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I. INTRODUCTION

The main problem of QCD is to understand the structure
of hadrons and their properties in terms of quarks and
gluons. Nucleon charges defined as matrix elements of
vector, axial, and tensor currents between nucleon states
contain complete information about the quark structure of
the nucleon. These charges are connected with the leading
twist unpolarized qðxÞ, the helicity �qðxÞ, and transversity
�qðxÞ parton distribution functions (PDFs). The first two
PDFs have been extensively investigated theoretically and
experimentally in many works (for instance, see [1,2] and
references therein as well as [3–5]). There is a big experi-
mental problem to measure the transversity of the nucleon
because of its chiral odd nature. Only recently, the tensor
charge �qðxÞ was extracted [6] using the data from
BELLE [7], HERMES [8] and COMPASS [9] collabora-
tions. This extraction is based on analysis of the measured
azimuthal asymmetries in semi-inclusive scattering and
those in eþe� ! h1h2X processes. Since �qðxÞ is a spin
dependent PDF, it is interesting to investigate whether
there is a ‘‘transversity crisis’’ similar to the case of
‘‘spin crisis’’ in �qðxÞ. Therefore, reliable determination
of nucleon tensor charge receives special attention.

Theoretically, tensor charges of hadrons are studied in
different frameworks such as, non–relativistic MIT bag
model [10], SUð6Þ quark model [11], quark model with
axial vector dominance [12], lattice QCD [13], external
field [14], and three-point versions of QCD sum rules [10].

In the present work, using the most general form of the
nucleon interpolating field, we study the tensor form
factors of nucleons within light cone QCD sum rules
(LCQSR). The LCQSR is based on the operator product
expansion (OPE) over twist of the operators near the light
cone, while in the traditional QCD sum rules, the OPE is
performed over dimensions of the operators. This approach
has been widely applied to hadron physics (see, for ex-
ample, [15]). Note that, the tensor form factors of nucleons

up to Q2 � 1 GeV2 (where Q2 ¼ �q2 is the Euclidean
momentum transfer square) within the SUð3Þ chiral soliton
model are studied in [16] (see also [17]). The anomalous
tensor form factors are studied within the same framework
in [18]. These form factors are further studied in lattice
QCD (see, for instance, [19]).
The plan of this paper is as follows. In Sec. II, we derive

sum rules for the tensor form factors of the nucleon within
LQCSR method. In Sec. III, we numerically analyze the
sum rules for the tensor form factors. A comparison of our
results on form factors with those existing in the literature
is also presented in this section.

II. LIGHT CONE SUM RULES FOR
THE NUCLEON TENSOR

FORM FACTORS

This section is devoted to derivation of LCQSR for the
nucleon tensor form factors. The matrix element of the
tensor current between initial and final nucleon states is
parametrized in terms of four form factors as follows
[1,19,20]:

hNðp0Þj �q���qjNðpÞi
¼ �uðp0Þ

�
HTðQ2Þi��� � ETðQ2Þ��q� � ��q�

2mN

þ E1TðQ2Þ��P � � ��P�

2mN

� ~HTðQ2ÞP�q� � P �q�

2m2
N

�
uðpÞ; (1)

where q� ¼ ðp� p0Þ�, P� ¼ ðpþ p0Þ�, and q2 ¼ �Q2.

From T–invariance, it follows that E1TðQ2Þ ¼ 0.
In order to calculate the remaining three tensor form

factors within LCQSR, we consider the correlation
function,

���ðp; qÞ ¼ i
Z

d4xeiqxh0jTfJNð0ÞJ��ðxÞgjNðpÞi: (2)

This correlation function describes transition of the initial
nucleon to the final nucleon with the help of the tensor
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current. The most general form of the nucleon interpolating
field is given as,

JNðxÞ ¼ 2"abc
X2
i¼1

½qTaðxÞCAi
1q

0bðxÞ�Ai
2q

cðxÞ; (3)

where C is the charge conjugation operator, A1
1 ¼ I, A2

1 ¼
A1
2 ¼ �5, A

2
2 ¼ t with t being an arbitrary parameter and

t ¼ �1 corresponds to the Ioffe current and a, b, c are the
color indices. The quark flavors are q ¼ u, q0 ¼ d for the
proton and q ¼ d, q0 ¼ u for the neutron. The tensor
current is chosen as,

J�� ¼ �u���u� �d���d; (4)

where the upper and lower signs correspond to the iso-
singlet and isovector cases, respectively.

