
Dark degeneracy and interacting cosmic components

Alejandro Aviles1,* and Jorge L. Cervantes-Cota2,†

1Instituto de Ciencias Nucleares, UNAM, México
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(Received 15 August 2011; published 13 October 2011; publisher error corrected 18 October 2011)

We study some properties of the dark degeneracy, which is the fact that what we measure in

gravitational experiments is the energy-momentum tensor of the total dark sector, and any split into

components (as in dark matter and dark energy) is arbitrary. In fact, just one dark fluid is necessary to

obtain exactly the same cosmological and astrophysical phenomenology as the �CDM model. We work

explicitly the first-order perturbation theory and show that beyond the linear order the dark degeneracy is

preserved under some general assumptions. Then we construct the dark fluid from a collection of

interacting fluids. Finally, we try to break the degeneracy with a general class of couplings to baryonic

matter. Nonetheless, we show that these interactions can also be understood in the context of the �CDM

model as between dark matter and baryons. For this last investigation we choose two independent

parametrizations for the interactions, one inspired by electromagnetism and the other by chameleon

theories. Then, we constrain them with a joint analysis of CMB and supernovae observational data.
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I. INTRODUCTION

Current cosmological observations indicate that about
96% of the total energy content of our Universe is made
of yet unknown dark components and only 4% is made of
particles of the standard model. Among them, there are
precision measurements of anisotropies in the cosmic
microwave background (CMB) radiation [1–3], baryon
acoustic oscillations [4,5], and Type Ia supernovae [6–8].
For a recent review of the nowadays status of cosmology
see, e.g., [9].

Usually this dark fluid is separated into two components:
a clustering dark matter piece responsible for forming
structure in the Universe and a nonclustering dark energy
with a negative pressure that is responsible for the current
accelerated cosmic expansion.

Moreover, in the concordance model of cosmology—
the so-called lambda cold dark matter (�CDM) model—
the dark energy is of geometric nature and enters as a
constant at the Lagrangian level of Einstein’s gravitational
theory. For gravity matters, the cosmological constant is
indistinguishable from the vacuum contribution of quan-
tum fields, and here appears an intriguing problem, the
sum of both contributions is about 1 over 10120 times the
latter [10]. A second conceptual problem with the �CDM
model comes out when one considers the ratio of dark
energy over dark matter energy densities, which in spite of
growing with the third power of the scale factor of the
Universe, its value today is of order one. This is the so-
called coincidence problem. As a consequence, a plethora
of alternative proposals has appeared in the literature; as a
short sample see [11–20].

In this paper we argue that the separation of the dark
fluid into dark matter and dark energy is arbitrary and is
only favored for historical reasons and computational
simplicity. After all, we define the dark fluid as our lack
of knowledge as1

Tdark
�� ¼ 1

8�G
G�� � Tobs

�� ; (1)

where G�� comes from the observed geometry of the

Universe and Tobs
�� from its observed energy content. In

fact, the dark sector could be composed by a large zoo of
particles with complicated interactions between them.
Or, it could be even just one exotic unknown dark fluid.
This property has been called dark degeneracy by M. Kunz
[21]; see also [22–28].
In this paper we assume an astrophysical perspective to

the dark fluid by defining it as a barotropic fluid with speed
of sound equal to zero, as in [29,30] and more recently in
[31]; for similar approaches see [32–34].
Making the speed of sound equal to zero ensures that

dark fluid energy density perturbations will grow at all
scales, but at the same time, it allows the fluid to have a
nonzero pressure. This is quite in contrast with canonical
scalar fields as quintessence, for which the speed of its
perturbations is equal to 1, a feature that makes dark energy
perturbations to be quickly damped, so they do not grow
inside the horizon.
Interactions within the dark sector has been studied

largely in the literature [35–43], mainly as a mechanism
to solve the coincidence problem. On the other hand,
interactions between dark matter and the standard model
of particles are expected, and have been studied also on
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several occasions. In fact, the weakly interacting massive
particles (WIMPs) paradigm has emerged as the predomi-
nant scenario to solve the missing mass problem [44–48].
Nevertheless, other alternatives have been proposed.
Among them, special attention has been attracted by the
strong interacting dark matter scenarios [49–54], in which
dark matter interacts with itself and with baryons [50]
through the strong force. It has been shown [49,55] that
this alternative can alleviate the cuspy halos and overden-
sity of substructure problems that appear in N-body simu-
lations based on the standard �CDM model [56].
In this paper we develop a general class of couplings of

the dark fluid to the standard model of particles, and show
that they can be also understood as interactions of dark
matter to baryons. Then, we impose constraints by using
CMB anisotropies and supernovae observations.
This work is organized as follows: In Sec. II we define

the dark fluid from the properties of the dark matter itself.
In Sec. III we work out the cosmological background
solutions for the dark fluid and show that they are identical
to the �CDM model ones, leading to the dark degeneracy.
In Sec. IV we show that the dark degeneracy is preserved
under some assumptions when one goes beyond zero order
in cosmological perturbation theory. In Sec. V we work a
multifluid description of the dark sector, allowing interac-
tion among its components. In Sec. VI we extend these
interactions to baryons to try to break the dark degeneracy.
Finally, in Sec. VII, we present our conclusions.

II. THE SOUND SPEED OF THE DARK FLUID

Considering Newtonian gravity for the moment, the
overdensities of matter in an expanding Universe follow
the equation in Fourier space

�00 þ 2H�0 þ ðc2sk2phys � 4�G�Þ� ¼ 0; (2)

where kphys is a physical wavelength (contrary to the

comoving wavelength which we will use in the following
sections) related to a physical length scale by kphys ¼
2�=lphys, c2s is the speed of sound of the fluid under

consideration, and prime means derivative with respect to
cosmic time. In astrophysical scales it is safe to set H ¼ 0
and then the scale factor is equal to a constant that we make
equal to one for this discussion matters. It follows that
there is a threshold scale, the Jeans length, given by

lJ ¼ cs

ffiffiffiffiffiffiffi
�

G�

s
(3)

for which perturbations with physical length above it,
lphys > lJ, grow by gravitational collapse, and perturba-

tions with lphys < lJ develop acoustic oscillations.

