÞ,
there is a positive local maximum and a negative local
minimum of the potential W in the equatorial plane. The
closed equipotential surfaces are bounded by the outer null
equipotential surface. The critical surface is now open
outwards away from the black hole, and self-crosses be-
tween the radii where the null surfaces cross the equatorial
plane (see panels ‘‘E’’ of Fig. 2). For ‘ ¼ ‘ph;c, the poten-

tial W diverges at rph;c and the local maximum no longer

exists. The negative local minimum of the potential W is
still present. The closed equipotential surfaces are bounded
by the outer null equipotential surface. The critical surface
is no longer present. For ‘ > ‘ph;c, the only extremum of

the potential W is the negative minimum. The closed
equipotential surfaces are bounded by the outer null

lc r; Q2

lph r; Q2

lph,c Q2

lmb Q2

lms Q2

1.1 1.2 1.3 1.4 1.5
3.0

3.5

4.0

4.5

5.0

5.5

6.0

ArcTan r

FIG. 1. Behavior of the function ‘cðr;Q2Þ governing extrema
of the potential Wðr; 	Þ in the equatorial plane of the Reissner-
Nordström spacetime with Q ¼ 0:1. For a fixed value of the
angular momentum ‘, we can determine the position of the
potential maxima (smaller radius) and minima (larger radius).
The potential Wðr; 	Þ is not defined in the shaded region limited
by the function ‘phðr;Q2Þ. In black hole spacetimes (Q2 � 1),

there is only the class of the mutual behavior of the functions
‘cðr;Q2Þ and ‘phðr;Q2Þ, shown in this figure. The horizontal

dashed lines denote the values of ‘msðQ2Þ ¼: 3:670, ‘mbðQ2Þ ¼:
3:995 and ‘ph;cðQ2Þ ¼: 5:187 for Q ¼ 0:1, the value of Q being

considered here, and the vertical solid line shows the position of
the outer black hole horizon. From the discussion of the behavior
of Wðr; 	Þ (see Fig. 2), it follows that equilibrium toroidal
configurations of a barotropic fluid with ‘ ¼ const exist only
for ‘ > ‘msðQ2Þ.
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equipotential surface. There is no longer any critical
surface, but there is a forbidden region for fluid elements
with prescribed specific angular momentum, delimited
by the radii satisfying the relation ‘ ¼ ‘phðr;Q2Þ (see

panels ‘‘F’’ of Fig. 2). The behavior of the potential
Wðr; 	Þ is qualitatively the same as in the pure
Schwarzschild case [3]. The additional charge of the black
hole Q here influences the values of ‘msðQ2Þ, ‘mbðQ2Þ and
‘ph;cðQ2Þ.

Profiles of the pressure and mass-density can now be
determined from relations (24) and (22). For doing this, it
is necessary to choose relevant values for the parameters of
the polytropic equation of state (22), for the specific angu-
lar momentum and for the location of the inner edge of the

torus. Here we present two examples, for tori with � ¼ 2,
� ¼ 1012 and ‘ ¼ 3:8 (Fig. 3):
The first is the marginally bounded torus (the most

extended closed torus), with its inner edge being at the
cusp, rin ¼ rcusp. This is the most interesting case, since it

can be used as a model for the inner parts of a thick
accretion disk from which matter can flow in a standard
way onto the black hole. To obtain the position of the cusp,
we solve Eq. (27), which yields two real roots above the
event horizon; rI ¼: 4:544 and rII ¼: 8:388. The first root
corresponds to the position of the unstable circular geode-
sic, i.e. to the cusp, while the second one corresponds to
the stable geodesic, i.e. to the pressure maximum: the
‘‘center’’ of the torus.
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FIG. 2. Typical behavior of the potential Wðr; 	Þ shown in terms of poloidal sections through the equipotential surfaces and the
equatorial profile W�=2ðrÞ in a Reissner-Nordström spacetime with parameter Q ¼ 0:1. Taking progressively increasing values of

the specific angular momentum ‘, samples are shown of 4þ 2 qualitatively different types of behavior of the potential, differing in the
properties of the critical (dashed) equipotential surface and the null (thick) equipotential surface.
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Our second example is a torus with its inner edge located
at rin > rcusp. Here we simply chose the position of the

inner edge to be at rin ¼ 6. Note that the location of the
inner edge must be chosen so as to be in between the cusp
(rI) and the center of the torus (rII), the positions of both of
which are determined from the potential W independently
of the choice of rin.

