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We quantify the effects of the voids known to exist in the Universe upon the reconstruction of the dark

energy equation of state w. We show that the effect can start to be comparable with some of the other

errors taken into account when analyzing supernova data, depending strongly upon the low redshift cutoff

used in the sample. For the supernova data alone, the error induced in the reconstruction of w is much

larger than the percent level. When the Baryonic Acoustic Oscillations and the Cosmic Microwave

Background data are included in the fit, the effect of the voids upon the determination of w is much

lessened but is not much smaller than some of the other errors taken into consideration when performing

such fits. We also look at the effect of voids upon the estimation of the equation of state when we allow w

to vary over time and show that even when supernova, Cosmic Microwave Background, and Baryonic

Acoustic Oscillations data are used to constrain the equation of state, the best fit points in parameter space

can change at the 10% level due to the presence of voids, and error-bars increase significantly.

DOI: 10.1103/PhysRevD.84.083005 PACS numbers: 95.36.+x

I. INTRODUCTION

The current body of astronomical data makes it very
difficult to live without dark energy. Combination of the
supernova data with the 7 yr results from WMAP and the
Sloan Digital Sky Survey (SDSS) data on Baryon Acoustic
Oscillations combine almost seamlessly with observations
of the Hubble constant and the light element abundances to
paint a picture which has become known as the standard
cosmological model [1–5]. The Universe is not homoge-
neous however and observations of galaxy clustering,
N-body simulations and the simplest theoretical consid-
erations all predict that the majority of the volume of
today’s Universe is considerably underdense in terms of
matter, which forms roughly shaped denser walls sur-
rounding the underdense voids [6–9]. The Universe is
made up therefore mostly of the voids between overdense
regions, a situation which has lead to evocative compari-
sons of the Universe with both a froth of bubbles and with
Swiss Cheese [10,11].

Such underdense regions have been studied in detail
to understand their effects on cosmological observables
[12–14] and to investigate whether they can help explain
the various observations of the Universe without dark
energy [15–19]—this might be possible if we are located
close to the center of a very large void [20–23]. Such a void
would typically have to be larger than 100Mpc in radius, in
comparison to the voids which have definitely been ob-
served in the Universe which vary in size between very
roughly 5–20 Mpc. In order to create such large voids, it
would be necessary to have a very nontrivial power spec-
trum of perturbations [24,25]. In this work we attempt to

reach a much less ambitious goal, and we only consider the
voids which we have evidence to believe actually exist.
The nature of dark energy is unknown. In particular, it is

not known if its energy density remains completely con-
stant over time or whether it is growing or decreasing. If
dark energy can be modeled as a perfect fluid then any
such evolution is determined by the equation of state of the
fluid w which relates the energy density and the pressure,
P ¼ w�. By fitting supernova data, we are able to con-
strain that equation of state, and future investigations hope
to pin it down with increasing accuracy.
Voids can be considered not only to provide additional

constraints on w [26,27] but also as potential sources of
error. In this study we estimate what the effect of voids will
be upon the reconstruction of the equation of state of dark
energy, w, from the supernova data. In order to do this, we
look at the evolution of voids in a Universe that contains
collisionless matter and a cosmological constant. We con-
sider distant voids in which supernovae explode and look at
the effect upon photons as they climb out of their host void
walls and move towards us. The presence of the voids
increases the scatter in the luminosity redshift plane—we
aim to estimate this error and see how it compares with
other errors on the reconstruction of w. We do not expect
the error to be large since the fluctuations in the gravita-
tional potential will be very small, less than a percent.
However, since the velocity dispersion of supernovae rela-
tive to the Hubble flow can create an observable effect, we
feel it is worthwhile investigating the magnitude of the
error due to these smaller voids.
We do this in a way which is not entirely self-

consistent—this shortcoming lies in the fact that we evolve
voids in a �CDM Universe and then apply the estimated
error to other kinds of dark energy where w � �1. The
reason we do this is that although it is in principle possible
to study voids evolving in a background of dark energy
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with w � �1, the evolution of such voids involves the
solution of a complex set of partial differential equations,
whereas voids evolving in a cosmological constant back-
ground are the result of ordinary differential equations and
are therefore simpler to analyze numerically. We hope to
estimate the magnitude of the error one expects from these
walls in the knowledge that when one includes Baryon
Acoustic Oscillations data and the Cosmic Microwave
Background (CMB), the equation of state w is constrained
to lie quite close to �1 anyway. We note that much more
complicated analyses might be done in future if it becomes
necessary.

