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We present analytic solutions to a class of cosmological models described by a canonical scalar field

minimally coupled to gravity and experiencing self interactions through a hyperbolic potential. Using

models and methods inspired by 2T-physics, we show how analytic solutions can be obtained in flat/open/

closed Friedmann-Robertson-Walker universes. Among the analytic solutions, there are many interesting

geodesically complete cyclic solutions in which the universe bounces at either zero or finite sizes. When

geodesic completeness is imposed, it restricts models and their parameters to a certain parameter

subspace, including some quantization conditions on initial conditions in the case of zero-size bounces,

but no conditions on initial conditions for the case of finite-size bounces. We will explain the theoretical

origin of our model from the point of view of 2T-gravity as well as from the point of view of the colliding

branes scenario in the context of M-theory. We will indicate how to associate solutions of the quantum

Wheeler-deWitt equation with our classical analytic solutions, mention some physical aspects of the

cyclic solutions, and outline future directions.
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I. INTRODUCTION

In this paper we will analytically express a cyclic uni-
verse using exact solutions in a scalar-tensor theory with a
scalar field �ðx�Þ minimally coupled to gravity.

The full action of our theory is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
RðgÞ � 1

2
g��@��@��� Vð�Þ

�
; (1)

where the potential is

Vð�Þ ¼
� ffiffiffi

6
p
�

�
4
�
bcosh4

�
��ffiffiffi
6

p
�
þ csinh4

�
��ffiffiffi
6

p
��

: (2)

Here b and c are dimensionless free parameters of the

potential, and ��1 is the reduced Planck mass ��1 ¼ffiffiffiffiffiffiffi
ℏc
8�G

q
¼ 2:43� 1018 GeV

c2
. A plot of the potential energy

Vð�Þ for various signs and magnitudes of b, c, consistent
with stability ðbþ cÞ> 0, show that the profile of this
potential is similar to those often used in the study of
cosmology. This potential was chosen because we can
solve the equations exactly, thus enabling us to perform
the type of analysis presented in this paper. We assume that
the general features discussed here go beyond the special
choice of potential.1

The model of Eqs. (1) and (2) was initially inspired by
2T-physics [3–5] as described in [6] and Sec. I A below.
The same model fits also in the worldbrane scenario [7], as
inspired by D-branes in M-theory [8]. The ideas of a cyclic
universe [2] modeled in Ref. [9] can be adapted to repro-
duce the same potential Vð�Þ, thus describing a universe
that consists of two 3þ 1 dimensional orientifolds that
periodically collide with each other by oscillating in an
extra fifth dimension. It is quite interesting that this con-
nection emerged between 2T-gravity and M-theory. In
Secs. I A and I B we will comment on the different origins
that converged on this model.
In a previous cosmological application of this model [6]

Vð�Þ was an energy density of the order of the grand

unification scale ðmGUTÞ4. In that case, b1=4
ffiffiffi
6

p
��1 or

c1=4
ffiffiffi
6

p
��1 were of order mGUT � 1016 GeV

c2
, thus leading

to dimensionless values for the parameters b or c in the
order of 10�12. Exact solutions have a way of finding
applications in various fields. For physical applications of
our solutions, including cyclic cosmology or other future
cases, the value of the parameters b, c, should be chosen
appropriately depending on the application.
The complete set of analytic solutions for this model, in

a homogeneous, spatially flat, isotropic Friedmann-
Robertson-Walker (FRW) universe, was obtained in our
earlier paper [6], and some of the solutions’ perturbations
were studied in [6,10]. In the current paper we will empha-
size a subset of these solutions that are geodesically com-
plete and describe a universe smoothly evolving through
big bang or big crunch singularities at which the universe
shrinks to zero size, but then continues to perform periodic
expansions and contractions that describe a cyclic uni-
verse, all without violating unitarity or the null energy

1In fact, this is not the only potential for which we are able to
give a full analysis with the complete set of analytic solutions
[1]. In the near future we will present a similar discussion for the

potentials V1ð�Þ ¼ ð
ffiffi
6

p
� Þ4ðbe�2��=

ffiffi
6

p
þ ce�4��=

ffiffi
6

p
Þ and V2ð�Þ ¼

ð
ffiffi
6

p
� Þ4be2p��=

ffiffi
6

p
, where b, c, p are dimensionless real parameters.

The profile of V1ð�Þ, with c > 0 and b < 0, is similar to the
profile of the potential used initially in the cyclic cosmology
model in [2].
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condition in a flat universe. We will also include the effect
of spatial curvature for the FRW universes (k ¼ 0, �1) in
our new exact solutions, and we will exhibit cyclic solu-
tions with finite-size bounces as well.

Perturbations such as radiation are easily included in the
exact solutions, while anisotropy can be discussed with
analytic approximations; but those aspects, as well as the
quantum treatment through the Wheeler-deWitt equation,
which require more detailed discussions, will appear in a
separate paper [11].

The complete set of homogeneous, isotropic classical
solutions presented in [6] shows that, the generic solutions
for the field �ð�Þ and the scale factor að�Þ describe a
geodesically incomplete geometry. The geodesic incom-
pleteness can be exhibited in terms of conformal time � as
defined by the line element ds2 ¼ a2ð�Þð�d�2 þ ds23Þ,
where ds23 is the line element of the three-dimensional

space. As an illustration consider the spatially flat case
ds23 ¼ d~x � d~x. The geodesic x�ð�Þ of a massive particle in

this flat geometry is described by its velocity

d~xð�Þ
d�

¼ ~pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2a2ð�Þp ; (3)

where ~p is the conserved 3-momentum. In terms of this
conformal time �, the complete set of solutions in [6]
shows that, for the generic solution, the scale factor að�Þ
starts out at zero size at some time að�1Þ ¼ 0 and grows to
maximum size að�2Þ ¼ amax in a finite amount of confor-
mal time ð�2 � �1Þ ¼ finite. It turns out that amax is infinite
in the case of b � 0 or finite in the case of b < 0.
Furthermore að�Þ has this same behavior in an infinite
number of different disconnected intervals of conformal
time �. Each such separate interval describes a universe
that starts out with a big bang and expands to maximum
size. Moreover there are other disconnected intervals in
which the universe contracts from maximum size to zero
size. Evidently such generic solutions of the Friedmann
equations are geodesically incomplete.

If expressed in terms of cosmic time t defined by the line
element ds2 ¼ ð�dt2 þ a2ðtÞds23Þ, the geodesic equation

reads

d~xðtÞ
dt

¼ ~p

aðtÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2a2ðtÞp ; (4)

where aðtÞ is expressed in terms of cosmic time t. The
relation to conformal time is dt ¼ að�Þd� or tð�Þ ¼R
�
�1
að�Þd�, where tð�1Þ ¼ 0 defines the big bang at

aðtð�1ÞÞ ¼ 0. Hence tð�Þ is given by the area under the
curve in a plot of að�Þ versus �, for some interval �1 �
� � �2, starting with the big bang. An example of a geo-
desically incomplete curve að�Þ is Fig. 1 in [6], while
examples of geodesically complete ones are given in
many figures in the current paper. Since að�Þ in the generic
solution is given in disconnected � intervals, the cosmic

time tð�Þ cannot be defined for negative values before the
big bang. Hence the geodesic equation above is artificially
stopped at the big bang at the finite value of time tð�1Þ ¼ 0.
This is one of the signs of geodesic incompleteness of this
geometry. In addition, when the area under the curve is
finite (the solutions for b < 0), the total cosmic time tð�2Þ
is also finite, and geodesics are again artificially stopped at
a finite value of cosmic time tð�2Þ, providing another sign
of geodesic incompleteness. In this way, each interval that
is geodesically incomplete in conformal time appears
again as geodesically incomplete in cosmic time. This
type of geometry bounded by singularities, and classical
solutions in them, occur often in general relativity and are
commonly used in its applications, as in our own paper [6].
But in view of the geodesic incompleteness of the generic
solutions of the Friedmann equations displayed in the
conformal frame, it feels that this must be an incomplete
story.
We think that a more satisfactory approach, especially

for cosmology, is to find those models and solutions that
describe a geodesically complete geometry. This type of
solution is what we will describe in the current paper. It
turns out that among the classical solutions presented in [6]
there are some unique solutions that are geodesically com-
plete in the Einstein frame. In this solution the patches of
conformal time in which að�Þ is real in the Einstein frame2

are smoothly connected from � ¼ �1 to � ¼ 1. Then the
universe sails smoothly through singularities, while geo-
desics of both massless and massive particles smoothly
continue through singularities to the next cycle of the
cyclic universe.
The requirements for such solutions depend on whether

the bounce is at zero size að�bangÞ ¼ 0 or finite size

að�bangÞ> 0. In the case of zero-size bounce, that occurs

when the spatial curvature is zero, k ¼ 0, initial conditions
of the two fields need to be synchronized and periods of
oscillation need to be relatively quantized, as we will
describe in detail. These requirements result in some quan-
tization conditions among the available parameters con-
sisting of integration constants of the differential equations
for�ð�Þ, að�Þ as well as the parameters b, c in the potential
energy Vð�Þ, and also radiation and anisotropy parameters
when they are included. Because of these requirements
these geodesically complete zero-size bounce solutions
are associated with a countable set of boundary conditions

2All solutions, including those that are geodesically incomplete
in the Einstein frame, are geodesically complete in other frames.
Indeed, in the �-gauge that we will discuss in Sec. II, all solutions
are geodesically complete. However, as viewed from the point of
view of the Einstein frame, að�Þ for such solutions becomes
imaginary in the patches that complete the geodesics in the
�-frame, and hence the physical meaning in the Einstein frame
becomes obscure. We intend to study this phenomenon in a future
paper, but for the current paper we concentrate on only the
geodesically complete solutions in which að�Þ is real for all �.
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(but still an infinite set, in the sense described in Sec. I D).
In the case of finite-size bounce none of these constraints
occur on boundary conditions, but in this case there is
spatial curvature, k=r20 � 0, which needs to be large

enough to compete with the potential energy. In this case,
as long as the parameters that define the model are within a
certain continuous region, the generic solution is the finite-
size bounce solution without any further requirements on
boundary conditions.

When perturbations such as radiation and anisotropy are
included or when quantum effects in the form of the
Wheeler-deWitt equation are taken into account, there still
are geodesically complete solutions that have a similar
character to what we will present in this paper. They still
form a countable set for zero-size bounces, while they are
the generic solutions for the finite bounces. Either way, the
distinguishing character of geodesic completeness has an
appeal that seems important for physical applications, as
we will discuss in a future paper [11].