We expect to have dark matter structure at a wide range
of scales: from the largest cosmological structure to gal-
axies. In fact, even dwarf galaxies need to have dark matter
halos in order to stabilize their disks and to account fpr the
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FIG. 1 (color online). Evolution of perturbation variables for
a mode k ¼ 0:05 Mpc�1. Solid curves are obtained from the
dark fluid model for different values of the parameter � in the
initial conditions �dð�iÞ ¼ ��DMð�iÞ�DMð�iÞ=�dð�iÞ. � takes
values from 0.8 to 1.2. Dashed curves are for the �CDM
model variables. The panels show: (a) Gravitational potential
�. (b) Baryonic density contrast �b. (c) Dark fluid (solid lines)
and dark matter (dashed line) density contrasts, �d and �DM.
(d) Dark fluid (solid lines) and dark matter (dashed line) veloc-
ities, �d and �DM. The solutions for the case � ¼ 1 are depicted
with the thick (red) lines, which for panels (a), (b), and (d)
coincide with the dashed lines.
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necessary gravity sources to obtain the observed flat rota-
tion curves which follow the luminous matter in there. The
only way to guarantee that dark matter perturbations grow
at all scales is demanding that the Jeans length be equal to
zero.

For barotropic fluids the adiabatic speed of sound co-
incides with the speed at which perturbations propagate in
the fluid. We define the dark fluid as a barotropic fluid with
an adiabatic speed of sound equal to zero,

c2s ¼ 0; (4)

and that, at a first approximation, does not interact with
particles of the standard model.2 Without loss of generality
we can write its equation of state as

Pð�Þ ¼ wð�Þ�; (5)

where w is its equation of state parameter and is a
function of the energy density � only. Thus we have c2s ¼
ð@P=@�Þs ¼ dP=d�. Using Eq. (4) we obtain that the
equation of state parameter is solved by the equation
�dw=d�þ w ¼ 0, whose solution is

w ¼ � C
�
; (6)

with C a constant and the minus sign is set for later
convenience. This means that the pressure is a constant

P ¼ P0 ¼ �C: (7)

Astrophysical observations constrain this value to be very
small, jPj � �A, where �A is the energy density of typical
astrophysical scales where dark matter has been detected.
Usually, it is assumed that dark matter is pressureless, but
this is by no means necessary; for instance it could be the
case that jPj � �c0, where �c0 is a typical cosmological
energy density scale at present, without getting in contra-
diction with observations. In fact, this is the entrance that
leads us to consider the dark fluid to be dark energy as well
as dark matter.

III. DARK FLUID AS DARK ENERGY

Now, let us consider a Friedmann-Robertson-Walker
description of the Universe at very large scales, filled
with standard model particles ðb; 	; . . .Þ and with the
above-defined dark fluid, from now on labeled by d. The
evolution equations of such a Universe are

H2 ¼ 8�G

3
ð�d þ �b þ �	Þ; (8)

�0
b þ 3H�b ¼ 0; (9)

�0
	 þ 4H�	 ¼ 0; (10)

and

�0
d þ 3Hð1þ wdÞ�d ¼ 0; (11)

where H � a0=a is the Hubble factor. Equations (9) and
(10) give �b ¼ �b0a

�3 and �	 ¼ �	0a
�4, where a sub-

index 0 means that the quantity under consideration is
evaluated at present time, and we have normalized the
scale factor to be equal to one today, a0 ¼ 1. Integration
of Eq. (11) gives, using Eq. (6),

�d ¼ �d0

1þK

�
1þK

a3

�
; (12)

where we have defined the constant K ¼ ð�d0 � CÞ=C.
This expression is what we expect for the evolution of a
unified fluid: a piece that redshifts with the scale factor as
a�3, as a dark matter component does, and a piece that
remains constant, as vacuum energy. This result has been
found elsewhere in the literature, as in [34], which inves-
tigated the �CDM limit of a Chapliying gas, or as in the
study of barotropic fluids with constant speed of sound
[29–32]. In fact, using the language of E. Linder and R.
Scherrer [32], in our case the term proportional to a�3 is
the aether piece of a barotropic fluid.
Now the equation of state parameter of the dark fluid (6)

becomes

wd ¼ � 1

1þKa�3
: (13)

We want to stress that the energy density of the dark
fluid is proportional to the inverse of its equation of state
parameter

�d ¼ � �d0

ð1þKÞ
1

wd

; (14)

and that its pressure, expressed in terms of the constant K
instead of C, is

Pd ¼ � �d0

1þK
: (15)

In order to ensure the positivity of the energy density at all
times, K must be a positive number. This implies that the
pressure is negative, a quality that allows the dark fluid to
accelerate the Universe, and as we have outlined in the last
section it could take values of the order of the critical
density ð�3H2

0=8�GÞ without affecting the behavior of

the dark fluid as dark matter in astrophysical scenarios.
The Friedmann Eq. (8) becomes

H2 ¼ 8�G

3

�
�d0

1þK
þ K�d0

1þK
a�3 þ �b0a

�3 þ �	0a
�4

�
:

(16)

2The barotropic condition dismisses, for instance, the possi-
bility of scalar fields for which, although the speed of propaga-
tion of its perturbations is equal to the speed of light, this does
not coincide with its adiabatic speed of sound, which indeed
could be zero.
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This is the same evolution equation for the scale factor as
in the �CDM model. This is not an accident, if one
assumes �CDM as the valid model and considers the total
energy density of the dark components, �T ¼ �DM þ ��,
the total equation of state parameter, wT , defined by

wT �
P
a
wa�a

P
a
�a

; (17)

where the subindex a runs over dark matter (DM) and
cosmological constant (�), is given by

wT ¼ � 1

1þ �DM

��
a�3

; (18)

where �DM ¼ 8�G�DM0=3H
2
0 and ��0 ¼ �=3H2

0 .

(Clearly, the equation _�T ¼ �3H ð1þ wTÞ�T is accom-
plished for the total energy density.) Then, comparing these
results to Eqs. (13) and (16), we note that under the
identifications

K ¼ �DM

��

; (19)

and

�d ¼ �DM þ��; (20)

where �d ¼ 8�G�d0=3H
2
0 , the resulting evolution cos-

mology in both models are exactly the same, at least at
the background level.

