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Integration of Kaluza-Klein modes in Yang-Mills theories
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A five-dimensional pure Yang-Mills theory, with the fifth coordinate compactified on the orbifold
§1'/Z, of radius R, leads to a four-dimensional theory which is governed by two types of infinitesimal
gauge transformations, namely, the well-known standard gauge transformations (SGT) dictated by the
SU4(N) group under which the zero Fourier modes AEE))“ transform as gauge fields, and a set of
nonstandard gauge transformations (NSGT) determining the gauge nature of the Kaluza-Klein (KK)
excitations A(J’)“. By using a SGT-covariant gauge-fixing procedure for removing the degeneration
associated with the NSGT, we integrate out the KK excitations and obtain a low-energy effective
Lagrangian expansion involving all of the independent canonical-dimension-six operators that are
invariant under the SGT of the SU4(N) group and that are constituted by light gauge fields, AE(B)”,
exclusively. It is shown that this effective Lagrangian is invariant under the SGT, but it depends on the
gauge-fixing of the gauge KK excitations. Our result shows explicitly that the one-loop contributions of

the KK excitations to light (standard) Green’s functions are renormalizable.
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I. INTRODUCTION

Extra dimensional standard model (SM) extensions in-
carnate attractive proposals to explore physics governing
nature at scales not reached by collider experiments so far.
SM extensions involving universal extra dimensions [1]
(UED) are particularly alluring as they set a relatively
small lower bound on the compactification scale, at
300 GeV. A key issue of this type of extra dimensional
models is that hitherto they are the only ones whose KK
gauge sector has been [2] consistently quantized, which is
crucial to perform phenomenological calculations as all
of the low-energy KK contributions generated by models
with UED involve quantum effects, so that a precise
knowledge of the complete KK ghost sector is imperious.
These models invoke at least two main high energy scales,
namely, that corresponding to the size of the extra dimen-
sion and another more fundamental, denoted by M, which
could be perhaps the strings scale. So, UED extensions of
the SM are not fundamental theories, but low-energy man-
ifestations of the underlying theory beyond the fundamen-
tal scale.

In this paper, our work context shall be an
SUs(N)-invariant Yang-Mills theory defined in a five-
dimensional space-time manifold in which the extra di-
mension shall be universal and shall be compactified on
the orbifold S'/Z,, with radius R. The ordinary four-
dimensional coordinates shall be denoted by x, while the
extra dimension shall be labeled by y. Five-dimensional
Lorentz indices shall be denoted by capital roman letters
(M, N, ...), four-dimensional Lorentz indices shall be rep-
resented by Greek letters (u, , ...), gauge group indices
shall be denoted by lowercase roman letters (a, b, ...),
and KK mode indices shall be always placed between
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parentheses. We consider the five-dimensional Yang-
Mills Lagrangian,

1
Lsym = _ZflawaaMN, D
with the curvature F9,, defined as usual:
Fin = oAy — oy AGy + gsf T AYAL ()

where AY, represents the five-dimensional gauge fields,
gs stands for the five-dimensional coupling constant,
which has dimensions of (mass)~!/2, and the f9¢ are the
structure constants. The fact that the coupling constant g5
is dimensionful indicates that this theory is nonrenorma-
lizable. As mentioned above, there is an underlying theory
at a scale Mg, beyond the compactification scale, and the
effects of such physics can be, in principle, parametrized
by means of an effective Lagrangian expansion consisting
in the five-dimensional Yang-Mills theory and an infinite
sum of higher-than-five canonical dimension operators as

L = Lon(Agy) + Y B OP(AL). ()
k S

The O:P are operators of canonical dimension higher
than five that are constituted, exclusively, by the five-
dimensional gauge fields of the extra dimensional Yang-
Mills theory, as well as the covariant derivative. The S,
coefficients are dimensionless quantities that parametrize,
in a model-independent manner, the effects of the funda-
mental theory that describes the physics at the Mg
scale. Each of the effective operators has a coefficient
that involves appropriate powers of the coupling constant
and the Mg energy scale, so that each term has the correct
dimension of mass. As the extra dimensional theory is
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nonrenormalizable in the Dyson’s sense, there is no crite-
rion that restricts the number of effective operators to
include in the series. One can compactify the fifth dimen-
sion and integrate it in the action to obtain an effective
four-dimensional theory in which the dynamic variables
are the KK modes. It is worth emphasizing that, after
compactification, we KK-expand the five-dimensional cur-
vatures, which are the covariant objects of the theory, as
such a procedure ensures the preservation of gauge invari-
ance at the four-dimensional level and leads [2,3] to a
pure-gauge KK theory (GKKT), which is [2] separately
invariant under two sorts of infinitesimal gauge transfor-
mations: the standard gauge transformations (SGT), under
which the zero KK modes are gauge fields; and the non-
standard gauge transformations (NSGT), that transform
the KK excited modes as gauge fields. After compactifica-
tion and integration of the extra dimension, one obtains a
theory of the form

ap

LE = £4YM(A;?)Q; A(;:n)a) + Z e
S

k>4

@2D(A(O)a, A‘(t:n)a),

“

with AES)“ and AS:”)“ representing the gauge KK zero and
excited modes, respectively, and where

27R
Loyym = [0 dy Lsyy. (5)

The L,yy Lagrangian has interesting features that deserve
to be mentioned. This Lagrangian is invariant under the
SGT and the NSGT, and its structure involves KK curva-
tures that vary covariantly under both sets of gauge trans-
formations. Such curvatures depend on the gauge KK
modes and also contain the pseudo-Goldstone bosons,
Ag'")”, which can be removed [2] from the theory by an
appropriate fixation of the gauge. As commented above,
the extra dimensional theory is nonrenormalizable, but it is
interesting noting that the four dimensional coupling con-
stant of the L,yp GKKT is dimensionless and that the
canonical dimension of the couplings of this Lagrangian is
equal or less than four, as required by Dyson’s criterion.
The nonrenormalizable nature of the five-dimensional the-
ory manifests itself at the four-dimensional level through
the infinite sums over the KK modes, which introduce a
divergent behavior. A striking quality of the L,y\ gauge
KK Lagrangian is that it is [2] renormalizable at the one-
loop level, which does not hold at higher orders or when
two or more extra dimensions are considered. This is
consistent with the fact that in UED models with only
one extra dimension the KK sums are [1,4] convergent,
which is related to the nonsensitivity of the low-energy
observables corrections with respect to the cutoff Mg. This
property is very important and phenomenological ex-
amples do exist [5]. On the other hand, the O:P, in
Eq. (4), are combinations of effective operators that have
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canonical dimension higher than four and that are com-
posed by the gauge KK modes. Moreover, these objects are
invariant under the four-dimensional Lorentz transforma-
tions as well as under the SGT and the NSGT. The lowest-
order corrections to light Green’s functions that can be
generated by the L,y Lagrangian are radiative correc-
tions at the one-loop level. Such a property comes from the
KK parity conservation [1] that occurs in the context of
UED. Contrastingly, the effective operators O° produce
tree-level corrections to low-energy Green’s functions.
The most important contributions of these operators are
produced by the vertices involving exclusively zero
KK modes, which are the lightest fields. However, the
suppression 1/M’§ on the effective operators renders [5]
them dominated by the one-loop effects of the Lyym
Lagrangian, as expected [1,4] for UED models.