A. 2T-physics origin

Wewould like to briefly summarize here the main points
of how the model in Eq. (1) relates to 2T-gravity [4,5] in
4-space and 2-time dimensions as the conformal shadow in
3-space and 1-time. More generally, according to
2T-physics, a theory in 1T-physics in ðd� 1Þ þ 1 dimen-
sions is one of the many shadows that comes from dþ 2
dimensions [3]. A useful shadow that appeals to the intu-
ition of physicists accustomed to relativistic field theory is
the one called the conformal shadow. In the conformal
shadow there is a local scale symmetry (Weyl symmetry).
The original 2T-gravity in 4þ 2 dimensions does not have
a Weyl symmetry in 4þ 2 dimensions, instead this crucial
gauge symmetry in 3þ 1 dimensions is dictated in the
conformal shadow as a remnant of general coordinate
transformations in the extra 1þ 1 dimensions [5]. Other
less familiar shadows provide other descriptions of the
physics that are related by duality transformations to the
conformal shadow, and often they can provide hidden
physical information that is systematically missed in the
conventional formulation of 1T-physics [3,12,13].

Besides this duality aspect, 2T-physics may also provide
additional constraints on the interactions of fields in
1T-physics even within the conformal shadow. The con-
straints in theories of interest, in the conformal shadow, are
mainly on scalar fields and their interactions. These con-
straints have been determined generally in [14] in the
presence of gravity or supergravity. Most of the emergent
constraints can be rephrased as being consequences of
various symmetries in 1T-field theory, but not all of
them. Some of those additional constraints are not
motivated by fundamental principles in 1T-physics, as
discussed in [14], so they can be taken as signatures of
2T-physics. Here we will deal only with the simplest
version of scalar fields that obey the constraints. This is

the case when all scalar fields are conformally coupled to
gravity in the 1T version. This is a familiar form in 1T field
theory, but 1T-gravity does not require that all the scalars
be conformal scalars; by contrast 2T-gravity has this as an
outcome for the conformal shadow in one of its allowed
versions (more general form of constrained scalars in [14]).
Moreover, in the conformal shadow there is no Einstein-

Hilbert term in the action, so there is no dimensionful
gravitational constant that would break the local Weyl
symmetry explicitly. Instead, the Einstein-Hilbert term
emerges from gauge fixing the Weyl symmetry within
the conformal shadow (see below). This is a mechanism
called ‘‘compensating fields’’ which is familiar in conven-
tional field theory. Such structures of 2T-physics are com-
patible with the construction of satisfactory models of a
complete theory of nature directly in 4þ 2 dimensions,
including the standard model [15], its generalizations with
supersymmetry [16,17] or grand unification, gravity [4,5],
supergravity [14], all of which lead to applications in LHC
physics and cosmology [6].
The derivation of the conformal shadow in 3þ 1 dimen-

sions from the 4þ 2-dimensional theory is described in
detail in [4,5]. For the purpose of the current paper it is
possible to skip this detail and start out directly in 3þ 1
dimensions by requiring a local scale symmetry (Weyl
symmetry). Then, the ordinary looking model in Eqs. (1)
and (2) can be presented as a gauge fixed version of the
following gauge invariant field theory in 3þ 1 dimensions,
which is a conformal shadow that contains one scalar field
sðxÞ in addition to a dilaton �ðxÞ, both conformally
coupled to gravity as follows:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
g��@��@��� 1

2
g��@�s@�s

þ 1

12
ð�2 � s2ÞRðgÞ ��4f

�
s

�

��
: (5)

The field �ðxÞ has the wrong sign in the kinetic term, so it
is a ghost (negative norm3). This sign of the kinetic term is
required by the Weyl symmetry if the sign in front of the
curvature term 1

12�
2RðgÞ is positive. However, due to the

local scale symmetry the ghost can be gauge fixed away, so
this theory is unitary. The gauge symmetry is preserved for
any potential of the form�4fð s�Þ, where fðzÞ is an arbitrary
function of its argument z ¼ s

� . In this action there is no

Einstein-Hilbert term with a dimensionful gravitational
constant but, instead, the factor ð�2 � s2Þ�1 plays the

3There are models of cosmology based on the notion of
‘‘quintom matter’’ [18], which also introduce a negative norm
ghost field. We should emphasize that those models have actual
ghosts and therefore are nonunitary and fundamentally flawed.
Despite some similarity, our model is fundamentally different
because of the Weyl symmetry that eliminates the ghosts, thus
having fewer degrees of freedom. Our action, our solutions
which do not violate the null energy conditions, and the dis-
cussion of the physics are also different.
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role of a spacetime dependent effective ‘‘gravitational
parameter.’’

B. Braneworld origin

A cyclic model, inspired by D-branes in M-theory [8],
was developed in [2], where it was discussed for a very
different potential than Eq. (2). However, it is possible to
recover precisely the current model of Eqs. (1) and (2) in
the colliding worldbrane scenario as follows. One should
compare Eq. (27) in Ref. [9] to the model in Eq. (5) before
gauge fixing the Weyl symmetry. Both models have a Weyl
symmetry that is a remnant of general coordinate trans-
formations in extra dimensions (although the extra dimen-
sions in the two cases do not have identical signatures).
One should compare our fields here sðxÞ, �ðxÞ to the fields
c�ðxÞ in Ref. [9], since they are both conformally coupled
scalars and have precisely the same kinetic energy terms.
Furthermore, the potential Vð�Þ of Eq. (2) is also recov-
ered, if one replaces the unknown terms in Eq. (27) of
Ref. [9], 2WCFT½gþ� � 2WCFT½g�� þ Sm½gþ� þ Sm½g��,
by just a cosmological term on each brane. Namely, re-

placing the unknown expression by, bþ
ffiffiffiffiffiffi
gþ

p þ b�
ffiffiffiffiffiffi
g�

p
,

where b� are constants, and using their definition of g�,
gives

P
�b�

ffiffiffiffiffiffi
g�

p ¼ P
�b�

ffiffiffiffiffiffiffi�g
p ðc�Þ4. This is indeed the

potential b�4 þ cs4 in Eq. (5), which in turn leads to the
potential Vð�Þ after the Weyl gauge symmetry is fixed to
obtain the Einstein frame, as described in [6] and below.

C. Fixing the Weyl symmetry

TheWeyl symmetry can be gauge fixed in several forms.
In the Einstein gauge denoted by a label E, such as �E, sE,
g
��
E , the gauge is fixed such that the curvature term 1

12 �ð�2 � s2ÞRðgÞ becomes precisely the Einstein-Hilbert
term 1

2�2 RðgEÞ, so that in the Einstein gauge we have

1

12
ð�2

E � s2EÞ ¼
1

2�2
: (6)

In this gauge it is convenient to parametrize�E, sE in terms
of a single scalar field �,

�EðxÞ¼�
ffiffiffi
6

p
�

cosh

�
��ðxÞffiffiffi

6
p

�
;

sEðxÞ¼
ffiffiffi
6

p
�

sinh

�
��ðxÞffiffiffi

6
p

�
: (7)

Then the gauge fixed form of the action in Eq. (5) takes
precisely the form of Eq. (1), where the potential Vð�Þ is
arbitrary as long as the function fðzÞ is arbitrary.

The FRW metric in this gauge takes the form

ds2E ¼ �dt2 þ a2EðtÞds23 ¼ a2ð�Þð�d�2 þ ds23Þ; (8)

ds23 ¼
dr2

1� kr2=r20
þ r2ðd	2 þ sin2	d�2Þ; k ¼ 0;�1;

(9)

where ds23 is the metric of the three-dimensional space, � is
the conformal time, and að�Þ 	 aEðtð�ÞÞ is the cosmologi-
cal scale whose dynamics we wish to study in this paper.
The relation between ordinary comoving time t and the
conformal time is4

dt ¼ að�Þd�; or tð�Þ ¼
Z �

0
að�0Þd�0: (11)

The scalar curvature of the metric in Eq. (8) is given by

RðgEÞ ¼ 6

a2

�
€a

a
þ k

r20

�
; (12)

where r0 is a constant radius that sets the scale of the
curvature of 3-space5 when the dimensionless scale factor
is a ¼ 1.
Thus, in this gauge, for the purpose of homogeneous

solutions of the equations of motion, the dynamical varia-
bles are að�Þ and �ð�Þ which interact with each other as
prescribed by the action (1). Their equations of motion
reduce to the Friedmann equations [19] as follows:

_a2

a4
¼ �2

3

�
_�2

2a2
þ Vð�Þ

�
� k

r20a
2
; (13)

€a

a3
� _a2

a4
¼ ��2

3

�
_�2

a2
� Vð�Þ

�
; (14)

€�

a2
þ 2

_a _�

a3
þ V 0ð�Þ ¼ 0: (15)

4In this paper the overdot denotes derivative with respect to
conformal time _að�Þ 	 da=d� and €að�Þ ¼ d2a=ðd�Þ2. The de-
rivative with respect to comoving time t can be rewritten by
using the chain rule as d

dt ¼ 1
að�Þ

d
d� . For example, the Hubble

parameterH 	 1
aEðtÞ

daE
dt and its derivative dH

dt þH2 ¼ 1
aE

d2aE
ðdtÞ2 , are

expressed as

H ¼ _að�Þ
a2ð�Þ ;

dH

dt
þH2 ¼ €a

a3
� _a2

a4
: (10)

5The parameter r0 sets the scale for the curvature. If normal-
ized to today’s curvature, with r0 representing today’s size of the
Universe, then K ¼ k=r20 is extremely small even when k � 0. In
that case we can completely forget the effect of spatial curvature.
However, there are cosmological models that play with the
curvature parameter as applied in the early stages of the
Universe. In that case r0 may be within a few factors of 10 of
the Planck scale, in which case the curvature is enormous. In
order not to miss possible interesting solutions we will not
prejudge the size of this term and investigate the solutions that
emerge. Then in various physical applications we may or may
not neglect the parameter K ¼ k=r20.
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We had previously found all the exact solutions of these
equations for the potential Vð�Þ given in Eq. (2) and a flat
universe k ¼ 0. These were tabulated in [6]. In this paper
we will emphasize the subset of those solutions that are
geodesically complete and in addition we will generalize
them by including nonzero spatial curvature k ¼ �1.
Further generalizations including radiation and anisotropic
metrics will be given in [11]. To explain what we mean by a
geodesically complete solution we need the following
discussion.

D. Geodesic completeness

Note that the Einstein gauge in Eq. (6) can be chosen
only in patches of spacetime x� when the gauge invariant
quantity ½1� s2ðx�Þ=�2ðx�Þ� is positive. This quantity
may be expressed in the Einstein gauge (i.e. when it is

positive only) as ð1� s2E=�
2
EÞ ¼ ðcoshð��= ffiffiffi

6
p ÞÞ�2. We

must note that this gauge invariant quantity could vanish
at various times �. We did in fact find that it does vanish at
various values of � in generic analytic solutions for �ð�Þ,
að�Þ given in [6]. However, when ð1� s2E=�

2
EÞ vanishes

�E diverges so as to maintain the gauge choice for the
gauge dependent quantity (�2 � s2) as given in Eq. (6).
But the Einstein gauge was fixed under the assumption that
(�2 � s2) was positive; if it can vanish can it also change
sign? This is the question that initially motivated two of us
[6] to study this model in the�, s version, rather than the a,
� version. Will the dynamics require the gauge invariant
quantity (1� s2=�2) to change sign in some patches of
spacetime, thus creating patches with antigravity? If yes,
what would that mean cosmologically for the Universe we
live in?

