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We calculated the stress of the quantum vacuum, the Casimir stress, in a spherically symmetric

medium, Maxwell’s fish eye, surrounded by a perfect mirror and derived an exact analytic solution. Our

solution questions the idea that the Casimir force of a spherical mirror is repulsive—we found an attractive

stress in the medium that diverges at the mirror.

DOI: 10.1103/PhysRevD.84.081701 PACS numbers: 03.70.+k, 77.84.Lf

Casimir suggested an intriguing model that could ex-
plain the stability of charged particles and the value of the
fine-structure constant [1]. The argument goes as follows:
Imagine the particle as an electrically charged hollow
sphere. Two forces are acting upon it: the electrostatic
repulsion and the force of the quantum vacuum, the
Casimir force—presumed to be attractive [2–8]. The stress
� of the quantum vacuum on a spherical shell of radius a
must be given by a dimensionless constant times ℏc=a4 on
purely dimensional grounds—the quantum stress is an
energy density proportional to ℏ, and ℏc=a4 carries indeed
the units of an energy density. Now, the electrostatic energy
of the sphere is proportional to the square e2 of its charge
and is also inversely proportional to a4 [9]. Therefore, an
attractive Casimir force balances the electrostatic repulsion
regardless of how small a is, provided e2=ðℏcÞ assumes a
certain value given by the strength of the Casimir force.
This strength depends on the internal structure of the
particle—the fact that it is a spherical shell—but not on
its size, which could be imperceptibly small. Casimir’s
model, however crude, could simultaneously explain the
fine-structure constant e2=ðℏcÞ and the stability of charged
elementary particles.

All one needs to do is calculate the Casimir force on a
spherical shell, but such calculations are notoriously diffi-
cult. After a marathon struggle with special functions,
Boyer succeeded in numerically computing the force for
an infinitely conducting, infinitely thin shell and found a
surprising result [10] that shattered Casimir’s idea: the
vacuum force is repulsive and so cannot possibly balance
the electrostatic repulsion. Boyer’s heroic calculation was
confirmed in a sophisticated and elegant paper by Milton,
DeRaad, and Schwinger [11] and by others [12]. The
spherical shell has become the archetype for a shape that
causes Casimir repulsion [13]. However, doubts have been
lingering about whether the repulsive force of the shell
may be an artifact of the simple model used [14,15], for the
following reason: the bare stress of the quantum vacuum is
always infinite and this infinity is removed by regulariza-
tion procedures [2–8]. The most plausible regularization
involves considering the relative stress between or inside
macroscopic bodies. But, an infinitely thin sphere does not
represent an extended macroscopic body, nor multiple

bodies. Suppose the physically relevant vacuum stress of
an extended spherical shell tends to infinity in the limit
when the shell becomes infinitely thin and infinitely con-
ducting. In this case the regularization would remove this
physically significant infinity, producing a finite result that
may very well have the wrong sign. Our paper supports the
contention that the Casimir repulsion of the spherical shell
could be an artifact of regularization.
Consider a minor modification of Casimir’s model

(Fig. 1). Imagine that the spherical shell (though still
infinitely conducting and infinitely thin) is no longer hol-
low, but filled with a medium of gradually varying electric
permittivity " and magnetic permeability �. In this way,
the shell has become part of a macroscopic body where
the Casimir stress gradually builds up. We calculate the
regularized stress tensor � in the material and see how �
behaves near the spherical mirror. For preserving the
spherical symmetry, we assume that " and � depend
only on the distance r from the center of the sphere. The
stress tensor � will be radially symmetric and may change
with increasing r. Considering how � varies, we obtain a
physically well-defined Casimir-force density r � �. We
assume a toy model for " and � where � turns out to have
an exact solution. Our model is (Fig. 2)

" ¼ � ¼ 2n1
1þ ðr=aÞ2 (1)

FIG. 1. The Casimir force on a spherical shell (left) is repul-
sive [10], or is it? We assumed the shell to be filled with a
medium (right) and found an attractive Casimir stress in the
material. The shades of grey indicate the profile of the medium
(plotted in Fig. 2).
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where n1 is a constant. Equation (1) is valid for r � a, and
at r ¼ a we place a perfect spherical mirror where " ! 1.
The mirror is part of the dielectric material, but, as it is
infinitely thin, we can model it by the boundary conditions
it imposes: the transversal components of the electric field
strength are zero. Equation (1) describes Maxwell’s fish
eye [16–19]. We have chosen this model because, in our
calculation of the Casimir force, we take advantage of the
mathematical fact that Maxwell’s fish eye implements the
geometry of a simple curved space: it represents the three-
dimensional surface of the four-dimensional hypersphere
in stereographic projection (Fig. 3) [19,20]. We have found
a simple, exact expression for the vacuum-stress tensor:

� ¼ � ℏc1
�2a4nð1� r2=a2Þ4 (2)

where 1 is the unity matrix. The stress is isotropic, nega-
tive, and falls monotonically, so the Casimir-force density
r � � is always attractive in our model (Fig. 2). Close to
the mirror, the stress and the force in the material tend to
infinity. Since the material of our toy model [Eq. (1)]
represents only a modest modification of homogenous
space with refractive index n1, it is likely that the

Casimir stress close to a perfect spherical mirror around
a ball of index n1 is infinite as well, even when n1 ¼ 1,
i.e. for a hollow perfect mirror. An imperfect mirror, on
the other hand, may lead to a finite and possibly attractive
vacuum force. In any case, our present calculation shows
that the perfect spherical mirror produces an artifact, a
diverging Casimir-force density, in a relatively normal
material, which casts new doubts on the claim of Casimir
repulsion for the hollow sphere [10–12] and gives new
hope for Casimir’s fascinating explanation of the fine-
structure constant and the stability of elementary charged
particles [1]. Of course, in a more realistic theory the
charged particle should not be regarded as being a classical
object interacting with the quantum vacuum, as in
Casimir’s case [1], but rather as a self-consistent quantum
structure. Speculation aside, we found a nontrivial exact
solution for the Casimir force. Analytic solutions for
Casimir forces are extremely rare—the attraction between
two plates with infinite " [2], the repulsion between plates
with infinite " and � [21], and the attractive force on a
homogeneous spherical ball with infinite " [22] have been
solved; we believe we have discovered the first exact
solution in a gradually varying medium.
We use Lifshitz theory [3,8] for our calculation be-

cause this is the best physically motivated and tested
theory of Casimir forces [7]. Lifshitz theory relates the
vacuum stress to the electromagnetic Green function (as in
Schwinger’s source theory [23]). The physical stress � of
the quantum vacuum is expressed as

� ¼ lim
r0!r

½�ðr; r0Þ � �0ðr; r0Þ�;

�ðr; r0Þ ¼ �ðr; r0Þ � 1
2
Tr�ðr; r0Þ

(3)

where the � are the correlation functions of the fields in the
vacuum state between the points r and r0 at equal times;
the � are finite for r � r0. The stress is regularized by
subtracting a bare vacuum stress from �ðr; r0Þ in the limit
r0 ! r. Our calculation turns out to be independent of the
actual regularizer �0 as long as �0 depends only on local
properties of the medium. The total correlation function �
consists of the sum of the electric and the magnetic field
correlation functions given by [8]

�el ¼ �ℏc"ðrÞ
�

Z 1

0
�2Gsðr; r0; i�Þd�;

�mag ¼ ℏc
��ðr0Þ

Z 1

0
r�Gsðr; r0; i�Þ � rQ 0d�

(4)

where the arrow indicates differentiation from the right;Gs

denotes the symmetrized electromagnetic Green function
ðGþGTÞ=2 for purely imaginary wave numbers i� (i.e. for
imaginary frequencies ic�). The Green function G de-
scribes the electric field at the spectator point r generated
by a point source at r0 pointing in all possible spatial

FIG. 2. Index profile nðrÞ (grey curve) of the medium inside
the shell and the resulting vacuum stress �ðrÞ (black curve, in
units of ℏc=a4). As r ! a, the stress � tends to �1.

FIG. 3. The medium (plotted in Fig. 2) represents the geometry
of the hypersphere (shown here as a sphere) in stereographic
projection (lines). The figure illustrates the reflection (points) at
the mirror (black circle) on the hypersphere and in physical
space.
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directions. The Green function is thus a bitensor that obeys
the wave equation

r� 1
�r�Gþ "�2G ¼ �ðr� r0Þ1: (5)

In our case [Eq. (1)], the medium is impedance-matched,

"ðrÞ ¼ �ðrÞ ¼ nðrÞ: (6)

We show that for impedance matching the electric corre-
lation function equals the magnetic one. For this, we
represent G as

G ¼ Gþ �ðr� r0Þ1
n�2

(7)

and obtain from the wave equation [Eq. (5)]

r� 1

n
r� Gþ n�2G ¼ �r� �ðr� r0Þ1�rQ 0

nðrÞnðr0Þ�2
(8)

where we expressed the double curl of the delta-function
term [Eq. (7)] in terms of derivatives with respect to r and
r0. Notice that the magnetic Green function, defined as

