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We propose a model based on radiative symmetry breaking that combines inflation with dark energy and

is consistent with the Wilkinson Microwave Anisotropy Probe 7-year regions. The radiative inflationary

potential leads to the prediction of a spectral index 0:955 & nS & 0:967 and a tensor to scalar ratio

0:142 & r & 0:186, both consistent with current data but testable by the Planck experiment. The radiative

symmetry breaking close to the Planck scale gives rise to a pseudo Nambu-Goldstone boson with a

gravitationally suppressed mass which can naturally play the role of a quintessence field responsible for

dark energy. Finally, we present a possible extra dimensional scenario in which our model could be realized.
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I. INTRODUCTION

Although modern cosmology seems to require both in-
flation and dark energy there are relatively few models
which attempt to unify these two ideas [1,2]. One of the
most interesting attempts to achieve such a unification has
relatively recently been discussed [3], based on the earlier
‘‘schizon model’’ [4–6]. This model was, however, essen-
tially based on ’4 chaotic inflation, which was signifi-
cantly threatened by Wilkinson Microwave Anisotropy
Probe (WMAP) 5-year data [7] (if not ruled out).1

However, the model has some nice features as, e.g., natu-
rally generating a pseudo Nambu-Goldstone boson
(PNGB), which receives a potential via gravitational ef-
fects [9] and can then be used as quintessence field. Other
attempts can provide a better match to the data by invoking
hybrid inflation, with [10] or without [11] using a PNGB as
quintessence field (see Refs. [12,13] for an extensive dis-
cussion of that subject).

In this letter we propose a simple new model which can
overcome the difficulties of ’4 chaotic inflation but which
can also lead to a PNGB quintessence field. The newmodel
is based on the idea of a massive complex scalar field
whose mass squared is driven negative close to the
Planck scale by radiative effects, leading to a model of
radiative inflation and dark energy (RIDE). The complex
scalar field � has a potential which is invariant under a

global Uð1Þ symmetry which, in turn, is broken by radia-
tive effects leading to an almost massless PNGB. Close to

the Planck scale the inflaton field ~� ¼ ffiffiffi
2

p j�j rolls slowly
down a simple potential that resembles ’2 chaotic inflation
for high field values. After inflation, however, it settles at
its minimum, thereby breaking the global Uð1Þ and
generating the Nambu-Goldstone boson which would be
massless in the absence of gravitational effects. Including
gravitational effects generates a potential for the PNGB, so
that it can then play the role of the quintessence field. The
RIDE model leads to interesting predictions for inflation
which are fully consistent withWMAP 7-year data [14] but
which allow the model to be ruled out or confirmed by the
Planck experiment.
Radiative corrections have been studied before in both,

the context of inflation (see, e.g., Refs. [15–24]) and in the
context of quintessence (see, e.g., Refs. [25–31]). In con-
trast to previous studies, however, the radiative corrections
here are responsible for symmetry breaking via a scalar
mass squared being driven negative at a high scale close
to the Planck scale, allowing us to relate inflation to
quintessence.
The remainder of this letter is organized as follows.

After introducing the model in Sec. II, we perform analyses
of inflation and quintessence in Secs. III and IV, respec-
tively. Finally, we sketch a possible scenario in which our
model could be realized in Sec. V, before concluding in
Sec. VI. More details on the effects of radiative corrections
on the potential can be found in the Appendix.

II. THE MODEL

The model is based on a complex scalar field � ¼
1ffiffi
2

p ~�ei�=f (with f ¼ h~�i), whose potential in the absence
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1Note, however, that the situation of the model from Ref. [3]

looks much better in the case of small field inflation [8].
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of radiative corrections has a simple quadratic form,
V0 � M2�y�.2 The basic idea is that radiative corrections
then drive the mass squared negative at some scale � not
too far below the Planck scale. This radiative symmetry
breaking mechanism is perhaps most familiar in the mini-
mal supersymmetric standard model (MSSM) where top
and stop loops drive the Higgs mass squared negative at the
TeV scale [32], but has been recently used elsewhere in
different contexts where a mass squared is driven negative
at a much higher scale [33,34]. Such a radiative potential
may be parametrized as in [33,34],