This property has been called dark degeneracy by
M. Kunz in [21]. In fact, it is more general than for
the single fluid case worked here: any collection of fluids
whose total equation of state parameter is equal to Eq. (18)
and that do not interact with baryons and photons will
behave exactly as the composed dark matter-cosmological
constant fluid, leading to a degeneracy with the �CDM
model.

IV. BEYOND THE BACKGROUND

In this section we explicitly show that the degeneracy is
preserved when one goes beyond the homogeneous and
isotropic cosmology, but only under some general assump-
tions that have been taken for granted in previous works.
We divide the discussion into linear and higher orders in
cosmological perturbation theory.

A. Linear order

Let us consider cosmological perturbation theory in the
conformal Newtonian gauge, the metric is given by (for
details see [57])

ds2 ¼ a2ð�Þ½�ð1þ 2�Þd�2 þ ð1� 2�Þ�ijdx
idxj�;

(21)

where � is the conformal time related to the cosmic
time by dt ¼ ad�. As usual, we define the matter pertur-
bation variables through the expressions of the energy-

momentum tensor

T0
0 ¼ ��ð1þ �Þ; (22)

Ti
0 ¼ �ð�þ PÞvi; (23)

Ti
j ¼ Pðð1þ �LÞ�i

j þ�i
jÞ; (24)

where �i
j is the anisotropic (traceless) stress tensor. The

energy density � and the pressure P denote background
quantities and are functions of the conformal time only.
The vector vi is called the peculiar velocity and is related
to the four velocity u� of the fluid by the relation
vi ¼ ui=u0. In Fourier space we define the velocity � ¼
ikiv

i and the scalar anisotropic stress 
 ¼ 2kikj�
ijw=

3ð1þ wÞ. We use the flat space metric ð�ijÞ to raise and

lower indices of intrinsic space geometrical objects like
vi and �i

j.

The hydrodynamical equations for a general fluid are
[57]

_� ¼ �ð1þ wÞð�� 3 _�Þ � 3H
�
�P

��
� w

�
�; (25)

_� ¼ �H ð1� 3wÞ�� _w

1þ w
�þ �P=��

1þ w
k2�

þ k2�� k2
; (26)

where �P ¼ P�L, �� ¼ ��, H ¼ _a=a and a dot means
derivative with respect to conformal time. For the dark
fluid case, c2s ¼ _Pd= _�d ¼ wd � _wd=3H ð1þ wdÞ ¼ 0
and these equations become

_� d ¼ �ð1þ wdÞð�d � 3 _�Þ þ 3Hwd�d � 3H
�Pd

��d

�d;

(27)

_� d ¼ �H�d þ k2�þ �Pd=��d

1þ wd

k2�d � k2
d; (28)

while for baryons after recombination (when the coupling
to photons can be safety neglected)

_� b ¼ ��b þ 3 _�; (29)

_� b ¼ �H�b þ k2�: (30)

The fluid equations are supplemented with the Einstein’s
equations

k2� ¼ �4�Ga2
X
i

�i�i; (31)

and

k2ð���Þ ¼ 12�Ga2
X
i

ð�i þ PiÞ
i (32)

where the sum runs over all fluid contributions and
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�i ¼ �i þ 3H ð1þ wiÞ �i
k2

(33)

is the rest fluid energy density [58].
To solve these equations, we need to add information

about the nature of the dark fluid. The barotropic condition
implies that �P ¼ c2s�� and thus �Pd ¼ 0, and because it
is a perfect fluid, the anisotropic stress vanishes,�dj

i ¼ 0.

Accordingly, the space-space components of the perturbed

energy-momentum tensor are equal to zero, �Tij
d ¼ 0.

Therefore, in the right-hand side (rhs) of Eq. (27) the last
term vanishes, and in the rhs of Eq. (28) only the two first
terms survive. If there are only baryons and dark fluid the
two gravitational potentials are equal, � ¼ �.

Figure 1 shows the evolution of a mode k ¼ 0:05 Mpc�1

of the perturbations variables. The dashed lines show
results for the �CDM model, for which we have to use
the dark matter perturbations equations,

_� DM ¼ ��DM þ 3 _�; (34)

_� DM ¼ �H�DM þ k2�; (35)

instead of Eqs. (27) and (28).
In evolving the perturbations for both models,

�CDM and dark fluid, we have imposed on the initial
conditions the relations �dð�iÞ ¼ ��DMð�iÞ�DMð�iÞ=
�dð�iÞ for the density contrasts, and �dð�iÞ ¼ ��DMð�iÞ
�DMð�iÞ=ð1þ wdÞ�dð�iÞ for the velocities, and we let � to
take different values. These initial conditions are given at
an initial time well after recombination, so we can use
Eqs. (29) and (30) and the relation �DM ’ �b holds.

We note that the evolution of the density contrast of
baryons for the specific mode we have chosen is indistin-
guishable for both models if we take � ¼ 1. Then,
although the cosmological observable is the baryonic mat-
ter power spectrum which includes a wide range of wave-
lengths, Fig. 1 suggests that indeed the results are the same
for both models for any wavelength, as we show below.

In the cosmological context, imposing these two initial
conditions is equivalent to demand that at first order in
perturbation theory, the time-time and time-space compo-
nents of the perturbed energy-momentum tensor of the
dark fluid and �CDM models are equal at the given initial
time �i. It is straightforward to show that both conditions,
in the case � ¼ 1, will be preserved at all times. This
means that in obtaining the � ¼ 1 solutions in Fig. 1 we
have imposed that

�d�d ¼ �DM�DM; (36)

and

�dð1þ wdÞ�d ¼ �DM�DM: (37)

From now on, we will demand Eqs. (36) and (37) to hold
for all considered fluids, staying in degeneracy with the
�CDM model at first order in cosmological perturbation

theory. Later on, in Sec. VI, we will try to break this
degeneracy, but through couplings of the dark fluid to
baryonic matter.
From the results of the previous section it is straightfor-

ward to see that �DM=�d ¼ 1þ wd, then Eq. (37) implies
that �DM ¼ �d, which explains the behavior of the curves
in Fig. 1(d). Moreover, from Eq. (31) it follows that the
gravitational potentials� are the same for both models, so
the behavior in Fig. 1(a).
Finally, inserting Eqs. (36) and (37) into Eqs. (34) and

(35), respectively, and using Eq. (14), we obtain that
the hydrodynamical perturbation equations for the dark
fluid are

_� d ¼ �ð1þ wdÞð�d � 3 _�Þ þ 3Hwd�d; (38)

_� d ¼ �H�d þ k2�: (39)

These equations are equal to (27) and (28) for a barotropic
perfect fluid, confirming the dark degeneracy at first-order
level.
It is interesting to note the behavior of the density

contrast of the dark fluid [Fig. 1(c)], which initially grows
as a dark matter component to later decay asymptotically
to zero. In fact, this behavior is natural for all wavelengths
modes as can be seen from Eqs. (27) and (28): At

late times, when wd tends to �1, the _�d source becomes
independent of �d and is a negative quantity which tends to
zero. Meanwhile at early times, for wd ! 0, Hwd ! 0,
and the equations become equal to the cold dark matter
evolution equations, (34) and (35).