In our previous study in [6] our exact solutions for �, s
showed that generically the dynamics does require the
gauge invariant (1� s2=�2) to change sign. However,
the point at which (1� s2=�2) vanishes corresponds to a
big bang or a big crunch singularity where the scale factor
in the Einstein gauge vanishes a2ð�Þ ¼ aEðtð�ÞÞ ¼ 0
[recall að�Þ is gauge dependent], so the physical interpre-
tation for our own Universe may be stopped exactly where
(1� s2=�2) vanishes, and therefore the solution could be
stopped artificially at that moment in conformal time �.
This is geodesically incomplete, as well as gauge depen-
dent from the point of view of að�Þ as defined in the
Einstein frame. But nevertheless, if one insists that the
theory is defined only in the Einstein frame, one could
accept a geodesically incomplete patch for a physical
interpretation in the usual interpretation of gravity. This
type of geodesically incomplete solution, which is very
common in applications of gravity, was used in the appli-
cation to an inflating universe we discussed in our previous
paper [6].

In the current paper we take the point of view that
geodesically complete solutions are more satisfactory. To
discover and better understand the solution, we examine

the factor (�2 � s2) that multiplies RðgÞ in the action. To
overcome the gauge dependent description of the Einstein
or other frames, we focus on the gauge invariant quantity
(1� s2=�2). The point at which it vanishes corresponds to
the big bang or big crunch. When it is positive we can
choose the Einstein gauge to describe ordinary gravity, but
in patches when it is negative there is antigravity. Only the
geodesically complete solutions have no antigravity by
having ð1� s2=�2Þ � 0 as a function of �. Of course,
quantum corrections near singularities may smooth out
the behavior of solutions. Notwithstanding the cloudiness
of our understanding of quantum gravity at this time, it still
seems to us attractive to identify the geodesically complete
geometries and solutions in the applications to cosmology,
expecting that this feature survives the quantum effects, as
seems to be the case at the level of the Wheeler-deWitt
equation [11]. Hence we will identify the circumstances in
which there are geodesically complete solutions in which
the quantity ð1� s2=�2Þ never changes sign.6 We found
that this is indeed possible, and we explicitly obtained
those unique geodesically complete solutions that are pre-
sented in the present paper and in [11].
As we will see in the explicit solutions given below, it

turns out geodesic completeness, for the bounce at zero
size, requires two ingredients. First, the parameters in the
model have to be in a certain range and satisfy certain
quantization conditions. In other words not every model
can yield geodesically complete cosmological solutions
with zero-size bounces. For example, in the case of the
flat FRW universe and in the absence of any perturbations,
the ratio of the parameters b=c in the potential Vð�Þ above
must be in the range � 1

4 � ðb=cÞ � 4 and must be quan-

tized as in Eq. (27). This condition on b=c is relaxed in the
presence of more parameters, such as curvature (k ¼ �1)
or radiation, but there is always one combination of pa-
rameters and initial conditions that is quantized. Second,
even with the quantized parameters, initial conditions for
�ð�Þ, sð�Þ must be synchronized with each other in order
to generate geodesically complete solutions in which
(1� s2=�2) never changes sign. If initial conditions are
not synchronized, then (1� s2=�2) will change sign and
all solutions will be geodesically incomplete; but this is
what we want to avoid, and on this basis we consider the
solutions with synchronized boundary conditions, namely,
only the geodesically complete ones, as being those that
provide a fuller story of cosmology.
We have also found exact analytic solutions that obey

�2 � s2 > 0 at all times, in which the initial conditions
need not be synchronized or the parameters of the model
need not be quantized. Such solutions occur in the presence
of spatial curvature in the closed universe k ¼ 1, and
provide a cyclic cosmology where the universe bounces

6I. Bars thanks Paul Steinhardt for stimulating discussions that
led us to focus on this question.
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at a finite size. For this to be possible the curvature needs to
be large enough to compete with the potential energy Vð�Þ,
as will be discussed in Secs. IVC and IVD.

Since (1� s2=�2) never changes sign for such solutions
the physics at all times is compatible with Einstein’s
gravity, since then one can indeed choose the Einstein
gauge, Eq. (6), at all times in such a universe.

If one takes the point of view that the theory is defined
directly in the Einstein frame in terms of a,�, as in Eq. (1),
then the �, s configuration in which (1� s2=�2) changes
sign is a spurious outcome of the parametrization in terms
of �, s in Eq. (5). In that case all field configurations in
which (1� s2=�2) is negative are excluded by definition.
If one also requires geodesic completeness then the solu-
tions we present below are the only ones that satisfy the
criteria.

This avoids the question of what happens to the physics
for those solutions that are geodesically complete in a more
general sense than the Einstein frame, by allowing
(1� s2=�2) to change sign. If the theory is defined at a
more fundamental level (as in 2T-physics, or as in the
colliding branes scenario) in which one would accept all
the consequences of the action in the�, s version of Eq. (5),
then one must investigate the properties of those solutions
as well.What we do know from our explicit solutions [6], in
the cases in which initial conditions are not synchronized or
parameters are not quantized, is that the quantity (�2 � s2)
does not remain negative after switching sign, but oscillates
back to positive. So, it appears that the universe recovers
from antigravity and comes back to a period of time with
ordinary gravity. However, if allowed to continue its motion
in complete geodesics, the sign changes back and forth
again and again. Perhaps the physics appears to be all wrong
during the time periods (or more generally spacetime
patches) where (�2 � s2) is negative, but we do not really
know the physical cosmological consequences of such
solutions for our own Universe. We think that it would be
interesting to find out eventually the physical viability and
meaning in cosmology of the more general geodesically
complete solutions allowed by the action Eq. (5). Sowewill
not throw away yet the generic solutions which were in-
cluded in the list in [6], nor will we settle the associated
physics questions in this paper. So, at a less ambitious level,
for the moment we concentrate only on the geodesically
complete cases that also satisfy�2 � s2 � 0, as required by
the action Eq. (1).

II. ANALYTIC SOLUTIONS

To analyze the model in the�, s version we find it useful
to gauge fix the Weyl symmetry in other forms. A very
useful gauge is to choose the conformal factor of the metric
to be 1. We will call this the �-gauge. In this gauge we will
denote the fields with a label �, such as ��, s�, g

��
� . Then,

the Robertson-Walker metric in this gauge loses the scale
factor since a� ¼ 1,

ds2�¼�d�2þ dr2

1�kr2=r20
þr2ðd	2þsin2	d�2Þ; (16)

and its curvature is a constant given by

Rðg�Þ ¼ 6K; with K 	 k

r20
; k ¼ 0;�1: (17)

In this �-gauge there is no scale factor for the universe, but
now both ��ðxÞ, s�ðxÞ are dynamical variables, with ��

having the wrong sign in the kinetic term. The advantage of
this gauge is that the dynamics of ��, s� become much

simpler and can be solved exactly in certain cases. After
obtaining the solution one can transform back to the
Einstein gauge to find að�Þ, �ð�Þ. For the case of
only time dependent fields the gauge fixed form of the
action (5) is

L ¼ 1

2
ð� _�2

� þ _s2�Þ � K

2
ð��2

� þ s2�Þ ��4f

�
s

�

�
: (18)

But one should also remember that � reparametrization
symmetry of general relativity requires the vanishing
Hamiltonian constraint (this is the G00 ¼ T00 Einstein
equation)

H ¼ 1

2
ð�p2

� þ p2
sÞ þ K

2
ð��2

� þ s2�Þ þ�4f

�
s

�

�
¼ 0;

(19)

where the canonical momenta are p� ¼ � _�� and

ps ¼ _s�. The negative norm ghost is eliminated because

of this constraint on the phase space (��, s�, p�, ps). The

Wheeler-deWitt (WDW) equation of our theory
H�ð�; sÞ ¼ 0 takes an interesting form in the �, s
basis,

�
1

2
ð@2� � @2sÞ þ K

2
ð��2

� þ s2�Þ þ�4f

�
s

�

��
�ð�; sÞ ¼ 0:

(20)

As a side remark, note that for K > 0 (closed universe)
and in the absence of the potential, �4fð s�Þ ¼ 0 the system

in Eqs. (18)–(20) describes the SO(1,1) Lorentz symmetric
relativistic harmonic oscillator in 1þ 1 dimensions, with
(�, s) representing the (‘‘time,’’ ‘‘space’’) directions, re-
spectively. As in other cases of the harmonic oscillator in
several dimensions, this system has a larger hidden sym-
metry, which is SUð1; 1Þ 
 SOð1; 1Þ in this case. The
quantum version of the relativistic harmonic oscillator
(i.e. the WDW equation for fðs=�Þ ¼ 0) was studied and
solved exactly in Secs. VI, VII, and the Appendix of a
recent paper [20] by using unitary representations of
SU(1,1). This may be taken as a toy model to begin a study

ITZHAK BARS, SHIH-HUNG CHEN, AND NEIL TUROK PHYSICAL REVIEW D 84, 083513 (2011)

083513-6



of the WDW equation for our case.7 Of course, we are
interested in the full WDW equation, including the poten-
tial energy �4fð s�Þ, radiation, and anisotropy, as will be

discussed elsewhere [11].
We now turn to the classical equations of motion sat-

isfied by ��, s�, including the potential energy. Such

classical solutions provide a semiclassical approximation
to the WDW equation. We are interested in an exactly
solvable case so that we can study the issues we raised
with certainty. One of those exactly solvable cases corre-
sponds to a special form of the potential, namely
�4fðs=�Þ ¼ b�4 þ cs4 that in turn corresponds to the
hyperbolic potential Vð�Þ given in Eq. (2). The equations
of motion for ��ð�Þ and s�ð�Þ are directly obtained from

the Lagrangian or Hamiltonian given above. But it is also
instructive to derive the equations directly from the
Friedmann equations in Eqs. (13)–(15) by using the fol-
lowing connection between the �-gauge and the Einstein
gauge (derived in [6]):

a2 ¼ �2

6
ð�2

� � s2�Þ; � ¼
ffiffiffi
6

p
�

1

2
ln

�
�� þ s�
�� � s�

�
; (21)

which gives

Vð�Þ ¼ 62

�4

b�4
� þ cs4�

ð�2
� � s2�Þ2

: (22)

Inserting these in the Friedmann equations we obtain the
equations for �, s as follows:

0 ¼ €�� � 4b�3
� þ K��; (23)

0 ¼ €s� þ 4cs3� þ Ks�; (24)

0 ¼
�
1

2
_�2
� � b�4

� þ 1

2
K�2

�

�
�

�
1

2
_s2� þ cs4� þ 1

2
Ks2�

�
:

(25)

The important observation is that the second order equa-
tions for�, s decouple from each other, so they are exactly
solvable. The third equation simply states that the energy
of the � solution must be matched to the energy of the s
solution E� ¼ Es. Once the solution is obtained it is trans-

formed back to the Einstein frame by using Eqs. (21), thus
providing the desired solutions for að�Þ, �ð�Þ in the
Einstein frame. The general generic solutions of these
equations, for all possible ranges of the parameters and
boundary conditions are listed in [6] for the K ¼ 0 case.
The solutions are expressed in terms of Jacobi elliptic
functions8 as given in [6] and below.
Now we focus on the subset of solutions that satisfies the

criteria we laid out. When the spatial curvature of the FRW
universe is zero (i.e. k ¼ 0), we found that geodesically
complete solutions, with ð�2 � s2Þ � 0 at all times, can
occur only when the ratio b=c takes on the following
quantized values in the range� 1

4 � b
c � 4, with c positive,

c > 0, and

7The WDW equation H�ð�; sÞ ¼ 0 is satisfied by an infinite
set of solutions of the relativistic harmonic oscillator [20]. These
are �ð�; sÞ ¼ P1

n¼0 cnc nð�Þc nðsÞ, where the cn are arbitrary
and c nð�Þ, c nðsÞ are the standard one-dimensional harmonic
oscillator wave functions that satisfy the eigenvalue equations
1
2 ð�@2� þ K�2Þc nð�Þ ¼ Enc nð�Þ and 1

2 ð�@2s þ Ks2Þc nðsÞ ¼
Enc nðsÞ, where En ¼ ffiffiffiffi

K
p ðnþ 1

2Þ. For all these solutions

�ð�; sÞ has an overall Gaussian factor exp½�
ffiffiffi
K

p
2 ð�2 þ s2Þ�

times a polynomial. This shows that the probability distribution
j�ð�; sÞj2 for these generic solutions is not purely ‘‘timelike’’
(not �2 > s2), but rather it covers both ‘‘timelike’’ and ‘‘space-
like’’ regions in (�, s) space. This is not surprising since for
generic boundary conditions the classical equations also do not
obey �2ð�Þ � s2ð�Þ � 0 at all times. Only special boundary
conditions with synchronized phases for �ð�Þ, sð�Þ at � ¼ 0
can yield classical solutions that have this property, as we have
explained in the text. Similarly, the relativistic harmonic oscil-
lator has just one quantum state whose probability distribution is
concentrated in the timelike region �2 � s2, has a damping
factor of the form expð�ð�2 � s2ÞÞ, and vanishes on the light
cone �2 ¼ s2. This was given in the Appendix of [20] (inter-
change spacelike with timelike in that appendix). This solution
is the timelike singlet of SU(1,1) [20]. There is also a separate
‘‘spacelike singlet of SU(1,1),’’ while the other generic solutions
correspond to a superposition of other nonsinglet unitary rep-
resentations of SU(1,1) [20]. Referring to the comments of the
last two paragraphs in Sec. I D, if the fundamental action is in
the Einstein frame [as in Eq. (1)], then only the timelike SU(1,1)
singlet is acceptable as a solution of the WDW equation. If, on
the other hand, the starting point is more general [as in
action (5)], then in order to favor only the solutions that are
consistent with �2 � s2 > 0, the model should have an addi-
tional ingredient. This could be an appropriate potential energy
term, effects of radiation, curvature, etc., or some appropriate
constraint that is natural in the model. This would then charac-
terize the ‘‘right’’ model.

8The Jacobi elliptic functions that we need for our solutions
are denoted as snðzjmÞ, cnðzjmÞ, dnðzjmÞ. These are periodic
functions that have properties similar to trigonometric functions.
The following formulas [21] are directly useful to verify our
solutions explicitly. The derivatives of Jacobi elliptic functions
are given in terms of expressions somewhat similar to those for
trigonometric functions,

d

dz
snðzjmÞ ¼ cnðzjmÞ � dnðzjmÞ; (26)

d

dz
cnðzjmÞ ¼ �snðzjmÞ � dnðzjmÞ; (27)

d

dz
dnðzjmÞ ¼ �m� snðzjmÞ � cnðzjmÞ: (28)

They also satisfy quadratic relations, such as

ðsnðzjmÞÞ2 þ ðcnðzjmÞÞ2 ¼ 1;

mðsnðzjmÞÞ2 þ ðdnðzjmÞÞ2 ¼ 1:
(29)
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b ¼

8>>><
>>>:

4c
n4

0

� c
ðnþ1Þ4

; with n ¼ 1; 2; 3; . . . : (30)

Note that each value of n defines a given model. The
explicit solutions are given in Eqs. (32), (41), and (49)
for b > 0, b < 0, and b ¼ 0, respectively. When additional
parameters, such as curvature, radiation, etc., are included
in the model, then this quantization condition on the model
is relaxed, but still some combination of parameters and
integration constants must be quantized as we will discuss.
Furthermore, if the spatial curvature is sufficiently large, so
that the curvature term in the action can compete with the
potential, then we find, geodesically complete, finite,
bouncing solutions of a cyclic universe where the bounce
occurs at a minimum finite size of the universe. For such
cases there is no quantization condition on the parameters
of the model but, instead, the initial conditions on the fields
must be within a certain range defined by those parameters.

Before we give the mathematical details, we first explain
how the physics is easily captured by interpreting these
decoupled equations in terms of an analog mechanical
problem of a particle moving in a potential. In the case

of � the Hamiltonian is Hð�Þ ¼ 1
2
_�2 þ Vð�Þ, with

Vð�Þ ¼ 1
2K�2 � b�4, while in the case of s the

Hamiltonian is HðsÞ ¼ 1
2
_s2 þ VðsÞ, with VðsÞ ¼ 1

2K�
2 þ

cs4. According to Eq. (25) the only acceptable solutions for
�, s are the ones that satisfy

Hð�ð�ÞÞ ¼ Hðsð�ÞÞ ¼ E: (31)

The corresponding potentials are depicted in Figs. 1, 22,
and 27 for the cases of k ¼ 0, �1 We have included the
cases of positive b [heavy solid curve Vð�Þ] and negative b
[dashed curve Vð�Þ]. We have drawn the pictures for only
positive c [solid thin curve VðsÞ] while for negative c the
VðsÞ curve is reflected from the horizontal axis in each
figure.

These figures, combined with the physical intuition of a
particle in potential, capture the physical aspects of our
solutions. We approach the mathematical analysis system-
atically for each figure and investigate the various ranges of
the parameters b, c, K and the integration parameter E. We
will start with the simplest case of zero curvature and
analyze it thoroughly in Sec. III. We will then discuss the
positive and negative curvature cases separately in Secs. IV
and V, respectively.

III. THE FLAT (k¼ 0) FRW UNIVERSE

We first discuss the flat case (k ¼ 0) that has the fewest
parameters. For k ¼ 0 the only possible solutions are for
Es ¼ E� > 0 as shown by the horizontal dashed line in

Fig. 1. In the case of s, the potential is an infinite positive
well [VðsÞ ¼ cs4 with c > 0], therefore the particle is
trapped in the well, and sð�Þ oscillates back and forth

between turning points �s0ðEsÞ< sð�Þ< s0ðEsÞ given by
cs40 ¼ Es. In the case of �, if b is negative [dashed curve

Vð�Þ ¼ �b�4 with b < 0] its behavior is similar to the
one just described for s, so �ð�Þ also oscillates back and
forth ��0ðE�Þ<�ð�Þ<�0ðE�Þ at the energy level

E� ¼ Es. But if b is positive, then the particle is in an

inverted well [heavy curve Vð�Þ ¼ �b�4 with b > 0]. So,
at the energy level E� ¼ Es, which is higher than the peak

of the hill, the particle will come up the hill from� ¼ �1,
go over the top of the hill, and slide down the hill to
infinitely large positive values of �. The trip may also
happen in reverse direction depending on initial conditions.
It turns out that the trip from � ¼ �1 to � ¼ 1 is
completed in a finite amount of conformal time �, so
allowing all possible values of conformal time, �ð�Þ re-
peats the trip periodically again and again by jumping from
� ¼ 1 to � ¼ �1. Such solutions (given analytically in
[6]) solve all the equations but do not yet address the sign
of �2ð�Þ � s2ð�Þ.
In order to have the oscillation amplitude of � to be

larger than the amplitude of s it is necessary to have� c
4 <

b< 4c (consistent with the curves as drawn in the figure).
The lower bound� c

4 < b for negative b, is partially under-

stood from the figure which shows that the turning point for
� should be at a greater distance from the origin as com-
pared to the turning point for s. However the 1

4 factor in

� c
4 < b and the upper bound b < 4c for positive b emerge

from the details of the solutions in Eqs. (32), (41), and (49).
This is a constraint on the model. If the potential energy
Vð�Þ does not satisfy this property it will not be possible to
maintain �2ð�Þ � s2ð�Þ at all times. In addition, to insure
�2ð�Þ � s2ð�Þ, we must (i) synchronize the initial condi-
tions of the �, s particles at the origin at � ¼ 0, namely
�ð0Þ ¼ sð0Þ ¼ 0; and (ii) also require that their periods are
commensurate, so that at the time �when� returns back to
zero s also returns to zero at the same time (although s
could make several returns to zero in the meantime).
Commensurate periods can be arranged only by quantizing
the parameter b=c. This too is a condition on the model. If

/T

k= 0 
V(s) V(s)

V( ) for b<0V( ) for b<0

V( ) for b>0V( ) for b>0

0

E( )=E(s)>0

FIG. 1 (color online). The flat FRW universe, k ¼ 0.
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the quantization is not satisfied in the model �2ð�Þ � s2ð�Þ
will change sign periodically as a function of time. But
when the potential Vð�Þ satisfies the required conditions
the model yields geodesically complete solutions in which
�2ð�Þ � s2ð�Þ never changes sign, but periodically touches
zero, which corresponds to a big crunch smoothly followed
by a big bang. This is just the solution we sought as given in
Eqs. (32), (41), and (49). We see that the model has to be
right to be able to yield such a solution.

