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In a Universe with a detectable nontrivial spatial topology, the last scattering surface contains pairs of

matching circles with the same distribution of temperature fluctuations—the so-called circles-in-the-sky.

Searches undertaken for nearly antipodal pairs of such circles in cosmic microwave background maps have

so far been unsuccessful. Previously, we had shown that the negative outcome of such searches, if confirmed,

should in principle be sufficient to exclude a detectable nontrivial spatial topology formost observers invery

nearly flat (0< j �tot � 1 j& 10�5) (curved) universes. More recently, however, we have shown that this

picture is fundamentally changed if the universe turns out to be exactly flat. In this case, there are many

potential pairs of circles with large deviations from antipodicity that have not yet been probed by existing

searches. Here, we study under what conditions the detection of a single pair of circles-in-the-sky can be

used to uniquely specify the topology and the geometry of the spatial section of the Universe. We show that

from the detection of a single pair ofmatching circles one can inferwhether the spatial geometry is flat or not,

and if so we show how to determine the topology (apart from one case) of the Universe using this

information. An important additional outcome of our results is that the dimensionality of the circles-in-

the-sky parameter space that needs to be spanned in searches formatching pairs of circles is reduced from six

to 5 degrees of freedom, with a significant reduction in the necessary computational time.
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I. INTRODUCTION

The determination of the shape or topology of the
Universe constitutes one of the fundamental open ques-
tions in cosmology1 (see, e.g., the reviews [1]). An impor-
tant observable signature of a universe with a detectable
nontrivial spatial topology is the presence in the cosmic
microwave background (CMB) sky of pairs of matching
circles—the so-called circles-in-the-sky—with identical
distributions (up to a phase) of temperature fluctuations
[2]. These pairs of circles can in turn be specified in terms
of their associated parameters, as, for example, their radii,
relative phases, and deviations from antipodicity.2 The
topology of a compact 3-manifold can be uniquely speci-
fied in terms of its holonomy group. Furthermore, each
distinct pair of circles can be identified with a distinct
element of this group.

Given the recent accumulation of high-resolution obser-
vations that indicates that the Universe is flat or nearly flat,
a great deal of effort has gone into studying the observable
signatures of cosmic topology in flat and nearly flat uni-
verses (see, for example, Ref. [3]). An important outcome
of our previous works has been that for detectable pairs of

circles in a very nearly flat compact universe, the devia-
tions from antipodicity will be small for most observers
[4,5]. This result, together with the negative result of recent
searches for antipodal and nearly antipodal circles [6,7],
had been taken to be sufficient to exclude a detectable
nontrivial topology for most observers [5]. More recently,
we considered the case of an exactly flat universe. By
making a detailed study of all the compact orientable flat
manifolds [8], we found that the deviation from antipodic-
ity in some compact orientable flat universes can be larger
than 10�, i.e. outside the parameter ranges covered in the
searches of Refs. [6,7]. This result has the important con-
sequence that if the Universe is in fact flat then the searches
undertaken so far, which have confined themselves to small
deviations from antipodicity, would not be sufficient to rule
out the possibility of a nontrivial cosmic topology.3

1In line with the usage in the literature, by topology of the
Universe we mean the topology of its spatial sections.

2This deviation refers to pairs of circles whose centers are
antipodal points on the CMB sphere, which are known as back-
to-back or antipodal circles-in-the-sky.

3This important difference comes ultimately from the very fact
that flat, spherical, and hyperbolic classes of manifolds are
topologically disjoint in that their discrete topological invariants
are different, and do not transform smoothly between the classes.
In other words, the nonexistence of a smooth limit comes from
the fact that the classes of multiply connected manifolds asso-
ciated with positive, negative, and zero spatial curvatures are not
only topologically inequivalent, but also very dissimilar to one
another. In particular, while the nonflat manifolds are rigid (their
compactification lengths being topological invariants in the
natural scale provided by the curvature radius), the flat are not,
and are therefore free to have different sizes.
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This possibility raises in turn the very interesting ques-
tion of the extent to which the geometry and topology of
the spatial sections of the Universe can be determined, if a
single pair of circles is detected in any future search of
CMB data. Here, we make a systematic study of this
question and show that, interestingly, from the detection
of a single pair of matching circles-in-the-sky one can infer
whether the spatial geometry is flat, and if so what is the
specific compact orientable flat topology of the Universe
(apart from one case).