The appropriate quantization of the L,y Lagrangian
requires the fixation of the gauge, which comes along with
the derivation [2] of the most general KK ghost sector
through the Becchi-Rouet-Stora-Tyutin (BRST) formalism
[6]. The gauge-fixing procedure can be accomplished [2] in
such a way that the invariance with respect to the NSGT is
removed, but that with respect to the SGT is still fulfilled.
This can be achieved by utilizing a gauge-fixing scheme
that is similar to another one proposed [7] some years ago
in the context of the so-called 331 model [8]. Within this
approach, a set of SGT-covariant gauge-fixing functions is
introduced [2,5] and the theory can be quantized with
respect to the KK excited modes, but leaving the zero
modes as classical fields. The resulting quantum
Lagrangian, which remains invariant under the SGT, is
constituted by three parts: the L,yy Lagrangian, which
we defined above; the gauge-fixing term, which is com-
pounded by the SGT-covariant gauge-fixing functions; and
the Faddeev-Popov ghost part, which naturally emerges
from the BRST formalism, and which also depends on the
gauge-fixing functions. The main concern of the present
work is the functional integration of the KK excited modes
in the quantum Lagrangian, which are the heavy fields
of the KK theory, and the derivation of an effective
Lagrangian low-energy expansion that involves only zero
KK modes, which are the light fields of the theory. The
SGT-covariant gauge-fixing approach [2] possesses advan-
tages from the practical viewpoint, and in this work we
take advantage of them. In fact, we prove that such gauge-
fixing procedure renders the contributions of the ghost
fields minus twice those of the pseudo-Goldstone bosons.
As the heavy fields to integrate out are gauge fields, some
interesting issues arise. In order to perform the KK heavy
modes integration, the gauge-fixing and the Faddeev-
Popov ghost terms must be taken into account. The ghost
term depends on the gauge-fixing functions, which means
that both the gauge-fixing and the Faddeev-Popov
Lagrangians involve the gauge-fixing parameter, £. This
observation is very important, as such dependence on the
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gauge-fixing parameter is inherited by the low-energy
effective theory,

£§ff = £YM(A§9)Q) + Z Z ol8)

m k>4 (%)k

O(AY"; &)

Tk oA, (©6)

+ZM

k>4""8S

In this effective Lagrangian, we have considered the low-
energy four-dimensional Yang-Mills SU4(N)-invariant
theory, described by the Ly, Lagrangian. The second
term of the effective theory is a sum of nonrenormalizable
higher-than-four canonical dimension operators that carry
the one-loop effects of the KK excited modes on low-
energy Green’s functions. Finally, the third term represents
a sum of the nonrenormalizable operators originated, at the
five-dimensional level, in the higher-than-five canonical
dimension operators (see Eq. (4)) after compactifying the
fifth dimension and KK-expanding the five-dimensional
covariant objects. In this effective theory, we have disre-
garded all of the contributions produced by KK excited
modes that do not impact light Green’s functions at the
one-loop level. We have also ignored, in the third term, all
of the nonrenormalizable terms that involve KK excited
modes, for they comprehend the most suppressed effects.
The coefficients g,(¢) are gauge-dependent dimensionless
parameters that quantify the effects produced, at the one-
loop level, by the excited KK modes on light Green’s
functions at an energy scale that is small when compared
with the compactification scale, R~!'. The O, are gauge-
dependent linear combinations of operators of canonical
dimension higher than four. They are governed by the low-
energy symmetries, which are the invariance with respect
to both the four dimensional Lorentz transformations and
the SGT. Note that the first series of nonrenormalizable
operators in Eq. (6) involves the mass of the gauge KK
excited modes, which is given, for the m-th mode, by
m,, = m/R, where m is an integer number. There is a
sum running over all of the KK modes, so that for each
term of the sum over k there is a Riemman J-function,
which is finite. This fact explicitly demonstrates that the
KK-sums of excited modes contributions to light Green’s
functions are convergent, as expected [2]. In this paper,
we integrate out the KK excited modes generated by the
five-dimensional Yang-Mills Lagrangian and obtain
the explicit expressions of the terms that involve the
canonical-dimension-six operators that are invariant under
the SGT, and find that they do not involve UV divergencies.
This result shows that the one-loop contributions of the KK
excited modes on light Green’s functions are renormaliz-
able, as it was recently proven in Ref. [2] and phenomeno-
logically illustrated in Ref. [5]. As mentioned above, these
results are gauge-dependent, as they contain the gauge-
fixing parameter. The integration of heavy gauge fields,
accomplished in the present paper, is a novel calculation.
In fact, to our knowledge, there is no work so far
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concerning the integration of heavy gauge modes to obtain
an effective low-energy expansion, and the possibility of
a gauge-dependent effective Lagrangian has not been
pointed out. To achieve the KK excited modes integration,
we adjust the method proposed in Ref. [9] so that it works
in the case of massive gauge fields, and derive a low-energy
effective Lagrangian expansion comprehending up to
canonical-dimension-six = nonrenormalizable operators
that are subjected to the low-energy symmetries.

The paper is organized as follows. In Sec. II we outline
the procedure to obtain the GKKT theory from the five-
dimensional Yang-Mills Lagrangian, Eq. (1), and briefly
discuss some issues concerning the gauge structure of such
four-dimensional theory and the structure of its quantum
version. Section III is dedicated to integrate out the KK
excited modes, first within the Feynman-’t Hooft context
and then in the general R; gauge. Finally, in the Appendix,
we provide a the details of the derivation of a low-energy
expansion when heavy gauge fields are integrated out.

II. THE FOUR-DIMENSIONAL PURE-GAUGE
KALUZA-KLEIN THEORY

In this section, we obtain a four dimensional KK theory
from the five-dimensional SUs(N)-invariant Yang-Mills
Lagrangian, Eq. (1), by compactifying the extra dimension,
which is supposed to be universal, in the orbifold S'/Z,
and integrating it in the action,

2mR
S = [d4X/ dy‘ESYM = /d4-x£4YM' (7)
0

Within the BRST formalism [6], the gauge parameters
defining the five-dimensional gauge transformations coin-
cide with the ghost fields. This means that in the case of
UED models such parameters also propagate in the fifth
dimension, so that they can be KK-expanded. The whole
set of gauge parameters KK modes defines an infinite set of
local gauge transformations, which can be separated into
the SGT and the NSGT. In order to preserve enough gauge
invariance when passing from five to four dimensions, one
must KK-expand covariant objects, which, in the case of
Eq. (1), are the five-dimensional curvatures. This approach
leads [2] to the four-dimensional GKKT

1
Loxs = = 5 (Fiant FOwr + Fe Flomens
+ 2\ Fmans), ®)
with the four-dimensional curvatures given by [2]

F ' = Fi, + gf A" ALY, ©)

zny)a — DZbA(vm)b _ D?}bAZ")b + gfabCAmmA%)bA(yn)C,
(10)
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j:'%)“ = DZbAgm)b + %AET)“ + gfahcA/mrnAfuf)bA(Sn)C,
1D

where @f}’ is the covariant derivative in the adjoint repre-
sentation of the SU,4(N) group. In the last expressions, any
pair of repeated indices, included the modes ones, denotes
a sum. The A(Sm)a fields are the KK modes of the fifth
component of the five-dimensional vector bosons. The
factors A™" and A’™" are linear combinations of
Kroenecker deltas, and their specific forms are irrelevant
for the present work. The four-dimensional coupling con-
stant is denoted, as usual, by g. The zero-mode curvature,
F 593,“, involves the ordinary four-dimensional Yang-Mills
curvature,