A. b > 0 case

The solutions that satisfy this description are a subset of
those in [6] and explicitly given by the following expres-
sions. For positive b, c, the only geodesically complete
solution occurs for the quantized values of b ¼ 4c=n4,
with n ¼ 1; 2; 3; . . . , as follows:

��ð�Þ ¼ �nffiffiffiffiffiffiffiffi
48c

p
T

snð2�nT j 12Þ
1þ cnð2�nT j 12Þ

;

s�ð�Þ ¼ �ffiffiffiffiffiffiffiffi
48c

p
T

snð�T j 12Þ
dnð�T j 12Þ

: (32)

Here the Jacobi elliptic functions, snðzjmÞ etc. (see foot-
note 8), appear only for the case of the parameterm ¼ 1=2.
The energy level E� ¼ Es is parametrized in terms of the

parameter T which provides a scale for conformal time, as

E� ¼ Es ¼ 1

16cT4
; (33)

where T (or Es ¼ E�) is one of the integration parameters

that appears in integrating the differential equations. Note
that this T is related to the overall factor in Eq. (32) that
determines the amplitude of oscillations of s�ð�Þ.

It is easy to verify that these are solutions of Eqs. (23)–
(25) by using the properties of Jacobi elliptic functions
given in footnote 8. The plot of these functions in Fig. 2
conveys their periodic properties and shows how �2

�ð�Þ �
s2�ð�Þ at all times. The quantum n ¼ 5 chosen for this

figure corresponds to the ratio of the periods of � versus
s. The times at which � and s vanish together ��ð�Þ ¼
s�ð�Þ ¼ 0 are the only times when �2

�ð�Þ ¼ s2�ð�Þ, at

which point the universe goes through smoothly from a
big crunch to a big bang. At an intermediate time � ¼ �turn
the quantity �2

�ð�Þ � s2�ð�Þ attains a maximum; this is the

turnaround point at which the universe stops expanding
and begins contracting. These features are seen in Fig. 3 for
the scale factor að�Þ, and the scalar �ð�Þ which are given
by Eqs. (21).
A parametric plot for ��ð�Þ, s�ð�Þ is given in Fig. 4,

with � on the horizontal and s on the vertical. This
captures similar information to Fig. 2. It is for the model
b=c ¼ 4=n4 with n ¼ 5, which leads to the five nodes in
the figure. The time after the first node is a fast inflation
period, as seen also from Fig. 3. In a semiclassical ap-
proach to the Wheeler-deWitt equation, the curve shows
the region in (�, s) space where the WDW wave function
�ð�; sÞ is expected to have the largest probability. This is
the unique curve (for the n ¼ 5 model) purely in the
timelike region �2ð�Þ � s2ð�Þ> 0 in (�, s) space. The
corresponding WDW wave function is the analog of
the ‘‘timelike SU(1,1) singlet’’ in footnote 7.
Other quantities of interest to convey the properties of

the solution include the Hubble parameter H ¼ _a
a2

(see

footnote 4), the kinetic energy of the � field, Kð�Þ ¼ _�2

2a2
,

its potential energy Vð�ð�ÞÞ, and the equation of state
parameter given by wð�Þ ¼ ðKð�Þ � Vð�ÞÞ=ðKð�Þ þ
Vð�ÞÞ. Their plots appear in Figs. 5–7.
The Hubble parameter decreases from infinity at the big

bang, quickly approaching a constant at the turnaround
(with a few small ripples depending on n), switches to

s

bang turn crunch

n=5

20 10 10 20

5

5

FIG. 2 (color online). ��ð�Þ and s�ð�Þ plotted for n ¼ 5,
� ¼ ffiffiffi

6
p

, T ¼ 1, c ¼ 1=8.

a a a
a

bang turn crunch bang turn crunch

n=5

b 4 c 54

10 20 30 40

10

5

5

10

15

FIG. 3 (color online). að�Þ and �ð�Þ plotted for n ¼ 5, � ¼ffiffiffi
6

p
, T ¼ 1, c ¼ 1=8.

s
turn

FIG. 4 (color online). The arrow at the origin marks the
crunch/bang moments and the arrows at the ends mark the
turnarounds.
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negative at turnaround, and then slowly reaches negative
infinity at the big crunch.

The potential and kinetic energies of the � field are
fairly close to each other in magnitude most of the time.
At the turnaround the kinetic energy vanishes Kð�turnÞ ¼ 0
while the potential energy is a constant Vð�turnÞ ¼ 62b=�4

(since � ¼ 0 at turnaround). Both Kð0Þ and Vð0Þ are
infinite at the bang or crunch, but Vð0Þ is larger at the
singularity since wð0Þ ¼ �1=9 as seen in Fig. 7.
The behavior of various quantities near the bang/crunch

singularity is better understood by studying the Taylor
expansion near � ! 0 for any value of n as follows:

að�Þ! �

T
ffiffiffiffiffiffiffiffi
48c

p
�
�

T

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þn4

p

2
ffiffiffi
5

p
n2

�
1þðn2�4Þ

60n2

�
�

T

�
4þO

�
�

T

�
8
�
;

(34)

_að�Þ
að�Þ ! 1

T

�
�

T

��1
�
3� n4 � 4

15n4

�
�

T

�
4 þO

�
�

T

�
8
�
; (35)

Hð�Þ !
ffiffiffiffiffiffiffiffi
48c

p
�

�
�

T

��4
�
6

ffiffiffi
5

p
n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ n4
p

�
ffiffiffi
5

p ðn4 � 4Þ
30n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ n4

p
�
�

T

�
4 þO

�
�

T

�
8
�
; (36)

�ð�Þ !
ffiffiffi
6

p
�

�
� ln

�
�

T

�
2 þ 1

2
ln

80n4

4þ n4

þ n4 � 4

240n4

�
�

T

�
4 þO

�
�

T

�
8
�
; (37)

_�ð�Þ !
ffiffiffi
6

p
�T

�
�

T

��1
�
�2þ n4 � 4

60n4

�
�

T

�
4 þO

�
�

T

�
8
�
; (38)

Vð�ð�ÞÞ ! 288c

�4

�
�

T

��8
�

50n4

ð4þ n4Þ
� 5ðn4 � 4Þ

3ðn4 þ 4Þ
�
�

T

�
4 þO

�
�

T

�
8
�
; (39)

Kð�ð�ÞÞ!288c

�4

�
�

T

��8
�

40n4

ð4þn4Þþ
2ðn4�4Þ
3ðn4þ4Þ

�
�

T

�
4þO

�
�

T

�
8
�

wð�Þ!�1

9
þ2ðn4�4Þ

81n4

�
�

T

�
4þO

�
�

T

�
8
: (40)

The last expression shows that w ¼ �1=9 at the singular-
ity for all values of n. This behavior seems to be surprising
according to common lore.
We emphasize that this behavior near the singularity is

only for our geodesically complete analytic solutions that
satisfy both the relative quantization of their periods as
well as the synchronization of the initial conditions. If
either of these is not satisfied (i.e. for nongeodesically
complete solutions in only the Einstein frame) the behavior
near the singularity is radically different. This behavior
seems to be of measure zero in the space of all solutions. In
our next paper [11] we will further analyze this issue
including the effects of anisotropy and the quantum effects
via the Wheeler-deWitt equation.
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FIG. 5 (color online). Hubble parameter Hð�Þ and �ð�Þ for
n ¼ 5.
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FIG. 6 (color online). Kinetic Kð�Þ ¼ _�2=2a2 and potential
energies Vð�ð�ÞÞ of the � field, for n ¼ 5.
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FIG. 7 (color online). The equation of state w ¼ ðK � VÞ=
ðK þ VÞ, for n ¼ 5.
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B. b < 0 case

We repeat the same type of analysis for b < 0 which
refers to Fig. 1 with the dashed curve representing Vð�Þ.
Geodesically complete solutions occur only if b=c has one
of the quantized values b=c ¼ �1=ðnþ 1Þ4, with n ¼
1; 2; 3; . . . . Then the unique solution is

��ð�Þ ¼ �ðnþ 1Þffiffiffiffiffiffiffiffi
48c

p
T

snð �
ðnþ1ÞT j 12Þ

dnð �
ðnþ1ÞT j 12Þ

;

s�ð�Þ ¼ �ffiffiffiffiffiffiffiffi
48c

p
T

snð�T j 12Þ
dnð�T j 12Þ

: (41)

We provide a few plots similar to the ones in the previous
subsection for the model n ¼ 5. Despite some similarities,
there are notable differences in the behavior as compared
to the b > 0 case of the previous section as indicated in the
following comments.

From Figs. 8 and 9 we see that the universe grows up to a
maximum finite size before it turns around. Another way of
plotting the information in Fig. 8 is the parametric plot for
�ð�Þ, sð�Þ in Fig. 8; note the five nodes corresponding to
n ¼ 5. As in the previous case, this figure is associated
with the semiclassical probability distribution of the
Wheeler-deWitt wave function in ð�; sÞ space.

From Figs. 11 and 12 we see that there are temporary
inflation periods during whichHð�Þ is temporarily almost a
constant, and the acceleration9 is positive, as seen in
Fig. 27. The number of such temporary acceleration peri-
ods is determined by n.

It is interesting to speculate on whether this could be a
mechanism to explain the current accelerated inflation
state of our Universe; namely, could it be that we currently
are in such a period which is inflationary only temporarily
on the scale of the lifetime of the Universe?

The energy of the � field is small except near the bang/
crunch where it is infinite. The equation of state wð�Þ
grows to infinity at turnaround wð�turnÞ ¼ 1, while it
takes the value wð0Þ ¼ �1=9 at the bang/crunch where
Vð0Þ=Kð0Þ ¼ 5=4, while Vð0Þ, Kð0Þ are both infinite.

The behavior of various quantities near the bang/crunch
singularity is given by the Taylor expansion near � ! 0
for any value of n as follows:

að�Þ ! �

T
ffiffiffiffiffiffiffiffi
48c

p
�
�

T

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þ4 � 1
p
2

ffiffiffi
5

p ðnþ 1Þ2

�
�
1�

�
�

T

�
4 ðnþ 1Þ4 þ 1

60ðnþ 1Þ4 þO

�
�

T

�
8
�
; (42)

s
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FIG. 8 (color online). �ð�Þ, sð�Þ have finite amplitudes.
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turn crunch
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FIG. 9 (color online). að�Þ has a finite maximum.

s n=5

FIG. 10 (color online). Crunch/bang is at the origin and turn-
around at the edges.
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FIG. 11 (color online). Behavior of �ð�Þ, Hð�Þ.