In the next section we will outline the equations that we
evolve as well as the functional form of the void models we
choose. We will then describe our numerical procedures
and present our results before making conclusions.

II. THE LTB EQUATIONS AND VOIDS

Although we will assume that all the matter in the
Universe has evolved into voids and void walls, our interest
is focused on the hole nearest to the source only. We
assume that the effects of complete holes situated between
the source and the observer cancel out along the light path,
and we neglect the void that we are located in since all
photons must arrive into the same current potential well.
We construct our Swiss-Cheese model of the universe by
combining two components: the ‘‘cheese,’’ where the met-
ric is described by a spatially flat Friedmann-Robertson-
Walker (FRW) solution, and the ‘‘holes’’ where the matter
is mainly underdense by volume and we use the Lemaı̂tre-
Tolman-Bondi solution. Unlike the idea that we are at the
center of a very large void which is used to live without
dark energy, we will therefore be in the cheese, looking at
distant holes.

A. The model: Lemaı̂tre-Tolman-Bondi universe

Our model is based on the Lemaı̂tre-Tolman-Bondi
(LTB) metric, a spherically symmetric solution of
Einstein’s equations, which can be written as (in units
where c ¼ 1)

ds2 ¼ �dt2 þ S2ðr; tÞdr2 þ R2ðr; tÞðd�2 þ sin2�d�2Þ;
(1)

where we use comoving coordinates ðr; �;�Þ and proper
time t. For pressureless dust and a cosmological constant,
Einstein’s equations imply the following constraints:

S2ðr; tÞ ¼ R02ðr; tÞ
1þ 2EðrÞ ; (2)

1

2
_R2 � GMðrÞ

Rðr; tÞ �
1

3
�R2 ¼ EðrÞ; (3)

4��ðr; tÞ ¼ M0ðrÞ
R0ðr; tÞR2ðr; tÞ ; (4)

where a dot stands for partial derivative with respect to t
and a prime with respect to r; �ðr; tÞ is the energy density
of the matter, G is Newton’s constant, and � is the cos-
mological constant. To specify the model we intend to use,
we have to define the two arbitrary functions EðrÞ, corre-
sponding to the spatial curvature, and MðrÞ, which is
simply the mass integrated within a comoving radial coor-
dinate r:

MðrÞ ¼ 4�
Z r

0
�ðr; tÞR2R0dr:

Both of these functions are completely defined therefore by
the choice of an initial density profile �ðr; tLTBÞ, where
tLTB ¼ tLTBðrÞ refers to the beginning of the LTB evolution
and is set to a constant for simplicity. We then have to
choose EðrÞ in order to match the flat FRW model at the
boundary of the hole. This choice also ensures that the
average density inside the hole equals the one outside so
that an observer situated in the cheese would not be aware,
locally, of the presence of the hole.
We intend to test our model by sending photons through

the voids and measuring redshifts. To do so, we must
integrate the equation for their radial trajectory

dtðrÞ
dr

¼ R0ðr; tðrÞÞ
ð1þ 2EðrÞÞ1=2 : (5)

To repeat and clarify, in contrast to other models based
on the Swiss-Cheese universe, we assume that the ob-
server, although occupying no particular position in space
with respect to the holes, is always situated in the cheese;
we then consider only the effects caused by the furthest
hole where the supernovae are located (see Sec. III A for
more details) and hence the geodesics originate since in
this study wewant to investigate the effect of the void at the
origin of the photons rather than when they arrive here.