V. CHARGED TORI, ‘ ¼ const

In order to obtain the pressure or density profiles from
Eqs. (20) or (23), it is necessary to determine the charge
density distribution qðr; 	Þ in the torus. This must satisfy

the integrability condition (15). By expressing qðr; 	Þ in
the form

qðr; 	Þ ¼ q0�ðr; 	Þkðr; 	Þ; (28)

where q0 is a constant and kðr; 	Þ is a correction function,
and using � ¼ 2, we can rewrite Eq. (23) in the form

@r� ¼ � 1

2�

�
ð��þ 1Þ@r lnjUtj � q0kU

t@rAt

�
;

@	� ¼ � 1

2�

�
ð��þ 1Þ@	 lnjUtj

�
:

(29)

Note that, as we express by relation (28), it is feasible to
take the charge density distribution as being directly

FIG. 3. Profiles of the potential Wðr; 	Þ, pressure pðr; 	Þ and rest-mass density �ðr; 	Þ of uncharged tori, shown in terms of poloidal
sections through the equipotential, isobaric and isodensity surfaces, respectively, and their equatorial behavior W�=2ðrÞ, p�=2ðrÞ and
��=2ðrÞ, for a Reissner-Nordström spacetime with Q ¼ 0:1. Two examples are shown with different values for the radius at the inner

edge of the torus: rin ¼ rcusp ¼: 4:544 in the upper figures and rin ¼ 6 in the lower ones. The centers (pressure maxima) of both tori are

located at rcent ¼: 8:388. The shapes of the equipotential, isobaric and isodensity surfaces coincide, with the values of the different
quantities on them being related by Eq. (24) and the equation of state (22). We show poloidal sections through three such surfaces
(A, B and C). The thick curve (surface C) marks the zero-pressure (and zero-density) surface which bounds the torus. The shaded
regions above the profiles ofW�=2ðrÞ indicate the physically relevant parts of the profiles, delimited by the inner and outer edges of the

tori. The specific angular momentum ‘ ¼ 3:8 for both tori, and the polytropic parameters are � ¼ 2 and � ¼ 1012 in each case.
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proportional to the rest-mass density distribution and to a
correction function which represents variations in the
charge per unit mass q0kðr; 	Þ through the torus, as we
discuss in Sec. VIA. From the mathematical point of view,
the correction function plays the role of an ‘‘integration
factor’’, which must be chosen so that Eqs. (29) are
integrable.

Now, due to the integrability condition (15), the correc-
tion function kðr; 	Þ has to satisfy the relation

2 sin	ð‘2�� r4sin2	Þ@	kþ 3k‘2� cos	 ¼ 0; (30)

which can be solved to give

kðr; 	Þ ¼ �

sin3=2	

�
‘2�� r4sin2	

‘2�� r4

�
3=4

; (31)

where �ðrÞ is a function representing a constant of inte-
gration over 	 for a given value of k in the equatorial plane,
kðr; 	 ¼ �=2Þ � �ðrÞ. For the purposes of this paper, it is
convenient to choose �ðrÞ ¼ 1. The charge density distri-
bution function with the correction function in the form
(31) ensures the integrability of Eqs. (29), and thus the
existence of a unique solution for pðr; 	Þ and �ðr; 	Þ.