9The acceleration is defined in the Einstein frame as d2aEðtÞ
dt2

.
This may be written in terms of conformal time as 1

a @�ð1a @�aÞ.
For the purpose of the plot we have defined the quantity ‘‘acc’’ as
the acceleration divided by an extra factor of a.
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_að�Þ
að�Þ ! 1

T

�
�

T

��1
�
3� ðnþ 1Þ4 þ 1

15ðnþ 1Þ4
�
�

T

�
4 þO

�
�

T

�
8
�
;

(43)

Hð�Þ !
ffiffiffiffiffiffiffiffi
48c

p
�

�
�

T

��4 6
ffiffiffi
5

p ðnþ 1Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þ4 � 1
p

�
�
1� ðnþ 1Þ4 þ 1

180ðnþ 1Þ4
�
�

T

�
4 þO

�
�

T

�
8
�
; (44)

�ð�Þ !
ffiffiffi
6

p
�

�
� ln

�
�

T

�
2 þ 1

2
ln

80ðnþ 1Þ4
ðnþ 1Þ4 � 1

þ ðnþ 1Þ4 þ 1

240ðnþ 1Þ4
�
�

T

�
4 þO

�
�

T

�
8
�
; (45)

_�ð�Þ !
ffiffiffi
6

p
�T

�
�

T

��1
�
�2þ ðnþ 1Þ4 þ 1

60ðnþ 1Þ4
�
�

T

�
4 þO

�
�

T

�
8
�
;

(46)

Vð�ð�ÞÞ ! 288c

�4

�
�

T

��8
�

50ðnþ 1Þ4
ððnþ 1Þ4 � 1Þ

� 5

3

ðnþ 1Þ4 þ 1

ððnþ 1Þ4 � 1Þ
�
�

T

�
4 þO

�
�

T

�
8
�
; (47)

Kð�ð�ÞÞ ! 288c

�4

�
�

T

��8
�

40ðnþ 1Þ4
ððnþ 1Þ4 � 1Þ

þ 2

3

ðnþ 1Þ4 þ 1

ððnþ 1Þ4 � 1Þ
�
�

T

�
4 þO

�
�

T

�
8
�

wð�Þ ! � 1

9
þ 2

81

ðnþ 1Þ4 þ 1

60ðnþ 1Þ4
�
�

T

�
4 þO

�
�

T

�
8
: (48)

C. b¼ 0 case

Finally, for vanishing b ¼ 0, the solution corresponds to
the n ! 1 limit of either the positive or negative b
branches, and is given by

��ð�Þ¼ �ffiffiffiffiffiffiffiffi
48c

p
T

�

T
; s�ð�Þ¼ �ffiffiffiffiffiffiffiffi

48c
p

T

snð�T j12Þ
dnð�T j12Þ

: (49)

We provide a few plots similar to the ones in the previous
subsections.
These plots correspond to the n ¼ 1 limit of the pre-

vious plots for either b > 0 or b < 0. Therefore their
interpretation is similar to the discussion above.
The temporary acceleration periods persist.
The behavior of the energy, pressure and the equation of

state are indicated on the figures.
The behavior of various quantities near the bang/crunch

singularity is given by the Taylor expansion near � ! 0 as
follows. These agree with the n ¼ 1 limit of the previous
cases,

að�Þ ! �

T
ffiffiffiffiffiffiffiffi
48c

p
�
�

T

�
3 1

2
ffiffiffi
5

p
�
1� 1

60

�
�

T

�
4 þO

�
�

T

�
8
�
; (50)

_að�Þ
að�Þ !

1

T

�
�

T

��1
�
3� 1

15

�
�

T

�
4 þO

�
�

T

�
8
�
; (51)

Hð�Þ!
ffiffiffiffiffiffiffiffi
48c

p
�

�
�

T

��4
�
6

ffiffiffi
5

p
1� 1

6
ffiffiffi
5

p
�
�

T

�
4þO

�
�

T

�
8
�
; (52)

�ð�Þ !
ffiffiffi
6

p
�

�
� ln

�
�

T

�
2 þ 1

2
ln80þ 1

240

�
�

T

�
4 þO

�
�

T

�
8
�
;

(53)

_�ð�Þ !
ffiffiffi
6

p
�T

�
�

T

��1
�
�2þ 1

60

�
�

T

�
4 þO

�
�

T

�
8
�
; (54)

Vð�ð�ÞÞ ! 288c

�4

�
�

T

��8
�
50� 5

3

�
�

T

�
4 þO

�
�

T

�
8
�
; (55)

Kð�ð�ÞÞ ! 288c

�4

�
�

T

��8
�
40þ 2

3

�
�

T

�
4 þO

�
�

T

�
8
�

wð�Þ ! � 1

9
þ 2

81

�
�

T

�
4 þO

�
�

T

�
8
: (56)

IV. THE CLOSED (k¼þ1) FRW UNIVERSE

For k ¼ þ1 the system of equations is Eqs. (23)–(25).
This amounts to the motion of two particles �, s satisfying
the equations of motion derived from Hamiltonians

Hð�Þ ¼ 1

2
_�2 þ Vbð�Þ; HðsÞ ¼ 1

2
_s2 þ VcðsÞ; (57)

with

VcðsÞ ¼ 1

2
Ks2 þ cs4; and Vbð�Þ ¼ 1

2
K�2 � b�4;

(58)

b c n 1 4

n=5

a
..

a3

a
2

a4
acc=

The Hubble parameter has some periods of nearly constant behavior.

The accelaration  is positive in those time neighborhoods, somewhat

suggestive of the current acceleration period of the universe.   
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FIG. 12 (color online). Temporary inflation periods.
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as plotted in Fig. 22 for K ¼ þ1=r20, and whose energies

are constrained by

H� ¼ Hs: (59)

The motion changes character depending on whether
E� ¼ Es is larger or smaller than the peak of the inverted

double well in Fig. 22, i.e. the maximum of Vb>0ð�Þ. This
critical value is given by

E� ¼ K2

16b
: (60)

Therefore we need to discuss separately the high and low
energy levels E� ¼ Es above and below this critical value

as shown in Fig. 22.

A. Higher level E > E�, and b > 0 or b < 0

For the higher level of Es ¼ E� > E�, the intuitive

physics discussion works in exactly the same way as the
discussion for the k ¼ 0 case at the beginning of Sec. III,
for both b � 0 or b � 0. In the case of b > 0, the particle
s�ð�Þ is trapped in an infinite well and oscillates between

turning points �s0ðEÞ, while ��ð�Þ oscillates from minus

infinity to plus infinity. In the case of b < 0 both particles
are trapped in infinite wells, so they oscillate between
turning points��0ðEÞ and�s0ðEÞ, respectively. The turn-
ing points��0ðEÞ,�s0ðEÞ are the points where the curves
VcðsÞ, Vb<0ð�Þ intersect the horizontal curve E� ¼ Es ¼
E as seen in the figure.

Hence for all cases b � 0 or b � 0 at the higher energy
level of Es ¼ E�, the geodesically complete motion is

described by plots of ��ð�Þ, s�ð�Þ that are similar in

character to the k ¼ 0 case given in Figs. 1–21). In par-
ticular for very small curvature K (large values of the
curvature radius r0), the K � 0 plots should approach the
K ¼ 0 plots. Therefore, we will not include the K � 0
plots here.

The exact solutions for the higher energy level are de-
noted as sþ� ð�Þ, �þ

� ð�Þ, where the superscript þ refers to

E> E� with Es ¼ E� ¼ E. The solution sþ� ð�Þ is given by

sþ� ð�Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�K2T4

s

8cT2
s

s
snð �Ts

jmsÞ
dnð �Ts

jmsÞ ;
msðEÞ	 1

2ð1�KT2
s ðEÞÞ

TsðEÞ	 ð16cEþK2Þ�1=4
;

(61)

while �þ
� ð�Þ has the following expressions for b > 0:
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FIG. 13 (color online). Energy components of � field.

n=5

Near the singularity the potential energy

is higher than the kinetic energy. At the

singularity w= -1/9, or V K
5

4
.

At turnaround w=  or K= -V

crunch
turnbang

5 10 15 20

2

4

6

8

10

FIG. 14 (color online). Equation of state wð�Þ.
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FIG. 16 (color online). There is a single crunch/bang.
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�þ
�;b�0ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1

8bT2þ

s
snð �

Tþ
jmþÞ

1þ cnð �
Tþ

jmþÞ ;
mþðEÞ 	 1

2 þ KT2þðEÞ
TþðEÞ 	 ð64bEÞ�1=4

; (62)

or b < 0

�þ
�;b�0ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2T4�
8jbjT2�

s
snð �

T�
jm�Þ

dnð �
T�

jm�Þ ;
m�ðEÞ 	 1

2 ð1� KT2�ðEÞÞ
T�ðEÞ 	 ð16jbjEþ K2Þ�1=4

: (63)

Note that all symbols T,m that appear in the Jacobi elliptic
functions are determined in terms of the energy level E ¼
Es ¼ E� as given above. The T�ðEÞ are determined in
terms of E, b, c, K by the energy condition E� ¼ Es ¼ E,
by using the following expressions computed from the
Hamiltonians Hð�Þ, HðsÞ given in Eqs. (57)–(59) for the
solutions sþ� ð�Þ, �þ

� ð�Þ above:

Es ¼ 1

16cT4
s

ð1� K2T4
s Þ; Eþ

� ¼ 1

64bT4þ
;

E�
� ¼ 1

16jbjT4�
ð1� K2T4�Þ: (64)

Note also we have assumed that Es ¼ E�
� ¼ E is higher

than the critical value E� in Eq. (60). This yields the
expressions for Ts;�ðEÞ, ms;�ðEÞ given above as well as
the ranges for these parameters as a function of the energy
level as follows:

KT2
s ðEÞ<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jbj

jbjþ c

s
; KT2�ðEÞ< 1ffiffiffi

2
p ; KT2þðEÞ<

1

2
;

(65)
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FIG. 17 (color online). Parametric plot equivalent to Fig. 15.
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FIG. 19 (color online). Temporary acceleration periods.
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FIG. 21 (color online). Equation of state wð�Þ.
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which determines the possible range of values for ms, m�
as E changes in the range E � E�,

1

2
ð1� ð1þ c=jbjÞ�1=2Þ<msðEÞ � 1

2
;

�
1

2
�

ffiffiffi
2

p
4

�
<m�ðEÞ � 1

2
;

1

2
� mþðEÞ< 1: (66)

It is easy to see that in the zero curvature limit K ! 0
these solutions reduce to Eqs. (32) for b � 0 or Eqs. (41)
for b � 0.

As they stand these solutions do not yet satisfy the
requirement �2ð�Þ � s2ð�Þ at all times. This can be satis-
fied only by requiring the period of � to be a multiple
integer of the period of s. The analytic expression for this
conditions is

b�0:TþQðmþÞ¼2nTsQðmsÞ; n¼1;2;3; . . . ; (67)

b�0:T�Qðm�Þ¼nTsQðmsÞ; n¼1;2;3; . . . ; (68)

where the quantity QðzÞ is a well-known special function,
namely, the quarter period of the corresponding Jacobi
elliptic function, and is given by the following integral
representation of the EllipticK integral:

QðzÞ ¼
Z �=2

0

d	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zsin2	

p ¼ EllipticKðzÞ: (69)

The consequence of this is to require a certain combination
of parameters (b, c, K, E) to be quantized. The range of
parameters in the model (b, c, K, E) that can satisfy the
constraint can be determined numerically10 by using the
expressions above. Therefore only a model that can satisfy
this condition can give the corresponding geodesically
complete solutions.