V � M2�y�ln

�
�y�
�2

�
¼ M2

2
~�2 ln

�
~�2

2�2

�
: (1)

This leads to a vacuum expectation value (VEV) of f ¼ffiffi
2
e

q
� for ~�. In such a potential, inflation can completely

take place in a region where ~� � �, in which the ln term
in Eq. (1) is well behaved and the inflaton field ~� only feels
a potential that is very similar to the one used for quadratic
inflation.3

Later on, the field will settle at its VEV. As the potential
is symmetric under a global Uð1Þ, either imposed or acci-
dental, the VEV will break this global symmetry, thereby
generating a massless Nambu-Goldstone boson � ¼
f argð�Þ. This field has no mass term and in fact no
potential at all. The originalUð1Þ symmetry of� translates

to a shift symmetry �
f ! �

f þ �, with � being a continuous

real parameter. However, the continuous shift symmetry
can be broken by gravitational effects [3,9], dubbed gravi-
tational instantons, which, similar to the case of the axion
[38,39], can generate a mass term. Although they break the
shift symmetry, these gravitational effects leave invariant a
discrete subgroup of transformations, namely, those for
which � ¼ 2�n, with n 2 N denoting the winding num-
ber of equivalent vacua which one can freely choose also in
the presence of gravitational corrections. Hence, any po-
tential Vqð�Þ that is generated by such effects must still be

invariant under �f ! �
f þ 2�n. In order to have a mass term

for� in its Taylor expansion, the potential must be an even
2�n-periodic function. The most general such function is a
sum of cosines whose arguments are integer multiples

of �
f . It is possible to argue, see [40], that the dominant

contribution is obtained from the lowest harmonic

/ cosð�fÞ, so that the resulting potential for the quintes-

sence field � reads4

Vqð�Þ ¼ m4

�
1þ cos

�
�

f

��
: (2)

Both potentials, Vð~�Þ and Vqð�Þ, as well as the field

dynamics are schematically depicted in Fig. 1. Note that
the dynamics of both sectors can be easily disentangled, as
the kinetic term simplifies to

ð@��Þ�ð@��Þ ¼ 1

2
ð@� ~�Þð@� ~�Þ þ ~�2

2f2
ð@��Þð@��Þ; (3)

with the � part being negligible during inflation and ~�
already sitting at its (constant) VEV f during quintessence.
Because of this separation of the dynamics of the two
fields, we should be safe from potentially dangerous cor-
rections due to (iso-) curvature fluctuations that can appear
in multifield inflation models [41], since we are practically
dealing with a single-field potential.

III. INFLATION

The inflaton potential of Eq. (1) depends on two parame-
ters, M and �. In this section we show that they can be
chosen such as to be consistent with the WMAP 7-year
data. Assuming � close to the Planck scale, we define

� ¼ kMP; (4)

and fix k to take a particular value, like e.g. 0.01. With this
specific choice, all dimensionful quantities, including the
parameter M, can be expressed in terms of MP only.
To determine M, and subsequently the scalar spectral

index nS as well as the tensor to scalar ratio r, it is
convenient to start with the slow-roll parameters,

� ¼ M2
P

16�

�
V 0

V

�
2 ¼ M2

P

4�~�2

�
1þ 1

L

�
2

and

� ¼ M2
P

8�

�
V 00

V
� 1

2

�
V0

V

�
2
�
¼ M2

P

4�~�2

�
1

L
� 1

L2

�
; (5)

where L ¼ lnð ~�2

2�2Þ. The field value ~�e at the end of infla-

tion is calculated numerically by setting � ¼ 1. Note that,
in the interesting part of the parameter space, ~�e is always
very well above f, though not necessarily by orders of
magnitude. The next quantity we determine is the field
value ~�N , N e-folds before the end of inflation. Since there
is again no simple approximation, we determine ~�N by
numerically solving

2Note that, when trying to relate such a potential to a concrete
particle physics model, it has to be verified that a possible
ð�y�Þ2 term is absent or at least suppressed. Indeed, such a
framework can be realized in certain scenarios, see Sec. V for an
example.