Integrating the second of Eqs. (29) over the latitude, we
obtain the following expression for the rest-mass density:

�ðr; 	Þ ¼ 21=4�Cðr4sin2	� ‘2�Þ1=4 � ffiffiffiffiffiffiffiffiffi
sin	

p

�
ffiffiffiffiffiffiffiffiffi
sin	

p : (32)

The unknown function CðrÞ, which depends only on the
radial coordinate r, stands as a constant of this integration.
Its value can be determined by substituting the density
formula (32) into the first density equation (29) and assum-
ing the charge density distribution according to relations
(28) and (31). This leads to the ordinary differential
equation

2r�@rCþð2r2 � 3rþQ2ÞC¼ r2
ffiffiffiffi
�

p
Qq0

21=4�ðr4 � ‘2�Þ3=4 : (33)

Unfortunately, there is no analytic solution for Eq. (33),
and so CðrÞ must be determined numerically. Since the
torus is delimited by the zero-pressure (and zero-density)
surface, we can find the necessary initial condition
from the fact that �ðrinÞ ¼ 0. From the relation (32) we
obtain

CðrinÞ ¼ 1

21=4�½r4in � ‘2ðr2in � 2rin þQ2Þ�1=4 : (34)

As mentioned earlier, the most interesting configuration
is the one delimited by the self-crossing zero isobaric (and
isodensity) surface, i.e., the marginally bounded torus,
which has its inner edge in the equatorial plane coincident
with the cusp (rin ¼ rcusp). Wewill be concentrating on this

type of torus from now on. The values of the specific
angular momentum ‘ and the charges Q and q0 then
completely determine the shape of the torus and the posi-

tions of its center and of its inner and outer edges. At the
cusp, the pressure and density vanish and have a saddle
point (a minimum in the r-direction and a maximum in the
	-direction), in contrast with the center of the torus, where
there is a local maximum. (In general, the density at the
inner edge of the torus must be zero and when the inner
edge is also a cusp, the density profile has extrema there.)
The location of the inner edge rin, which needs to be known
in order to evaluate the condition (34), can then be obtained
from the first of Eqs. (29) by setting @r�jr¼rin ¼ 0,

�ðrinÞ ¼ 0, and 	 ¼ �=2. This gives the following implicit
expression for rin:

q0Qr2in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr4in � ‘2�Þ

q
þ ðQ2 � rinÞr4in þ ‘2�2 ¼ 0: (35)

Note that when q0 ¼ 0, we get the relation ðQ2 � rinÞr4in þ
‘2�2 ¼ 0, in agreement with the formula (27) derived for
the case of the uncharged torus.
To clearly illustrate how the charge on the torus affects

its equilibrium structure, we constructed marginally
bounded tori with the same matter parameters and specific
angular momentum as in the uncharged case, i.e., we took
� ¼ 1012 and ‘ ¼ 3:8, and we also considered the same
charge of the central black hole Q ¼ 0:1. Our sample tori
are characterized by the parameters q0 ¼ 0:4 (positively
charged) and q0 ¼ �0:4 (negatively charged), which, as
we discuss in Sec. VIA, correspond to the specific charges
of the moving matter in the equatorial plane, due to our
choice �ðrÞ ¼ 1.
For q0 ¼ 0:4, Eq. (35) yields two real roots above the

event horizon; rI ¼: 4:378 and rII ¼: 9:104, where both of
the roots correspond to circular orbits of charged test
particles with the given specific charge 0.4. Choosing
rin ¼ rI, the numerical integration gives a regular thick
charged torus. On the other hand, choosing rin ¼ rII, we
get a degenerate torus (an infinitesimally thin ring) located
just at r ¼ rII.
For q0 ¼ �0:4, Eq. (35) again yields two real roots

above the event horizon; rI ¼: 4:767 and rII ¼: 7:658, cor-
responding to circular orbits of charged test particles with
the given specific charge �0:4. Again, the choice rin ¼ rI
leads to the regular thick charged torus, while rin ¼ rII
gives the degenerate torus.
In principle, one could also construct charged tori with