B. Parameters and initial conditions

To characterize the LTB model we intend to use, we
have to define the initial density profile �ðr; tLTBÞ. We then
will build the two arbitrary functions EðrÞ and MðrÞ based
on this profile. The expression we choose for it is based on
Kostov’s parametrization [28] where the density profile
(Fig. 1) is defined as follows:

�ðr; t0Þ ¼ ��ðt0Þ � fA1 þ A2 tanh½�ðr� r1Þ�
� A3 tanh½�ðr� r2Þ�g; (6)

for r < rh, where rh is the radius of the void, and �ðr; t0Þ ¼
��ðt0Þ for r � rh. Given ðr1; r2Þ, the values of the coeffi-
cients ðA1; A2; A3Þ and ð�;�Þ are chosen so that �ðrh; t0Þ ¼
��ðt0Þ and the integrated mass inside the hole MðrhÞ ¼
4�

Rrh
0 �ðr; t0Þr2dr ¼ 4

4� ��ðt0Þr3h.
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The function EðrÞ plays the role of the spatial curvature
in the LTB solution. It is defined using Eq. (3) and consid-
ering the initial time of the LTB evolution tLTB. At this
early time, Rðr; tLTBÞ ¼ aðtLTBÞr ¼ aLTBr, and we have, in
real units,

EðrÞ ¼ 1

2

H2
LTBa

2
LTB

c2

�
r2 � 3

4�

MðrÞ
a3LTBr ��ðtLTBÞ

�
; (7)

where ��ðtÞ is the average energy density at time t.
In order to guarantee that the chosen parametrization of

the voids is consistent with observational constraints, we
compare the density profiles with observed values of over-
and underdensities at different times of the LTB evolution:
at initial time t ¼ tLTB and at final time t ¼ tnow. We set
tLTB to be the time of last scattering, tLTB ¼ tðz ¼ 1100Þ.
So the constraint at initial time comes from the scale of
temperature fluctuation in the CMB �T=T � 10�5, which
corresponds to a variation in density of the order of 10�4.

At the other extremity, when t ¼ tnow, the guideline for
density profiles is given by observations of the present
underdensities in the matter distribution of our Universe.
Recent studies (e.g. [9]) show that the voids that we see

nowadays probably correspond to regions where the den-
sity is �20% of the mean cosmic density.
Further constraints on the size of the voids can be

deduced from the study of nonlinear late-time integrated
Sachs-Wolfe effects on the CMB [29].
Ensuring that these constraints are taken into account

defines the spatial geometry of the voids. The chosen
parameters are given in Table I.

III. SIMULATION PROCESS AND RESULTS

A. Obtaining redshifts and distance moduli

In order to compare the various universes with dark
energy possessing different equations of state, we need to
build Hubble diagrams which allow us to analyze the
discrepancies between models and Type Ia Supernova
data. We therefore obtain the redshift of distant sources
situated around the void and then calculate the correspond-
ing distance modulus.
We evolve a single void up to some random time and

then choose a random position in the void according to the
weighting of matter density. We assume that the number
density of supernovae explosions is proportional to the
density and therefore more likely to occur in the void
wall. We follow the path of a photon emerging from that
void, with initial coordinates ðrin; tinÞ, until the value of tðrÞ
reaches the present time, tðrfinalÞ ¼ tnow. We then send a
second photon, with initial coordinates (r0in ¼ rin, t

0
in ¼

tin þ�tin), until the comoving distance it covered corre-
sponds to rfinal. At this point, we can calculate �tfinal ¼
t0ðrfinalÞ � tnow and thus the redshift zðrin; tinÞ ¼
�tfinal=�tin � 1. The luminosity distance is then given by

dL ¼ ð1þ zÞ2Rðrfinal; tnowÞ ¼ a0robsð1þ zÞ;

where a0 is the value of the scale factor today, and robs ¼
rfin � rin is the distance between the source and the ob-
server. We repeat this process, generating a cloud on the
distance modulus/redshift plane which takes the form of a
blurry line with scatter around the normal �� z relation-
ship in �CDM.

B. Statistics: Binning process

The aim of the binning process is to gather series of
points given by simulations in order to deduct sensible
estimates of the error on the redshift and luminosity dis-
tance from them. Given the redshift range covered by the
supernova data, 0:01< z < 2, we choose to distribute the
105 data points between 200 bins of width �z ¼ 0:01
(Fig. 2). For each bin obtained, the mean and standard
deviation are calculated. We thus end up with a new series
of points and corresponding errorbars which we can now
add to the existing known errorbars on the supernovae and
see how the cosmological conclusions change.