3Note that we concentrate on the corrections due to the
renormalization group evolution, just as done in
Refs. [17,18,23], which is the dominant contribution of the
Coleman-Weinberg correction [35] in the case of broken super-
symmetry [36]. See also Ref. [37] for experimental constraints
on such corrections.

4Note that, in certain settings, it might be necessary to protect
this potential against too large radiative corrections, see
Refs. [4,5].
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N ’ 8�2

M2
P

Z ~�N

~�e

Vð~�Þ
V 0ð~�Þd~�

¼ 2�

�
~�2
N � ~�2

e

M2
P

� 2

e

�
�

MP

�
2½Eið1þLNÞ �Eið1þLeÞ�

�
;

(6)

where EiðzÞ is the exponential integral EiðzÞ ¼
�R1

�z
e�t

t dt, Li ¼ lnð ~�2
i

2�2Þ, and N lies within the interval

N 2 ½46; 60�. Using the so obtained value of ~�N , the
parameter M in Eq. (1) is constrained by the size of the
scalar perturbations in the cosmic microwave background
[14],

P1=2
R ¼ Hð~�NÞ

MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð~�NÞ

p ’ 4:95� 10�5; with

H2 ’ 8�V

3M2
P

; (7)

leading to M ’ ½10�8MP; 10
�7MP�. We have checked that

this result is nearly independent of �, which only enters
logarithmically. Hence our predictions for inflation are
very stable with respect to adjustments of � which, as
we will show later, are necessary to satisfy the constraints
coming from the quintessence side.

The above discussion shows how to determine the pa-

rameterM for certain values of k ¼ �
MP

andN. With this the

potential of Eq. (1) is completely fixed and we can calcu-
late the scalar spectral index, nS ¼ 1� 4�ð~�NÞ þ 2�ð~�NÞ,
as well as the tensor to scalar ratio, r ¼ 16�ð~�NÞ, for
different values of k ¼ �

MP
and N. The corresponding pre-

dictions are in the ranges

0:955 & nS & 0:967 and 0:142 & r & 0:186; (8)

and are perfectly consistent with the 95% region of the
WMAP 7-year data for N ¼ 50–60, as shown in Fig. 2.
Trans-Planckian values of �, which often appear in large
field inflation models [1], would improve the consistency
with data even further. Note that, however, such high
values are under some dispute [42]. In any case, we do
not need such extreme VEVs, and values of � around
0:1MP (or slightly larger) are perfectly fine for our model,
as we will see in the next section.
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FIG. 2 (color online). The predictions of the RIDE model for
the spectral index nS and tensor to scalar ratio r as compared to
the WMAP 7-year data [14], with the inset showing a blow-up
of the interesting region. The red squares (black circles) are for
k ¼ 1 (k ¼ 0:01) for values of N ¼ 46–60.
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FIG. 1 (color online). The shape of the inflationary potential describing the inflaton ~� (left panel) and the potential describing
the quintessence field � (right panel). Both fields originate from the complex scalar field � ¼ 1ffiffi

2
p ~�ei�=f described by the potential in

Eq. (1).
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IV. QUINTESSENCE

The quintessence part of the potential, Eq. (2), arises
from (nonperturbative) gravitational effects, as indicated in
Sec. II. Such corrections induced by gravity, though hard to
avoid, are expected to be exponentially suppressed [9].
Although this might make them sound negligible, in the
absence of other corrections, such gravitational corrections
will determine the potential for the pseudo Nambu-
Goldstone boson, leading to a suitable quintessence inter-
pretation. The dark energy scale m will be determined by

m4 ¼ e�SM3
Pf, where f ¼ h~�i and S� �

M2
P

M2
string

is a poten-

tially large instanton action [9,10,43,44], withMstring being

the scale of string theory. Assumingm� 10�3 eV the ratio
MP

Mstring
is required to be around 10, which is not unreason-

able. The message is that, although not giving a prediction,
such considerations give at least a motivation for why m4