Fo, = 9,A0 — 8,40 + gfereaAl A0, (12)

which is made only of zero-mode gauge fields. With this in
mind, notice that the L,y); Lagrangian contains the ordi-
nary four-dimensional SU,(N)-invariant Yang-Mills the-
ory, which is exclusively constituted by light fields, that is,
by KK zero-mode fields. The L,y Lagrangian is invariant
under the SGT

aA'(l?)a _ D‘ff’a(o)h, (13)
5A,(Jn)a — gfabCA%n)ba(O)c, (14)
6A§m)a — gfabcA(Sm)ba(O)c’ (15)

which are clearly defined by the zero-mode gauge parame-
ters, (94, Note that, under such gauge variations, the zero-
modes Ai?’“ transform standardly as gauge fields, while the
KK excitations A’ and A" behave as matter fields
transforming in the adjoint representation of the SU,4(N)
gauge group. On the other hand, the £,y); Lagrangian is
also invariant under following set of NSGT,

5A'(l?)a _ gfahcAZl)ba(n)cy (16)
6A'(Jn)u _ pifm)aha(n)b, (17)
5Agm)a _ @gmn)aba(y,)b’ (18)

which, in contrast to the case of the SGT, are determined
exclusively by the KK excitations of the gauge parameters.
The nature of the KK modes with respect to the NSGT is
appreciably different in comparison with their comport-
ment under the SGT. The zero modes Aﬁg)" are not gauge
fields under the NSGT, but they transform in a way that
resembles the adjoint transformation, although this varia-
tion involves a mixing among KK excitations of the gauge
parameters and those of the vector bosons. The NSGT of

the KK excited modes AZ”)” contain the object
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D'(Jnn)ab — gmn DZb — gfabCAmmAfJ)c, (19)

which is a sort of covariant derivative. Thus these KK
excitations transform as gauge fields with respect to the
NSGT. Finally, the object

ngn)ab — _gmn 5ub% — gf“bcA/mr"A(sr)c (20)

is present in the NSGT of the KK scalar excitations Agm)a.

The scalar fields A(Sm)” can be completely removed from the
theory by performing the particular NSGT

R
5A(5m)a — E ngn)abAgm)a’ 1)

for which the KK excited gauge parameters have been
taken to be a™* = (R/ m)Agm)“. This result shows explic-
itly that such scalars are pseudo-Goldstone bosons whose
degrees of freedom have been eaten by the KK excited

gauge modes Aﬁj")“ to acquire their masses. It is worth

mentioning that the KK curvatures fﬁ%“, }"%)“ and

}’Z”)“, exhibited in Eqgs. (9)—(11), transform covariantly
under the SGT and the NSGT, which is crucial to elegantly
prove that the L,y Lagrangian is invariant under both sets
of gauge transformations.

The quantization of this GKKT can be consistently
executed [2] on the grounds of the BRST formalism [6].
A remarkable attribute of this theory is the possibility of
splitting the quantization procedure into two independent
parts. One can, for instance, fix the gauge with respect to
the NSGT and then quantize the KK excited modes, while
leaving the gauge invariance with respect to the SGT and
preserving the gauge zero modes as classical background
gauge fields. For the present work, we follow this route.
However, it is worth emphasizing that one can, if desired,
quantize the zero modes as usual or in an unconventional
manner. Within the BRST approach, the gauge-fixing,
L g, and Faddeev-Popov, Lgpg, terms are derived. Both
sectors depend crucially on a set of gauge-fixing functions,
denoted by 4 which can be suitably chosen so that the
quantum Lagrangian remains invariant under the SGT,
although there is no more degeneracy with respect to the
NSGT. A convenient election of the gauge-fixing functions
is the following SGT-covariant set:

f(m)a — @ZbA(m)bM _ é‘;%A(Sm)a (22)

Recall that ¢ is the gauge-fixing parameter. With this
choice, the quantum Lagrangian is found to be

Lo = Liym+ Lor + Lepc, (23)

with L4y given by Eq. (8). The gauge-fixing term is
explicitly given by
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I GF= — % (DZbA(m)bM)(D?,CA(m)CV)

1
+ mmAgm)”(DZbA(m)h“) ) fm%lAgm)”A(Sm)“,
(24)

while the Faddeev-Popov Lagrangian can be divided into
two parts as

Lipg = Lipg + Lipg, (25)
where
L ll?PG = C(m)b(DZ“ Dack)Clme — g2 Clmaclima
_ gfabc[Amrn C_'(m)d(D;lLdA(r)C/L)C(n)b

1 _
_ EAmrn C(r)c(:D;lLdA(m)d#)C(n)b

+ gmmA/mrn C(m)aAgr)Cc(n)b
_ mmAmrné(r)aAg’n)Cc(n)bl (26)

Here, C™a (C™a) stands for the KK ghost (antighost)
fields excitations. The L%, term is constituted [2] by
quartic interactions among KK ghost fields, and its specific
structure is not needed to achieve the purposes pursued in
the present paper, so that we shall omit it from here on.
A notable quality of the gauge-fixing functions given in
Eq. (22) is that they lead to the cancellation of the non-
physical bilinear and trilinear couplings A%")“Ag-")b and
APAUP AL This issue shall be important in the next
section, when we integrate out the heavy KK modes.
Extra dimensional models involve dimensionful cou-
pling constants, which in turn implies that they are non-
renormalizable, and this, of course, also holds for the five-
dimensional SUs(N)-invariant Yang-Mills Lagrangian that
we took as our starting point. Nonetheless, by examining
the structure of each term of the Lo Lagrangian, Egs. (8),
(24), and (26), one can perceive that the four-dimensional
coupling constant is dimensionless and that all of the
couplings have canonical dimension equal or less than
four, as required by Dyson’s renormalizability criterion.
In general, KK theories involve infinite sums over the KK
modes that must be also performed when calculating cor-
rections to light Green’s functions. The nonrenormalizabil-
ity of a given extra dimensional theory reveals itself at the
four-dimensional level through these infinite sums. In other
words, the divergencies present at the extra dimensional
level persist in four dimensions and are produced by dis-
crete rather than continuous sums. Particularly, theories
with only one extra dimension do not introduce this sort
of divergencies at the four-dimensional level when inserted
into one-loop corrections to low-energy observables. This
property is not fulfilled when two or more extra dimensions
are considered, or in the case of two-loops and beyond
corrections. The quantum Lagrangian Lo produces [2]
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renormalizable one-loop contributions to light Green’s
functions, as all of the divergencies introduced by the
KK excited modes are absorbed by the parameters of the
light theory. This feature is very important because the fact
that the divergencies can be controlled ensures that this sort
of quantum corrections lead to unambiguous results. In this
context, the one-loop KK corrections to the light Green’s
functions WW+y and WWZ have been calculated [5], find-
ing gauge-dependent, although well-behaved results that
are nonsensitive to the cutoff Mg.

