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We present the results of a systematic leading-order calculation of hyperon Compton scattering and
extract the forward spin polarizability—y,—of hyperons within the framework of SU(3) heavy baryon
chiral perturbation theory (HBChPT). The results obtained for 7y, in the case of nucleons agree with that of
the known results of SU(2) HBChPT when kaon loops are not considered.
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I. INTRODUCTION

Compton scattering is a source of valuable information
about baryons since it offers access to some of the more
subtle aspects of baryon structure such as polarizabilities
[1-5], which parameterize the response of the target to an
external quasistatic electromagnetic field. For the case of
unpolarized nucleons the spin-independent (SI) Compton
amplitude is given by

M SI v — 2., 2% QIZV !
€M, €5 =¢€- € (—m—N +4rayww )

+4mBy(€ X §) - (€% g) + O(wh), (1)

where N = p, n; Qy, my represent the nucleon charge and
mass, while €, = (0, €), €, = (0,€") and ¢, = (0, g),
g, = (@', §') specify the polarization vectors and four-
momenta of the initial and final photons, respectively. At
this order, the Compton amplitude is defined in terms of
two polarizabilities—electric (a)) and magnetic (By),
which measure the response of the nucleon to applied
quasistatic electric and magnetic fields. By measurement
of the differential cross section, one can extract a and By
provided the energy is large enough such that the second
and third term in Eq. (1) contribute significantly with
respect to the leading Thomson contribution, but is not
so large that higher-order effects become significant. This
extraction has been achieved in the energy range
50 MeV < w < 100 MeV—for a recent review see, e.g.,
Refs. [6-8]. According to the Particle Data Group [9],
current experimental numbers for ay and By are

a, = (12.0 = 0.6) X 107 fm?,
B, = (1.9 = 0.5) X 107* fm’,
a, = (11.6 = 1.5) X 10~ fm?,
B, = (3.7 = 2.0) X 10~ fm?.
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The nucleon polarizabilities have been studied via a
number of theoretical approaches based on dispersion
relations [3,10-15], phenomenological Lagrangians
[16-20], constituent quark models [21-23], chiral-soliton
type of models [24-28] and lattice QCD using the external
electromagnetic field method in quenched [29,30] and
unquenched approximation [31]. Additional insights into
the polarizabilities have come from chiral perturbation
theory (ChPT), an effective theory of the low-energy strong
interaction [32,33], specifically from heavy baryon chiral
perturbation theory (HBChPT) which is an extension of
ChPT that includes the nucleon [34,35]. The first such
calculations of nucleon polarizabilities within ChPT were
carried out in [36,37]. However, HBChPT has an important
deficiency in that the chiral perturbative series fails to
converge in part of the low-energy region. The problem
is generated by a set of higher-order graphs involving
insertions in nucleon lines. It has been shown that infrared
singularities of the various one-loop graphs occurring in
the chiral perturbation series can be extracted in a relativ-
istically invariant fashion. This procedure is known as
infrared dimensional regularization (IDR) [38]. The IDR
respects the constraints of chiral symmetry as expressed
through the chiral Ward identities. The manifestly Lorentz-
invariant form of baryon chiral perturbation theory
(BChPT) with the IDR prescription has been successfully
applied to calculate a)y and By and the results for these
polarizabilities differ substantially from the corresponding
HBChPT numbers [39,40]. In addition, HBChPT has been
employed to analyze virtual Compton scattering processes
since, as an effective field theory, it satisfies the structures
of gauge invariance, Lorentz invariance and crossing
symmetry [41]. New predictions for generalized polariz-
abilities have been made using HBChPT at O(p*) (NLO)
[42-44] and, using ChPT, Compton scattering from the
deuteron has been computed to order O(p*) [45]. However,
the situation with regard to scattering from polarized tar-
gets is less satisfactory, in part because few direct mea-
surements of polarized Compton scattering have been
attempted.
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The spin-dependent (SD) piece of the forward-scattering
amplitude for real photons of energy w and momentum ¢ is
[4,46-49],

el MDey = ietwWD(w)G - (X ) +... (3)