rI < rin < rII, as for the uncharged tori. However, this
introduces further complications, and we focus here only
on the more interesting critical (cusp) configurations.
In Figs. 4 and 6, we show the profiles of rest-mass

density and pressure. The related charge density distribu-
tions qðr; 	Þ and correction functions kðr; 	Þ are shown in
Figs. 5 and 7. As can be seen from these, for the same Q
and ‘, the positively charged tori are more extended than
the uncharged ones while the negatively charged tori are
less extended. From the right-hand panels of Figs. 4 and 6,
it can be seen that the densities in the more extended tori
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are larger than those in the less extended ones and so the
masses of the more extended tori are clearly also larger. We
come back to this in more detail in Sec. VI B.

VI. DISCUSSION

A. Correction function and specific charge

The dimensionless correction function kðr; 	Þ has been
introduced in Eq. (28) for convenience in calculating the

torus configuration. It represents the variation with position
of the specific electric charge (charge per unit mass),
�q ¼ q0kðr; 	Þ. As shown in the previous section, setting
k ¼ 1 so that the charge per unit mass is the same
everywhere, does not give an equilibrium configuration:
k must be allowed to vary so as to satisfy the integrability
condition (15) and this requires the behavior (31). In the
equatorial plane kðr; 	 ¼ �=2Þ ¼ �ðrÞ, and the choice
�ðrÞ ¼ 1 as a boundary condition is convenient for our

FIG. 4. Profiles of the pressure pðr; 	Þ and rest-mass density �ðr; 	Þ for a positively charged torus (q0 ¼ 0:4, ‘ ¼ 3:8) in a Reissner-
Nordström spacetime with Q ¼ 0:1, shown in terms of poloidal sections through the isobaric and isodensity surfaces (left), and in
terms of their equatorial profiles p�=2ðrÞ and ��=2ðrÞ (right). The torus terminates at rin ¼ rcusp ¼: 4:378 and rout ¼: 24:72, and its

center is located at rcent ¼: 9:098. The dashed curves represent the zero-pressure surface for the equivalent uncharged case (left panel)
and the profiles of density and pressure for the uncharged case (right panels). The isobaric and isodensity surfaces coincide (A, B and
C), with the values of pressure and density on them being related by the equation of state.

FIG. 5 (color online). Poloidal sections through the isocontours for the correction function kðr; 	Þ (left) and the charge density qðr; 	Þ
(right) for the same positively charged torus as in Fig. 4.
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present simplified model. From Figs. 5 and 7, it can be seen
that the required variations in kðr; 	Þ away from this are
actually very small (with the maximum being on the
equatorial plane).

Our choice of �ðrÞ ¼ const (with the constant normal-
ised to 1) corresponds to a case where the maximum of the
charge density qðr; 	Þ is located just at the center of the
torus, where there is the maximum of the density �ðr; 	Þ, as
can be seen from relation (28). Other choices of �ðrÞ could

describe more physically relevant situations, but with the
maximum of qðr; 	Þ not necessarily being located at the
center of the torus. For instance, by choosing �ðrÞ ¼ 1=r
the specific net charge of the fluid in the torus grows in the
equatorial plane from the outer edge to the inner edge,
where it is maximal. Moreover, the maximum of qðr; 	Þ is
shifted from the center of the torus. Of course, at the inner
edge, the net charge density qðr; 	Þ goes to zero together
with the matter density �ðr; 	Þ.

FIG. 6. Profiles of the pressure pðr; 	Þ and rest-mass density �ðr; 	Þ for a negatively charged torus (q0 ¼ �0:4, ‘ ¼ 3:8) in a
Reissner-Nordström spacetime with Q ¼ 0:1, shown in terms of poloidal sections through the isobaric and isodensity surfaces (left),
and in terms of their equatorial profiles p�=2ðrÞ and ��=2ðrÞ (right). The torus terminates at rin ¼ rcusp ¼: 4:767 and rout ¼: 11:62, and

its center is located at rcent ¼: 7:660. The dashed curves represent the zero-pressure surface for the equivalent uncharged case (left
panel) and the profiles of density and pressure for the uncharged case (right panels). The isobaric and isodensity surfaces coincide
(A, B and C), with the values of pressure and density on them being related by the equation of state.