III. INTEGRATION OF THE HEAVY KK MODES

In this section, we integrate out the KK excited modes of
L 2, which are the heavy fields of the theory, and obtain a
low-energy effective Lagrangian that depends only on the
light fields, personified by the KK zero modes. The obtain-
ment of nonrenormalizable higher-than-four canonical di-
mension operators by integrating out the heavy modes in
KK theories has been sporadically discussed in the litera-
ture [10]. Moreover, a remarkable feature of KK theories is
the presence of massive gauge bosons, which must be
subjected to a gauge-fixing procedure in order to be prop-
erly quantized. The possibility of having gauge-dependent
coefficients multiplying the nonrenormalizable operators
produced by the integration of heavy gauge KK modes
comes into play. This interesting behavior, not discussed in
the literature so far, is rather natural, as one-loop off-shell
Green’s functions involving gauge fields into the loops are
not [11,12] necessarily, but often gauge dependent. The
functional integration of heavy fields and the consequent
derivation of a low-energy effective Lagrangian expansion
is, in general, not an easy task. Even in the simplest cases,
such as the Euler-Heisenberg Lagrangian [13], the deriva-
tion of the low-energy expansion by integrating out the
heavy fields (in such circumstances, the electron field) is
intricate [14]. Furthermore, the sole consideration of a
Yang-Mills Lagrangian instead of the electromagnetic the-
ory renders the obtainment of the corresponding effective
Lagrangian quite a technical challenge. People has devel-
oped methods [15] to calculate effective Lagrangian ex-
pansions by integrating out heavy fields. We follow the
elegant approach given in Ref. [9] and suitably adjust it to
work in the case in which the heavy fields to integrate out
are gauge fields. We wish to emphasize that the integration
of heavy gauge fields, leading to an effective Lagrangian
expansion, has not been done before. We first perform the
calculation in the Feynman-t "Hooft gauge, which renders
the procedure the simplest it can be. After that, we consider
the general case, in which the gauge-fixing parameter
remains unfixed, and compare the resulting expression
with that obtained in the Feynman-’t Hooft gauge. In
both cases we obtain a low-energy effective Lagrangian
expansion that incorporates up to SGT-invariant canonical-
dimension-six operators.
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The quantum Lagrangian, Lo, can be divided into three
parts as

Lo = Lyw+ L0+ L, @27

with Ly standing for the ordinary four-dimensional
Yang-Mills Lagrangian, which is purely constituted by

zero-mode gauge fields. The E?O(’p term is a bridge that

1

I lg—loop — 5 gMVA(m)b,u Dl;a DadaA(m)dV + gfhadA(m)h/,cFZVA(m)dv _

+ %m2mg,uVA(m)a,uA(m)aV _

_ §m2m Clma C(’”)“,

whose structure carries a latent gauge dependence through
the gauge-fixing parameter. As we pretend to obtain a low-
energy effective theory, we shall integrate out not only the
heavy gauge degrees of freedom, but we shall also include
the ghost and the pseudo-Goldstone bosons fields, so that
we define the effective action, S, by

exp{iSe} = f @Aﬁf) fDA(S") DCWDC™WexpfiSo}

— [ DAY DAD DEW D exp{i [ dx L Q},
(29)

in which the functional integration affects all of the heavy
KK modes of the theory. By integrating out the heavy KK
modes, we obtain the low-energy effective action,

P&
Seff = SYM + E Z Tr logl:gMV(QDZ + m%n)

m=1
- (1 - é)DM:DV - 4igFW]

+ Trlog[—D? — ém2]

N[ ~.

M iMe

1

Trlog[—2D? — 2ém2,], (30)

—i

m

where F,,, = F{, T, with T* representing the generators
of the SU4(N) gauge group. Besides, we denote D? =
D*D,, while the symbol “Tr” indicates a trace over
both the internal and the external degrees of freedom.
The former of such degrees of freedom are the four-
dimensional space-time points, which are labeled by con-
tinuous indices, whereas the internal degrees of freedom
are those corresponding to the SU4(N) and four-
dimensional Lorentz groups. In this expression, Sy is
the standard four-dimensional Yang-Mills action, which

%Agm)b Dga @adaAgm)d —
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links the low-energy physics with the higher dimensional
effects, and contains all of the one-loop corrections to light
Green’s functions. The last part of Eq. (27) comprehends
contributions of KK excited modes that impact low-energy
Green’s functions, for the first time, at the two-loop level.
As we are interested in the one-loop contributions to light
Green’s functions, from here on we disregard the L"a%

term. The explicit form of £é_1°°p is

1 1
_ — Y Am)bu Myba Tyad A (m)dv
2(1 g)A DhaDadp

lé;mQ Agm)aA(Sm)a + C(m)b Dba @ada C(m)d
2 m o

(28)

is defined by the Ly Lagrangian. All other terms contain
the one-loop effects of heavy KK modes on light Green’s
functions. Note that these terms include an infinite sum that
runs over all of the KK heavy modes. The first of the one-
loop terms is produced by the heavy gauge KK modes and
is the only one that includes a trace over Lorentz indices.
Its structure greatly simplifies when taking the Feynman-"t
Hooft gauge, that is, by electing ¢ = 1. The SGT-covariant
gauge-fixing approach followed in the present work leads
to notable simplifications through the cancellation of the
unphysical couplings AE:")“Ag")b and Ai?)“A(,,m)bAg") ‘. As the
gauge-fixing functions, Eq. (22), eliminate such terms,
the contributions of the gauge and scalar fields are sepa-
rated of each other, and this dissociation not only makes
the derivation of the effective action, Eq. (30), easier, but
also reveals an interesting relation among the contributions
of the pseudo-Goldstone bosons and those of the ghost
fields. Specifically, the second and third one-loop terms
of the effective action come, respectively, from the pseudo-
Goldstone bosons and ghost contributions. Note that the
traces in such terms are essentially equal because the factor
“2” appearing in the argument of the logarithm in the
ghost contribution can be dropped, as it only contributes
trivially to the effective action. This explicitly shows
that the ghost fields contributions are minus twice times
those of the pseudo-Goldstone bosons, which is an inter-
esting feature that characterizes gauge-fixing procedures
like the one followed here. Such a remarkable property
has been fully exploited in KK theories [5] and also in
other contexts [7,16], for it simplifies loop calculations
involving both pseudo-Goldstone bosons and ghost
contributions.

A. The Feynman-"t Hooft gauge

By taking the Feynman-’t Hooft gauge (¢ = 1), the
effective action, Eq. (30), reads
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I - .
Sett = Sym T 5 Z Trlog[g/“,(sz + m%n) - 4lgF,u1/]
m=1

Trlog[—D?* — m2]. 31)
I

Mz

i
2

m

The pure-gauge one-loop trace is the one most simplified,
as under this particular gauge the term containing the cross
derivatives D, D, vanishes. The second part looks like the
trace generated by integrating out a scalar field and has
been already solved in Ref. [9]. For this calculation, we
utilize the dimensional regularization scheme, so that, from
here on, we work in d dimensions. Under such circum-
stances, the term involving the metric tensor in the pure-
gauge trace contributes d times the scalar trace. In other
words, one should expect

iTrlog[gW(l)2 + M?) + Uyw(x)]

fdd [(4 )ZMZ(A +log< 2)+ l)tr{U/‘ }+(4 .
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Tr loglg,,,(D* + m3)] = d Trlog[ —D* — m}] (32)

to be fulfilled. Such an asseveration reads clearer if one
thinks that the pure-gauge trace in Eq. (32) is generated by
a functional integration of gauge fields, which are arranged
as d-component vectors. Each of such components
contributes as a scalar, leading to a total of d scalarlike
contributions. However, the leading contributions of the
effective action, Eq. (31), come from the second term in the
pure-gauge trace. In the Appendix, we explicitly show how
to obtain a low-energy expansion from a gauge trace like
that in the first one-loop term of Eq. (31). According to Eq.
(A36), we derive the following formula:

(A +log< 2))tr{UWU’“’}

bl e [l b

L 11 wf{D, U+ DU} g1 tr{F,, U"F ,*} g 1 w{D, F**DF,,}
T - T -
(41)? 3 M? 7 (4m)? 3 M? v (4m)? 15 M2 v
igd 2 1
(4f7)2 45 M2 tr{F FWFUV}] + (9(1/M4), (33)
with
1 4—d
A, = et log(4), €= (34)

and U, (x) representing an arbitrary matrix-valued function of the space-time coordinates. In order to achieve this result,
the traces of the external degrees of freedom and Lorentz indices have been taken, so that the symbol ““tr”” denotes a trace
only with respect to the gauge group. This formula, which gives a low-energy expansion up to canonical-dimension-six
operators, holds for any gauge trace with such an structure, and can be employed in different contexts other than extra

dimensions. On the other hand, from Ref. [9], the expression

iTrlog[—(D? + M?)] = [ddx[— (4g;)2 %(AE log< ))tr{F#,,F/“’}] [d“ [ (‘:7:)2 910 1\/1[2 tr{F,, F"7F "}
¢