B. Lower level E < E�, and b < 0

When the energy is less than the critical value, the exact
solutions are denoted as s�� ð�Þ, ��

� ð�Þ where the super-

script � refers to the energy interval 0<Es ¼ E� ¼ E<

E�. We consider at first the case of b < 0, for which
Vb<0ð�Þ is represented by the dashed curve. There is no
difference in this case with the b < 0 case above, so the
formulas above apply, namely s�� ð�Þ is the same as sþ� ð�Þ,
and ��

�;b<0ð�Þ is the same as �þ
�;b<0ð�Þ, except for the fact

that now the energy is in the range 0<E< E�,

s��;b<0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2T4

s

8cT2
s

s
snð �Ts

jmsÞ
dnð �Ts

jmsÞ ;
msðEÞ 	 1

2 ð1� KT2
s ðEÞÞ

TsðEÞ 	 ð16cEþ K2Þ�1=4
; (70)

��
�;b<0ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2T4�
8jbjT2�

s
snð �

T�
jm�Þ

dnð �
T�

jm�Þ ;
m�ðEÞ 	 1

2 ð1� KT2�ðEÞÞ
T�ðEÞ 	 ð16jbjEþ K2Þ�1=4

: (71)

Since the energy is less than the critical value, 0 � Es ¼
E� � E�, we must now restrict the range of the parameters
m, T toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jbj
jbj þ c

s
� KT2

s ðEÞ � 1;
1ffiffiffi
2

p � KT2�ðEÞ � 1; (72)

which implies

0 � msðEÞ � 1

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jbj

jbj þ c

s �
;

m�ðEÞ � 1

2

�
1� 1ffiffiffi

2
p

�
: (73)

To obtain geodesically complete solutions the analog of the
quantization condition in Eq. (68) must be further imposed,
T�Qðm�Þ ¼ nTQðmÞ.

C. Lower level E < E�, and b > 0, finite bounce

For the case of b > 0 [Vb>0ð�Þ represented by the
inverted double well in Fig. 22] there are new features.
For � now there is the possibility to either be trapped
inside the false vacuum, or be outside of it, depending on
initial conditions. When� is trapped in the false vacuum it
should oscillate between two turning points; when it is
outside it should oscillate between a finite value and in-
finity. So the solution has the form

��;in
�;b�0ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT2

in � 1
q

ffiffiffiffiffiffi
2b

p
Tin

sn

�
�

Tin

jmin

�
;

minðEÞ 	 ðKT2
inðEÞ � 1Þ

TinðEÞ 	
�
K
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

4 � 4bE
q ��1=2 ; (74)

10For example, using MATHEMATICA, which recognizes the function EllipticK(z), one can plot T�Qðm�Þ=TsQðmsÞ as a function of
one of the parameters E, b, c, K (example E) while the other three are chosen arbitrarily. When the plot matches an integer n, this fixes
the value of the remaining parameter (i.e. E in the example above) in terms of the integer n and the other three parameters.
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��;out
�;b�0ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT2

out þ 1
p

ffiffiffiffiffiffi
2b

p
Tout

1

cnð�þ�0
Tout

jmoutÞ
;

moutðEÞ 	 � 1
2 ðKT2

outðEÞ � 1Þ
ToutðEÞ 	 ðK2 � 16bEÞ�1=4

: (75)

Meanwhile sð�Þ continues to oscillate as before between two turning points, so it is still given by the same expression,
namely,

s��;b>0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2T4

s

8cT2
s

s
snð �Ts

jmsÞ
dnð �Ts

jmsÞ ;
msðEÞ 	 1

2 ð1� KT2
s ðEÞÞ

TsðEÞ 	 ð16cEþ K2Þ�1=4
: (76)

The energies of these solutions are computed in terms
of the parameters m, T by using the Hamiltonians in
Eqs. (57)–(59) as follows:

Es ¼ 1

16cT4
s

ð1� K2T4
s Þ; Ein

� ¼ KT2
in � 1

4bT4
in

;

Eout
� ¼ K2T4

out � 1

16bT4
out

: (77)

All energies must be positive and equal to each other
Eout
� ¼ Es ¼ E and Ein

� ¼ Es ¼ E, as well as smaller
than E�. This yields the expressions for Ts;in;outðEÞ and
ms;in;outðEÞ given above as well as the ranges for these
parameters as a function of E, as follows:

1�KT2
s ðEÞ�

ffiffiffiffiffiffiffiffiffiffiffi
b

cþb

s
; 2�KT2

inðEÞ�1; KT2
outðEÞ�1:

Similarly, the range of values for the parameters ms, min,
mout are then as follows:

0 � msðEÞ � 1

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
b

bþ c

s �
; 0 � minðEÞ � 1;

moutðEÞ � 0: (78)

To obtain the geodesically complete solution, in the case
of the inside solution the quantization condition
TinQðminÞ ¼ nTQðmÞ is required (see footnote 10).
However, in the case of the outside solution no quantiza-
tion condition is needed as explained below.

We now comment on the outside solution given by
��;out

�;b>0ð�Þ, s��;b>0ð�Þ in Eqs. (75) and (76) because it is

different in character compared to all the previous cases. It
describes a periodically contracting/expanding universe
with bounces that occur at minimum finite values of the
scale factor, while the maximum is infinite. ��;out

�;b>0ð�Þ
describes the behavior of � outside of the false vacuum;
the amplitude for � is always larger than the amplitude for
s��;b>0ð�Þ at all times and for all boundary conditions,

including the additional arbitrary parameter �0. This solu-
tion represents cyclic bounces at finite minimum sizes of the
universe. This is shown in Fig. 23. The cyclic bounce
occurs for all values of c > 0, all values of b > 0, and all
values of the relative initial conditions �0 at � ¼ 0. This is
why we added an additional phase �0 in the expression of
��;out

�;b>0ð�Þ. There is no need to synchronize the boundary

conditions at � ¼ 0 for �ð0Þ, sð0Þ in order to get geodesi-
cally complete solutions that satisfy �2ð�Þ � s2ð�Þ at all
times. Moreover, b=c need not be quantized since the
periods of �, s can now be arbitrary relative to each
other.
The corresponding plots for the scale factor að�Þ and

�ð�Þ for the bounce are given in Fig. 24. The minimum size

of the scale factor að�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�ð�Þ � s2�ð�Þ
q

at the bounce

instant is not the same each time since the initial values of
�ð�Þ, sð�Þ are not synchronized and their periods are not
related.

k= +1 

V(s)V(s)

V( ) for b<0V( ) for b<0

V( ) for b>0V( ) for b>0

0

/T

E( )=E(s)>0

E( )=E(s)>0

FIG. 22 (color online). The closed FRW universe, k > 0.
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FIG. 23 (color online). ��;out
�;b>0ð�Þ and s��;b>0ð�Þ for the

bouncing solution.
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For this bounce solution to play a physical role in
cosmology we need the curvature terms K�2, Ks2 to be
able to compete with the potential terms b�4, cs4. For this
to be phenomenologically tenable in a complete cosmo-
logical model, a period of inflation must follow after the
bang so that the universe inflates to its current size and to
its almost flat current condition (since r0 would not be
identified with today’s size of the Universe).

As a limiting case of the above solutions we point out the
special case of the b > 0 scenario when E ¼ E�. As seen
from Fig. 22, the� field sits still on top of the hill while the
s field oscillates in a finite range. The maximum size of the
Universe is a finite number determined by the constant
value of the � field.

D. The case of c < 0

There are also geodesically complete solutions when
c < 0 and b > 0 which we will outline very briefly. The
�, s Hamiltonians are the same as before, as in Eqs. (57)–
(59), with K > 0. There exist two interesting classes of
geodesically complete solutions that satisfy �2 � s2 � 0,
which can occur when c < 0 and b > 0. This happens
when the corresponding potentials Vð�Þ, VðsÞ take the
form in Figs. 25 and 26.

The first case is depicted in Fig. 25 when 0 � E �
VmaxðsÞ ¼ K2

16jcj , and Vmaxð�Þ ¼ K2

16b is higher, i.e. with

b < jcj. Then s oscillates in the region of a false vacuum,
while � oscillates outside of the false vacuum all the way
to infinity. This is similar to the finite bounce solution we
discussed in Sec. IVC and Figs. 23 and 24. For complete-
ness we record the solution,

s��;c�0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT2

c � 1
p

ffiffiffiffiffiffiffiffi
2jcjp

Tc

sn

�
�

Tc

jmc

�
;

mcðEÞ 	 ðKT2
c ðEÞ � 1Þ

TcðEÞ 	
�
K
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

4 � 4jcjE
q ��1=2 ; (79)

and

��;out
�;b�0ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KT2

out þ 1
p

ffiffiffiffiffiffi
2b

p
Tout

1

cnð�þ�0
Tout

jmoutÞ
;

moutðEÞ 	 � 1
2 ðKT2

outðEÞ � 1Þ
ToutðEÞ 	 ðK2 � 16bEÞ�1=4

: (80)

As in the previous case of the bounce, this solution also
represents cyclic bounces at finite minimum sizes of the
universe, similar to those in Figs. 23 and 24. It occurs for
all values of b > 0 and c < 0 provided b < jcj, and pro-
vided K is large enough so that the curvature terms K�2,

Ks2 are able to compete with the potential term b�4, cs4.
The parameters (c, b, K) do not need to satisfy any quan-
tization conditions. Also, the synchronization of the relative
phase is not needed, hence we have allowed the additional
integration constant �0 in the solution in Eq. (80).

a aa

bounce turnaround

4 2 2 4

2

4

6

FIG. 24 (color online). The bounce and turnaround.

V( ) b>0

V(s) c<0

k=+1

FIG. 25 (color online). s oscillates inside with � outside.