From the theoretical perspective, there is particular interest
in the low-energy limit of the amplitude:

W) = 4m(£20) + *y) +.... @)

where 1y, is the forward spin polarizability, which is related
to the photo-absorption cross sections for parallel (o, ) and
antiparallel (o_) photon and target helicities via

1
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where W = M + MZ%/(2my) is the threshold energy for
an associated neutral pion in the intermediate state. The
Low-Gell-Mann-Goldberger low-energy theorem states
that,

2
£20) = - 258 ©6)

2
2my

where @ = ¢?/(47) = 1/137.036 is the fine-structure con-
stant, k is the nucleon anomalous magnetic moment [50].

The forward spin polarizability y) has been calculated
to O(p?) (LO) [51] in the framework of HBChPT yielding,
at lowest order in the chiral expansion,

yy = O s 107 i, )
247 FP M2

both for protons and neutrons, where the entire contribu-
tion comes from 7N loops. (Hereafter, we shall use units of
10~* fm* for the spin polarizability.) This LO calculation
of spin polarizability is a prediction, since any low-energy
constants associated with the polarizability enter only at
next to leading order (NLO). At LO, the polarizability is
given entirely by the loop contribution in terms of well-
known parameters such as nucleon and pion masses and the
pion-nucleon coupling constant (g ,yy)- The effect of in-
cluding the A(1236) enters in counterterms at fifth order in
standard HBChPT, and has been estimated to be so large as
to change the sign. The forward nucleon spin polarizability
v, has been computed in an extension of HBChPT with an
explicit A in [47].

This calculation has also been carried out to NLO in
the framework of HBChPT [52-55]. The contribution
to ¥} up to and including NLO contributions is found to
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be 78/ "=4.5— (6.9 £ 1.5)—the NLO contributions are
large. The corresponding relativistic chiral one-loop cal-
culation of the forward spin polarizability was carried out
by Bernard et al. [51] and the computed value of y) was
found to be smaller than the LO result of HBChPT. The
generalized ) has been calculated in the Lorentz-
invariant formulation of BChPT to NLO which demon-
strates a large NNLO contribution [56,57]. In [56], the
quoted values are y, = 4.64 and yj = 1.82; hence the
chiral expansion does not seem to converge, which is
attributed to the Born terms. Also, as has been shown in
Ref. [56], inclusion of the Born terms up to fourth order is
not sufficient to obtain convergence and thus a complete
fifth order calculation seems mandatory. However, when
only the first two terms of the chiral expansion are consid-
ered (O(u™")), the results reproduce the NLO HBCHPT
results. Electroproduction data have been used to extract
y) using the sum rule given above. In particular, in
Ref. [58] the values y, = —1.3 and yj = —0.4 were
found, while the analysis of Ref. [59] gives a smaller
absolute values with y, = —0.6 and yj = +0.0 based
on the HDT parametrization. The latest numerical results
of Schumacher [60,61] based on the photoproduction cross
section are y, = —0.58 = 0.20 and y; = —0.38 = 0.22.
The most recent results are y, = —0.90 + 0.08 = 0.11
[62]. Other results based on different photomeson analyses
are y) = —0.67 (HDT), —0.65 (MAID), —0.86 (SAID)
and —0.76 (DMT). Hence, it is safe to say that although
considerable progress has been made in understanding vy,
for the nucleon, the results obtained from BCHPT/
HBCHPT are far from the numerical results obtained
from the electroproduction data. While a rather large
amount of work has been devoted, both theoretically and
experimentally, to the study of the nucleon polarizabilities,
very little is known about hyperon polarizabilities. How-
ever, with the advent of hyperon beams at FNAL and
CERN, the experimental situation is likely to change, and
this possibility has triggered a number of theoretical inves-
tigations. Already, predictions for electric and magnetic
polarizabilities have been made for low-lying octet bary-
ons in the framework of LO HBChPT [63], and in the
context of several other models, yielding a broad spectrum
of predictions [64—69]. At present, no experimental data is
available for the forward spin polarizabilty of the hyperons
and no theoretical calculations have been published.
Motivated by this situation, in the present work we extend
the analysis of SU(2) HBChPT to the SU(3) version in
order to compute y, for hyperons. This could serve as a test
of low-energy structure of QCD in the three-flavor sector.
However, there is also a need to compute the spin polar-
izabilities in the framework of BChPT with the IDR
prescription.