" @n? 60 Mz u{D F””D”Foy}:l +O(1/M*) (35)

is fulfilled. By setting U, = —4igF,, in Eq. (33) and using the resulting expression altogether with Eq. (35), the
effective action, Eq. (31), generates a low-energy effective theory,

2 00

_ g 31

m=1

2
¢? 323
~ (4m)? 120 Z

2\ 2 ig® 281
[Ae+log<":2) 93]tr{F FW}—(4§T)2 - zm—tr{F JFYOF i)

m=1

tr{I) Fr'DF } + O(RY). (36)
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The L éff effective Lagrangian has some interesting
features that are worthy of commenting. This low-energy
expansion includes the four-dimensional SU,(N)-invariant
Yang-Mills Lagrangian, Lyy;, whose structure involves
exclusively gauge KK zero modes, which are the light fields
of the KK theory. This term, which is insensitive to the KK
heavy modes, is renormalizable. The second term of the
effective Lagrangian has UV divergencies and also discrete
infinities generated by the KK sums. Nonetheless, it has no
physical consequences, as it can be absorbed by the param-
eters of the low-energy theory. The effective Lagrangian
also comprehends an infinite sum of higher-than-four ca-
nonical dimension operators that are suppressed by appro-
priate powers of the compactification scale, R~'. We have
determined all of the terms that involve nonrenormalizable
canonical-dimension-six operators, which are governed by
the SU, (V) gauge group as well as the Lorentz group. Such
operators belong to the list [17] of canonical-dimension-six
operators that are allowed by the symmetries of the four-
dimensional Yang-Mills theory. Itis a remarkable quality of
the nonrenormalizable terms that the KK sums appearing in
them are convergent. On the other hand, note that these
terms do not contain UV divergencies. These asseverations
are notable, as they explicitly prove that the one-loop effects
of the KK excited modes on the light Green’s functions are
renormalizable, as it was recently shown [2] by following a
different approach. As the canonical-dimension-four part,
Ly, is renormalizable, the effective expansion is expected
[18], from the beginning, to fulfill the decoupling theorem
[19]. This decoupling behavior can be beheld in Eq. (36),
where all of the effects of the extra dimensional physics
trivially vanish in the limit of a very large (small) compac-
tification scale (radius).

The philosophy of the effective Lagrangians formalism is
simple, indeed. One can parametrize the effects of physics
governing nature at a higher energy scale by “disguising”
such effects as terms involving nonrenormalizable opera-
tors that respect the low-energy continuous symmetries,
although violations of the C, P, T discrete transformations
can arise. The low-energy parametrization occurs through
the coefficients multiplying these nonrenormalizable in-
variant operators, and such a description has a limited range
of validity, below certain cutoff scale. As one gets closer to
the energy scale characterizing the heavy physics, the op-
erator expansion becomes senseless, and beyond the cutoff
the dynamic variables and symmetries of the fundamental
theory fully describe nature. The parameters carrying the
heavy physics information can be determined in terms of
the fundamental constants of the heavy physics theory, if
such physical description is known beforehand. When we
ignore the details of the high energy description, the effec-
tive Lagrangian parameters can be estimated or bounded by
using experimental data. In such context, the effective
Lagrangian formalism is a practical tool that allows one to
study effects of heavy physics in a model-independent
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manner. In fact, the invariant tr{F,,F”’F,*} has been
widely studied in the literature [20,21], as it contributes to
the static electromagnetic properties of the W gauge boson.
The nonrenormalizable canonical-dimension-six operators
of Eq. (36) produce, among other effects, CP-even contri-
butions to the WWy and WWZ vertices. An interesting
issue concerning such effects is that their contributions to
any multiloop Green’s function are gauge independent with
respect to the gauge-fixing of the light fields. This property
has been employed, for instance, to calculate [21] the one-
loop contribution of the tr{F,,F"?F,*} operator to the
neutrino charge radius. The coefficients of the low-energy
effective Lagrangian expansion obtained in this section
are written in terms of the compactification radius, which
is the additional parameter incorporated by the extra di-
mension. The nonrenormalizable terms in the L1, effective
Lagrangian are phenomenologically interesting as they
possess valuable information about the one-loop contribu-
tions of the heavy KK modes to low-energy Green’s
functions. For instance, in the context of the electroweak
SM, one can calculate the KK excited modes one-loop
contributions to the S, 7, U parameters [22] from the
t{D,F*"D?F,,} invariant through tree-level diagrams
and find that all of such contributions vanish.

So far, we have worked in the context defined by the
Feynman-’t Hooft gauge, which is convenient from the prac-
tical viewpoint and physically interesting. The quantization
of gauge systems is engaging as the profound issues of gauge
invariance and gauge independence play a central role. While
gauge symmetry is one of the essential blocks that constitute
any gauge theory, the quantization of such systems, however,
requires the degeneracy associated with the gauge invariance
to be removed, and the concept of gauge independence enters
as a crucial feature when calculating physical observables.
As gauge invariance ensures that any election of the gauge
invariably leads to the same physical results, the S-matrix
elements must be gauge independent, that is, they cannot
depend on the gauge-fixing procedure. Contrastingly, it often
occurs that the Green’s functions are gauge-dependent ob-
jects, although such dependence must vanish when all of the
Green’s functions that contribute to an S-matrix element are
taken together. Nevertheless, there exists the possibility of
preserving some sort of gauge invariance through unconven-
tional quantization schemes, such as the background field
method [23] (BFM) and the pinch technique [24] (PT).
Within the former approach, each of the gauge fields, G,
is split into a classical background field, G¢,, and a quantum
fluctuation, Q4 : G4 — G + Q¢ . One then quantizes the
quantum fields, for which a gauge-fixing procedure for them
must be performed. The resulting quantum theory is still
gauge invariant when the classical background fields are
gauge-transformed, but it depends on a gauge-fixing parame-
ter, £ o, originated in the fixation of the gauge for the quan-
tum fluctuations. This procedure leads to Green’s functions
satisfying simple (QED-like) Ward identities, but involving
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the gauge-fixing parameter. Though this unconventional
quantization approach produces gauge-dependent Green’s
functions, it is expected to provide us with information quite
close to the physical reality. The PT, on the other hand, is a
diagrammatic method that pursues the construction of a
quantum action that leads to both gauge invariant and gauge
independent Green’s functions. This method consists in con-
structing well-behaved Green’s functions of a given number
of points by combining some individual contributions from
Green’s functions of equal and higher numbers of points,
whose Feynman rules are derived from a conventional effec-
tive action or even from a nonconventional scheme.
Remarkably, the BFM and the PT are subtly related, which
is suggested by the fact that the Green’s functions built of
BFM Feynman rules coincide with those calculated by uti-
lizing the PT when the calculations are performed in the
&o = 1 gauge. This interesting link was first established
[25] at the one-loop level, then confirmed [26] at the two-
loop level, and more recently it was shown [27] that it is
fulfilled at any order of perturbation theory. The explanation
of such a striking connection remains so far unknown, butitis
worth emphasizing that the Feynman-’t Hooft gauge does not
produce unphysical thresholds. In the context of KK theories,
the corrections of the heavy KK modes to light Green’s
functions in the Feynman-'t Hooft gauge yield [5] well-
behaved results and provide an estimation of the effects of
the KK excited fields. In this gauge, the coefficients multi-
plying the nonrenormalizable canonical-dimension-six op-
erators in the L effective Lagrangian are appraised to be of
order 1077 GeV? for a compactification scale as large as
R™' =300 GeV [1]. Larger compactification scales shall
lead to more stringent suppressions, as it happens, for in-
stance, in the case of R™! = 4 TeV [10], for which these
coefficients are of order 107° GeV?2.

