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In this paper we compare the performances of the �2 and median likelihood analysis in the

determination of cosmological constraints using type Ia supernovae data. We perform a statistical analysis

using the 307 supernovae of the Union 2 compilation of the Supernova Cosmology Project and find

that the �2 statistical analysis yields tighter cosmological constraints than the median statistic if only

supernovae data is taken into account. We also show that when additional measurements from the cosmic

microwave background and baryonic acoustic oscillations are considered, the combined cosmological

constraints are not strongly dependent on whether one applies the �2 statistic or the median statistic to the

supernovae data. This indicates that, when complementary information from other cosmological probes is

taken into account, the performances of the �2 and median statistics are very similar, demonstrating the

robustness of the statistical analysis.
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I. INTRODUCTION

More than a decade ago, type Ia supernovae (SNIa)
provided the first clear evidence in favor of cosmic accel-
eration [1,2]. Since then, the availability of ever larger,
higher-quality SNIa data sets, as well as measurements
using other cosmological probes, such as the cosmic mi-
crowave background (CMB) or the baryonic acoustic
oscillations (BAO), have been providing overwhelming
evidence for the existence of dark energy [3–5], a fluid
with large negative pressure capable of driving the accel-
eration of the Universe.

In the so-called �CDM model, also known as the
concordance model, the dark energy role is played by a
cosmological constant �, responsible for approximately
73% of the energy density of the universe at the present
day. The remaining percentage is mainly in the form of
cold matter, most of which nonbaryonic and dark.
Radiation is residual at the present time and the universe
is spatially flat. Despite the good agreement with obser-
vational data, this model has little appeal on theoretical
grounds since the value of � required to explain the
observed cosmic acceleration is off by �120 orders of
magnitude from the standard quantum field theory pre-
diction. The coincidence between our observing time and
the time of the onset of cosmic acceleration is also puz-
zling [6,7]. Many other dark energy models have been
proposed, with the most influential being the ones based
on dynamical scalar fields. In these models, the energy
density varies with time and suitable choices of the scalar
field Lagrangian can relax some of the problems

associated with the cosmological constant (see, for in-
stance, the review in [8,9]). As a result, an important step
towards a better understanding of the dark energy in-
volves further testing of its possible dynamical nature.
The determination of dark energy constraints from ob-

servational data requires a robust statistical data analysis.
In the particular case of SNIa, the usual procedure is to
carry out a standard �2 likelihood analysis. However, in
[10,11] it has been argued that the median statistic could be
a more reliable alternative. The median statistical analysis,
despite having the drawback of being less constraining
than the �2 analysis, has the strong advantage of requiring
weaker assumptions about the data, thus yielding more
trustworthy constraints. Moreover, the median is less vul-
nerable to the presence of ‘‘outliers,’’ which is also a
significant advantage given the current uncertainties about
the physics of SNIa.
In this work we revisit and extend the analysis of [11],

updating it using the recent Union 2 SNIa compilation of
the Supernova Cosmology Project (SCP) [4]. We compare
the performances of �2 and median statistics in the deter-
mination of cosmological constraints using SNIa data,
considering also CMB and BAOmeasurements. The layout
of this paper is as follows. In Sec. II we describe the
application of �2 and median statistics to SNIa data. We
also discuss the use of additional information contained in
the CMB and BAO. In Sec. III we present and discuss our
results. Finally, we conclude in Sec. IV.

II. COSMOLOGICAL PROBES

A. SNIa

Type Ia supernovae appear to be good ‘‘standard can-
dles’’ and therefore they can serve as useful distance
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indicators. Constraints arise by comparing the theoretical
distance modulus,

�th ¼ 5log10

�
dLðzÞ
Mpc

�
þ 25; (1)

with the observational distance modulus�obs inferred from
the data, at the measured supernovae redshifts. In Eq. (1),
dLðzÞ is the luminosity distance given by

dLðzÞ ¼ ð1þ zÞc
H0

ffiffiffiffiffiffiffiffiffiffiffiffij�k0j
p S

� ffiffiffiffiffiffiffiffiffiffiffiffi
j�k0j

q Z z

0

dz0

Eðz0Þ
�
; (2)

where z is the cosmological redshift, H0 is the present day
value of the Hubble expansion rate and EðzÞ ¼ HðzÞ=H0.
The function S is defined as