The paper is organized as follows. Section II contains an
overview of the SU(3) version of HBChPT relevant for the
calculation of the hyperon forward spin polarizabilities y,,.
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The relevant Feynman rules for the case of the 2% polar-
izability are listed in Appendix A (see Fig. 1), and the
required loop integrals are listed in Appendix B. The
explicit expressions for X+ 7" (K™") loops in terms of
loop integrals are listed in Appendix C. In Sec. III, we
give the explicit results for the hyperon spin polarizabilities
7o and discuss the corresponding numerical results. Brief
conclusions are given in Sec. I'V.

II. EFFECTIVE LAGRANGIAN

The lowest-order SU(3) HBChPT Lagrangian involving
the octet of pseudoscalar mesons ¢

\/Liwo-i-ﬁn i K"
p=vi| w —Lteiitn x| @
- 50 _ 2
K K WU

and the baryon octet B

LS04+ LA s+ p

B= 3" — 530+ A )
== = _2
=1 »—«0 %A

consists of two basic pieces: the lowest-order chiral effec-
tive meson Lagrangian £E§2;s [32,33]

2
LY = %(VMUV“U* + x4 (10)

and the lowest-order meson-baryon Lagrangian £ (VHHChPT
[4,34,35]:

LUMBPT — (B(jy - D)B) + FB(BS“{uM, BY)
0

+ 2 Bslu,, BY. (11
Fy

where the superscript (i) attached to the above Lagrangians
denotes their low-energy dimension and the symbols (), [],
{} denote the trace over flavor matrices, commutator
and anticommutator, respectively. We use the following
notations: U = u®> = exp(i¢/F,), where F, is the octet
decay constant (in our calculations, we use F, = F_ =
92 MeV), u,, = Hut, V,u}; V, and D,, are the covariant
derivatives acting on the chiral and baryon fields, respec-
tively, including external vector (v,,) and axial (a,,) fields:

vV, Uu=0d,U—-i(, +a,)U+iU(v, —a,),

(12)
D,B=4d,B+[I,, B]
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with I', being the chiral connection given by

i i
[ut, d,ul — EMT(U" +a,)u— Eu(vﬂ — aM)uT.

(13)

T =

o

N =

The covariant spin operator is S, = %y5UMVvV, obeying
the following relations in d dimensions [4]:

1
S-v=0, {SM,S,,}=§(UMUV—gW),

[S, S,]1= ie#,,a'gvaS'B. (14)

Finally, y. = ufyu® = uxytu with y =2BM+ ...,
where B = [(0|gq|0)|/F? is the quark vacuum condensate
parameter and M = diag{m, M, A} is the mass matrix of
current quarks. (We work in the isospin symmetry limit
with m, = m; = m =7 MeV. The mass of the strange
quark 1, is related to the nonstrange one via iz, = 2571.)
The parameters D and F are fixed from hyperon semi-
leptonic decays to be D =0.80 and F = 0.46 with
D+ F =g, =126 being the nucleon axial charge.
In the above equations, m denotes the average baryon
mass in the chiral limit.

III. FORWARD SPIN POLARIZABILITY v,

In order to calculate the forward spin polarizabilities,
we work in the Breit frame wherein the sum of the in-
coming and outgoing baryon three-momenta vanishes.
We utilize the Weyl (temporal) gauge A, = 0, which, in
the language of HBChPT, means v - € = 0, where v, =
(1,0, 0,0) is the baryon four-velocity. At O(p?), only the
loop diagrams contribute to y,—to one loop, the hyperon

polarizabilities are pure loop effects. At LO, these loop

(1)HBChPT

diagrams have insertions only from £ o8 . Figure 2

shows all the possible loop-diagrams, which contribute to
¥o for . Similarly for the other octet baryons, the dia-
grams in Fig. 2 are the only ones which contribute to
(except that the incoming and outgoing particles are differ-
ent). There do exist contact term graphs stemming from
two insertions from E%HBC}IPT and a single insertion from