B. The general R; gauge

As it was shown above, the Feynman-’t Hooft gauge
supplies an estimate of the suppression of the nonrenorma-
lizable canonical-dimension-six invariants in the low-
energy effective Lagrangian. However, the possibility of
obtaining a gauge-dependent low-energy expansion is an-
other issue that deserves attention. For that reason, in this
J

£§ff =Lym + (477)?

4 —a)
3(7a? — 120a + 496)
ig> 5a° —161a? + 1528a — 4496

8(4 — a)?

m=1

log(l — a) +

—+

(47r)? 60(4 — a)?
B g% 20a” —323a + 1292
(4)? 12004 — a) =

2 Ta? — 120« + 496 & 2
A a « Z(A€+log<'u—2)
mm

2 11a® — 180a? + 720« + 64
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section we work in the context of the R, gauge. In these
more general circumstances, the gauge trace in the effec-
tive action, Eq. (30), is given by

!

iTrlogligM(fD2 +m2) — (1 ay:

)DM D, - 4igF/“,],
(37)

where the cross derivative term remains. The presence of
such a term makes the obtainment of the low-energy
expansion quite complicated if one attempts to literally
follow the method outlined in the Appendix. Nevertheless,
the procedure can be greatly simplified by noting that four
dimensional Lorentz covariance allows one to write the
cross derivative term as

(38)

v

1 ig
_ 2 _
DM DV = Zg;“,D EF
where the factor 1/d comes from the fact that we are

working in d dimensions. With this in mind, the gauge
trace can be expressed as

iTrlog[gW(l)2 +m2) — (1 — é)DMDV — 4igFW]

= iT1r10g|:gW(D2 + (1 — %)mfn)

- ,-g<1 - %)(8 2 a)FW], (39)

with « defined as

a=1—--. (40)

Written in this form, the gauge trace has the same structure
as that of Eq. (33), and employing the method of the
Appendix is now profitable. On the other hand, the trace
carrying the contributions of the pseudo-Goldstone bosons
and the ghost fields looks, in this gauge, like the scalar
trace in Eq. (35), which can be utilized to obtain the
corresponding expansion. By employing these results, we
find the low-energy expansion to be

4 5a” — 88a + 368 O( - )
374’ — 120a + 496 2\4 —

3 (4 — a)(7a? — 120a + 496)

) w{F,, F1v)

00 R2
>y — te{F,, F*"F ,#}

m=1

0  p2
> R—z t{D,FF" DF,,} + O(R*). (41)
m
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This result is clearly gauge-dependent, as the gauge-fixing
parameter is embedded all over the coefficients of the
nonrenormalizable invariants. Note that, by virtue of the
definition of «, it occurs that « — 0 as & — 1, that is, when
taking the Feynman-’t Hooft gauge. In such case, we
consistently obtain the £ éff Lagrangian, which was derived
in the last subsection by taking this particular gauge
from the beginning. As commented above, the gauge-
dependence of the low-energy effective expansion is not
surprising. In general, the standard derivation [14] of non-
renormalizable terms by the integration of heavy fields in a
given theory leads, at a first stage, to a local series of
operators in which the low-energy symmetries are hidden.
Each term of this series corresponds [14] to a one-loop
diagram whose external lines are light fields, while its
loops are constituted by the heavy fields that have been
integrated out. As all particles in such terms (diagrams) are
off-shell, the result of integrating out gauge fields that have
been subjected to a gauge-fixing procedure naturally
should lead to a gauge-dependent low-energy expansion,
as it occurred in Eq. (41). The term involving the invariant
tr{F,,F*"} in Eq. (41) concentrates all of the UV diver-
gencies, that is, those associated with the continuous as
well as the discrete sums. However, these effects are un-
observable, as they can be absorbed by the parameters of

ig’R* 5a° — 161a? + 1528« — 4496
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the light theory. On the other hand, the discrete sums
appearing in the nonrenormalizable invariants are finite
and can be performed. As commented upon in the
Introduction, the five-dimensional Yang-Mills theory is
not fundamental, and the impact of the physics beyond
this extra dimensional theory can be parametrized by
means of higher-than-five-canonical-dimension operators
whose building blocks are the five-dimensional dynamic
variables and symmetries. When the compactification of
the extra dimension is performed, these operators are ex-
pressed in terms of the KK modes and become invariant
under the SGT and the NSGT. They are suppressed by
powers of the cutoff Mg, which defines the limit of validity
of the five-dimensional theory. Such a suppression renders
the effective effects of the fundamental description very
weak, in particular, those which involve KK excited
modes. The less-suppressed terms of such operators are
those constituted exclusively by KK zero modes. By con-
sidering only such less-suppressed terms altogether with
the low-energy effective expansion exhibited in Eq. (41),
the resulting effective theory is composed exclusively by
KK zero modes. In other words, the four-dimensional
effective theory so obtained involves only effects from
the physics at the two heavy scales on low-energy
Green’s functions. Such Lagrangian is given by

Lie=Lyw+ t{F,, F""F ,#
eff = TYM T Sg60 4 — a) HF PP 7F
2p2 2
¢?R2 2002 — 323a + 1292 @, O
- tr{D, F**D°F,,} + O(R*) + —_ 0P ALY, (42)
11520 4 — a) " ;;M’s‘ e

where the KK sums have been solved and the unobservable
terms, absorbable by renormalization, have been omitted.
The fourth term of the right-hand side of the last expression
represents all higher-than-six-canonical-dimension nonre-
normalizable operators that emerge from integrating out
the heavy KK fields. Of course, all of such SGT-invariants
shall be suppressed by the compactification scale, R™!, in
powers that are equal or greater than 4. We have just
indicated, through the last term in the right-hand side, the
presence of effects from the physics beyond the extra
dimensional description. This term contains all of
the operators that parametrize physics at the Mg scale.
The precise expressions of such operators should be deter-
mined by KK-expanding, at the five-dimensional level,
the covariant objects composing the higher-than-five-
canonical-dimension operators, which can be done once
the compactification of the extra dimension has been per-
formed. As established before, we are thinking only in
those terms that involve zero KK modes, but no KK heavy
fields, and this issue has been explicitly indicated in
Eq. (42). The «; are dimensionless parameters that
quantify the impact of the Mg-scale physics at the four

dimensional level. As these terms are suppressed by the
fundamental energy scale, they are expected to be domi-
nated by the nonrenormalizable terms that we obtained in
this paper. The fact has been phenomenologically illus-
trated [5], recently.