The structure of the paper is as follows. In Sec. II, we
derive the relations between the circles-in-the sky and the
holonomy parameters. In Sec. III, we discuss the extent to
which the geometry and topology of a universe can be
specified, given the detection of a single pair of circles
and its related parameters. In Sec. IV, we present our final
remarks and conclusions.

II. RELATING THE CIRCLES-IN-THE-SKYAND
HOLONOMY PARAMETERS

Let us begin by recalling that homogeneous and iso-
tropic spatial sections M of flat universes are often as-
sumed to be the simply connected euclidian 3-manifold
R3. However, they can also be multiply connected quotient
3-manifolds (which we assume to be compact and orient-
able) of the form M ¼ R3=�, where R3 is the covering
space, and � is a discrete and fixed point-free group of
isometries of R3 called the holonomy group [9].
Throughout this paper, a generic element of the group �
is called holonomy and denoted by �.

In a Universe with a detectable nontrivial topology [10],
each pair of circles is identified with one element of the
corresponding holonomy group. An important feature of
compact flat manifolds is that any holonomy � of an
orientable Euclidean 3-space can always be expressed as
a so-called screw motion (in the covering space), consist-
ing of a combination of a rotation (twist) Rð�; ûÞ by an
angle � around an axis4 of rotation û, followed by a
translation along a vector L ¼ Lv̂, say. The action of �
on any point p in the covering manifold is then given by
p ! R pþL. When there is no rotational part in the screw
motion, i.e. when � ¼ 0, the holonomy reduces to a pure
translation, and its action is exactly the same at every point
in space. In this case, the distance between p and its image
by the holonomy �, ‘� ¼j �p� p j¼ L, is the same

everywhere. On the other hand, for a general screw motion
with � � 0, ‘� depends on the location of p, and, in

particular, on the distance r between p and the axis of
rotation. Compact flat manifolds are not rigid, in the sense
that topologically equivalent flat quotient manifolds, de-
fined by a given holonomy group �, can have different

sizes, and therefore their compactification lengths are not
fixed. However, since the holonomy group must be a dis-
crete and freely acting group of isometries of the covering
space, the twist parameter � can only assume one of the
following discrete values [11–13]:

� ¼ 2�

n
; with n ¼ 1; 2; 3; 4; 6: (1)

With combinations of these holonomies, one can con-
struct the 6 possible classes of flat compact orientable
manifolds. In all but one case (E6), one can obtain the
full set of holonomies from combinations of two transla-
tional (� ¼ 0�) and one screw motion. Thus, one has the
following five manifolds: E1 (3-torus, � ¼ 0�), E2 (half-
turn space, n ¼ 2, � ¼ 180�), E3 (one-quarter-turn space,
n ¼ 4, � ¼ 90�), E4 (one-third-turn space, n ¼ 3, � ¼
120�), and E5 (one-sixth-turn space, n ¼ 6, � ¼ 60�). The
sixth manifold, the Hantzsche-Wendt space, has as gener-
ators of the holonomy group three screw motions, all with
n ¼ 2 and � ¼ 180�.
The matching circles associated with the holonomy � ¼

ðRð�; ûÞ;LÞ are situated along the intersections of the
sphere of last scattering with its images under the holon-
omies � and ��1. Each such pair of circles can be charac-
terized by six angles, three of which are (i) the deviation
from antipodicity, � (0 � � � �), i.e. the complement of
the angle between the centers of the matched circles,
(ii) the angular radius of the circles, � (0 � � � �=2),
and (iii) the phase shift� (0 � � � �), which is the phase
angle that measures the shift in the identical distribution of

FIG. 1. This figure depicts the circles at the intersection of the
last scattering surface with its images. The parameter � is a
measure of the deviation of the circles from being antipodal, and
� measures the relative phase between the circles of radius �.

4The choice of axes to describe a screw motion is not unique,
but one can always find, and we shall henceforth assume, a
rotation axis parallel to the direction of translation.
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CMB temperature fluctuations of the two circles (see Fig. 1
for details). The remaining three angles give the position of
the center of the first circle and the relative orientation of
the second circle.