L%HBC}IPT, but these do not contribute to 7y, and, conse-

quently, we have not shown these diagrams in our manu-
script. Appendix A (see Fig. 1) lists the relevant Feynman
rules for the computation of the loop diagrams, while
Appendix B contains the relevant loop integrals required
for their evaluation. Appendix C gives the analytic results
for 2+ 7" (K™) loops contributing to the forward Compton
scattering amplitude y%* — yX*. Note that both pion
and kaon loops yield finite contributions to 7y, for all octet
baryons.
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TABLE I. The forward spin polarizablity v, of octet baryons (in units of 10~% fm*).
Baryon  Our results at O(p?)  Our results at O(p?) o(p?) O(p*) HBChPT Electroproduction
with 77 loops with 77 and K loops HBChPT [51] and BChPT data

p 4.50 4.86 4.5 4.5 — (6.9 + 1.5) [52-54], —1.3 [58], —0.6, [59],
4.64 [56] —0.58 = 0.2 [60]

n 4.50 4.86 4.5 4.5 — (6.9 — 1.5) [52-54], —0.4 [58],
1.82 [56] —0.38 = 0.22 [60]

p 1.20 1.38

30 0.60 0.70

3 1.20 1.22

A 0.60 0.70

= 0.16 0.26

=4 0.16 0.43

The values of vy, are found from the calculation of
W (w) via [47],

82
v = a—— W (w)|,— (15)
Jw

and below we list the expressions for vy, for all the low-
lying octet baryons:

o a [(D+F)2<1 N 1)+(D—F)2]
Yo =Yoo= 1 \az T2 ) T oaz b
00 2Rl 24 M2 ME) 96M%
= "(D—F)> (D+F)?
" T op| asE sl
TGl T K
o a [ 5SD? F?2  (D+F)* (D—F)?
Yo T 3= T 2 2 5+ 2 ]
m2FL 288M%  32M%  96M%  48M>
A_a'D2+F2+1)2]
TR e 1eM TaME |
w_ a [(D+FP? (D-F) F2]
TR eME T 96ME | 24M2 )
s a [(D—F? D? F? ]
L=y R Ty Vo FY VARG Yy Vel |
N [(D+F)? D? F?
75 = 2a2 ( 2) 5T 2]' (16)
w2 FL 48M%  T2MZ 24M%

We note that in the nucleon case, when we neglect the kaon
loops’ contributions, we reproduce the well-known result
of SU(2) HBChPT [51]. The other results for spin polar-
izabilities are new predictions. In Table I, the second and
third columns give the contribution to vy, from 7 and
7 + K loops, respectively. In Table I, we also present
the results for the nucleon 7y, obtained in HBChPT at
O(p?®) [51], in HBChPT and BChPT at order O(p*)
[52-54,56] and from the analysis of electroproduction

data [58,59]. For computation of the polarizabilities, we
use Fp=92MeV, D=0.8, F=0.46, M. = 139.57 MeV
and Mg = 493.65 MeV.

IV. CONCLUSIONS

We have presented the LO contribution to spin-
dependent Compton scattering in the framework of
HBCHhPT. In LO HBChHPT, these contributions are all
meson loop effects, with no counterterm or resonance
exchange contribution and hence are a test for the chiral
sector of three-flavor QCD. There exists a small but finite
contribution from kaon loops to 7y, for the low-lying octet
baryons except the E~ and E° states. Our result for 7y, in
the case of the proton and neutron reproduces the results of
the LO calculation of SU(2) HBChPT when kaon loops are
not considered, and it remains to be seen how the predic-
tions for the other baryons will compare with future experi-
ments. On the theoretical side, one needs to perform O(p*)
calculations to improve the predictions of the polarizabil-
ities and to test the convergence of the chiral expansion.
Additional calculations are also needed to compute 7y, in
the framework of BChPT with the IDR prescription in
order to test the LO and NLO HBChPT results. Work in
this direction is in progress.
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APPENDIX A: FEYNMAN RULES