FIG. 7 (color online). Poloidal sections through the isocontours for the correction function kðr; 	Þ (left) and the charge density qðr; 	Þ
(right) for the same negatively charged torus as in Fig. 6.
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The values q0 ¼ �0:4 and � ¼ 1, used for our repre-
sentative cases, give a specific charge �q in the torus around
1018 times smaller in magnitude than that for a proton, and
so the medium can be thought of as having one particle in
1018 with a net charge while the rest are neutral. We note
that if we decrease Q below our standard value of 0.1 and
simultaneously increase q0 in such a way that the product
Q �q remains unchanged, then we get essentially identical
results. This is because the deviation of the space-time
geometry away from Schwarzschild is extremely small
for these values of Q, and so the relevant effect of the
charge is almost entirely electromagnetic (depending on
Q �q) rather than having a significant gravitational contri-
bution (depending just on Q).

B. Total electric charge and mass of the torus

In our model, we neglect the effects of the electromag-
netic field generated by the torus, which is acceptable when
this self-field is much weaker than the external electro-
magnetic field associated with the central compact object.
The total charge of the torus is given by

Q ¼
Z
V
q

ffiffiffiffiffiffiffiffi�g
p

dr d	 d


¼ 4�q0
Z rout

rin

Z �=2

	�0

k�
ffiffiffiffiffiffiffiffi�g

p
d	 dr; (36)

where

	�0
¼ arcsin

� ffiffiffiffiffiffiffi
2�

p
�2‘C2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�4r4C4 � 1
p

�
(37)

is the function determining the upper boundary of the
poloidal projection of the zero isodensity surface, g ¼
�r4sin2	 is the determinant of the metric tensor, and rout
is the radial position of the outer edge of the torus in the
equatorial plane. For the representative tori which we are
considering, with � ¼ 2, � ¼ 1012, Q ¼ 0:1 and ‘ ¼ 3:8,
we obtain the total charge on the torus as being Q ¼:
2:49	 10�11 for q0 ¼ 0:4 (positively charged) and Q ¼:
�4:50	 10�13 for q0 ¼ �0:4 (negatively charged). Such
small values, in comparison with the charge of the black
hole, are consistent with our neglect of the electromagnetic
field generated by the torus.

The total rest-mass of the torus is given by

M ¼
Z
V
�

ffiffiffiffiffiffiffiffi�g
p

dr d	 d
 ¼ 4�
Z rout

rin

Z �=2

	�0

�
ffiffiffiffiffiffiffiffi�g

p
d	 dr:

(38)

For the three representative tori which we are considering,
we obtain the total rest-mass as being M ¼: 6:24	 10�11

(positively charged), M ¼: 1:13	 10�12 (negatively
charged) and M ¼: 9:64	 10�12 (uncharged). The ratio
Q=M is then ¼: �0:4 in the positively and negatively
charged cases, respectively, as clearly follows from the

fact that the specific charge �q ¼ q0kðr; 	Þ ¼
�0:4kðr; 	Þ ¼: �0:4, since kðr; 	Þ � 1 throughout our tori.

C. Parameters of the equation of state

We set � ¼ 2 for illustration purposes, since this choice
simplifies the integration of the density equations (23).
This value of � is inconveniently high for possible related
astrophysical applications, but we stress that our model is
an extremely simplified one, purposely intended for inves-
tigating the behavior of a test case under extreme condi-
tions (we are also taking a rather large value for the black
hole charge Q, only one sign of charge for particles in the
torus and zero conductivity there). For such a test case, it
would not be appropriate to introduce additional compli-
cations here in order to bring just one aspect of the model
(the value of �) closer to astrophysical applications.
In general, electrostatic corrections should also be in-

cluded in the equation of state, especially at higher matter
densities. However, this is not trivial to do (see, e.g. [45],
for the electrostatic correction in the case of dusty plas-
mas). We have used a very high value of �, which enables
us to neglect electrostatic corrections without inconsis-
tency, because this enables us to demonstrate our approach
more clearly.