In order to obtain sum rules for the form factors, it is
necessary to calculate the correlation function in terms of
quarks and gluons on one side (QCD side), and in terms of
hadrons on the other side (phenomenological side). These
two representations of the correlation function are then
equated. The final step in this method is to apply the
Borel transformation, which is needed to suppress the
higher states and the continuum contributions.

Following this strategy, we start to calculate the phe-
nomenological part. Saturating the correlation function
with a full set of hadrons carrying the same quantum
numbers as nucleon and isolating the contributions of the
ground state, we get

���ðp; qÞ ¼
h0jJNð0ÞjNðp0ÞihNðp0ÞjJ��jNðpÞi

m2
N � p02 þ � � � ;

(5)

where dots stands for contributions of higher states and
continuum. The matrix element h0jJNð0ÞjNðp0Þi entering
Eq. (5) is defined as

h0jJNð0ÞjNðp0Þi ¼ �NuðpÞ; (6)

where �N is the residue of the nucleon. Using Eqs. (1), (2),
and (6), and performing summation over spins of the
nucleon, we get,

��� ¼ �N

m2
N � p02 ð6p0 þmNÞ

�
HTðQ2Þi���

� ETðQ2Þ��q� � ��q�
2mN

� ~HTðQ2ÞP�q� � P �q�

2m2
N

�
uðpÞ: (7)

From Eq. (7), we see that there are many structures, and all
of them play equal role for determination of the tensor
form factors of the nucleon. In practical applications, it is

more useful to work with ~ETðQ2Þ ¼ ETðQ2Þ þ 2 ~HTðQ2Þ
rather than ETðQ2Þ. For this reason, we choose the struc-
tures ���, p�q� and p�q� 6q for obtaining the sum rules for

the form factors HT , ~ET and ~HT , respectively.
The correlation function ���ðp; qÞ is also calculated in

terms of quarks and gluons in deep Eucledian domain
p02 ¼ ðp� qÞ2 � 0. After simple calculations, we get
the following expression for the correlation function for
the proton case:

ð���Þ� ¼ i

2

Z
d4xeiqx

X2
i¼1

�
ðCAi

1Þ�	½Ai
2Suð�xÞ������

� 4
abch0jua�ð0Þub�ðxÞdc	ð0ÞjNðpÞi
þ ðAi

2Þ��½ðCAi
1ÞTSuð�xÞ����	�

� 4
abch0jua�ðxÞub�ðxÞdc	ð0ÞjNðpÞi
� ðAi

2Þ��½CAi
1Sdð�xÞ�����	

� 4
abch0jua�ð0Þub�ð0Þdc	ðxÞjNðpÞi
�
: (8)

Obviously, the correlation function for the neutron case can
easily be obtained by making the replacement u $ d.
From Eq. (8), it is clear that in order to calculate the

correlation function from QCD side, we need to know the
matrix element,

4"abch0jua�ða1xÞub�ða2xÞda	ða3xÞjNðpÞi;

where a1, a2, and a3 determine the fraction of the nucleon
momentum carried by the corresponding quarks. This ma-
trix element is the main nonperturbative ingredient of the
sum rules and it is defined in terms of the nucleon distri-
bution amplitudes (DAs). The nucleon DAs are studied in
detail in [21–23].
The light cone expanded expression for the light quark

propagator SqðxÞ is given as,

SqðxÞ ¼ i6x
2�2x4

� hq �qi
12

�
1þm2

0x
2

16

�

� igs
Z 1

0
dv

� 6x
16�2x4

G���
��

� vx�G���
� i

4�2x2

�
; (9)

where the mass of the light quarks are neglected, m2
0 ¼

ð0:8� 0:2Þ GeV2 [24] and G�� is the gluon field strength

tensor. The terms containing G�� give contributions to

four- and five-particle distribution functions. These contri-
butions are negligibly small (for more detail, see [21–23]),
and therefore in further analysis, we will neglect these
terms. Moreover, Borel transformation kills the terms pro-
portional to the quark condensate, and as a result only the
first term is relevant for our discussion.
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Using the explicit expressions of DAs for the proton and light quark propagators, performing Fourier transformation and
then applying Borel transformation with respect to the variable p02 ¼ ðp� qÞ2, which suppresses the contributions of
continuum and higher states, and choosing the coefficients of the structures ���, p�q�, and p�q� 6q, we get the following
sum rules for the tensor form factors of nucleon:

HTðQ2Þ ¼ 1

2mN�N

em
2
N=M

2

�Z 1

x0

dt2
t2

e�sðt2Þ=M2½ð1� tÞF1
HT
ðt2Þþ ð1þ tÞF2

HT
ðt2Þ�

�
Z 1

x0

dt3
t3

e�sðt3Þ=M2½ð1� tÞF3
HT
ðt3Þþ ð1þ tÞF4

HT
ðt3Þ�þ

Z 1

x0

dt2
t2

e�sðt2Þ=M2½ð1� tÞF5
HT
ðt2Þþ ð1þ tÞF6

HT
ðt2Þ�

�
Z 1

x0

dt3
t3

e�sðt3Þ=M2½ð1� tÞF7
HT
ðt3Þþ ð1þ tÞF8

HT
ðt3Þ�þ

Z 1

x0

dt2
t2

e�sðt2Þ=M2ð1� tÞF9
HT
ðt2Þ

�
Z 1

x0

dt3
t3

e�sðt3Þ=M2ð1þ tÞF10
HT
ðt3Þþ 1

M2

Z 1

x0

dt2
t22

e�sðt2Þ=M2½ð1� tÞF11
HT
ðt2Þþ ð1þ tÞF12

HT
ðt2Þ�

þ 1

Q2þ x20m
2
N

e�s0=M
2½ð1� tÞF11

HT
ðx0Þþ ð1þ tÞF12

HT
ðx0Þ�� 1

M2

Z 1

x0

dt3
t23

e�sðt3Þ=M2½ð1� tÞF13
HT
ðt3Þþ ð1þ tÞF14

HT
ðt3Þ�

� 1

Q2þ x20m
2
N

e�s0=M
2½ð1� tÞF13

HT
ðx0Þþ ð1þ tÞF14

HT
ðx0Þ�þ 1

M2

Z 1

x0

dt2
t22

e�sðt2Þ=M2½ð1� tÞF15
HT
ðt2Þþ ð1þ tÞF16

HT
ðt2Þ�

þ 1

Q2þ x20m
2
N

e�s0=M
2½ð1� tÞF15

HT
ðx0Þþ ð1þ tÞF16

HT
ðx0Þ�� 1

M2

Z 1

x0

dt3
t23

e�sðt3Þ=M2ð1þ tÞF17
HT
ðt3Þ

� 1

Q2þ x20m
2
N

e�s0=M
2ð1þ tÞF17

HT
ðx0Þ

�
; (10)

where

F1
HT
ðt2Þ ¼

Z 1�t2

0
dt1

�
2m2

N

t2
½ ~T M

1 þ t22ð ~P 1 � 3 ~T 3 � ~T 4Þ�ðt1; t2; 1� t1 � t2Þ þ 2ðQ2 þm2
Nt

2
2Þ

t2

~T 1ðt1; t2; 1� t1 � t2Þ
�
;

F2
HT
ðt2Þ ¼

Z 1�t2

0
dt1

�
m2

N

t2
½ ~VM

1 � ~AM
1 � t22ð ~A2 þ 3 ~A3 þ ~V 2 þ 3 ~V 3Þ�ðt1; t2; 1� t1 � t2Þ

�Q2 þm2
Nt

2
2

t2
½ ~A1 � ~V 1�ðt1; t2; 1� t1 � t2Þ

�
;

F3
HT
ðt3Þ ¼

Z 1�t3

0
dt1

1

t3
½m2

Nð ~AM
1 þ ~V

M
1 Þ þm2

Nt
2
3ð ~A3 � ~V 3Þ þQ2ð ~A1 þ ~V 1Þ�ðt1; 1� t1 � t3; t3Þ;

F4
HT
ðt3Þ ¼

Z 1�t3

0
dt1½2t3 ðm

2
N
~T

M
1 þQ2 ~T 1Þ �m2

Nt3
2

ð2 ~P 1 � 2~S1 þ 2 ~T 1 � ~T 2 � ~T 4Þ�ðt1; 1� t1 � t3; t3Þ;

F5
HT
ðt2Þ ¼ m2

N

2

Z t2

1
d�

Z 1��

0
dt1½4 ~T 4 þ 4 ~T 5 � 3 ~T 6 þ 12 ~T 7 � 4~S2�ðt1; �; 1� t1 � �Þ;

