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Nucleon tensor form factors induced by isovector and isoscalar currents in QCD
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Using the most general form of the nucleon interpolating current, we calculate the tensor form factors
of the nucleon within light cone QCD sum rules. A comparison of our results on tensor form factors with
those of the chiral-soliton model and lattice QCD is given.
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L. INTRODUCTION

The main problem of QCD is to understand the structure
of hadrons and their properties in terms of quarks and
gluons. Nucleon charges defined as matrix elements of
vector, axial, and tensor currents between nucleon states
contain complete information about the quark structure of
the nucleon. These charges are connected with the leading
twist unpolarized g(x), the helicity Ag(x), and transversity
8q(x) parton distribution functions (PDFs). The first two
PDFs have been extensively investigated theoretically and
experimentally in many works (for instance, see [1,2] and
references therein as well as [3-5]). There is a big experi-
mental problem to measure the transversity of the nucleon
because of its chiral odd nature. Only recently, the tensor
charge 8q(x) was extracted [6] using the data from
BELLE [7], HERMES [8] and COMPASS [9] collabora-
tions. This extraction is based on analysis of the measured
azimuthal asymmetries in semi-inclusive scattering and
those in e*e™ — h h,X processes. Since d¢q(x) is a spin
dependent PDF, it is interesting to investigate whether
there is a “transversity crisis” similar to the case of
“spin crisis” in Ag(x). Therefore, reliable determination
of nucleon tensor charge receives special attention.

Theoretically, tensor charges of hadrons are studied in
different frameworks such as, non-relativistic MIT bag
model [10], SU(6) quark model [11], quark model with
axial vector dominance [12], lattice QCD [13], external
field [14], and three-point versions of QCD sum rules [10].

In the present work, using the most general form of the
nucleon interpolating field, we study the tensor form
factors of nucleons within light cone QCD sum rules
(LCQSR). The LCQSR is based on the operator product
expansion (OPE) over twist of the operators near the light
cone, while in the traditional QCD sum rules, the OPE is
performed over dimensions of the operators. This approach
has been widely applied to hadron physics (see, for ex-
ample, [15]). Note that, the tensor form factors of nucleons
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up to Q> =1 GeV? (where Q> = —¢4” is the Euclidean
momentum transfer square) within the SU(3) chiral soliton
model are studied in [16] (see also [17]). The anomalous
tensor form factors are studied within the same framework
in [18]. These form factors are further studied in lattice
QCD (see, for instance, [19]).

The plan of this paper is as follows. In Sec. II, we derive
sum rules for the tensor form factors of the nucleon within
LQCSR method. In Sec. IlI, we numerically analyze the
sum rules for the tensor form factors. A comparison of our
results on form factors with those existing in the literature
is also presented in this section.

II. LIGHT CONE SUM RULES FOR
THE NUCLEON TENSOR
FORM FACTORS

This section is devoted to derivation of LCQSR for the
nucleon tensor form factors. The matrix element of the
tensor current between initial and final nucleon states is
parametrized in terms of four form factors as follows
[1,19,20]:

(N(pgo ,,qIN(p))

= i) {Hr(Qic, — Er(g?) Tt Tl
+ E (0% —YMIPV — 7P
2mN
i P.q, — P,
G e ) 1)
My

where g, = (p — p'),. P, = (p + p'),. and ¢* = — Q.
From T—invariance, it follows that E,(Q?) = 0.

In order to calculate the remaining three tensor form
factors within LCQSR, we consider the correlation
function,

mewa[%wwmmwwmwm.m

This correlation function describes transition of the initial
nucleon to the final nucleon with the help of the tensor
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current. The most general form of the nucleon interpolating
field is given as,

2
TN(x) =267 3 [q"*(0)CAjg" (¥)]A5 (), (3)

i=1

where C is the charge conjugation operator, A} = I, A? =
Al = ys5, A3 = t with t being an arbitrary parameter and
t = —1 corresponds to the loffe current and a, b, ¢ are the
color indices. The quark flavors are ¢ = u, ¢’ = d for the
proton and ¢ = d, ¢’ = u for the neutron. The tensor
current is chosen as,

Jyp =0, u*do,,d 4)

v W

where the upper and lower signs correspond to the iso-
singlet and isovector cases, respectively.

In order to obtain sum rules for the form factors, it is
necessary to calculate the correlation function in terms of
quarks and gluons on one side (QCD side), and in terms of
hadrons on the other side (phenomenological side). These
two representations of the correlation function are then
equated. The final step in this method is to apply the
Borel transformation, which is needed to suppress the
higher states and the continuum contributions.