D. Distribution of specific angular momentum

We have considered perfect fluid tori with a prescribed
specific angular momentum ‘ ¼ �U
=Ut, which we set to

be constant through the torus. In an uncharged case,
L ¼ U
 and E ¼ �Ut would be constants of motion con-

nected with the assumed axial symmetry and stationarity
of the spacetime. For a charged torus, the constants of
motion are the generalized quantities ~L ¼ U
 þ �qA
 and
~E ¼ �Ut � �qAt.
Note that the condition ‘ ¼ const is imposed for sim-

plicity of the calculations; it is not essential for the method
and can be relaxed. The Rayleigh criterion for linear
stability against radial convection requires ‘ to be a non-
decreasing function of the distance from the axis of rota-
tion, and so ‘ ¼ const uncharged tori are just on the
stability limit. For charged tori, the stability condition
needs to be formulated in terms of a generalized quantity
~‘ ¼ ~L= ~E [30,46]. In the Reissner-Nordström electric field,
the only nonzero component of the vector potential is At

and one has

~‘ ¼ ~L
~E
¼ L

E� q0kAt

; (39)

which reduces to ‘ for q0 ¼ 0. Stability depends heavily on
the specific charge distribution (i.e. on the behavior of the
correction function kðr; 	Þ) and on the signs of the charges
of the torus and the black hole.
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E. Approximation of negligible conductivity

The assumption of high electrical conductivity of the
medium is appropriate for many astrophysical plasmas
with a high degree of ionization, and the ideal MHD
framework can then be employed. Under the conditions
of high conductivity and vanishing inertial effects of the
plasma particles, the local electric field quickly becomes
neutralized by rearranging the plasma flows (giving the
conditions for the force-free approximation). A quasi-
neutral medium then arises in which the volume density
of net electric charge is negligible.

However, there is an ongoing debate about the condi-
tions that may lead to the presence of nonvanishing net
charges, with an important role being played by electric
forces acting parallel to the magnetic field lines in the local
comoving frame. For example, a large-scale magnetic field
may cause spatial separation of electric charges of different
signs and their gradual accumulation in different parts of
the system. Pulsar magnetospheres provide an example of
such systems, with the charge separation being caused by
the dipole-type magnetic field of the neutron star [47,48].
Black holes embedded in ordered magnetic fields of exter-
nal origin can also act in a similar way but then, for a low-
density medium, the hydrodynamical description needs to
be modified in order to describe the conditions of a colli-
sionless plasma (since the particle mean-free paths are then
comparable with the characteristic length-scale of the sys-
tem, given by the gravitational radius of the central black
hole).

One can imagine also another relevant scenario: a neu-
tral fluid containing a few free charges, such as the case of
dusty plasmas. In general, when charges feel an external
electromagnetic field, they move generating a current, but
if the fluid is dense enough and is highly collisional, the
charges are less able to move and the conductivity becomes
almost zero (see [49] for a discussion). Such a picture is
actually compatible with our model since, as mentioned
earlier, only a very small fraction of particles with net
charge is required in order to give the parameter values
used in our representative examples.

F. Zero conductivity and consistency of the model

The various limiting situations which we have been
mentioning (hydrodynamical versus collisionless plasma;
infinite conductivity versus zero conductivity; self-
gravitating matter versus test particles and fluids), are
relevant under quite different circumstances and obviously
require different approaches. The approach which we have
adopted in the present paper allows us to capture the
behavior of an idealized but nontrivial system where the
fluid motion is governed by the combined action of a global
(large-scale) electromagnetic field, the gravitational field
of the central body, and pressure gradients operating
within the fluid together with a nonzero electric charge
distribution.