It is worth comparing the impact of the physics beyond
the fundamental scale with the contributions of the non-
renormalizable terms that we derived by integrating out the
KK excitations. As we discussed above, the Feynman-'t
Hooft gauge is a physically suitable option to perform
estimations concerning gauge-dependent quantities. We
take this gauge, so that the canonical-dimension-six terms
of Eq. (42) read

ig?ap R wlF,,F" F ,*}, (43)

g2appR? t{D, Fr"DF,"}, (44)

where the coefficients azs and ap are both of order 1072,
On the other hand, the Mg-scale physics could generate the
invariants
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[0277R dY(IBﬁ % tr{fMNTNS‘TSM})

.3
i
= B Gy T P EH Y+, 49)
S
2R g% MN 1S
/0 d}’(,BDF M tr{Dy FYND> F SN})
g
,3(0) tr{DﬂF“” DUF(W} + e (46)

or (Ms h

with Dy, standing for the SUs(NN) covariant derivative in the
adjoint representation of the group, and where the dimen-
sionless coefficients ,8(0) = 27 B3 and ,8(0) = 27 Bpr pa-
rametrize, at low energy, the physics beyond Mg. Note that
the nonrenormalizable operators explicitly shown in the
right-hand side of these expressions are suppressed with
respect to those of Egs. (43) and (44) by R/Mj. The extra
dimensional theory becomes strongly coupled at some
scale, which could be identified with Mg. In the context of
the SM defined in a space-time with one UED, the require-
ment that the theory remains perturbative up to Mg has led
to the estimation [1,4] Mg ~ 30R ™. In such circumstances,
we take B ~ ays and BY). ~ apy, in Egs. (45) and (46),
and use them to determine that the contributions from the
fundamental physics are about 3% of those from the extra
dimensional physics.

IV. CONCLUSIONS

In this paper we have analyzed some theoretical aspects
about a pure-gauge Kaluza-Klein theory originated in the
compactification of the fifth dimension in the context of a
SUs(N)-invariant Yang-Mills theory defined in a five-
dimensional space-time manifold. The dynamic variables
of this KK theory are the KK modes, which can be
divided into two types: the zero KK modes, which are
the light fields, and which coincide with the ordinary
four-dimensional Yang-Mills gauge fields; and the KK
excited modes, which are manifestations of the fifth-
dimensional theory and are the heavy fields. The GKKT
is invariant under two sorts of gauge transformations that
we call the standard gauge transformations and the non-
standard gauge transformations. It is possible to fix the
gauge with respect to the KK heavy modes and so remove
the degeneracy associated to the NSGT, but leaving that
with respect to the SGT. We have taken advantage of
this interesting issue to derive a low-energy effective
Lagrangian expansion. Such an effective theory has
been defined by the functional integration over all of
the KK excited modes, which comprehend gauge fields
as well as pseudo-Golsdtone bosons and ghost fields. We
have explicitly proven that our gauge-fixing scheme ren-
ders the one-loop contributions of the ghost fields minus
twice those produced by the pseudo-Goldstone bosons.
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This interesting relation is a property of nonconventional
quantization approaches like the one followed in
this paper. By integrating out the heavy fields, we have
obtained an effective Lagrangian that involves up to
canonical-dimension-six nonrenormalizable SGT-
invariant operators, built of light fields, exclusively. In
order to achieve such an expression, we have followed
and appropriately adjusted an elegant method, proposed
in the literature some years ago, to derive low-energy
expansions. The functional integration of heavy gauge
fields to obtain a low-energy effective expansion is a
novel calculation of the present paper. Our result involves
all of the independent canonical-dimension-six invariants
whose building blocks are the four-dimensional Yang-
Mills fields. We utilized this expansion to compare the
effects of the extra dimensional Yang-Mills theory on
light physics with those originated in the fundamental
description of nature beyond the cutoff scale Mg, and
found that the impact of the latter is negligible with
respect to the significance of the former. We have first
calculated this low-energy effective Lagrangian in the
Feynman-’t Hooft gauge, and have found that all of the
divergencies, of both discrete and continuous origins, can
be absorbed by the parameters of the low-energy theory,
which implies that the one-loop contributions of the KK
excited modes to light Green’s functions are renormaliz-
able, as it was proven recently in the literature from a
different perspective. The KK sums in the effective
Lagrangian are all convergent, so that the nonrenormaliz-
able character of the five-dimensional theory does not
manifest itself at the one-loop level. This asseveration is
not necessarily true for two-loops or higher order calcu-
lations, or when two or more extra dimensions are con-
sidered. The fact that the infinite KK-sums incarnate a
latent source of divergencies in calculations involving
two-loop or higher order contributions of KK heavy fields
to light Green’s functions is an awkward feature of the
theory. Nevertheless, the first and dominant corrections to
the light physics enter at the one-loop level as renorma-
lizable effects. This quality allows one to obtain unam-
biguous results, which endows the theory with predictive
power. We have also derived the effective Lagrangian
expansion in the general R; gauge, and have found that
the low-energy expansion is gauge-dependent with re-
spect to the fixation of the gauge for the KK excited
modes. This feature is consistent with the fact that the
one-loop Green’s functions containing gauge fields into
the loops exhibit gauge dependence through the presence
of the gauge-fixing parameter in their structure. This is a
physically crucial issue that has not been discussed before
in the literature.
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APPENDIX: THE SOLUTION FOR A GAUGE
DETERMINANT

The functional integration of heavy fields in a theory
describing physics at certain high energy scale leads to
determinants that concern all of the light degrees of free-
dom, both internal and external. The determinants so
obtained can be transformed into traces over all of such
degrees of freedom. In this appendix, we adjust the method
presented in Ref. [9] to calculate a trace carrying the
contributions of heavy gauge bosons and obtain a low-
energy expansion up to canonical-dimension-six nonrenor-
malizable operators. Consider the general trace

iTrlOg[g,uy(Dz + Mz) + U;U/(x)] = /d4x£1_100p(x)
(AD)

where D, is the covariant derivative for the SU(N) gauge
group and U ,, (x) is a space-time dependent matrix that we
suppose to be arbitrary. The covariant derivative is given by

D,=0d,+G, G, = —igT“Gy, (A2)
with T representing the generators of the gauge group and

G, standing for the gauge fields. The curvature, which we

denote by GY,,, is defined in terms of the covariant deriva-
tive as
G.,, =D, D,] G, = —igT'Gy,. (A3)

The trace operation in Eq. (A1) acts on the points of the
space-time, which are the external degrees of freedom. It
also affects the internal degrees of freedom, which in this
case are determined by the gauge and Lorentz groups. In
the following, the symbol “Tr” shall refer to a trace over
both the external and the internal degrees of freedom, while
“tr”” shall indicate a trace over internal degrees of freedom,
exclusively. As divergencies shall appear, below, they must
be appropriately regularized. We follow the dimensional
regularization approach, for which we work, from here on,
in d dimensions. Note that the argument of the trace is
nonlocal, so that, up to this point, performing this operation
makes no sense. To obtain a local expression, one can first
perform the trace over the space-time coordinates, which,
for a general operator O, should be understood as

Tr{0} — [ dx tr(x] Olx) = j dxd?p tr{(x O pX pl)}
(A4)

where a completeness relation has been inserted and we
have defined

3 _ap 4p
dip = yé-—aor2 LP

Qm? (83)

so that u is a factor introduced to appropriately correct
dimensions. For a general quantum state, | ),
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(x[0la) = O (xla) = O,a(x), (A6)
with O, standing for the operator O in the representation of

positions. With this in mind, note that

Tr{O} = [ dhxd!ptrfeir O e 7YY, (AT)

By defining II, = iD, and then applying the general
result shown in Eq. (A7), along with the operator identity
eiP*f(Il)e~ P = f(I1 + p), to the gauge trace, Eq. (A1),
one obtains

iTrlog[g,w(Z)2 + M?) + Uyl
= iTrloglg,, (=11 + M*) + U,,,]
i [ dxd?p tr{log[—p2 + M?]
(IT2 + 211 - p)g .,
pZ _ M2

+ logI:gW, + ~ U"“”]}1 (A8)

In this expression, the logarithm operators act on the
identity, which we denote by “1”. The first term of the
argument of the trace in the third line of the last expression
contains no fields, and hence contributes only to the vac-
uum energy density. Thus, we drop it in what follows and
conserve only the second term, so that the gauge trace is
expanded as

iTrloglg,,(D* + M*) + U,,]

= i[ddxd‘lﬁtr < (_1)k+1
=k
[(I12 + 211 - ), — U,
X T L (A9)

The argument of the gauge trace, written in this form, is
local, so that the trace over the internal degrees of freedom
can be taken in each term of the series.