B. Beyond linear order

To go beyond the linear order, let us make perturbation
expansions to the dark fluid and �CDM energy-
momentum tensors about the (zero order) background
cosmological fluids as

T�� ¼ Tð0Þ
�� þ Tð1Þ

�� þ Tð2Þ
�� þ � � � : (40)

If the total energy-momentum tensors of both models are
equal (Td

�� ¼ T�CDM
�� ), clearly each of the terms in the

expansion will be equal as well (TdðiÞ
�� ¼ T�CDMðiÞ

�� ). This
argument is outlined in [21] to argue that the degeneracy is
preserved at all orders. Certainly, this is correct.
Nonetheless, we want to stress a different approach: We

are affected gravitationally by the total energy-momentum
tensor, but usually when comparing observations to models
we expand it as in Eq. (40), and after this we assign values
to each of the pieces. The fact that both energy-momentum
tensors are equal, say at zero order, does not imply that they
will be equal at first order. In this situation, equations such
as (36) and (37) are conditions of the theory and not
consequences of it, and if not imposed, the degeneracy is
broken, as seen in Fig. 1 for � � 1.
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This approach, which we will adopt, is very close to that
followed in some papers which investigate modified grav-
ity theories that are indistinguishable in the background
from the �CDM model but could differ in linear order,
leaving imprints that are parametrized to compare to
current and future observations (see [59] and references
therein). In fact, if some of these imprints were detected,
they could be a consequence of interactions within the dark
sector (or even with baryons, as those we study in Sec. VI)
instead of a deviation from general relativity..

Finally, there is a subtle point that is pertinent to assert
at this moment. The fact that the Universe is so smooth at
very large scales is what allows us to expand the energy-
momentum tensor of the cosmic fluids as in Eq. (40).
The zero-order term is in fact a spatial average in hyper-

surfaces of constant cosmic time, Tð0Þ
�� ¼ hT��i, and there-

after we assume that general relativity holds in the form

G��ðgð0ÞÞ ¼ hT��i. This is not true in general due to the

nonlinear character of gravity; it is well-known that back-
reaction effects contributes to this last equation. For recent
work in the averaging procedure in cosmology and its
caveats see [60].

For the specific case that concerns us there is a related
issue. Let us consider a fluid with equation of state
P ¼ Pð�Þ that leads to a unified description of the dark
sector. It has been noted that it is not necessarily true that
hPi ¼ Pðh�iÞ [61]; in fact higher-order corrections enter
into this equation. Therefore, when some scale grows and
leaves the linear regime, the naive averaging procedure on
the equation of state is no longer valid. This nonlinear
effect has been investigated in [29,61,62], and it was shown
that instabilities are expected to occur in unified dark
models, even on large cosmological scales. Two exceptions
are the cases in which the involved equations of state are
P ¼ constant and P ¼ w�, with w a constant. The former
is the case of the dark fluid, and then, it does not suffer for
this averaging problem. Nonetheless, it is worth emphasiz-
ing that in models that depart—although indistinguishable
by current observations when calculations are performed
using the average procedure—from the dark fluid or from
the �CDM models, these effects must be considered.

V. MULTIPLE INTERACTING DARK FIELDS

From the last section it is clear that the dark fluid,
although not necessarily, could be the sum of a dark matter
and a cosmological constant component. Nonetheless, if
the interaction to the particles of the standard model is only
gravitational (which is the ultimate definition of dark), the
nature of the dark fluid is fundamentally impossible to
elucidate, because of the universality of this force.

In this section, we explore the possibility that the dark
fluid is composed of a collection of dark components with
possible interactions between them. The equations that we
obtain will be generalized in the next section to include
interactions to baryons. Let us consider the Einstein field

equations,

G�� ¼ 8�G

�X
a

T��
a þ T��

SM

�
; (41)

where the subindex a labels the different dark components.
If we forbid dark components to interact with standard
model particles, the Bianchi identities imply r�T

��
SM ¼ 0

and

r�T
��
a ¼ Q�

a; (42)

where the energy-momentum transfer vectors, Q�
a, obey

the constraint X
a

Q�
a ¼ 0: (43)

Considering for the moment the homogeneous and iso-
tropic cosmology, the continuity equation for each fluid is

_� a þ 3H ð1þ waÞ�a ¼ qa; (44)

where qa denote the energy transfer between different dark
components. This implies that at zero order (ignoring the
subindex a’s for the moment),

Q�ð0Þ ¼ 1

a2
ðq; ~0Þ; (45)

if we define Q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g��Q
�Q�

p
, then Qð0Þ ¼ q=a and

Q�ð0Þ ¼ a�1ðQð0Þ; ~0Þ. Now, following [63,64], we split the
interaction vector as

Q� ¼ Qu� þ f�; (46)

where the momentum transfer, f�, is first order and is
orthogonal to the four velocity f�u� ¼ 0. Thus, under
spatial rotationsQ transforms as a scalar and fi as a vector.
Accordingly, we decompose fi as

fi ¼ f;i þ �i (47)

with f a scalar and �i a transverse vector, �
i
;i ¼ 0, and we

define the perturbation �Q through

Q ¼ Qð0Þ þ �Q ¼ 1

a
ðqþ �qÞ; (48)

where in the last equality we defined �q � a�Q. From
(46) it follows that up to first order