SðxÞ ¼
8><
>:
sinx; �k0 < 0;

x; �k0 ¼ 0;

sinhx; �k0 > 0;

(3)

with the flat case (�k0 ¼ 0) being recovered taking the
limit �k0 ! 0 in Eq. (2). In this paper we consider

EðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m0a

�3 þ�de0a
�3ð1þwÞ þ�k0a

�2
q

; (4)

where a ¼ 1=ð1þ zÞ is the scale factor, �m0 and �de0

are, respectively, the present day values of the matter and
dark energy fractional densities (�i ¼ �i=�c, with �c

being the critical density) and �k0 ¼ 1��m0 ��de0.
The parameter w is the equation of state parameter of
the dark energy (the ratio between the pressure and the
energy density) which, for simplicity, we assume to be
constant (see however [12,13]). If the dark energy role is
played by a cosmological constant � then �de ¼ ��

and w ¼ �1.

1. �2 analysis

In the �2 statistical analysis, the likelihood P of the
cosmological parameters Q is given by P / expð��2=2Þ,
with

�2 ¼ XN
i¼1

�
�obsðziÞ ��thðzi; QÞ

�i

�
2
: (5)

In Eq. (5), N is the number of supernovae in the data set
and �i is the observational error associated with �obs at
the redshift zi. The �2 analysis assumes that: (i) the
experimental results are statistically independent;
(ii) there are no systematic errors; (iii) the statistical
errors follow a Gaussian distribution; (iv) the standard

deviation of the statistical errors is equal to the obser-
vational uncertainty.
Presently, there is no strong evidence supporting that

the supernovae magnitude errors are Gaussianly distrib-
uted and therefore the hypothesis (iii) and (iv) are quite
strong. Moreover, the �2 statistic is highly susceptible to
the presence of ‘‘outliers’’ in the data sets. This con-
stitutes an extra concern, in particular, due to the un-
certainties associated with the calibration of the SNIa
light curves.

2. Median analysis

The fewer the assumptions one needs to make about the
dataset, the more reliable the results derived from it are.
The median statistical analysis discards the assumption of
the Gaussianity of the errors, requiring only the use of
hypothesis (i) and (ii).
Assuming that the experimental results are statistically

independent and that there are no systematic errors present,
one expects that after performing a sufficiently large num-
ber of measurements, approximately half of the values
obtained will be above (or below) the correct mean value.
In particular, if we perform N measurements, the proba-
bility that k of them will be above (or below) the median is
given by the binomial distribution,

Pbinomialðk; NÞ ¼ 2�NN!

k!ðN � kÞ! : (6)

This way, given the data set �obsðziÞ [i ¼ 1 . . .N], the
likelihood of the cosmological parameters Q is obtained
by counting the number of observational values that fall
above (or below) the curve given by Eq. (1).
Despite being associated with less tighter constraints

than the �2 statistic, the median statistic is not very
sensitive to the presence of a few ‘‘outlier’’ SNIa ob-
jects. In [10], it has been shown how the presence of one
or very few ‘‘ill’’ data points could severely distort a �2

analysis, while the median results remained approxi-
mately the same.
On the other hand, one should notice that the like-

lihood computed with the median statistic only accounts
for the number of experimental points above or below
the model’s curve, not differentiating between the vari-
ous ways in which these points could be distributed. For
instance, a model where the first half of the data points
is above the model’s curve and the second half is below
has the same likelihood (when computed with the me-
dian) as a model where the first point is above, the
second below, the third above, the fourth below, and so
forth. These two cases should not be indistinct since the
first could turn out to be a terrible fit to the data. In [11]
it has been shown how some modifications of the median
statistic could alleviate this problem. In short, the mod-
ifications involved taking into account the size of the
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largest continuous sequence found above (or below) the
model’s prediction, or the number of total continuous
sequences obtained.

Here, we propose an alternative way to cope with this
problem. Instead of counting the number of points that are
above (or below) the model’s prediction in the entire
redshift range of the data set, one may divide the data set
into redshift intervals with a certain number of SNIa ob-
jects and perform the counting in each interval. Suppose
we divide the data set into n intervals, with Nj being the

number of SNIa objects in the j-th interval (j ¼ 1 . . . n).
This way, the overall likelihood of the parameters Q is
given by

P ¼ Yn
j¼1

Pbinomialðkj; NjÞ; (7)

where kj is the number of points that, in the j-th interval,

are above (or below) the theoretical curve given by the
parameters. This way, by properly dividing the data set into
groups of supernovae, we are more likely to avoid patho-
logical situations in which very large sequences of SNIa
above (or below) the median value are present.