TABLE I. Chosen parametrization of the voids, taking into
account the constraints at initial time tLTB and final time tnow.

Density profile parameters

r1 4 Mpc

r2 15 Mpc

A1 9:97� 10�1

A2 2:99� 10�3

A3 1:70� 10�4

� 0.6

� 3.0

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1.002

 1.004

-20  0  20  40  60  80  100

ρ(
r,

t 0
)/

ρ(
r>

r h
,t 0

)

r [Mpc]

FIG. 1 (color online). Initial density profile define at t ¼ tLTB
and showing the shape of the cosmological voids and of its
surrounding walls of denser matter.
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The Type Ia Supernovae data used in this study are
extracted from the Union2 Compilation [1] of the
Supernova Cosmology Project, which contains 557 sources
drawn from 17 data sets. We base our comparison on the
file called ‘‘Union2 Compilation Magnitude vs Redshift
Table’’ [30], which contains supernova name, redshift,
distance modulus, and distance modulus error. To the latter
we add the systematic error due to the peculiar velocities of
the host galaxies, �v ¼ 400 km=s, converted into a sys-
tematic error on the redshift of 	z ¼ 0:00132.

Once all data are binned and all errors known, we can
compute 
2 values for every combination ð�m;��Þ. In
parallel, we do the same for all FRW universes defined by
the same density parameters.

C. Comparison of errors

To compute consistent 
2 values, we ought to take into
account all the errors and uncertainties adding up for each
source considered and which can be split into two catego-
ries: error on distance modulus, ��, and binning process

uncertainty, �BP, so that


2 ¼ X
SNe

½�meanðzÞ ��measðzÞ�2
�2

� þ �2
BP

:

Error on Distance Modulus. This first error gathers the
variety of measurement errors due to the nature of the
sources and the way their luminosity is evaluated.
Accordingly to the Union2 original paper [1], we sum in
the component errors coming from the following causes:
light curve fitting (through covariant matrix), galaxy pecu-
liar velocities, Galactic extinction, gravitational lensing,
and a floating dispersion term (for potential sample-
dependent systematic errors). All these errors are included
in the error on distance modulus given by the Union2
Compilation data.

Binning Process Uncertainty. The second group of er-
rors relate to the spread induced by the voids themselves.
Here the error comes from the binning process itself,

where we combine results of simulation for a large number
of different sets of initial conditions. For each bin created
at a given redshift z (see Sec. III B), we determine the
standard deviation of the data by evaluating the spans from
the mean value that include 68% of all the points in the bin.
The corresponding deviation, �BPðzÞ, is then simply added
in quadrature to the total uncertainty.

D. Effect on the estimates of the equation of state w

Having estimated the errors due to the growth of voids in
the universe, we are in a position to find out how this
effects the reconstruction of the equation of state. To do
this we perform a Monte Carlo Markov Chain (MCMC)
fitting to the data. We assume a flat Universe and generate
values of �M (and therefore �DE ¼ 1��M) and w ran-
domly. For all fits in this paper we remove uncertainty in

FIG. 3 (color online). �M vs dark energy equation of state w
when fitting the Union2 data set only assuming a flat Universe.
The shading represents probability from the 
2 cumulative
distribution function.

TABLE II. The best fit for the equation of state of dark energy
w to the Union2 supernova data set alone with the 67% errors.
The fits are done for different minimum redshifts and with and
without the additional errors created by the presence of voids.
The fourth column is the difference between the two best fit
values. Note the general trend of the difference in errors going
down as we cut out lower redshift supernovae (apart from when
we go from zmin ¼ 0:02 to zmin ¼ 0:03 which must be a statis-
tical fluctuation).

zmin Smooth With voids j�wj
0.01 �1:480þ0:631

�1:005 �1:613þ0:740
�1:189 0.133

0.02 �1:574þ0:706
�1:125 �1:662þ0:776

�1:250 0.088

0.03 �1:727þ0:819
�1:320 �1:823þ0:889

�1:422 0.096

0.04 �2:017þ1:006
�1:678 �2:056þ1:028

�1:748 0.039

 0.04  0.05  0.06  0.07  0.08  0.09  0.1

-300
-200

-100
 0

 100
 200

 300
 0

 5

 10

 15

 20

Number of
Sources
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Discrepancy w.r.t.
FRW model

[1e-3%]

Number of
Sources

FIG. 2 (color online). Illustration of the binning process allow-
ing us to deal with the statistical nature of our results. The width
of each bin is fixed in redshift, �z ¼ 0:01.
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the Hubble constant by choosing the best fit value for each
value of�M. We also calculate the probability from the 
2

values using the 
2 cumulative distribution function rather
than relative 
2 values as an estimation of maximum
likelihood.