Q0 ¼ 1

a2
ðqð1��Þ þ �qÞ (49)

Qi ¼ 1

a2
qvi þ 1

a2
f;i þ 1

a2
�i: (50)

Finally, from Eq. (43) one obtains (after restoring a’s) the
constriction equations

X
a

�qa ¼ 0;
X
a

qa ¼ 0; (51)
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and a2
P

aQ
i
a ¼ P

aðqavi
a þ f;ia þ �iaÞ, which by taking the

divergence and going to Fourier space become

X
a

ðqa�a þ k2faÞ ¼ 0: (52)

Now, to first order in perturbation theory, the divergence of
the energy-momentum tensor—for each fluid, omitting the
subindex a—is

r�T
�0¼ 1

a2
ð1þ��2�Þð _�þ3H ð1þwÞ�Þ

þ �

a2

�
_�þð1þwÞð@ivi�3 _�Þþ3H

�
�P

��
�w

�
�

�
;

(53)

r�T
�i ¼ P

a2
@j�

ij þ 1

a2
ð _�þ 3H ð1þ wÞ�Þvi

þ �þ P

a2

�
_vi þH

�
1þ _�w

H ð1þ wÞ�
�
vi

þ _w

1þ w
vi þ w�;i

L

1þ w
þ�;i

�
: (54)

Note that if the interaction vanishes, both equations reduce
to the usual ones. We take the divergence of Eq. (54) to
isolate the scalar mode perturbations, then Eq. (42) implies

_�a þ ð1þ waÞð�a � 3 _�Þ þ 3H
�
�Pa

��a

� wa

�
�a

þ qa
�a

ð�a ��Þ � �qa
�a

¼ 0 (55)

and

_�a þH
�
1� 3wa þ qawa

H ð1þ waÞ�a

�
�a þ _wa

1þ wa

�a

� �Pa=��a

1þ wa

k2�a � k2�þ k2
a þ k2fa
�að1þ waÞ ¼ 0;

(56)

where we have restored the index a’s and back to Fourier
space. Also, we have used the decomposition for �ij in
tensor, vector and scalar pieces. Then, when hit with kikj
only the scalar anisotropic stress survives and the first term

of the rhs of Eq. (56) becomes 2k2�ðsÞP=3 ¼ ð�þ PÞk2
.
Defining the total energy density of these dark fluids as

�T ¼ P
�a, it follows that the total density contrast, �T , is

the weighted sum of the individual components

�T ¼ 1

�T

X
a

�a�a; (57)

and the total velocity is given by

�T ¼ 1

�Tð1þ wTÞ
X
a

�að1þ waÞ�a; (58)

wherewT is given by Eq. (18), and the index a runs over all
dark components. Using these two last equations it is
straightforward to show that the hydrodynamical equations
for the total fluid are

_� T þ ð1þ wTÞð�T � 3 _�Þ þ 3H
�
�PT

��T

� wT

�
�T ¼ 0

(59)

and

_�T þH ð1� 3wTÞ�T þ _wT

1þ wT

�T � �PT=��T

1þ wT

k2�T

� k2�þ k2
T ¼ 0; (60)

where �PT ¼ P
�Pa. These are exactly the equations of a

single noninteracting fluid, Eqs. (25) and (26). The adia-
batic speed of sound of the total fluid is c2sT ¼ _PT= _�T ¼P

�ac
2
sa=�T . Thus, by forcing the condition c2sT ¼ 0 we

obtain that wT ¼ wd, and if each dark component has
positive energy (�a > 0), it also implies that c2sa ¼ 0 and
�Pa ¼ 0. Therefore, we obtain that the hydrodynamical
equations for the total fluid perturbations become the same
as the dark fluid perturbations (Eqs. (38) and (39)), under
the substitution T ! d. Thus, the composed fluid we have
constructed is just the dark fluid.
If one considers the unphysical case in which not all

dark components have positive energy density, the speed of
sound of some components can be different from zero, and
the total pressure perturbation is equal to

�PT ¼ c2sT��T � 1

6H _�T

X
a;b

_�a _�bðc2sa � c2sbÞSab; (61)

where

S ab ¼ �a

1þ wa

� �b

1þ wb

(62)

is the relative entropy perturbation between fluids a and b
[65]. Therefore, to obtain the dark fluid in the case in which
some components have negative energy density we have to
impose the pressure perturbations given by Eq. (61) to be
equal to zero. This condition also implies that the total fluid
is barotropic.

VI. INTERACTIONS TO THE STANDARD MODEL
OF PARTICLES

In this section we study dark fluid couplings to baryonic
matter. We consider models in which the background
cosmology is the same as in the �CDM model, accord-
ingly we do not allow energy transfer (q ¼ 0) between the
cosmic components. Nevertheless, we allow a momentum
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transfer different from zero. Thus, the interactions affect
the fluids only at first order in perturbation theory.

In this work we will not consider interactions to electro-
magnetism. This is not only for simplicity, many theoreti-
cal models present conformal couplings, as the chameleon
theories [66,67] (and in general, scalar tensor gravity
theories [68]), or even direct couplings to the trace of the
energy-momentum tensor [27,69–72]. Also, this is ex-
pected in scenarios like the strong interacting dark matter
[49,50], where the couplings are through the strong force,
for which photons are chargeless.

In the previous section we found the hydrodynamical
equations for a system of coupled dark components. It is
straightforward to generalize those results to a coupling
between the dark fluid and baryonic matter. The conserva-
tion equations for the perturbations are, for the dark fluid,

_� d ¼ �ð1þ wdÞð�d � 3 _�Þ þ 3Hwd�d þ �qd
�d

(63)

_� d ¼ �H�d þ k2�� k2fd
�dð1þ wdÞ ; (64)

and for baryons

_� b ¼ ��b þ 3 _�þ �qb
�b

; (65)

_� b ¼ �H�b þ k2�þ c2sbk
2�b � k2fb

�bð1þ wbÞ : (66)

These equations are supplemented by the constrictions (51)
and (52). The interactions to electromagnetism are consid-
ered, but not shown in Eq. (66). Note that we have not
considered a term c2sdk

2�d in Eq. (64), in agreement with

the definition of dark fluid.
In the absence of a fundamental theory we parametrize

the coupling. But before do it, let us make a comparison to
electromagnetism. Under the formalism we developed in
the last section, the hydrodynamical perturbation equations
for Thomson scattering (neglecting photon moments be-
yond the quadrupole) can be obtained if we choose �q	 ¼
0 and k2f	 ¼ ��	ð1þ w	Þaxene
Tcð�b � �	Þ, where


T ¼ 6:65� 10�25 cm2 is the Thomson scattering cross
section, ne is the number density of electrons, xe is the
ionization fraction, and c ¼ 1 is the velocity of light.