Gmag ¼ �r�G�rQ 0

nðrÞnðr0Þ�2
; (9)

obeys the same wave equation [Eq. (8)]. Consequently,
Gmag agrees with G apart from a delta-function term, but

such a term does not matter in the correlation functions
[Eq. (4)] where we regard r � r0 before we take the limit
r0 ! r. We conclude that �el ¼ �mag and obtain

� ¼ � 2ℏcn
�

Z 1

0
�2Gsðr; r0; i�Þd�; (10)

which sets the scene for calculating the Casimir stress �
from the electromagnetic Green function G in impedance-
matched media.

The Green function for Maxwell’s fish eye [Eq. (1)] has
been obtained already [17,18]. We state the results we need
here. For keeping our expressions uncluttered, we set

a ¼ 1; n1 ¼ 1 (11)

in our calculation and then obtain the general result
[Eq. (2)] by scaling arguments. Suppose the material
[Eq. (1)] extends to infinity (without the mirror). In this
case, the solution of Eq. (5) is [18]:

G 0 ¼ �r� nðr0Þr � r0Dðr0Þ � rQ 0

nðrÞnðr0Þ�2
; (12)

r0 ¼ jr� r0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2r � r0 þ r2r20

q ; (13)

D ¼
�
r0 þ 1

r0

�
sinhð2�arccotr0Þ
8� sinhð��Þ : (14)

In the geometrical picture behind Maxwell’s fish eye [19]
(Fig. 3), the electromagnetic wave propagates on the sur-
face of the hypersphere from source r0 to spectator r in
stereographic coordinates with distance arctanr0, and D
denotes the Green function of a conformally coupled scalar
field [18]. The effect of the mirror is described by an
adaptation of the method of images [9] on the hyper-
sphere (Fig. 3). There, the mirror lies on the equator
(a two-dimensional surface for the four-dimensional hy-
persphere). We subtract from G0 the electromagnetic wave
generated by the image source on the hypersphere (Fig. 3).
This field is the mirror image of the original field. In
stereographic projection [19], the reflection at the equator
corresponds to the transformation r ! r�1. To obtain the
reflected wave G0

0, we thus perform the coordinate trans-

formation r ¼ rðr0Þ with r0 ¼ r�1 and then replace r0 by r.
Note that we also need to transform the field components
of G0, which is done by the Jacobian [24]

P ¼
�
@r0

@r

�
¼ 1

r2
� 2r � r

r4
(15)

such that

G 0
0 ¼ PG0ðr�1Þ: (16)

In this way, we obtain for the Green function

G ¼ G0ðrÞ � PG0ðr�1Þ: (17)

One verifies that the transversal components of G vanish
at r ¼ 1, as they should at a perfectly reflecting electric
mirror. Note that also for the reflected wave the magnetic
Green function equals the electric one (up to an unimpor-
tant delta-function term) even if the mirror is not made
by an impedance-matched material. To prove this, consider
Gmag defined by Eq. (9) for the transformed Green function

G0
0 that describes the reflected wave and rename r as r0

(we recall that G0
0 is the result of a coordinate transforma-

tion). Then, we make use of two geometrical facts. First,
nðrÞ�1r� G0 defines a one-form with respect to the ef-
fective geometry with line element ndl [19]. Second, this
one-form is invariant under the transformation r0 ¼ r�1

because the line element ndl is invariant. Therefore,
we can read nðr0Þ�1r0 � G0

0 as the coordinate-transformed

nðrÞ�1r� G0. Hence, we can also read the magnetic
Green function of G0

0 (with r renamed as r0) as the

coordinate-transformed Gmag of G0. For G0, the entire

medium is impedanced-matched, and in such a case we
have already established that the magnetic Green function
agrees with the electric one up to a delta-function term.
Consequently, the same must be true for the transformed
Green function G0