should be small in the first place.
Assuming the smallness of m4 � Vqð�0Þ � ��;0 to be

given, this quantity must be of the order of the current

critical density of the Universe, �c;0 ¼ 3H2
0
M2

P

8� , so that the

current dark energy fraction��;0 ¼ ��;0

�c;0
equals 0:728þ0:015

�0:016

[14]. A further constraint arises from the requirement that
the quintessence field must not have settled at its VEV

today, which translates into a bound on its mass, M� ¼
m2

f & 3H0 [3,6]. Both these conditions lead to a bound on f

(and thus also on � ¼ ffiffi
e
2

p
f) which should be f * 0:1MP

[3] or, if one wants to avoid too much tuning, even
f * 0:5MP [13]. Similarly as for inflation, one might
question values of f too close to the Planck scale, a prob-
lem that can be cured by, e.g., invoking extra spatial
dimensions [45]. We have analyzed the potential in

Eq. (2) with f ¼ MP=
ffiffiffiffiffiffiffi
8�

p
, using an extended version of

the SUPERCOSMOLOGY package [46], where we have also
included the cosmological evolution of radiation. This
means that we numerically solve the acceleration equation
(which is, for a flat Universe, equivalent to the Friedmann
equation),

€a

a
¼ _H þH2 ¼ � 4�

3M2
P

ð�tot þ 3ptotÞ; (9)

where �tot¼�radþ�matþ�� and ptot¼pradþpmatþp�

are the total energy density and the total pressure.
Conveniently, we can immediately insert the known evo-
lutions of radiation and matter,

�rad ¼ �rad;init

a4
; prad ¼ 1

3
�rad;

�mat ¼ �mat;init

a3
; pmat ¼ 0;

(10)

where a is the scale factor. The energy density and the
pressure of the quintessence field, however, are only known

as functions of �, �� ¼ 1
2
_�2 þ Vq and p� ¼ 1

2
_�2 � Vq.

Note that it is often convenient to use the so-called equa-
tion of state (EoS) parameter w, which is always defined as
the ratio between pressure and energy density. For ex-
ample, wrad ¼ 1

3 and wmat ¼ 0. To find the evolution of

the quintessence field �, we have to solve the correspond-
ing equation of motion,

€�þ 3H _�þ V 0
qð�Þ ¼ 0; (11)

supplemented by the definitions of the field momentum P
and the Hubble parameter H,

P ¼ a3 _� and H ¼ _a

a
: (12)

This gives a total of 4 ordinary first order differential
equations to determine the 4 functions �, P, a, and H.
The key ingredient to this system of equations is the
quintessence potential, Eq. (2), which determines the
qualitative evolution of the Universe. Note that, however,

due to � ¼ VqV
00
q

ðV0
qÞ2 � 0 during the slow roll, our potential

cannot exhibit a tracking behavior (which would require
�> 1) [47], which means that specific initial conditions
have to be imposed at the beginning of Big Bang cosmol-
ogy, i.e., after reheating. Starting with initial values of
�rad;init ¼ 0:99, �mat;init ¼ 0:01, and ��;init ¼ 10�11

(where the smallness of the latter is related to the tiny
value of m), we have solved the evolution equations nu-
merically, where we have determined the current time by
matching the dark energy density parameter to its current
value ��;0 ¼ ��;0. In order to also hit the other ranges

from the WMAP 7-year data at 1� or 68% C.L., i.e.
�mat;0 ¼ 0:2726	 0:0141 and w�;0 ¼ �0:980	 0:053,

as well as a proper age of the Universe�1=H0, with H0 ¼
70:4þ1:3

�1:4
km=s
Mpc [14], we had to choose m4 � �c;0=3 and an

initial field value in the range 0<�init < 0:16� 2�f. The
initial speed of the field does not influence the cosmologi-
cal evolution remarkably [13], and we therefore set
_�init ¼ 0. The constraint for the total EoS parameter of
the Universe, wtot;0 ¼ w�;0 ���;0 ¼ �0:713	 0:041,
was obtained from the WMAP results for ��;0 and w�;0,