Using the analogy to electromagnetism we choose the
interaction terms to be

�qd ¼ 0; (67)

and

fd ¼ �dð1þ wdÞand�Ið�b � �dÞ=k2; (68)

where the parameter �I has units of area times velocity, or
thermalized cross section h
vi, which we identify with
some, unknown, fundamental interaction. nd is the number

density of dark particles that we set equal to

nd ¼ �d0

mpa
3
; (69)

where we use the proton mass, mp ¼ 0:938 GeV, as an

arbitrary mass scale and �d0 is the energy density of
the dark fluid evaluated today. Here, we have not an
analogous to the ionization fraction, in empathy to univer-
sal interactions.
The constrictions fb ¼ �fd and �qd ¼ ��qb ¼ 0, en-

ter into the baryons equations. Because of the relation
�DM ¼ ð1þ wdÞ�d the interaction term goes as ð�d � �bÞ
a�2. Then, the greatest deviation from the standard
model of cosmology will come from the early Universe.
Accordingly we expect the interaction to be tightly
bounded from CMB anisotropies tests. We have modified
the public available code CAMB [73] to account for the
interaction.
In Fig. 2 we show the angular power spectrum for the

CMB radiation. There several curves are shown for differ-
ent values of �I, which is expressed in units of 10�6 times
the Thomson scattering cross section times the speed of
light (c ¼ 1). We note that the greatest differences with the
�CDM model come at high multipoles, which is not
surprising because the interaction quickly decays and
only modes which have entered into the horizon at early
times in the Universe were affected by it.
On the other hand, it is well known that interactions

between the dark sector and baryons are tightly constrained
from equivalence principle and solar system tests [74].
Nonetheless, such interactions could be originated by gen-
eral predictions of string theory [75,76], leading to the
necessity of some screening mechanism [66,67,77,78] to
evade these experimental constraints. In chameleon theo-
ries , the range of this interaction depends on the energy
density of the surrounding medium, leading to long-range
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FIG. 2 (color online). The CMB power spectrum considering
different values of the interaction parameter �I in units of
10�6
T . The other parameters are fixed.
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forces when the density is low, and to short-range force-
swhen it is high. Inspired by these theories, we give a k
dependence to the hydrodynamical equations, such that the
interactions respond to an effective wave number given by
k2eff ¼ k2gð�Þ, where g is a monotonic growing function of

the ambient energy density. By noting that � falls with the
scale factor, we choose a potential law for the wavelength
number, k2eff ¼ k2=an. In the following we specialize to the
case n ¼ 2. We use the substitution k ! keff in Eq. (68)
and obtain3

fd ¼ �dð1þ wdÞ�II

�d0

mp

ð�b � �dÞ=k2: (70)

Clearly, we can also understand this interaction as a de-
pendence of the cross section on the ambient energy den-
sity. In Fig. 3, we show the CMB angular power spectrum
for different values of the parameter �II. We note that, in
remarkable contrast to the �I interaction, here all scales
are affected in a similar way. This is because the effective
interaction remains constant while the scale factor grows
and all modes feel it when they enter the horizon.

It is possible to treat both parametrizations together if we
choose

fd ¼ �dð1þ wdÞ ð�I þ �IIa
2Þ�d0

mpa
2

ð�b � �dÞ=k2: (71)

The hydrodynamical equations become

_� d ¼ �ð1þ wdÞð�d � 3 _�Þ þ 3Hwd�d; (72)

_� d ¼ �H�d þ k2�� ð�I þ�IIa
2Þ�d0

mpa
2

ð�b � �dÞ;
(73)

and for baryons

_� b ¼ ��b þ 3 _�; (74)

_� b ¼ �H �b þ k2�þ c2sbk
2�b � �d

�b

ð1þ wdÞ

� ð�I þ �IIa
2Þ�d0

mpa
2

ð�d � �bÞ: (75)

If one assumes the �CDM decomposition of the dark fluid
in dark matter and cosmological constant, it is easy to see
that instead of Eqs. (63) and (64), the following equations
govern the evolution of the dark matter perturbation

_� DM ¼ ��DM þ 3 _�þ �qDM
�DM

; (76)

_� DM ¼ �H�DM þ k2�þ k2fDM
�DM

; (77)

where we have used the conditions (36) and (37). The
transfer energy and momentum terms are related by

�qDM ¼ �qd and fDM ¼ fd: (78)

Thus, although the degeneracy with the �CDM has been
broken at first order in perturbation theory, there exist
degeneracies to other models, as in this case to �CDM
with the same interactions, which means that the general
class of interactions given by Eqs. (63) and (64) does not
help us to elucidate the actual decomposition of the dark
fluid (if it exists). Accordingly, we can treat the above
described couplings as interactions between dark matter
and baryonic matter, without loss of generality, as we will
do for numerical purposes.4 Thereafter, if desireD, we
can go back and forth between both models’ results using
Eqs. (19) and (20).
To constrain the interactions, we perform a Monte Carlo

Markov Chain (MCMC) analysis over the nine-parameter
space (Model A) f�bh

2;�DMh
2; �; �; ns; logAs; Asz;�I;

�IIg using the code COSMOMC [81]. � is the ratio of the
sound horizon to the angular diameter distance at recom-
bination, � is the reionization optical depth, ns is the
spectral index of the primordial scalar perturbations and
As is its amplitude at a pivot scale of k0 ¼ 0:05 Mpc�1.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10  100  1000

l(
l+

1)
C

l (
µK

)2

l

ΣII = 10 x σT
ΣII = 5
ΣII = 0
ΣII = -5
ΣII = -10

FIG. 3 (color online). The CMB power spectrum considering
different values of the interaction parameter �II in units of 
T .
The other parameters are fixed.