Now, from Fig. 1 one can show that for a pair of circles
produced by the holonomy �, the angular radius � is
related to the radius of the last scattering surface �obs

and the distance ‘� between the observer’s position and

its nearest image (the length of the shortest closed geode-
sic) through

sin� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�

‘�
2�obs

�

2
s

: (2)

It follows directly from this equation that the only
holonomies which generate detectable pairs of circles are
those for which ‘� is short enough so that ‘� < 2�obs.

Furthermore, for these holonomies the shorter the distance
‘� the larger will be the circle radius � and thus the

holonomy with the shortest distance between the observer
and its image, ‘�, will produce the matching circles with

the largest radii.
The detection of a pair of matching circles would of

course imply that the Universe has multiply connected
spatial sections; but beyond that, we want to know how
much more information can be gleaned from such a detec-
tion. We shall make explicit how and to what extent the
detection of a circle-in-the sky could be used to constrain
the geometry and topology of the spatial section of the
Universe, as well as our position in it. To do so, we must
first relate the parameters specifying the circles to the
elements of the associated holonomy.

To this end, let us assume that the spatial sections of the
Universe have a flat topology so that all holonomies take
the form of screw motions. In addition, suppose that we
have detected a pair of circles of radius � with parameters
�, �, which is assumed to be the most readily detectable
pair of circles, i.e. the pair associated with the shortest
closed geodesic which contains the observer’s position or
equivalently pairs with the circles with largest radius.5

The important question then is, given the parameters �,
�, and � of a single pair of circles, how to uniquely
determine the parameters of the corresponding screw mo-
tion, namely, the angle �, the compactification length L,
and the distance r of observer to the axis of rotation.

To answer this question, we need to derive the relation
between the parameters specifying the holonomy and those
corresponding to the circles. To begin with the screw
motion twist angle, � can be uniquely determined by the

phase shift� and the deviation from antipodicity � through
the relation

cos� ¼ ðcos�þ 1Þðcos�þ 1Þ
2

� 1; (3)

obtained by inverting the expression Eq. (12) of Ref. [14].
Clearly, for a given value of � and �, there is one and only
one possible value of �. Conversely, the determination of
both � and � specifies �. In this way, from Eq. (1) one has
that the compact orientable flat manifolds Ei (i ¼ 1 � � � 6)
define contour curves in the (���) plane, which are the
loci of values of the parameters (�, �) allowed for the
circles-in-the-sky of flat universes whose spatial section is
one of the associated flat 3-manifolds. The thick lines in
Fig. 2 indicate these contour curves (see below for more
details about this figure).
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FIG. 2 (color online). The allowed combinations of the circles-
in-the-sky parameters � (the deviation from antipodicity) and �
(the relative phase between circles) for compact orientable flat
manifolds. Each thick contour line corresponds to one allowed
class of holonomies, which take the form of a screw motion with
twist parameter � given in Eq. (1). The different orientable
compact flat manifolds Ei (i ¼ 1 � � � 6) that include each hol-
onomy class are indicated; those for which this holonomy may
generate the most readily detectable circle pair are in bold. The
dotted part in each countour line corresponds to configurations
where the circle pairs with the largest radii are always transla-
tional, and thus antipodal. In all cases, the compactification
length L is not fixed, but the precise combination of � and �
will depend on the position of the observer, as depicted in the
light contours corresponding to different distances r from the
axis of the screw motion (in units of L). The shaded area
corresponds to the parameter values that have been probed in
the recent searches for antipodal and nearly antipodal circles in
CMB maps [6,7].

5Clearly, one might also detect other pairs of circles which are
not associated with the first neighboring copies of the CMB
sphere. But, in such a case these pairs of circles corresponding to
neighboring CMB sphere copies, i.e. associated to the shortest
closed geodesic, will also be detected, and the pairs could be
distinguished by their radii.
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One can also show, after some algebra, that the compac-
tification length L and the distance of the observer r to the
axis of the screw motion can be written as

L ¼ 2�obs cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos�� cos�

1� cos�

s

; (4)

and

r ¼ ffiffiffi

2
p

�obs cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos�
p
1� cos�

; (5)

respectively. Thus, given the parameters of the circles, (�,
�, �), and the radius of the last scattering surface, �obs, one
can obtain the parameters for the corresponding holonomy
(�, L) and the distance r of the observer to the rotation
axis (henceforth, the observer’s position). Clearly, from
Eqs. (5), (4), and (3) one obtains the locus of values of
the parameters (�, �) such that the ratio r=L is constant.
This locus defines another family of contour curves in the
(���) plane, depicted in Fig. 2 as thin traversing curves
for different values of ratio r=L. Different combinations of
� and � along each contour correspond to different values
of r (in units of the compactification length L). Figure 2
shows that for observers situated along the screw motion
axis the resulting circles are antipodal (� ¼ 0), with a
relative phase � given by the twist angle � [cf. Eq. (3)].
For all observers, the deviation from antipodicity � be-
comes larger as the phase � decreases. In the limit where
the observer is infinitely distant from the axis, � becomes
zero and � becomes equal to � [see Eq. (3)].