F6
HT
ðt2Þ ¼ m2

N

Z t2

1
d�

Z 1��

0
dt1½2 ~A2 � ~A4 þ 2 ~A5 þ 2 ~V 2 þ ~V 4 � 2 ~N 5�ðt1; �; 1� t1 � �Þ;

F7
HT
ðt3Þ ¼ m2

N

2

Z t3

1
d�

Z 1��

0
dt1½2 ~A2 � ~A4 þ ~A5 � 2 ~V 2 � ~V 4 þ ~V 5�ðt1; 1� t1 � �; �Þ;

F8
HT
ðt3Þ ¼ m2

N

2

Z t3

1
d�

Z 1��

0
dt1½2 ~T 2 þ 2 ~T 5 � ~T 6 � 2 ~P 2 � 2~S4�ðt1; 1� t1 � �; �Þ;

F9
HT
ðt2Þ ¼ m2

N

2

Z t2

1
d�

Z �

1
d�

Z 1��

0
dt1

1

�
~T 6ðt1; �; 1� t1 � �Þ;
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F10
HT
ðt3Þ ¼ m2

N

Z t3

1
d�

Z �

1
d�

Z 1��

0
dt1

1

�
~T 6ðt1; 1� t1 � �; �Þ;

F11
HT
ðt2Þ ¼ 2m2

N

Z 1�t2

0
dt1

Q2 þm2
Nt

2
2

t2

~T
M
1 ðt1; t2; 1� t1 � t2Þ;

F12
HT
ðt2Þ ¼ m2

N

Z 1�t2

0
dt1

Q2 þm2
Nt

2
2

t2
½ ~VM

1 � ~AM
1 �ðt1; t2; 1� t1 � t2Þ;

F13
HT
ðt3Þ ¼ m2

N

Z 1�t3

0
dt1

Q2

t3
½ ~AM

1 þ ~V
M
1 �ðt1; 1� t1 � t3; t3Þ;

F14
HT
ðt3Þ ¼ m2

N

Z 1�t3

0
dt1

2Q2 �m2
Nt

2
3

t3

~T M
1 ðt1; 1� t1 � t3; t3Þ;

F15
HT
ðt2Þ ¼ m2

N

2

Z t2

1
d�

Z �

1
d�

Z 1��

0
dt1

1

�
½ðQ2 þm2

N�
2Þ ~T 6 þ 8m2

N�
2 ~T 8�ðt1; �; 1� t1 � �Þ;

F16
HT
ðt2Þ ¼ 2m4

Nð1þ tÞ
Z t2

1
d�

Z �

1
d�

Z 1��

0
dt1�½ ~A6 þ ~V 6�ðt1; �; 1� t1 � �Þ;

F17
HT
ðt3Þ ¼ m2

N

Z t3

1
d�

Z �

1
d�

Z 1��

0
dt1

1

�
½m2

N�
2 ~T 8 �Q2 ~T 6�ðt1; 1� t1 � �; �Þ: (11)

For the form factor ~ETðQ2Þ, we obtain the following sum rule:

~ETðQ2Þ ¼ 1

mN�N

em
2
N=M

2

�
1

M2

Z 1

x0

dt2
t22

e�sðt2Þ=M2ð1� tÞF1
~ET
ðt2Þ þ 1

Q2 þ x20m
2
N

e�s0=M
2ð1� tÞF1

~ET
ðx0Þ

þ 1

M2

Z 1

x0

dt2
t22

e�sðt2Þ=M2ð1� tÞF3
~ET
ðt2Þ þ 1

Q2 þ x20m
2
N

e�s0=M
2ð1� tÞF3

~ET
ðx0Þ

� 1

M2

Z 1

x0

dt3
t23

e�sðt3Þ=M2ð1� tÞF4
~ET
ðt3Þ � 1

Q2 þ x20m
2
N

e�s0=M
2ð1� tÞF4

~ET
ðx0Þ

þ 1

M2

Z 1

x0

dt2
t22

e�sðt2Þ=M2ð1� tÞF5
~ET
ðt2Þ þ 1

Q2 þ x20m
2
N

e�s0=M
2ð1� tÞF5

~ET
ðx0Þ

� 1

M2

Z 1

x0

dt3
t23

e�sðt3Þ=M2ð1� tÞF6
~ET
ðt3Þ � 1

Q2 þ x20m
2
N

e�s0=M
2ð1� tÞF6

~ET
ðx0Þ

þ
Z 1

x0

dt2
t2

e�sðt2Þ=M2ð1� tÞF7
~ET
ðt2Þ �

Z 1

x0

dt3
t3

e�sðt3Þ=M2ð1� tÞF8
~ET
ðt3Þ

�
; (12)

where

F1
~ET
ðt2Þ ¼ �4m2

N

Z t2

1
d�

Z �

1
d�

Z 1��

0
dt1

~T 6ðt1; �; 1� t1 � �Þ;