3Chameleon theories are modifications of gravity and their
perturbation equations are different from those used here; it is
out of the scope of this work to treat the precise equations of the
chameleons. For such a treatment see [79,80].

4Special care must be taken because numerical codes, as
CAMB, use synchronous gauge and fix the residual gauge free-
dom by taking �DM ¼ 0. In cases in which there are sources in
the � evolution equation, like ours, this is not possible to do.
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We have imposed flat priors on the two interaction
parameters: 0< �I < 10�7 � 
T and�11� 
T <�II <
10� 
T . For the CMB anisotropies and polarization data
we used the Wilkinson Microwave Anisotropy Probe
(WMAP) seven-year observations results [3]. For the joint
analysis we use also Hubble Space Telescope measure-
ments (HST) [82] to impose a Gaussian prior on the
Hubble constant today of H0 ¼ 74� 3:6 km=s=Mpc, and
the supernovae type Ia Union 2 data set compilation by the
Supernovae Cosmology Project [8].

We also study two other models: Model B, only consid-
ering the interaction �I, it has an eight-parameter space
f�bh

2;�DMh
2; �; �; ns; logAs; Asz;�Ig; and Model C,

which does not consider any interaction, a seven-parameter
space f�bh

2;�DMh
2; �; �; ns; logAs; Aszg, corresponding

to the standard �CDM model.
The summary of the posterior one-dimensional margi-

nalized probabilities is outlined in Fig. 4 and Table I. In

Fig. 5 we show the contour confidence intervals for the
marginalized �I ��II space at 0.68 and 0.95 confidence
levels (CLs). There the high degeneracy between both
parameters is shown: while �II takes values closer to
zero, �I also does. It is interesting that nonzero values of
the interactions (when introduced) are consistent and pre-
ferred by the considered data at 0.95 CL.
We note that the addition of the �I and �II interac-

tions to the theory produce remarkable differences
between the parameters estimations of Model A and
Model C. This is more evident for the baryonic
matter energy density �bh

2, as can be observed from
Figs. 4, 6, and 7, or read directly from Table I. For
this reason, we study Model B, which only considers the
�I interaction. In this case, the tensions between the
parameters estimations are alleviated. The discrepancies
are also evident in the primordial power spectrum pa-
rameters As and ns, which also can be seen from Figs. 4
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θ
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FIG. 4 (color online). (color online) Marginalized probability for the complete set of parameters. Solid lines (red) are for Model A,
dotted lines (blue) for Model B, and double-dotted (black) lines for Model C. The data used are the WMAP seven-year results, Union 2
data set supernovae compilation and a prior of HST on the Hubble constant.
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and 8. Nonetheless, these are not alleviated when one
considers Model B.

Instead of using the proton mass as the scale in the
interactions, we can use an arbitrary associated mass to
the dark matter or dark fluid particles, md. We obtain the
following constraints at 0.68 CL on the ratio�=md (we use
c ¼ 3� 1010 cm=s):

For the case in which we consider both interactions
(Model A)

3:58� 10�22 cm3=s

GeV=c2
<

�I

md

< 8:68� 10�22 cm3=s

GeV=c2
;

(79)

and

�1:94� 10�13 cm3=s

GeV=c2
<

�II

md

<�1:05� 10�13 cm3=s

GeV=c2
:

(80)

While for Model B

0:22� 10�22 cm3=s

GeV=c2
<

�I

md

< 1:66� 10�22 cm3=s

GeV=c2
:

(81)

We only obtained bounds of md and � in the combina-
tion �=md, although it is possible to find constrictions of
them separately, even to the cross section and the particles’
thermal velocity, leading to constraints in the 
�md

plane. Nevertheless, to do this we have to allow c2s � 0,
and moreover, make further assumptions on the thermody-
namics of the dark matter (or the dark fluid) [52].
Note that the effective thermalized cross section for

interaction II is a2�II, and this is equal to �I at about a
redshift z� 105. Before this epoch interaction I domi-
nates, and after that, interaction II starts to do it. Just
before recombination, at z ’ 1100, interactions I and II
are smaller in strength than the Thomson interaction by
about 9 and 5 orders of magnitude, respectively. After this
time, the ionization fraction xe falls exponentially and
Thomson scattering becomes subdominant very quickly.
In Fig. 9 we plot the CMB power spectrum for the mean

values estimated by the MCMC analysis. The reported
difference is � ¼ lðlþ 1ÞðCModelC

l � ClÞ. We note that

the three models are well inside the error bars of the binned
measurements from WMAP seven-year observations re-
sults. Nonetheless, at higher multipoles (l > 1000) the
three models start to have notable discrepancies. The

Σ I
I  

[ σ
T
 ]

ΣI  [ × 10-6 σT ]

-10
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0 0.01 0.02 0.03 0.04 0.05 0.06

FIG. 5 (color online). Contour confidence intervals for �I vs
�II at 68% and 95% CL. The shading shows the mean likelihood
of the samples.

TABLE I. Summary of constraints. The upper panel contains
the parameter spaces explored with MCMC for each one of the
three models. The bottom panel contains derived parameters.
The data used are the WMAP seven-years data, Union 2 compi-
lation and HST.