under the assumptions of a flat Universe and negligible
radiation. The result of the analysis is displayed in Fig. 3:
On the left, the evolution of the quintessence field � is
plotted as a function of time, whereas on the right the
evolution of the whole Universe is displayed. The field
trivially falls into its minimum and starts a damped oscil-
lation around it. The evolution of all important energy
densities and EoS parameters also behaves as expected.
For early times, radiation remains dominant, which can be
clearly seen from the total equation of state parameter wtot

that is close to 1
3 . Later on, matter starts to dominate and

wtot is pulled closer and closer to zero. The current time is
marked by the grey line, which also indicates the current
observational bounds on the quantities under considera-
tion. Dark energy remains subdominant until shortly before
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today, but will later (when wtot finally fuses with w�)

become the only component that matters. This also ex-
plains the oscillatory behavior of the EoS parameter: The

field will have zero velocity, _� ¼ 0, at the turning points,

which leads to w� ¼ 1
2
_�2þVq

1
2
_�2�Vq

¼ �1, whereas at the mini-

mum of the potential we would have Vq ¼ 0 andw� ¼ þ1

accordingly.
On the right panel, we have also indicated the bounds for

early dark energy coming from big bang nucleosynthesis
(�� & 0:14, [2]), from recombination (�� & 0:1, [48]),
and from structure formation (�� & 0:2, [49]), at times [1]
t� 3 min , t� 3� 105 y, and t� 109 y, respectively,
which all essentially indicate that dark energy should
have become important only now. Note that the constraint
arising from the formation of nuclei should actually be
imposed at H0t� 10�15 [1], which is not displayed but
indicated by the arrow in the right panel of Fig. 3. In the
numerical analysis, we have normalized the evolution equa-
tions in such a way that the present Hubble constant H0

equals one, and time is measured in inverse Hubble units.
The age of the Universe is found to agree with 1=H0 within
5%. The deviation from a cosmological constant becomes
obvious in Fig. 4, where we have plotted the dark energy
density on the left, which would simply be a horizontal line
in the case of constant vacuum energy. The right panel
shows the deviation of the scale factor from a scenario
with a cosmological constant. The deviation at later times
again comes from the behavior of the quintessence field�:
It rolls down the potential towards its minimum and then
performs a damped oscillation around that point (cf. the
right panel of Fig. 1 and the left panel of Fig. 3).

We would like to conclude this section, just noticing that
the energy density at recombination is predicted to be a
standard mixture of matter and radiation.

V. AN OUT OF THIS WORLD RIDE SCENARIO

The remaining question is whether there are realistic
scenarios that include our model. The example that we
present here is a sequestered scenario which is consistent
with the MSSM and has already been discussed in the
literature in a similar fashion. It can be used as (toy)
realization of RIDE.
Consider a superpotential,

W ¼ Wobs þWseq; (13)

where Wobs represents the observable sector, e.g. the
MSSM spectrum, while Wseq represents a sequestered

sector. Sequestered is more hidden than usual hidden sec-
tors, since there will be no Planck scale suppressed opera-
tors that couple it to the observable sector. In practice this
is achieved as described in Ref. [50], as we discuss now.
The idea is that there are two 3-branes, an observable one
and a sequestered one, separated by an extra dimension.
We live on the observable brane, along with the MSSM
particles, while our RIDE model lives on the sequestered
brane. Supersymmetry (SUSY) is badly broken in the
sequestered sector, in our RIDE model, but the SUSY
breaking is not easily transmitted to the observable sector,
since the two branes are separated by the extra dimension
coordinate, where the separation is sufficiently large and
only gravity is in the bulk. There are then no operators of
order 1=MP connecting the observable sector to the hidden
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nucleosynthesis (BBN), recombination (REC), and structure formation (LSS).
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sector, which is called ‘‘sequestered.’’ So SUSY can be
badly broken in the RIDE model without spoiling the
observable MSSM.

However, as discussed in [50] there will always be the
gravity anomaly contribution to soft masses in the observ-
able sector which gives soft massesm0 � m3=2

16�2 due to a loop

suppression, where m3=2 is the gravitino mass. So we need

to ensurem3=2 & 100 TeV. Let us see how this could work

in an example. The following example will also address the
questions of the absence of the quartic scalar coupling and
the origin of the radiative symmetry breaking of the scalar
field.