. ()
Vertices from £ b

(1) Photon-meson coupling: k; (in-momentum) and k,
(out-momentum) stand either for 77 or for K mesons

iee - (k1 + ko) I 2
) THKY)
Verticies from £(¢11)9HBCWF
(2) Photon-baryon coupling
ie(e-v)
xt »t

Meson-baryon couplings
(3) 72X coupling

—2 %s -k |
>t 30
4) K32 couplin
phing
|
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2ADAE)
im0k |
>+ =0

(5) w2 A coupling

2D
N k

xt A

Photon-Meson-Baryon couplings
(6) 722 coupling

_2F . /
R o€

»t+ EU

(7) ym2%3 coupling

2eD . . /
\/gFU.S €

xt A
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(8) yKXE coupling incoming photon
/

/

A K+
2e(D+F) /
V2R, o€

ot =0

FIG. 1. Feynman rules for evaluating the 2% electromagnetic
polarizaibilities.

APPENDIX B: LOOP INTEGRALS

Here, we have defined all the loop functions which occur
in our calculation and we have given these functions in
closed analytical form as far as possible. In the following,
all propagators are understood to have an infinitesimal
imaginary part. The results of the integral are for real
photons. The complete list of integrals can be found in [4]:

dk 1

el @D

where

1 dar
= 2 4+ iy R _
Ap 2MP[L 672 log( 1 ) O(d 4)], )

L AH[ Lo =1 —tog )]
= —t = —1—1o

1672 ld—4 2 7F g
hasapoleatd = 4. Here, P = wmor K, yp = 0.557215 and
A is the scale in dimensional regularization scheme used in
the evaluation of integrals.

The relevant integrals are

dk (1 k&, kekr)
Q)i (v-k— 0)[M} — K] Wole) (B3)

v’u.lf(a)), g‘“’]é)(a)) + v"“v”]§(w)),

where

2

1 > 3 w
— WVMP —w arccos(— M_) + O — 4),

P
(B4)

M
JP(w) = —4Lw + 8%(1 - ZIOgTP)

JP(w) = wJf(w) + Ap, (B5)
1
Jf(w) = m[(MJZD - wz)J(}))(w) - CUAP]; (B6)

S (w) = 0l (w) — Jf (). (B7)
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APPENDIX C: X" 7" (K™) LOOPS IN FORWARD
COMPTON SCATTERING

Using the loop integrals defined in Appendix B, the
> + 7t (K") loop diagrams of Fig. 2 can be written as:

AmpX ™ = C|[S- €, 5 €]lJi(w) — JT(—w)] (CD)

a+a'

+ ot N J
Amp§+c+b’+c’ =CfS €. S- G]W
w

X f s (02) — I (—w2)ldz  (C2)
0

Amp> ™" = D[S €S- €U (w) — JF(—w)] (C3)
2+7T+ _ * a
Ampr, 7y = DolS - €S E]W

X [ T (w) — (w2, (C4)
0

Amp f;ff =E|[S: €S eV (w) — JK(—w)] (C5)
A 2+K+ _ % a
mp; s = E2[S - €8 f]m

X [ UK (w2) — I (—w)dz,  (C6)
0
where

(C7)
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ot 7r+;ﬁﬁ)r LHILE
s 7N s 7N [P RN
[ [ \ [
>+ 0 »t »+ 0 >+

T+ U &
(@) (b

(c)
—— o
Ve N Ve A
Il [
»t A »t »t A

[

)
wf;\ Ujfr
\
ot ot

A3t
()

(d) (e
K* K*f; HHHIH
7N ;7 K27 N
[ [ [
DI =0 ut =t = 0

’)
AN
1
0 »t »+ = »t
(9) (h) (i)
FIG. 2. The one-loop diagrams contributing to forward

Compton scattering of =+ 7" (K™) at O(p?). Crossed diagrams
are not shown.
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