First, we fit the supernova data alone. Typical favored
regions in the�M � w plane can be seen in Fig. 3. Table II
shows the projected constraints on the equation of state
with and without the presence of the additional error due to
voids. We have done MCMC runs for the supernova data
sets with various minimum redshifts. When fitting to data,
it is normal to cut out very small redshift supernova since
they are the data points most vulnerable to large redshift
errors such as peculiar velocities. Given that we expect the
void effect to be at most the same magnitude as these other
errors, we perform fits to the data with and without the
voids neglecting supernovae below different minimum red-
shifts—zmin ¼ 0:01, 0.02, 0.03, and 0.04. As expected, the
discrepancy between the simulations with and without
voids decreases as we increase the minimum redshift.

The constraint on the value ofwwhen only including the
supernova data is very weak, and best fit values are quite
far from w ¼ �1. This regime is therefore far from the
region of validity of our analysis—the growth of voids in
such a Universe might be quite different to the LTB case
due to structure formation in the dark energy and aniso-
tropic pressure which in general is a challenge to calculate.
However, we make no apologies for this as we only seek to
highlight the possible magnitude of void effects upon the
reconstruction of the equation of state in this work.

Next we include the effective distance measure DV

which is obtained from the SDSS Baryonic Acoustic
Oscillations data [3,31] and the WMAP constraint on
dark energy from the shift parameter R and the acoustic
scale lA [2]. The favored regions on the �� w plane can
be seen in Fig. 4. These lead to much tighter constraints on

possible values of w and the difference between the cases
with and without voids is much smaller (Table III).
We note here that we obtain slightly different constraints

on the equation of state to the analyses carried out in [1],
which is probably mostly due to the way we marginalize
over the Hubble constant. The basic preferred regions are
compatible in the two studies.

E. Effect on the estimates of the dynamic equation
of state wðzÞ

So far, we have considered a constant value for the
equation of state parameter w. It is however possible that
the dark energy equation of state might vary over time and
therefore redshift. A very commonly used parametrization
of dynamic dark energy is

w ¼ w0 þ wa

z

1þ z
;

based on works by Chevallier, Polarski and Linder [32,33].
Following the same procedure as before, we fit the super-
novae data while taking into account the constraints given

FIG. 4 (color online). �M vs dark energy equation of state w
when fitting the Union2 data set, Baryon Acoustic Oscillations,
and the shift parameter and acoustic scale of the CMB, again
assuming a flat Universe. The shading represents probability
from the 
2 cumulative distribution function.

TABLE III. The best fit for the equation of state of dark energy
w to the Union2 supernova data set, CMB, and BAO, as
described in the text, with the 67% errors. The fits are done
for different minimum redshifts and with and without the addi-
tional errors created by the presence of voids.

zmin Smooth With voids j�wj
0.01 �1:064þ0:116

�0:126 �1:072þ0:127
�0:139 0.008

0.02 �1:073þ0:122
�0:132 �1:078þ0:129

�0:141 0.005

0.03 �1:097þ0:131
�0:143 �1:101þ0:134

�0:147 0.004

0.04 �1:128þ0:134
�0:148 �1:129þ0:135

�0:149 0.001

TABLE IV. The best fit for the dynamic equation of state of
dark energy w ¼ w0 þ wa

z
1þz to the Union2 supernova data set,

CMB, and BAO, with the 67% errors. The fits are done for
different minimum redshifts and with and without the additional
errors created by the presence of voids.