We shall take Wobs ¼ WMSSM for definiteness (although
any SUSY model in the observable sector would suffice
equally well) and the sequestered superpotential as
follows:

Wseq ¼ M� ��þ 	�c
; (14)

where �, ��, c , 
 are independent superfield degrees of
freedom, and we drop hats on superfields, which should not
be confused with their scalar components. The global
SUSY F terms include

F �� ¼ M�; (15)

so that the potential includes a term

V ¼ jF ��j2 ¼ M2�y�; (16)

of the kind that we began with in Sec. II. Note that there is
no quartic term in the potential, since in SUSY theories
quartic terms arise from D terms, and here the fields are
supposed to carry no gauge charges. Note that the second
term in Eq. (14) could, in principle, lead to dissipative
effects [51] in case it caused a decay of the quintessence
field. However, we disregard this possibility here because
of three reasons: First, the fields c and 
 carry no Standard
Model charges and are barely coupled to any active fields
(even the coupling to neutrinos could be easily switched
off by a suitable symmetry). Second, these fields can be

assumed to obtain very heavy masses such that they
effectively decouple in the quintessence phase. And third
because any treatment of a quintessence field decay is, in
general, very model-dependent and beyond the scope of a
toy model as the one presented in this paper.
We now want the mass squared to be driven negative

radiatively. This is achieved by the second term on the
right-hand side of Eq. (14) proportional to the Yukawa
couplings 	. Loops of c and 
 will tend to drive M2

negative in pretty much the same way as the Higgs mass
squared is driven negative by top quark loops in the
MSSM. The main difference is that here we need
M� 1011 GeV, and we require its square to be driven
negative close to the Planck scale. In the Appendix, we
show that large soft masses of c , 
 (for example soft
masses of order 1014 GeV in the considered example) are
required to driveM2 negative close to the Planck scale and
result in a running scalar mass term of the kind that we
parametrized in Eq. (1). Such large soft masses are con-
sistent with SUSY being broken in the hidden sector at
very large scales as we now discuss.5

Assuming the radiative symmetry breaking mechanism
just described, the VEV h�i ��� 10�1MP results in a
very large value for
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FIG. 4 (color online). The evolution of the dark energy density ��ðtÞ and the scale factor aðtÞ in the RIDE model compared to a
cosmological constant. We have explicitly verified that a different normalization of the scale factor aðtÞ does not change our results.

5Note that the presence of extra dimensions could significantly
lower the estimated SUSY breaking scale as follows: Suppose
that the sequestered brane has a number of extra dimensions
which are parallel to it, as opposed to the extra dimension
orthogonal to it which serves to separate it from the observable
brane. The fields c and 
 feel these extra dimensions, while the
field � does not, and their Kaluza-Klein (KK) excitations give
rise to a large multiplicity of states which all enter the loop
corrections of M2, helping to drive it negative at a scale � close
to the Planck scale. The separation of the KK states depends on
the size R of the parallel extra dimension. Large R corresponds
to many different KK states within a given energy interval.
Moreover, the number of KK states increases multiplicatively
by adding more parallel extra dimensions. Such large multi-
plicity factors would serve to lower the above estimate of the
SUSY breaking scale.
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hF ��i �M�� 1029 GeV2: (17)

This large F term VEV is also consistent with other F term
VEVs which are required to generate the large soft masses
for the c , 
 fields responsible for driving h�i in the first
place. Without the sequestering such large soft masses in
the observable sector (far in excess of the TeV scale) would
render the MSSM so badly broken as to be not relevant for
the LHC, dark matter, the hierarchy problem, gauge uni-
fication, and so on. However, assuming sequestering, the
observable sector soft masses may be at the TeV scale, and
the only requirement is that the gravitino mass does not
exceed about 100 TeV, as discussed above. The gravitino
mass arising from the sequestered sector is given by

m3=2 ¼ eK=2M2
P

hWseqi
M2

P

� hM� ��i
M2

P

�M�h ��i
M2

P

< 100 TeV:

(18)

Here K denotes the Kähler potential which, in the canoni-
cal form, is just�y�. Since h�i<MP, it is approximately
correct to disregard the exponential. Inserting the value of
Eq. (17) into Eq. (18), we find the constraint

h ��i
MP

< 10�5: (19)

Since �� has no Yukawa couplings we would not expect it
to have a radiatively driven VEV, so this constraint can
easily be satisfied.