F3
~ET
ðt2Þ ¼ �4m2

N

Z t2

1
d�

Z 1��

0
dt1�½ ~T 2 þ ~T 4�ðt1; �; 1� t1 � �Þ;

F4
~ET
ðt3Þ ¼ 4m2

N

Z t2

1
d�

Z 1��

0
dt1�½ ~A2 � ~V 2�ðt1; 1� t1 � �; �Þ;

F5
~ET
ðt2Þ ¼ 8m2

N

Z 1�t2

0
dt1

~T
M
1 ðt1; t2; 1� t1 � t2Þ;

F6
~ET
ðt3Þ ¼ 4m2

N

Z 1�t3

0
dt1½ ~AM

1 þ ~VM
1 �ðt1; 1� t1 � t3; t3Þ;

F7
~ET
ðt2Þ ¼ 8

Z 1�t2

0
dt1

~T 1ðt1; t2; 1� t1 � t2ÞÞ;

F8
~ET
ðt3Þ ¼ 4

Z 1�t3

0
dt1½ ~A1 þ ~V 1�ðt1; 1� t1 � t3; t3Þ:
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Finally, for the form factor ~HTðQ2Þ, we get the following
sum rule:

~HTðQ2Þ¼ 1

m2
N�N

em
2
N=M

2

�
1

M2

Z 1

x0

dt2
t22

e�sðt2Þ=M2ð1� tÞF1
~HT
ðt2Þ

þ 1

Q2þx20m
2
N

e�s0=M
2ð1� tÞF1

~HT
ðx0Þ

� 1

M2

Z 1

x0

dt3
t23

e�sðt3Þ=M2ð1� tÞF2
~HT
ðt3Þ

� 1

Q2þx20m
2
N

e�s0=M
2ð1� tÞF2

~HT
ðx0Þ

�
; (13)

where

F1
~HT
ðt2Þ ¼ 4mN

Z t2

1
d�

Z 1��

0
dt1½ ~T 2 þ ~T 4�

� ðt1; �; 1� t1 � �Þ;
F2

~HT
ðt3Þ ¼ 4mN

Z �

1
d�

Z 1��

0
dt1½� ~A2 þ ~V 2�

� ðt1; 1� t1 � �; �Þ;
and we use

~V 2ðtiÞ¼V1ðtiÞ�V2ðtiÞ�V3ðtiÞ;
~A2ðtiÞ¼�A1ðtiÞþA2ðtiÞ�A3ðtiÞ;
~A4ðtiÞ¼�2A1ðtiÞ�A3ðtiÞ�A4ðtiÞþ2A5ðtiÞ;
~A5ðtiÞ¼A3ðtiÞ�A4ðtiÞ;
~A6ðtiÞ¼A1ðtiÞ�A2ðtiÞþA3ðtiÞþA4ðtiÞ�A5ðtiÞþA6ðtiÞ;
~T 2ðtiÞ¼T1ðtiÞþT2ðtiÞ�2T3ðtiÞ;
~T 4ðtiÞ¼T1ðtiÞ�T2ðtiÞ�2T7ðtiÞ;
~T 5ðtiÞ¼�T1ðtiÞþT5ðtiÞþ2T8ðtiÞ;
~T 6ðtiÞ¼2½T2ðtiÞ�T3ðtiÞ�T4ðtiÞ

þT5ðtiÞþT7ðtiÞþT8ðtiÞ�;
~T 7ðtiÞ¼T7ðtiÞ�T8ðtiÞ;
~S2ðtiÞ¼S1ðtiÞ�S2ðtiÞ;
~P 2ðtiÞ¼P2ðtiÞ�P1ðtiÞ;

In these expressions, we also use

F ðxiÞ ¼ F ðx1; x2; 1� x1 � x2Þ;
F ðx0iÞ ¼ F ðx1; 1� x1 � x3; x3Þ;

sðx;Q2Þ ¼ ð1� xÞm2
N þ ð1� xÞ

x
Q2;

where x0ðs0; Q2Þ is the solution to the equation
sðx0; Q2Þ ¼ s0.