Following this strategy, we start to calculate the phe-
nomenological part. Saturating the correlation function
with a full set of hadrons carrying the same quantum
numbers as nucleon and isolating the contributions of the
ground state, we get

M,(p, q) = <0|JN(O)|N(p/2)><N([72’)|J,U,IN(p)) i

my —p
&)

where dots stands for contributions of higher states and
continuum. The matrix element (0|JV(0)|N(p’)) entering
Eq. (5) is defined as

OMO)IN(p)) = Ayu(p), (6)

where Ay is the residue of the nucleon. Using Egs. (1), (2),
and (6), and performing summation over spins of the
nucleon, we get,

Ay

In,, = W(l‘/ + mN){HT(Qz)iU'p,V
Yudv — YVv4u
2mN

— Er(Q?)

. P.q, —7P,
— o) b))
N

From Eq. (7), we see that there are many structures, and all
of them play equal role for determination of the tensor
form factors of the nucleon. In practical applications, it is
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more useful to work with E;(Q?) = E;(Q?) + 2H(Q?)
rather than E;(Q?). For this reason, we choose the struc-
tures o, puq, and p Mq,,ﬁ for obtaining the sum rules for
the form factors Hy, E and Hy, respectively.

The correlation function I ,,(p, ¢) is also calculated in
terms of quarks and gluons in deep Eucledian domain
p”? = (p — q)*> < 0. After simple calculations, we get
the following expression for the correlation function for
the proton case:

i & , ,
(H,uu)p = 5 fd4x€qu ;{(CAII)QT[AIZSM(_X)UMV]pO'
X 4€b<(0us (0)ub, (x)dS(0)IN(p))
+ (Aé)pa[(CAi)TSu(_x)a-,u,r/]ro
X 40l ug (x)ug (x)ds(0)IN(p))
* (Alz)po'[CAll Sd(_x)a-,u,v]cm’

X € Olu OV O)5(IN(p) | ®)

Obviously, the correlation function for the neutron case can
easily be obtained by making the replacement u « d.

From Eq. (8), it is clear that in order to calculate the
correlation function from QCD side, we need to know the
matrix element,

4811h6<0|u?!(a]x)ug_(azx)dz(a:‘,x)lN(p));

where a,, a,, and a3 determine the fraction of the nucleon
momentum carried by the corresponding quarks. This ma-
trix element is the main nonperturbative ingredient of the
sum rules and it is defined in terms of the nucleon distri-
bution amplitudes (DAs). The nucleon DAs are studied in
detail in [21-23].

The light cone expanded expression for the light quark
propagator S,(x) is given as,

it (qq) ( m%x2>
= —~ +
S =5 23"\ T 6

‘ X
—ig, [ dv| -G, o
lgs,[o U|:16772x4 i

— 14
vxt G,y

1

472 x? ]’ ©)
where the mass of the light quarks are neglected, mg =
(0.8 =0.2) GeV? [24] and G, is the gluon field strength
tensor. The terms containing G, give contributions to
four- and five-particle distribution functions. These contri-
butions are negligibly small (for more detail, see [21-23]),
and therefore in further analysis, we will neglect these
terms. Moreover, Borel transformation kills the terms pro-
portional to the quark condensate, and as a result only the
first term is relevant for our discussion.
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Using the explicit expressions of DAs for the proton and light quark propagators, performing Fourier transformation and
then applying Borel transformation with respect to the variable p”> = (p — ¢)?, which suppresses the contributions of
continuum and higher states, and choosing the coefficients of the structures o, p,. q,, and p Mq,,d, we get the following

sum rules for the tensor form factors of nucleon:

id
H(Q%) = ”’%/MZ{ [ OB s = )FY, (1) + (1 + DF2, (1,)]
2m NAN x b ! !
vty seme 3 4 Lty e 5 6
= [(EB e L1 = 0 () + (1 0P )+ [ 2T WIPL— 0F, (1) + (14 0, (1)
xXo 43 Xo 2
1dt 1dt
. / LI = ], (1) + (1 + DF, (1)) + f 1 (1= ), (1)
Xo b3 Xo b2
ldl 2 1 dt 2
= [ eI+ FI (1) + < [ e @M= )FY (1) + (1 + DFR(1,)]
Xo 43
1 1 dt
07+ 2ml ¢ Y"/Mz[(]—l)F”(xo)‘F(l+l)F12(xo)]+M2f —e = DF] (1) + (14 OF (1))
om
1 1 dt
t e L = R (o) + (L 0Pl () + 5 [T 0FR (1) + (1 + 0 (1)
Q +x0 M X0 2
1 1 [(rdi
R ’So/Mz[(l—t)F  (x0) + (1 + DFE (x0)] = — / e /M (1 + Y] (13)
0"+ o 13 T
1
+ me—soﬂuz(l + t)F}]T(X())},
0""*N
where