B. The CMB shift parameter

The CMB shift parameter R is defined by

Rth �
ffiffiffiffiffiffiffiffiffiffi
�m0

p H0

c

dLðzdecÞ
ð1þ zdecÞ

¼
ffiffiffiffiffiffiffiffiffiffi
�m0

p
ffiffiffiffiffiffiffiffiffiffiffiffij�k0j

p S

� ffiffiffiffiffiffiffiffiffiffiffiffi
j�k0j

q Z zdec

0

dz0

Eðz0Þ
�
; (8)

with the redshift of decoupling zdec � 1090:97 [5,14].
Following the WMAP 7-year results [5] we take Robs ¼
1:725 with an error �R ¼ 0:018. The likelihood derived
from the shift parameter is then PCMB / expð��2

CMB=2Þ,
with

�2
CMB ¼

�
Rth � Robs

�R

�
2
: (9)

In the case of the CMB, there are spatial correlations
between the data points which do not satisfy hypothesis
(i), crucial for the use of the median statistic. However, it
turns out that assuming that R is Gaussianly distributed
around Robs with standard deviation �R provides an effi-
cient summary of the information encoded in the full CMB
data [15,16].

C. The BAO scale

The baryonic acoustic oscillations imprinted in the CMB
manifest themselves today in the large-scale distribution of
galaxies. The BAO signature on large scales was found in
[17], when a small ‘‘bump’’ in the two-point correlation

function of red-luminous galaxies was measured.
Cosmological constraints arise via the position of the
‘‘bump’’, which is related to the quantity

AthðzÞ ¼
ffiffiffiffiffiffiffiffiffiffi
�m0

p
EðzÞ�ð1=3Þ

�
2
4 1

z
ffiffiffiffiffiffiffiffiffiffiffiffij�k0j

p S

� ffiffiffiffiffiffiffiffiffiffiffiffi
j�k0j

q Z z

0

dz0

Eðz0Þ
�352=3

: (10)

The likelihood is PA / expð��2
A=2Þ, with

�2
A ¼

�
AthðzBAOÞ � Aobs

�A

�
2
; (11)

where zBAO ¼ 0:35, Aobs ¼ 0:469 and �A ¼ 0:017
[18,19]. Just like in the case of the CMB, there are spatial
correlations between the BAO data points which prevent
the use of the median statistic. However, it is usually safe to
assume that A is Gaussianly distributed [17,18].

III. RESULTS

A. SNIa constraints

Following the discussion in Sec. II A, we divide the
SNIa Union 2 dataset [4], which contains a total of N ¼
307 SNIa objects, in groups of approximately 75 SNIa
each. The supernovae are ordered by increasing redshift
with the first three groups having 76 supernovae and the
forth group 79. Several other ways to divide the set are
possible. However, this choice is not critical for our
conclusions.
Figures 1 and 2 show the 68.3%, 95.4%, and 99.7%

confidence level contours on �m0 and ��0, obtained
from the Union 2 SNIa data set using the �2 and median
statistical analysis, respectively. Figures 3 and 4 are similar
to Figs. 1 and 2, except that now the SNIa constraints are
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FIG. 1. 68.3%, 95.4% and 99.7% confidence level contours on
�m0 and��0, obtained from the Union 2 SNIa data set using the
�2 statistical analysis.
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on the (�m0, w) plane and the condition �k0 ¼ 0 was
assumed. In both cases the Hubble parameter today was
held fixed at H0 ¼ 70:2 km=s=Mpc [5]. As expected, the
constraints using the �2 statistic are tighter, consequence
of the stronger assumptions it makes about the data.
Nevertheless, the constraints obtained using the median
statistical analysis are not as bad as one could originally
fear. The median contours are more ‘‘stretched’’ than the
�2 ones, but their ‘‘width’’ is similar. The median statisti-
cal constraints are in principle more reliable, since they do
not assume Gaussianity of the SNIa magnitude error
distribution.