The residue �N is determined from two-point sum rule.
For the general form of the interpolating current, it is
calculated in [25], whose expression is given as

�2
N ¼ em

2
N=M

2

�
M6

256�4
E2ðxÞð5þ 2tþ t2Þ

� h �uui
6

½6ð1� t2Þh �ddi � ð1� tÞ2h �uui�

þ m2
0

24M2
h �uui½12ð1� t2Þh �ddi � ð1� tÞ2h �uui�

�
;

where

E2ðs0=M2Þ ¼ 1� es0=M
2
X2
i¼0

ðs0=M2Þi
i!

:

The Borel transformations are implemented by the follow-
ing subtraction rules [21–23],

Z
dx

�ðxÞ
ðq� xpÞ2 ! �

Z dx

x
�ðxÞe�sðxÞ=M2

;

Z
dx

�ðxÞ
ðq� xpÞ4 !

1

M2

Z dx

x2
�ðxÞe�sðxÞ=M2

þ �ðx0Þ
Q2 þ x20m

2
N

e�s0=M
2
;

Z
dx

�ðxÞ
ðq� xpÞ6 ! � 1

2M2

Z dx

x3
�ðxÞe�sðxÞ=M2

� 1

2

�ðx0Þ
x0ðQ2 þ x20m

2
NÞM2

e�s0=M
2

þ 1

2

x20
Q2 þ x20m

2
N

�
�
d

dx0

�
1

x0

�ðx0Þ
Q2 þ x20m

2
N

��
e�s0=M

2
: (14)

III. NUMERICAL ANALYSIS OF THE SUM
RULES FOR THE TENSOR FORM

FACTORS OF NUCLEON

In this section, numerical results of the tensor form
factors of nucleon are presented. It follows from sum rules
for the form factors that the main input parameters are the
DAs of nucleon, whose explicit expressions and the values
of the parameters fN , �1, �2, f

u
1 , f

d
1 , A

u
1 , and V

d
1 in the DAs

are all given in [21–23].
In the numerical analysis, we use two different sets of

parameters:
(a) All eight nonperturbative parameters fN , �1, �2, f

u
1 ,

fd1 , f
d
2 , A

u
1 , and Vd

1 are estimated from QCD sum
rules (set 1).

(b) Requiring that all higher conformal spin contribu-
tions vanish, fixes five Au

1 , V
d
1 , f

u
1 , f

d
1 , and Ad

2 , and

the values of the parameters fN , �1, �2 are taken
from QCD sum rules. This set is called asymptotic
set or set 2.

The values of all eight nonperturbative parameters (see,
for example, [26]) are presented in Table I.
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The next input parameter of the LCQSR for the tensor
form factors is the continuum threshold s0. This parameter
is determined from the two-point sum rules whose value is
in the domain s0 ¼ ð2:25–2:50Þ GeV2. The sum rules also
contain two extra auxiliary parameters, namely, Borel

parameter M2 and the parameter t entering the expression
of the interpolating current for nucleon. Obviously, any
physical quantity should be independent of these artificial
parameters. Therefore, we try to find such regions of M2

and t, where the tensor form factors are insensitive to the
variation of these parameters.
First, we try to obtain the working region of M2, where

the tensor form factors are independent of it, at fixed values
of s0 and t. As an example, in Figs. 1 and 2, we present the
dependence of the tensor form factor HTðQ2Þ induced by
the isoscalar current on M2 at different fixed values of Q2

and t, and at s0 ¼ 2:25 GeV2 and s0 ¼ 2:50 GeV2 for
sets 1 and 2, respectively. From these figures, we see that
HTðQ2Þ is practically independent of M2 at fixed values of
the parameters Q2, s0 and t for both sets 1 and 2. Our
calculations also show that the results are approximately
the same for two sets, therefore in further discussion, we
present the results only for set 1. We perform similar
analysis also at s0 ¼ 2:40 GeV2 and observe that the re-
sults change maximally about 5%. The upper limit ofM2 is
determined by requiring that the series of light cone ex-
pansion with increasing twist converges, i.e., higher twist
contributions should be small. Our analysis indeed con-
firms that the twist-4 contributions to the sum rules con-
stitute maximally about 8% of the total result when
M2 � 2:5 GeV2. The lower bound of M2 is determined
by requiring that the contribution of the highest power of
M2 is less than, say, 30% of the higher powers of M2. Our
numerical analysis shows that this condition is satisfied
whenM2 � 1:0 GeV2. Hence, the working region ofM2 is
decided to be in the interval 1:0 GeV2 � M2 � 2:5 GeV2.
The working region of the parameter t is determined in
such a way that the tensor form factors are also indepen-
dent of it. Our numerical analysis shows that the form
factors are insensitive to cos� (with t ¼ tan�) when it
varies in the region �0:5 � cos� � 0:3.
In Figs. 3–5, we present the dependence of the