VI. CONCLUSIONS

We have proposed a model based on radiative symmetry
breaking that combines inflation with dark energy and is
consistent with the WMAP 7-year regions. The RIDE
model leads to the prediction of a spectral index 0:955 &
nS & 0:967 and a tensor to scalar ratio 0:142 & r & 0:186,
both consistent with current data but testable by the Planck
experiment. The radiative symmetry breaking close to the
Planck scale gives rise to a pseudo Nambu-Goldstone
boson with a gravitationally suppressed mass which can
naturally play the role of a quintessence field responsible
for dark energy. In the case of dark energy, the RIDEmodel
predicts w� � �1 at the present time (w� ¼ �0:98 in our

numerical example), with the expansion of the Universe
differing from the case of a cosmological constant in future
epochs. Finally, we have presented an example scenario in
which a RIDE toy model could arise. A next step of
investigation could be to search for more realistic examples
of RIDE, and to put them to a thorough test.

ACKNOWLEDGMENTS

We would like to thank M. Garny and L. Sorbo for
providing useful information, as well as M. Lindner for
useful discussions. This work has been supported by the

DFG-Sonderforschungsbereich Transregio 27 ‘‘Neutrinos
and beyond—Weakly interacting particles in Physics,
Astrophysics and Cosmology’’. The work of A.M. is sup-
ported by the Royal Institute of Technology (KTH), under
Project No. SII-56510, and by the Göran Gustafsson
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APPENDIX: ON THE RENORMALIZATION
GROUP EVOLUTION

From the superpotential in Eq. (14), it is easy to derive
the SUSY-preserving Lagrangian in terms of component
fields, supplemented by soft breaking terms [52]. Using
this, one can calculate the divergent part of the correction
to the self-energy of ~�, just as for the MSSM Higgs case,
which results in

�div
~� ~� ¼ 4	2

16�2
ðm2

b �m2
fÞ
1

�
; (A1)

where mf (mb) are essentially the masses of the fermionic

(bosonic) components of the superfield �, and where we
have neglected the trilinear coupling arising from soft
breaking. Indeed this correction vanishes in the supersym-
metric limit, mf ¼ mb. Using the scaling of the 4-scalar

coupling 	 in dimensional regularization, one can easily
derive the corresponding renormalization group equation
that describes the dependence of the mass squarem2

~� on the

energy scale � [23]:

dðm2
~�Þ

d ln ~�
¼ �

dðm2
~�Þ

d�
¼ 8	2

16�2
ðm2

b �m2
fÞ: (A2)

Indeed, the right-hand side of this equation has just the
form expected for the general � function of the scalar field
under consideration (cf. Eq. (3) in Ref. [23], where in our
case C ¼ 0, due to the absence of gauge interactions, and
D ¼ 8). Approximating the left-hand side by a difference
quotient, one obtains

m2
~�ð� ¼ fÞ ¼ m2

tree þ 8	2

16�2
�m2

soft ln

�
f

MP

�
; (A3)

where m2
tree ¼ M2, �m2

soft ¼ m2
b �m2

f, and f ¼
ffiffi
2
e

q
� is

the VEV of ~�. Taking �� 0:1MP (cf. Sec. III), MP ¼
1:2� 1019 GeV, and hence M� 1011 GeV [cf. Eq. (17)],
the requirement of the right-hand side of Eq. (A3) being
negative results in the constraint

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

soft

q
* 3� 1011 GeV; (A4)

and hence, e.g.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

soft

q
� 1014 GeV for 	� 10�3, which

is indeed far above the TeV scale, as anticipated.
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