From the local form of Eq. (A9), one can appreciate that
the calculation of the momentum integrals shall provide an
expansion of nonrenormalizable operators, each one multi-
plied by a power of M. In other words, by comparing
Eqgs. (Al) and (A9), one can extract the Lagrangian

X (—1)kt1
-El-loop = Z( k)

=1
. _[(IT2 + 21T - p)é*, — U*,IF
X tr{lfd"p [ MF 1},

(A10)

then solve the loop integrals term by term in the series, and
finally write L;_j,, as

Loy =4y —0, (AlD)
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with O, representing a linear combination of traces of
gauge invariant operators of canonical dimension 2k, built
of the gauge fields G, the matrix U,,, and the SU(N)
covariant derivative. In the L, expansion shown in
Eq. (A1l), there is a global factor, d, which is expected
because the gauge trace, Eq. (A1), was produced by the
integration of vector fields, which are constituted by d
scalar fields, and the sum of all contributions produces
this global factor. A convenient normalization of this ex-
pansion fixes the c; coefficients as

1 M? \d/2—2 d
- (/= (x-2)
“T amp (4m2) ( 2)

As already commented, the O, are combinations of traces
of dimension-2k operators, so that, in general, they should
have the form

(A12)

O =>a,;0; (A13)
J

For the first values of k ( = 1, 2, 3), we shall employ the
following sets as bases:

k=1: (te{U*,}) (A14)
k=2: (U, U, dir{G,,G*}) (A15)
k= 3: (U, U"" U, D, U+ DU, ),
tr{G#VU”"G,,/‘}, dtr{DMG’“’DUGm,},
(G ,,G" G ). (A16)

The method proposed in Ref. [9] relies on the fact that
Egs. (A10), (A11), and (A13) are valid for any field con-
figuration. In fact, the a;; coefficients are just numbers,
independent of the field configuration, so that if one is able
to determine them within a specific choice, the coefficients
corresponding to the bases exhibited in Eqs. (A14)—(A16)
can be obtained. An appropriate election is the field con-
figuration such that

E, =G, a,E, =0, Uk, = =8+, E%, (Al7)
which imply that
G,, =[ELE,)] DM =[E,, M], (A18)

where M represents any matrix-valued function of E,, and
U* . In these very particular circumstances, the numerator
of the Lo, expansion, Eq. (A10), is greatly simplified,
for each term of the series can be expressed as
[(TT% + 211 - p)&*, — U*,F1 = 6#,(2iE - p)¥, (A19)

which considerably reduces the procedure of calculating
the momentum integrals:

PHYSICAL REVIEW D 84, 076010 (2011)
)k+1 {f dd~ (21E p)k}
M2)k
1 k+14k H1pto oo Mok
_g Z (— ) dip PP p
(PZ _ M2)2k
X tr{E#l :U'Zk}

<1 1 M?* \d/2—2 d
=d I(k—=
Z MZI"4 (47)? (47T,LL2) ( 2)

tr{Sy(E,)}

‘E 1-loop (EM)

2k
T
=d Z Mglf 4 (2]()' tr{SZk(E )}

In passing from the first to the second line in Eq. (A20), we
took the trace over the Lorentz indices, which gave rise to
the d factor (recall that we are working in d dimensions!).
We then considered the fact that any loop integral with an
odd number of momentum factors vanishes. From the
second to the third line, we solved the momentum integrals
by utilizing the result

fdd lepM2 . pMZk

(A20)

M2)2k
= (_1)k+1< M? )d/}z 1 1
4’ (47)> M*—*
I'k—d/2)
ZkF(Zk/) Sﬂ«lﬂz ,U«zk. (AZl)

In this expression, S #* is a totally symmetric

tensor built of the sum of all the products of k metric
tensors involving all the possible permutations of
Lorentz indices. For instance, S5' ¢ = ghiraghsrs +
gHitsghakts + glikagials — Also, we have employed the
definition

SylE,) =S""ME, - E (A22)

Mop’

so that S, (E,) is the sum of all possible permutations of
products of 2k E,, fields in which all of such fields are
Lorentz-contracted. For example, S (E,) = (E?)? +
E,E,E*E" + E,E?E*. Finally, from the third to the
fourth line, we have used the normalization of the cy,
Eq. (A12). By comparing the last line of Eq. (A20) with
the general expansion exhibited in Eq. (All), one can
identify

0F = oy HSu(E,)}

with the superscript “S” indicating that we are working in
the specific field configuration. Within this especial con-
figuration, the O, can be expanded as

S — S S
Oy = Zak,j@k,j‘
1

(A23)

(A24)
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In this context, an appropriate set of bases of traces (92 j is

k=1: (tr{E?}) (A25)
k =2: (tr{E, E,E*E"}, tr{(E%)?}) (A26)
k= 3: ({E, E,E,EFE"E”}, tr{(E?)*}, tr{EzE#EQE"}, t{E,E,E*E,E"E”}, tr{EzEME,,E“E”}). (A27)
By employing Eq. (A23), one can straightforwardly obtain the @O, combinations in the special configuration:
0% = u{E?}, (A28)
035 = % r{(E*)?} + = tr{E E,E*E"}, (A29)

1 1 1
50 t{E,E,E,EFE"E} + tr{(E2)3} + tr{EzE E?E™} + — tr{E E,E*E_E"E?} + tr{EZE E,E*E"}.
(A30)

One can also write the combinations @, in terms of the bases in Egs. (A14)-(A16), according to the general expression
shown in Eq. (A13), and specialize the results to the special configuration, which was defined through Eqgs. (A17) and
(A18), as

03 =

Oy = zak,j@k,jls' (A31)
i
So far, the a; ; coefficients remain unknown, but by equalizing the resulting expressions to Eqs. (A28)-(A30) as
O =D a10kls = Xai,;0,; (A32)
one can determine such coefficients, which are independent of the configuration. We find

0, = —% s, (A33)
0, = zid (U, U} + tr{G wry, (A34)

1
0y =——ulU,, U U} + tr{fD U DU W}+ S1H{G,, UGyt tr{D G*DIG,,}

1
551G GG (A35)

By inserting these results into Eq. (A11) along with the ¢, coefficients given by Eq. (A12), we obtain the following low-
energy expansion,

1

Liop= (41)2M2(A +10g(M )+1)tr{U St —= (A +log<M ))tr{U LU}

(4m)?2
! (A o ( w 1))t{G - - w vevme L Lp yepey, )
—))tr — T T
(4 )23 M?* 2 wy 4 )2M26 (4m)* M?3 v
1 1 1 1 l 1 l 1 2
—t G UG P —t @ G*r' DG, — —t G ,GY7G My A36
with
1 4—d
A, =—— yp + log(4m), €=—5— (A37)
€

As a final remark, note that, by virtue of Eq. (A3), one should perform the change G, — —igG,, in Eq. (A36) in order to
be in agreement with the standard notation.
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