zmin wi Smooth With voids j�wij
0.01 w0 �0:523þ0:457

�0:320 �0:492þ0:662
�0:636 0.031

wa �2:993þ6:956
�2:672 �3:223þ8:166

�2:938 0.230

0.02 w0 �0:515þ0:587
�0:343 �0:424þ0:426

�0:402 0.091

wa �3:064þ5:037
�2:572 �3:660þ7:097

�3:096 0.596

0.03 w0 �0:444þ0:395
�0:394 �0:475þ0:558

�0:417 0.031

wa �3:488þ6:608
�2:686 �3:272þ5:751

�3:025 0.216

0.04 w0 �0:483þ0:953
�0:412 �0:493þ0:489

�0:427 0.010

wa �3:173þ5:173
�2:756 �3:076þ5:451

�2:798 0.097

EFFECTS OF VOIDS ON THE RECONSTRUCTION OF THE . . . PHYSICAL REVIEW D 84, 083005 (2011)

083005-5



by the CMB and the BAO. The results for the best fits are
given in Table IV.
Even with the extra degree of freedom, the fits obtained

when including the whole set of supernovae down to
arbitrary small redshifts are not fantastic, the probability
obtained from the 
2 distribution of the best fit point in
parameter space being less than 50%. However, the situ-
ation changes dramatically depending on the redshift
considered for the cutoff: the best fit probability comes
close to 1 with zmin ¼ 0:04. Figure 5 shows the contour
plots obtained for the different values of zmin studied here.
It is clear again that if we include the lowest redshift

supernovae, the error which is introduced due to the pres-
ence of voids has a considerable impact on the best-fitting
regions in wo � wa parameter space.

IV. COMMENTS AND CONCLUSIONS

There are more than 100 supernovae below z ¼ 0:04 in
the Union2 data set so it is not surprising that including or
not including them can have a considerable effect on the
reconstruction of the equation of state of dark energy w. In
the same way, changing their error bars changes their pull
on the best fit values of w.
In this work, we have shown that the growth of voids in

theUniverse can have a small effect upon the reconstruction
of the equation of state of dark energy by inducing scatter
into the redshift-luminosity data plane. If one considers
only the supernova data, and we try to constrain models of
dark energy with a constant equation of state, the effect of
the voids may be relatively large, up to around 10% of the
central value of w, becoming less as one increases the
minimum redshift supernovae included in the fit.
When one includes the constraints from the CMB and

from Baryonic Acoustic Oscillations, the magnitude of
the effect is much smaller, below the percentage level.
However, the induced error does start to compare with
some of the other smaller errors that are considered by
the Union2 team which are listed in Table 9 of [1]. This
error is not important now and may turn out to be dwarfed
by other systematics even in future studies using data from
new observational programs. Conversely, one can envisage
a situation where it would have an important effect upon
the understanding of dark energy, and we would need to
parametrize and quantify our uncertainty.
If we consider dark energy with an equation of state

which is allowed to vary, i.e. wðzÞ ¼ wo þ waz=ð1þ zÞ,
we find that the effect of the uncertainty introduced due to
the voids is amplified and the best fit values of wo and wa

can change around 10%, unless we neglect all supernovae
at redshifts lower than z� 0:04. The magnitude of the
errors around these best fit regions also increase
significantly.
Another approach to understand the distribution of these

voids and their effect is to try to map out the local voids
using peculiar velocity flows in an attempt to quantify their

FIG. 5 (color online). Dark energy equation of state parameters
w0 versuswa, with zmin ¼ 0:01, 0.02, 0.03, and 0.04, respectively,
when fitting the Union2 data set, Baryon Acoustic Oscillations,
and the shift parameter and acoustic scale of the CMB, always
assuming a flat Universe. The contours correspond to the prob-
abilities listed in the individual graph titles.
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effect. This seems difficult: a redshift of z� 0:04 corre-
sponds to a comoving distance of roughly 150 Mpc. The
size of typical voids in the Universe today is considerably
smaller than this, of the order of 10–20 Mpc in radius. We
should therefore expect many hundreds of voids to be
present in this low redshift part of the Hubble diagram,

and it seems impossible to trace them given our lack of

understanding of bias and the history of structure formation

in the local Universe. What we do know is that there are

voids, their gravitational potential may have implications

for the reconstruction of w, and we can in principle quan-

tify this uncertainty.
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