V(s) c<0

V( ) b>0

high level E( )=E(s)>0

low level E( )=E(s)>0

k=+1

FIG. 26 (color online). s inside; � depends on E.
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The second case is depicted in Fig. 26 when 0 � E �
VmaxðsÞ, where VmaxðsÞ ¼ K2

16jcj and Vmaxð�Þ ¼ K2

16b , with

b > jcj. Then s oscillates in the region of a false vacuum,
while the behavior of � depends on whether the energy is
low [below Vmaxð�Þ] or high [between Vmaxð�Þ and
VmaxðsÞ]. The analytic solutions are similar to the ones

discussed above, except that now c < 0, and the energy
E is limited to the region 0 � E � VmaxðsÞ. For complete-
ness we list the geodesically complete solutions that satisfy
�2 � s2 � 0, together with the quantization condition for
their periods

high:

8>>>>>>>>>>><
>>>>>>>>>>>:

sþ�;c�0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
KT2

c�1
p ffiffiffiffiffiffi

2jcj
p

Tc

sn

�
�
Tc
jmc

�
;

mcðEÞ 	 ðKT2
c ðEÞ � 1Þ

TcðEÞ 	
�
K
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

4 � 4jcjE
q ��1=2

�þ
�;b�0ð�Þ ¼

ffiffiffiffiffiffiffiffiffi
1

8bT2
þ

q snð �
TþjmþÞ

1þcnð �
TþjmþÞ ;

mþðEÞ 	 1
2 þ KT2þðEÞ

TþðEÞ 	 ð64bEÞ�1=4

TþQðmþÞ ¼ 2nTcQðmcÞ

; (81)

and

low:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

sþ�;c�0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
KT2

c�1
p ffiffiffiffiffiffi

2jcj
p

Tc

sn

�
�
Tc
jmc

�
;

mcðEÞ 	 ðKT2
c ðEÞ � 1Þ

TcðEÞ 	
�
K
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

4 � 4jcjE
q ��1=2

�þ;in
�;b�0ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
KT2

b
�1

p ffiffiffiffiffiffi
2jcj

p
Tb

sn

�
�
Tb
jmb

�
;

mbðEÞ 	 ðKT2
bðEÞ � 1Þ

TbðEÞ 	
�
K
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

4 � 4bE
q ��1=2

TbQðmbÞ ¼ nTcQðmcÞ

: (82)

In the low energy level it is also possible for � to oscillate on the outside of the false vacuum. In that case the solution is
given by

low:

8>>>>>>>>><
>>>>>>>>>:

sþ�;c�0ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
KT2

c�1
p ffiffiffiffiffiffi

2jcj
p

Tc

sn

�
�
Tc
jmc

�
;

mcðEÞ 	 ðKT2
c ðEÞ � 1Þ

TcðEÞ 	
�
K
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

4 � 4jcjE
q ��1=2 ;

�þ;out
�;b�0ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KT2

outþ1
p ffiffiffiffi

2b
p

Tout

1

cnð�þ�0
Tout

jmoutÞ
;

moutðEÞ 	 � 1
2 ðKT2

outðEÞ � 1Þ
ToutðEÞ 	 ðK2 � 16bEÞ�1=4

:

(83)

In this case there is no quantization condition on the
parameters, and there is an additional integration constant
�0 which is arbitrary.

V. THE OPEN (k¼ � 1) FRW UNIVERSE

For k ¼ �1, the dynamics of �, s is described by the
Hamiltonians in Eqs. (57) and (59) with K < 0. The cor-
responding potentials Vð�Þ, VðsÞ are plotted in Fig. 27.

For the negative energy level Es ¼ E� < 0, there cannot

exist geodesically complete solutions that satisfy �2ð�Þ �
s2ð�Þ � 0 at all times because of the following argument.
The energyEs ¼ E� must be above theminimumofVðsÞ at
the double well to have a solution for s. Then the quantity
�2 � s2 always changes sign, whether b > 0 or b < 0. For
example, suppose s is at the minimum of VðsÞ, so the
solution sð�Þ is just a constant. But�ð�Þ oscillates between
two turning points �minðEÞ<�ð�Þ<�maxðEÞ, while

k= -1 

V(s)V(s)

E( )=E(s)>0

E( )=E(s)<0
V( ) for b<0V( ) for b<0

V( ) for b>0V( ) for b>0

0 /T

FIG. 27 (color online). The open FRW universe, k < 0.
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sometimes�2 � s2 is positive and sometimes it is negative.
The figure above is drawn for the case jbj< c. If we take
jbj> c then VðsÞ will be like the dashed curve and while
Vð�Þwill be like the solid thin curve (for b < 0) or the solid
thick curve (for b > 0). In these cases again there are no
solutions such that �2 � s2 remains positive at all times.

For the positive energy level Es ¼ E� > 0, there are

geodesically complete solutions that satisfy �2 � s2 > 0
at all times. In fact this case is formally identical to the case
discussed in Sec. IVA. In the present case K < 0, c > 0,

while b can have either sign. The exact solutions are
parallel to Eqs. (61)–(63) except for replacing K ¼ �jKj
Thus, the solutions are

sþ� ð�Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�K2T4

s

8cT2
s

s
snð �Ts

jmsÞ
dnð �Ts

jmsÞ ;
msðEÞ	 1

2ð1þjKjT2
s ðEÞÞ

TsðEÞ	 ð16cEþK2Þ�1=4
;

(84)

while �þ
� ð�Þ has the following expressions for b > 0:

�þ
�;b�0ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1

8bT2þ

s
snð �

Tþ
jmþÞ

1þ cnð �
Tþ

jmþÞ ;
mþðEÞ 	 1

2 � jKjT2þðEÞ
TþðEÞ 	 ð64bEÞ�1=4

; (85)

or b < 0

�þ
�;b�0ð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2T4�
8jbjT2�

s
snð �

T�
jm�Þ

dnð �
T�

jm�Þ ;
m�ðEÞ 	 1

2 ð1þ jKjT2�ðEÞÞ
T�ðEÞ 	 ð16jbjEþ K2Þ�1=4

: (86)

As they stand these solutions do not yet satisfy the
requirement �2ð�Þ � s2ð�Þ at all times. This can be satis-
fied only by requiring the period of � to be a multiple
integer of the period of s. The analytic expression for this
conditions is, as before,

b�0:TþQðmþÞ¼2nTsQðmsÞ; n¼1;2;3; . . . ; (87)

b�0:T�Qðm�Þ¼nTsQðmsÞ; n¼1;2;3; . . . : (88)

Note that in the limit K ! 0 these solutions reduce to the
solutions for the flat case with b � 0 and b � 0. We will
not discuss them in any more detail here since this K < 0
case is similar to the previous discussion for both K > 0
and K ¼ 0.

VI. SUMMARYAND OUTLOOK

We have thoroughly analyzed a simple model of a scalar
field interacting with gravity in 3þ 1 dimensions. The
model was derived from 2T-gravity in 4þ 2 dimensions
as the ‘‘3þ 1 dimensional conformal shadow’’ [4–6] and
can also be constructed in the colliding branes scenario [2]
in 4þ 1 dimensions using the worldbrane notions [7]
inspired by M-theory [8].

An essential feature of the model in 3þ 1 dimensions is
an underlying local conformal symmetry (Weyl symmetry)
exhibited in the action of Eq. (5). There is no fundamental
gravitational constant in this model, but instead there is a
gauge dependent dynamical ‘‘gravitational parameter’’
which plays precisely the role of the gravitational constant
when the Weyl symmetry is gauge fixed to the Einstein
frame, thus agreeing with the standard form of Einstein’s
gravity and its interactions with matter.

This raised the question of whether the dynamics could
force the gravitational parameter ð�2ðx�Þ � s2ðx�ÞÞ�1 to
change sign in some patches of spacetime where antigrav-
ity would emerge, and whether the existence of such
patches could have observational consequences in our
current Universe in the context of cosmology or otherwise.
This is the question that motivated our investigation.
We found out that generically the gravitational parame-

ter does change sign dynamically, and that this change of
sign is not a gauge artifact since the gauge invariant
quantity (1� s2=�2) can be used to monitor the sign
change. So our model indicates that patches of antigravity
could exist, but we have also found that such patches
cannot be reached from our current Universe without going
through singularities, such as the big bang or big crunch
(perhaps others such as black holes as well).
We have not yet answered what the physical implications

of this phenomenon may be for our current Universe, but
instead we have limited the current investigation to finding
and classifying those classical solutions in the context of
cosmology that are geodesically complete for all times. By
all times we mean that one must go beyond the gauge
dependent definition of time and instead seek geodesically
complete solutions in all possible choices of time, thus
being able to connect information before and after singu-
larities. In this way one is not limited to only some patches
while declaring ignorance about other patches.11

11Of course, we must expect modifications of the classical
equations due to quantum gravity especially near singularities.
We may need to wait a long time before one is sure about what
quantum gravity really is. Given this cloudiness of our knowl-
edge at the present time, we feel that the geodesically complete
approach we are pursuing here will still be relevant, and perhaps
even provide guidance to clarify the issues in future research.
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We found that the conformal time � is a good evolution
parameter for our purpose, so we analyzed the solutions for
all values of � from minus infinity to plus infinity. In
this way we learned that the gauge invariant quantity
1� s2ð�Þ=�2ð�Þ oscillates back and forth between patches
where it is positive and negative (namely gravity/antigrav-
ity), and this information is carried smoothly through the
singularities. In fact we learned that the point in time where
there is a singularity in the Einstein frame (divergent scalar
curvature) does not look like a singularity at all in other
convenient gauge choices of the Weyl gauge symmetry.

This paper was focused on finding and classifying the
complete subset of all classical cosmological solutions for
which 1� s2ð�Þ=�2ð�Þ never changes sign for all times.
Thus, for the classical solutions exhibited in this paper the
Universe remains always in the gravity patch, never shift-
ing to antigravity. The Universe starts expanding with a big
bang, but eventually it turns around (at a finite or infinite
size, depending on the sign of the parameter b) and begins
to contract, leading to a big crunch. But this is followed
with the same periodic pattern of a big bang, turnaround,
big crunch, again and again indefinitely to the future as
well as to the past.

There are such cyclic solutions in which the Universe
never contracts to zero size, and bounces back after con-
tracting to a finite size. So in these finite bounce solutions
the Universe never hits a curvature singularity (as defined
in the Einstein frame). These solutions are possible for the
closed universe. The finite bounce solutions exist for a
large range of the parameters b, c, K that define the model,
but one of the integration constants E (which amounts to
energy initial conditions for the scalar fields s or �) must
lie in a certain range defined by the parameters b, c, K
while the other integration constant �0 is arbitrary.

There are also cyclic solutions in which the Universe
contracts to zero size periodically, thus hitting the curva-
ture singularity (in the Einstein frame) at the big crunches/
bangs. These cyclic solutions occur for the flat, open and
closed universes, but only if some initial conditions for the
�, s fields are synchronized (the integration parameter �0
set to �0 ¼ 0) and a quantization condition is imposed on a
combination of the parameters b, c, K, and the integration
parameter E. Thus not every model is capable of yielding
geodesically complete cyclic solutions, as illustrated
clearly in the case of the flat universe.
Evidently the next stage of this research is to analyze

what happens to these solutions under perturbations. This
is the topic of our next paper in Ref. [11], where in
addition to curvature K, radiation and anisotropy are
included both at the classical and quantum (in the sense
of the Wheeler-deWitt equation) levels. According to our
current understanding, very similar geodesically complete
solutions exist in the presence of these perturbations. The
question of the physics of antigravity and its effect on our
current era of cosmology is an interesting topic that we
intend to pursue as a natural evolution of the present
discussion. We hope to report on these details in the
near future.
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