The basic assumptions of our model are: (1) the fluid
is a single-component test fluid (we ignore its self-
gravity and its own electromagnetic field); (2) the fluid
flow is stationary, with the 4-velocity having only time
and azimuthal components. If the conductivity � were
nonzero, the second term on the right-hand side of the
Ohm’s law equation (4), which is proportional to �,
would give rise to a radial electric current unless there
were a significant self-field (contradicting the first basic
assumption). Since our fluid is taken to be a single-
species one, having a radial electric current would imply
the existence of a radial mass current (contradicting the
second basic assumption). Having � ¼ 0 is therefore
necessary for self-consistency.

VII. CONCLUSIONS

In this paper we have presented a model for a simple test
case of an electrically charged perfect fluid torus rotating in
strong gravitational and electromagnetic fields produced
by a central compact object. Distributions of either specific
angular momentum or charge density through the torus first
need to be specified (we chose to specify the specific
angular momentum distribution) and then pressure and
density profiles can be calculated. An equation of state
must be provided in order to close the set of equations. We
have investigated the limiting case opposite to that of
ideal magnetohydrodynamics, considering a nonconduc-
tive (dielectric) perfect fluid rather than infinite conductiv-
ity as in ideal magnetohydrodynamics. Our case can
describe a fluid in which bulk hydrodynamic motion pre-
dominates over electromagnetic effects and the fluid has
almost infinite electric resistivity. We are not here includ-
ing the self-gravitational and self-electromagnetic fields of
the matter in the torus, and so the treatment applies for low-
mass, slightly charged tori.
For illustrating the model, we constructed both posi-

tively and negatively charged barotropic tori, with a poly-
tropic equation of state and constant specific angular
momentum distribution, encircling a positively charged
Reissner-Nordström black hole. We compared the result-
ing pressure and density profiles with an equivalent un-
charged case, and also calculated the shapes of the tori.
Taking the polytropic index � ¼ 2, allows for the
‘‘pressure’’ equation to be integrated in a relatively simple
way so as to give semianalytic results. The large value for
the polytropic constant � ¼ 1012 leads to tori where the
Coulomb interaction between the charged particles of the
fluid can be neglected in comparison with the standard
pressure due to the matter. The constructed tori are only
slightly electrically charged in comparison with the charge
of the black hole, thus generating a relatively weak elec-
tromagnetic field which can safely be neglected. It is
striking that even with a very small value for the charge-
to-mass ratio in the torus, significant effects are never-
theless seen. However, it is necessary to stress out that
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the constructed tori carry the specific charge Q=M ¼:
�0:4 and orbit the black hole with Q=M ¼ 0:1; since
for any astrophysical body it would be practically impos-
sible to maintain the specific charge Q=M > 10�18 [44],
the results should be considered as illustrating samples
only.

The aim of this paper has been to introduce a new model
of a dielectric charged torus encircling a charged compact
object. We have proceeded by using a number of simplify-
ing assumptions: the compact object is a Reissner-
Nordström black hole; the torus is composed of test matter;
the matter has a polytropic equation of state with pre-
scribed �; the torus has constant specific angular momen-
tum, ‘ ¼ const, and the specific charge is constant
everywhere in the equatorial plane, � ¼ 1. Despite the
great simplifications coming from these assumptions, the
scenario is still physically reasonable and nontrivial.
Moreover, a large variety of degrees of freedom can be
captured and the free parameters can be conveniently

chosen in order to describe an astrophysically relevant
situation. Of course, more complicated choices would
then require more complicated calculations. Such calcula-
tions are now in progress, but are beyond the scope of the
present paper.
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Astron. Astrophys. Rev. 63, 209 (1978).
[3] M.A. Abramowicz, M. Jaroszyński, and M. Sikora,
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