III. CIRCLES-IN-THE-SKY IN COMPACT
ORIENTABLE FLAT UNIVERSES

Now, let us assume observations have detected a single
pair of circles of radius � with the corresponding parame-
ters (�, �). As we mentioned above, in compact orientable
flat manifolds the screw motion angle � is restricted to the
values given by Eq. (1). Also, for each of the allowed
values, Eq. (3) becomes a finite set of one-to-one relations

between � and �, as is shown in Fig. 2. Thus, the detection
of a pair of circles will allow the knowledge of the pa-
rameters � and � to readily determine whether or not the
geometry of the spatial section of the Universe is Euclidean
(flat), by checking whether the observed values of � and �
lie on one of the contours (thick curves) shown in Fig. 2. If
they do not (after taking into account observational uncer-
tainties), then this is a clear indication that the geometry is
non-Euclidean. Conversely, if the parameters � and � of
the detected pair lie, within observational uncertainty lim-
its, on one of these thick contours curves, we would con-
clude that the underlying spatial geometry is most likely
Euclidean (flat).6

Now, if it is found that the geometry is indeed Euclidean,
we then wish to establish to what extent the topology of the
spatial section of the Universe can be determined, given
such a detected pair of circles. The list of possibilities of
compact orientable flat manifolds is summarized in Table I.
We indicate in each case the maximum deviations from
antipodicity of the circles-in-the-sky for which a nontrans-
lational holonomy may generate the most readily detect-
able pair of circles (see Ref. [8] for details).
Table I and Fig. 2 show that each of the 6 possible classes

of holonomies corresponds to the different values of �
[cf. Eq. (1)], which in turn belong to the holonomy group
of one or more of the compact orientable flat manifolds.
At first sight, this seems to indicate one-to-many corre-

spondence between the values of the twist angle �
[obtained from the detected angular parameters of circles
(�, �)] and the list of flat orientable compact manifolds Ei

(i ¼ 1 . . . 6) with their associated holonomies.
However, as our previous work [8] details, some ele-

ments of a holonomy group can never produce the pair of
circles with the shortest distance between the observer and
its image, no matter where in the manifold the observer
happens to be. For instance, although a screw motion with
a twist of 120� exists in the holonomy group of E5, being
the square of its nontranslational generator with a twist of
60�, it can be shown that the distance between any point
and its image by the former holonomy is always larger than
the corresponding distance by the latter. Thus, if a pair of
circles associated with a twist of 120� is detected, it means
that either the spatial section of the Universe is E4, or it is
E5 but there is another pair of matching circles, of larger
radii (and thus more readily detectable), the position of
which can be worked out from the position of the centers of
the circles and from Eqs. (3)–(5).7 If, on the other hand, no

TABLE I. Multiply connected flat orientable manifolds and
the maximum deviation from antipodicity of the circles-in-the-
sky for each manifold for which a nontranslational holonomy
may generate the most readily detectable pair of circles (i.e. with
the largest radii). In all cases, the screw motion twist parameters
can only take certain values of the form � ¼ 2�=n; the values of
n for the holonomy group generators are also indicated. Note
that n ¼ 1 corresponds to a translation.

Symbol Manifold n �max

E1 three-torus 1, 1, 1 0�
E2 half-turn space 1, 1, 2 120�
E3 quarter-turn space 1, 1, 4 86�
E4 third-turn space 1, 1, 3 109�
E5 sixth-turn space 1, 1, 6 59�
E6 Hantzsche-Wendt space 2, 2, 2 120�

6The values along the contours are in fact compatible with
some positions of the observer for certain curved manifolds, but
the full set of possible combinations of the latter densely span the
��� plane, and thus the set of values corresponding exactly to
the contour curves correspond to a zero-measure set of observers
for each potential non-Euclidean manifold.