0 that describes the reflection at the

mirror.
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Now, we are ready to calculate the Casimir stress from
the electric Green function according to Eqs. (3) and (10).
The Green function G0 of the infinitely extended fish-eye
medium corresponds to the Green function on the entire
surface of the hypersphere, which is a uniform space. It can
only produce a uniform vacuum stress �0 that does not
contribute to the Casimir-force density r � �. As we are
interested in contributions to � that do generate a force,
we take the uniform �0 as our regularizer. In this way,
we are independent of actual regularization procedures that
attempt to explain why the physical vacuum stress is finite.
As an additional bonus, we only need to focus on the
reflected part of the radiation field, similar to the Lifshitz
theory [8] for the vacuum stress between conducting plates
[2] or in other piecewise uniform planar materials [3]. We
thus consider only �PG0ðr�1Þ in the total Green function
[Eq. (17)]. As the Casimir stress in a spherically symmetric
medium must be spherically symmetric, we calculate
�PG0ðr�1Þ only in the x direction, i.e. we put y ¼ z ¼ 0
and y0 ¼ z0 ¼ 0 in the definitions [Eq. (12)–(15)] and
evaluate �PG0ðr�1Þ at x0 ¼ x�1. We obtain, after some
straightforward algebra,

�PG0ðr�1Þ ¼ ð1þ r2Þ2
16�2r4r0

d1 0 0

0 d2 0

0 0 d2

0
BB@

1
CCA (18)

with the matrix elements

d1 ¼ 2
dD

dr0
; d2 ¼ � dD

dr0
� r0

d2D

dr02
(19)

where, in the x direction, r ¼ x and

r0 ¼ 1
2

�
1
r � r

�
: (20)

Equations (18)–(20) enter the formula for the correlation
function [Eq. (10)] in place of Gs where Gs is integrated
over all positive-imaginary wave numbers i�. It is wise to
perform the � integration before the r0 differentiations
[Eq. (19)]. We obtain for the scalar Green function
[Eq. (14)], using integral 2.4.4.1 of Ref. [25],

Z 1

0
Dd� ¼ 1þ r02

16�r02
; (21)

which gives

�� �0 ¼ ℏc
1þ r2

16�2ðr0rÞ4 1: (22)

All three eigenvalues of �� �0 are identical in the x di-
rection and, by virtue of spherical symmetry, they must be
identical in all directions. Equation (22) is thus valid every-
where in the medium, and from Eqs. (3) and (20) we get
our result [Eq. (2)] for a ¼ 1 and n1 ¼ 1. Reinstating units
for � and r produces Eq. (2) for general a. For obtaining
our result for general n1, we notice that n1 of Eq. (1) ap-
pears in the wave equation [Eq. (5)] as n1� and a prefactor
of n1 of the source term. Consequently, we only need to
replaceGði�Þ by n1Gðin1�Þ in Eq. (10) where n also carries
the prefactor n1, take n1� as a new integration variable, and
obtain Eq. (2) in full generality.

We thank Simon Horsley, Sahar Sahebdivan, and
Thomas Philbin for discussions. Our work is supported
by EPSRC and the Royal Society.

[1] H. B.G. Casimir, Physica (Utrecht) 19, 846 (1953).
[2] H. B.G. Casimir, Koninkl. Ned. Akad. Wetenschap. 51,

793 (1948).
[3] E.M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1956); I. E.

Dzyaloshinskii, E.M. Lifshitz, and L. P. Pitaevskii, Adv.
Phys. 10, 165 (1961).

[4] P. Milonni, The Quantum Vacuum: An Introduction to
Quantum Electrodynamics (Academic Press, Boston,
1994).

[5] K. A. Milton, The Casmir Effect (World Scientific,
Singapore, 2001).

[6] M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V.M.
Mostepanenko, Advances in the Casimir Effect (Oxford
University Press, Oxford, 2009).

[7] A.W. Rodriguez, F. Capasso, and S.G. Johnson, Nat.
Photon. 5, 211 (2011).

[8] U. Leonhardt, Essential Quantum Optics: From Quantum
Measurements to Black Holes (Cambridge University
Press, Cambridge, 2010), Appendix A.

[9] J. D. Jackson, Classical Electrodynamics (Wiley, New
York, 1998).

[10] T.H. Boyer, Phys. Rev. 174, 1764 (1968).
[11] K. A. Milton, L. L. DeRaad, and J. Schwinger, Ann. Phys.

(N.Y.) 115, 388 (1978).
[12] See the literature cited in Ref. [5], Chap. 4.
[13] The Casimir repulsion due to suitable materials rather than

shapes was observed by J. N. Munday, F. Capasso, and
V.A. Parsegian, Nature (London) 457, 170 (2009).

[14] D. Deutsch and P. Candelas, Phys. Rev. D 20, 3063 (1979);
P. Candelas, Ann. Phys. (N.Y.) 143, 241 (1982); N.
Graham, R. L. Jaffe, V. Khemani, M. Quandt, O.
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