form factors HTðQ2Þ, ~ETðQ2Þ and ~HTðQ2Þ on Q2 at

TABLE I. The values of eight input parameters entering the
DAs of nucleon.

Set 1 Asymptotic set (set 2)

fN ð5:0� 0:5Þ � 10�3 GeV2 ð5:0� 0:5Þ � 10�3 GeV2

�1 ð�2:7� 0:9Þ � 10�2 GeV2 ð�2:7� 0:9Þ � 10�2 GeV2

�2 ð5:4� 1:9Þ � 10�2 GeV2 ð5:4� 1:9Þ � 10�2 GeV2

Au
1 0:38� 0:15 0

Vd
1 0:23� 0:03 1=3

fd1 0:40� 0:05 1=3
fd2 0:22� 0:05 4=15
fu1 0:07� 0:05 1=10

FIG. 2. The same as in Fig. 1, but at s0 ¼ 2:5 GeV2 and using
the second set of DAs.

FIG. 3 (color online). The dependence of HT on Q2 at
M2 ¼ 1:2 GeV2 and s0 ¼ 2:25 GeV2 and four fixed values of
t: t ¼ �5;�3; 3; 5, for the isoscalar current.

FIG. 1. The dependence of the form factor HT of nucleon on
M2 at Q2 ¼ 1 GeV2 and s0 ¼ 2:25 GeV2, at six different values
of t: t ¼ �5;�3;�1; 1; 3; 5, using the first set of DAs for the
isoscalar current.
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s0 ¼ 2:25 GeV2, M2 ¼ 1:2 GeV2 and fixed values of t,
respectively, using the central values of all input parame-
ters in set 1 for the isoscalar current. For a comparison, we
also present the predictions of self consistent chiral soliton
model [16] and lattice QCD calculations [19,20] in these
figures (note that, chiral soliton model result exists only for
HTðQ2Þ).

We see from Fig. 3 that our results on HTðQ2Þ are close
to the lattice QCD results for Q2 � 2:0 GeV2, while the
results of two models differ from each other in the region
1:0 GeV2 � Q2 � 2:0 GeV2. Our and lattice QCD results
differ considerably from the predictions of the chiral soli-
ton model. It also follows from these figures that the form
factors get positive (negative) at negative (positive) values
of the parameter t.

In Figs. 6–8, we present the dependence of the form
factors HTðQ2Þ, ~ETðQ2Þ and ~HTðQ2Þ for the isovector
current, i.e., for the �u���u� �d���d current. Our obser-

vations for set 1 can be summarized as follows:
(i) The Q2 dependence of HTðQ2Þ is similar to the

isoscalar current case, but the values are slightly
larger compared to the previous case.

(ii) Similar to the isoscalar case, the form factors
HTðQ2Þ and ~ETðQ2Þ get positive (negative) at nega-
tive (positive) values of the parameter t.

(iii) In contrast to the isoscalar current case, the values
of ~HTðQ2Þ are positive (negative) for negative
(positive) values of t.

FIG. 5. The same as in Fig. 3, but for the form factor ~HTðQ2Þ. FIG. 8. The same as in Fig. 5, but for the isovector current.

FIG. 7. The same as in Fig. 4, but for the isovector current.

FIG. 6 (color online). The same as in Fig. 3, but for the
isovector current.

FIG. 4. The same as in Fig. 3, but for the form factor ~ETðQ2Þ.
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(iv) Our final remark is that the LCQSR results on the
form factors can be improved by taking into ac-
count the �s corrections.

In conclusion, using the most general form of the nu-
cleon interpolating current, we calculate the tensor form
factors of nucleon within the LCQSR. Our results on these
form factors are compared with the lattice QCD and chiral
soliton model predictions.
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