7Clearly, we are ignoring the possibility of having such circles
hidden by galactic contamination.
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other pair is detected in a full-sky search, then merely the
presence of this pair of circles is sufficient to ensure that
the spatial section has an E4 topology. In this way, a non-
antipodal circle pair detection with parameters on any
contour line in Fig. 2 is compatible with only one flat
compact orientable manifold, apart from one case: a circle
pair with phase shift of � ¼ 180� for any value of �
(implying a screw motion with a twist of � ¼ 180�) may
be the most readily detectable circle pair in either E2 and
E6 (and can also be present in E3 and E5, albeit necessarily
alongside some other circle pair with larger radii). Thus,
the observation of a single pair of nonantipodal circles
removes the ambiguities in determining the spatial topol-
ogy and, except for the degeneracy between E2 and E6, it
allows one to fully reconstruct the entire holonomy group
(apart from at most two compactification lengths associ-
ated with the group generators not directly observed), as
well as to determine observer’s position within the com-
pact manifold.

This leaves out the antipodal case given by � ¼ 0 ¼ �,
where the circles are back-to-back with no phase differ-
ence. As can be seen from Fig. 2, this is a totally degenerate
case, since for any flat 3-manifold a suitable choice of
position and compactification lengths guarantee that a
translation generates the only detectable circle pair. Note,
however, that this case has been in principle ruled out by
the searches that have already taken place.

In closing, we note that our results can also be useful to
devise search strategies for circles-in-the-sky in CMB
maps that reduce the size of the parameter space that needs
to be numerically searched. This is potentially significant
because a pair of matching circles in the celestial sphere is
defined by six angular parameters. A six-parameter search
in high-resolution maps to be produced from the ongoing
Planck mission [15] would be prohibitively time-
consuming. By combining our previous result according
to which the deviation from antipodicity is very likely to be
small for circle pairs in very nearly flat universes, with the
connection shown here to exist between two of the circle
pair parameters in flat universes, our results suggest that
future searches should be confined to combinations of �
and � given by Eq. (3) restricted to Eq. (1). Clearly, in
order to carry out a new search for nearly back-to-back
pairs of circles, an additional full range of � values for
small values of � should be undertaken. In this way, one
would effectively reduce the dimension of the survey
parameter space by one, ensuring a significant reduction
in computational time.

IV. CONCLUDING REMARKS

The existence of pairs of correlated circles in CMBmaps
with the same distribution of temperature fluctuations—the

so-called circles-in-the-sky—is a generic prediction in a
Universe with a detectable nontrivial cosmic topology,
regardless of the background geometry. Detecting such
circle pairs would provide a measure of the value of their
corresponding parameters (�, �, �).
We have made a detailed study of the extent to which the

detection of a single pair of circles in CMB maps can be
used to determine the geometry and topology of the spatial
sections of the Universe.
We have shown that as long as we detect the pair of

circles which is the most readily detectable one, i.e. asso-
ciated with the nearest (topological) copies of the last
scattering surface, then the analysis of the corresponding
circle parameters given in this paper is sufficient to deter-
mine whether the geometry is Euclidean (flat) or curved,
within the observational uncertainties. In the former case,
we have also shown that we can fully determine the topol-
ogy of the spatial sections of the Universe, apart from one
case.
Given the upcoming high-resolution data from Planck

[15], it is conceivable that pairs of circles-in-the-sky can be
detected by more comprehensive searches than those so far
undertaken [6,7]. However, any detection is likely to be
partial, in the sense that it is very unlikely that one would
have access to a complete set of generators of the holon-
omy group from the observable circles-in-the-sky. In spite
of this, what we have shown in this paper is that even the
most partial detection, i.e. the observation of a single pair
of circles, is in principle sufficient to determine whether
the spatial section of the Universe is flat or curved.
Furthermore, if it is flat, we have shown how one can
determine the topology of the spatial section of the
Universe from this minimal detection.
Finally, our results have an important consequence

for the future search for circles-in-the-sky strategies. We
had previously shown that searches so far undertaken (if
confirmed) would be sufficient to in principle exclude the
possibility of a very nearly flat universe with a nontrivial
topology [4,5]. In the light of this result, our results in
the present paper suggest where in the parameter space
the searches for circles-in-the-sky one should concentrate
on, thus significantly reducing their computational costs.
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