B. SNIaþCMBþBAO constraints

Figures 5 and 6 show the 68.3%, 95.4% and 99.7%
confidence level contours on �m0 and ��0, obtained
from the Union 2 SNIa data set (using the �2 and median

Ω
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0 0.1 0.2 0.3 0.4 0.5
−1.5

−1

−0.5

FIG. 3. 68.3%, 95.4% and 99.7% confidence level contours on
�m0 and w (assuming that �k0 ¼ 0), obtained from the Union 2
SNIa data set using the �2 statistical analysis.
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FIG. 4. Same as Fig. 3 but using the median statistical analysis.
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FIG. 5. 68.3%, 95.4% and 99.7% confidence level contours on
�m0 and ��0, obtained from the Union 2 SNIa data set,
combined with constraints on the CMB shift parameter R, using
the �2 statistical analysis.
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FIG. 6. Same as Fig. 5 but using the median statistical analysis
for the SNIa data.
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FIG. 2. Same as Fig. 1 but using the median statistical analysis.
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statistical analysis, respectively), combined with con-
straints on the CMB shift parameter R. The differences
between the results obtained with the �2 and median
statistics are now significantly reduced. This is related to
the fact that, as shown in Figs. 1 and 2, the ‘‘width’’ of the

SNIa contours, obtained using the �2 and median analysis,
is very similar. The CMB contours ‘‘cross’’ the SNIa
contours, rendering similar combined constraints in both
cases. Considering the BAO data (not shown) tightens the
constraints slightly (see Table I).
Figures 7 and 8 show the combined constraints on �m0

andw (assuming that�k0 ¼ 0), obtained from SNIa (using
�2 and median analysis, respectively), CMB and BAO
data. Again, we see that the combined constraints are
weakly dependent on whether one derives the constraints
from SNIa with the �2 or with the median statistical
analysis.
Table I presents a summary of the constraints, at the 1�

level, obtained from different data combinations and model
assumptions. It shows that the median is almost as con-
straining as the �2 statistical analysis, if combined with
additional CMB and BAO constraints. Hence, the strong
assumption that the SNIa measurements are Gaussianly
distributed is not necessary in order to obtain tight con-
straints. On the other hand, since the �2 and median
statistical analysis yield similar cosmological constraints
when the SNIa data is combined with other cosmological
probes, our results may also be interpreted as providing
additional validation of the results obtained using the
standard �2 statistical analysis.

IV. CONCLUSION

In this paper we compared the cosmological con-
straints derived from the Union 2 SNIa dataset using
�2 and median statistics. In the absence of CMB and
BAO constraints, we have shown that the �2 statistic
yields tighter cosmological constraints than the median
statistic, as a result of the stronger assumptions it makes
about the SNIa magnitude error distribution. On the
other hand, when CMB and BAO information is taken
into account, the performances of both statistics are very
similar. Hence, we conclude that the assumption of the
Gaussian distribution of the errors in the SNIa analysis
does not appear to be critical in the determination of
cosmological constraints, provided that complementary
information from other cosmological probes is also taken
into account.

TABLE I. Constraints on �m0, �de0 and w, obtained from SNIa (�2 and median analysis),
CMB and BAO data, as well as their combinations. The constraints are at the 1� level.

Fit �m0 �k0 w

SNIað�2Þ þ CMB [0.254; 0.310] ½�0:043; 0:056� �1ðfixedÞ
SNIaðmedianÞ þ CMB [0.260; 0.342] ½�0:061; 0:083� �1ðfixedÞ

SNIað2Þ þ CMBþ BAO [0.269; 0.313] ½�0:031; 0:049� �1ðfixedÞ
SNIaðmedianÞ þ CMBþ BAO [0.275; 0.333] ½�0:042; 0:064� �1ðfixedÞ
SNIað2Þ þ CMBþ BAO [0.264; 0.308] 0(fixed) ½�1:084;�0:955�
SNIaðmedianÞ þ CMBþ BAO [0.266; 0.312] 0(fixed) ½�1:058;�0:902�
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CMB

FIG. 8. The same as Fig. 7 but using the median statistical
analysis for the SNIa data.
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FIG. 7. 68.3%, 95.4% and 99.7% confidence level contours on
�m0 and w (assuming that �k0 ¼ 0), obtained from the Union 2
SNIa data set, combined with constraints on the CMB shift
parameter R and the BAO scale, using the �2 statistical analysis.
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