Parameter Model Aa Model Ba Model Ca

102�bh
2 2:420þ0:066

�0:064 2:219þ0:056
�0:056 2:243þ0:053

�0:053

�ch
2 0:1114þ0:0061

�0:0060 0:1046�0:0047
�0:0049 0:1089þ0:0041

�0:0041

� 1:039þ0:003
�0:003 1:037þ0:003

�0:003 1:039þ0:003
�0:003

� 0:08712þ0:00565
�0:00721 0:08646þ0:0061

�0:0067 0:08797þ0:003
�0:003

108�I
b 2:910þ1:169

�1:959 0:4845þ0:2980
�0:3824 -

�II
b �7:169þ2:218

�1:959 - -

ns 0:9869þ0:0192
�0:0184 0:9551þ0:0135

�0:0137 0:9651þ0:0123
�0:0124

log½1010As� 3:118þ0:051
�0:051 3:039þ0:040

�0:040 3:070þ0:031
�0:033

ASZ
c 1:054� 0:578 0:9544� 0:5911 1:040� 0:574

�d 0:952þ0:033
�0:033 0:956þ0:031

�0:030 0:955þ0:027
�0:027

K 0:296þ0:033
�0:033 0:270þ0:034

�0:036 0:291þ0:034
�0:032

t0 13:64þ0:12
�0:13 Gyr 13:85þ0:11

�0:12 Gyr 13:79þ0:12
�0:11 Gyr

�� 0:734þ0:024
�0:024 0:754þ0:022

�0:021 0:740þ0:019
�0:020

H0
d 71:55þ1:86

�1:91 71:95þ2:09
�1:96 71:14þ1:71

�1:85

aThe mean values of the posterior distribution for each parame-
ter. The quoted errors show the 68% confidence levels.
b�I and �II are given in units of the Thomson scattering cross
section times the speed of light, 
T ¼ 6:65� 10�25 cm2 and
c ¼ 1.
cThe quoted errors in Asz are the standard deviations of the
distributions.
dH0 is given in Km/s/Mpc.
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higher differences appear in the region 1000< l<
2000, just inside the window in which the primordial
power spectrum parameters are expected to be estimated
with higher precision (1000< l < 3000). For l > 3000
secondary anisotropies, mainly the Sunyaev-Zeldovich ef-
fect, are expected to dominate the CMB spectrum, while
for multipoles l < 1000 the spectrum is more sensible to
the other parameters. These high-l power spectrum multi-

poles will be probed by the PLANCK mission [83], so we
expect to obtain tighter constraints in the near future.
In this work we have not considered the effect

that interactions I and II could have on big bang
nucleosynthesis. This is because our phenomenological
model only includes the thermalized cross sections �I

and �II of elastic collisions, whose strengths are at least
9 orders of magnitude weaker than the Thomson scattering
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FIG. 6 (color online). 2D Posterior confidence intervals for �bh
2 vs �I at 68% and 95% CL. Left panel: Considering both

interactions (model A). Right panel: considering only interaction �I (model B). The shading shows the mean likelihood of the
samples.
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at this epoch and, more important, do not annihilate bary-
ons and maintain the baryon-to-photon ratio unaltered.
Accordingly, we expect the effect over this process to be
quite weak.

VII. CONCLUSIONS

In this paper we worked out some properties of the so-
called dark degeneracy [21]: the fact that we can only
measure the total energy-momentum tensor of the dark
sector and any split into different pieces (as in dark matter
and dark energy) is artificial, although it could be mathe-
matically convenient.

We start by defining the dark fluid as a barotropic fluid
with speed of sound equal to zero, as in [29,30] and, more
recently, in [31] (for similar approaches see [32,33]). This
is motivated by astrophysical constraints in the dark matter
besides its cosmological properties. Making the speed of
sound equal to zero allows dark fluid energy density per-
turbations to grow at all length scales, as a cold dark matter
component does, while it leaves room for a constant pres-
sure different from zero. Astrophysical scenarios forbid
this pressure to be very high, but it well could take values
of the cosmological critical density today. From the pos-
itivity of the energy density of the dark fluid it follows that
this pressure has to be negative. Thus, we conclude that the
dark fluid could act as dark energy. Then we study the
background cosmology for the dark fluid and show that,
not surprisingly, the same evolution equations as in the
�CDM model are obtained, leading to a degeneracy be-
tween the two models. We conclude that any collection of
fluids for which its total equation of state parameter is
equal to Eq. (18) will lead us to the same result at the
background cosmological level.

This is not necessarily the case when we consider linear
perturbations. In order to preserve the dark degeneracy, we

demand that the dark fluid be a perfect fluid. For a baro-
tropic fluid, this last condition implies that the first-order
space-space part of the energy-momentum tensor is equal
to zero. Furthermore, one has to add that the energy-
momentum flux density is equal to that of the �CDM.
Thus, we have demanded that the energy-momentum
tensor of the dark fluid be equal to the �CDM one at first
order in perturbation theory, otherwise the degeneracy is
broken.
When considering a collection of multiple interacting

fluids and demanding that the adiabatic speed of sound of
the total composed fluid be equal to zero, we obtain exactly
the perturbation equations of the dark fluid. This shows that
the degeneracy is present also for more complicated dark
sector schemes.
From the first five sections, we conclude that there exist

an infinity of cosmological models that give exactly the
same observational signatures. Accordingly, it is funda-
mentally impossible to elucidate the actual structure of the
dark sector. Thus, it is a matter of taste to prefer the�CDM
model over any one of the exposed in this paper. In fact, to
economize it is better to take the one fluid choice (the dark
fluid) as the correct model.
The only hopewe have to understand the actual nature of

the dark sector is that it interacts in some way with the
particles of the standard model. Of course interactions
would in general break the degeneracy, but this is not
necessarily true. This subject is studied in Sec. VI, where
we allow the degeneracy of the dark fluid and the �CDM
model in the homogeneous and isotropic cosmology, and
then we try to break it by adding interactions to baryons at
first order in perturbations theory. We show that a general
class of interactions defined by Eqs. (63) and (64) also can
be understood as between dark matter and baryons in the
�CDM model context, leading to a new degeneracy,
although not with the concordance model, but with a
�CDM-plus-interactions model. As a consequence, these
interactions does not help us to favor any decomposition of
the dark fluid.
For the latter investigation we have chosen two indepen-

dent interactions: One that resembles the Thomson scat-
tering between photons and baryons, regulated by a
parameter�I, and a second, density-dependent interaction,
inspired by chameleon theories and parametrized by �II.
For the analysis we have used a combination of the seven-
year results of WMAP, the Union 2 data set compilation of
supernovae measurements, and a prior in the Hubble con-
stant of the Hubble Space Telescope.
When we consider both interactions together, we

obtain that other parameters of the theory differ too much
from its standard values, up to almost 10% in the case

of the baryonic density parameter �bh
2. Then, we study

the case in which �II is equal to zero, allowing �I to vary

(Model B). Here, we show that the tension between the

parameters estimation is reduced.
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FIG. 9 (color online). CMB power spectrum for the mean
values estimated with the MCMC analysis by CosmoMC for
the three models. The reported difference is � ¼ lðlþ 1Þ�
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The introduction of the two parameterized interactions is

allowed by current data, and if done, it is remarkable that

nonzero values of them are preferred at 0.95 confidence

level.
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