—1 2 2 . ~ ~ ~ 2 2+
Fhy () = ! dn{%[f? PP, 3T~ Tl o1 — 1 - 1)+ 2L 3y

1)
_ 2 .
F%[T(tz) = '[01 ? dtl{m[y?d - - tz(ﬂz + 3ﬂ3 + Vz + 3V3)](t1, t2, - tz)
2
Qt;zmm[ﬂl 1](11, by Il =t — l‘z)},
1—13 1 ~ N
Fy (13) = ,[0 I dr g[mzzv(ﬂiw + V) + my3(As — Vi) + QXA + V)l 1 — 13, 13),

me3

113 2 ~ ~
Fy (13) = ];) dt [E (myTY + QT,) -
2 - ~ ~ ~ ~ ~
= TN [[2 dp fl g dt1[4T4 + 4T5 - 3T6 + 1277 - 482](t1, P, 1 - tl - p),
1 0
) 1- ~ ~ ~ < N ~
m]2V /lt dp/;) ! dtl[ZJle - J,Zl4 + 2J,le + 2V2 + V4 - ZNS](tl, P, 1 - t1 - p),
7 my (5 I=p = ~ ~ < - -
Fp () = f dp[o dn[2 A, — Ay + As =2V, = Vy+ Vslt, 1 — 1, — p, p),

[t3 dp fl_p dt1[2’1~/2 + 2’5—15 - ’j—l6 - 2?2 - 234](t1, 1- = p, p),
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13 A l—p 1 ~
F;IOT(%) :mzzvf] d)‘f dp[ dll—To(ﬁ, L=t —=p p)

1- Q2 + m3 2 ~m
FII'IIT(IZ) = 2m12vj;) di 1[71”7 (1, 1,1 — 1),
2

- QP+ mit <m
Fif (1) = m}, fo diy =——+ =NV = AN 11— 1 — 1),
2

1—13 Q2 ~ <
Fip (13) = m]%/f() dt T[J'ZUIW + V(1= 1 — 15, 13),
3
1—1¢ 2Q2 _ m2 t2 ~
Fif (13) = m%,/; 3 dtltimljlllw(tl’ =1 —13,13),
3
15 Wk A BT P 2 0\F 2 2
P =" ["ax [“ap [ dn [0 + mi?) T + 8Tl o1 =11 = p)
1) A I-p - ~
Pl ) =2yt + 0 ["ax [“dp [ dnpl A + Vel o1 = 1= p)
5] A I=p 1 ~ ~
F}L(%) = mzzvf1 d)\fl dp[o dt ;[m%vpzlfs — Q*T )1y, 1 — 1, = p, p).

For the form factor E(Q?), we obtain the following sum rule:

7~ 1 2 l ld[
E(Q%) = emw/Mz{ [ e WA = FL (1) +

1 2
—e_SO/M 1 —9FL (x
myAy M? s 02 + x3m3 ( ) ET( o

1 1 dl‘z 2 1 2

—s(t,)/M _ 3 T ,s/M — 3
o j e DI = OF (1) + e (1= 0F} (x)
1 fl & e /M (] — DFE (1) = ;eﬂ“/w(l — DF} (xo)
)3 Y0+ xgm}, S
1 1 d[z 2 1 2

—s(ty)/M? (1 _ 5 _ es/M — 3
M2 [ 13 L = DFE (1) + 0>+ 2m3, ¢ v rg )

ldty _ _
€ f e = 0F () * e (1 = DFS, (x)

1
0% + x3m%
Ldty i 7 Ldts oy 8
+ e DIV — t)FET(tz) + e M1 — t)FET(t3) ,
X0 2 X0 43

where
lez"r(tZ) = —4mj, f:z dA ,/-1/\ dp j:_p dtllj—,G(tlr p, 1=t —p),
F?Z*T(tZ) = —4my [:2 dp /Ol_p di,pl T+ T )1, p 1 — 1 — p),
F4ET(I3) = 4my, f;z dp /Olip dt;p[ A, — vz](tp 1 =1t — p,p)
F%T(ZZ) = 8my, ,[Olitz dflljdlw(ll, hl—1t — 1),
Fe (13) = 4m}, ’[OHB dt[AY + VYt 1 — 1, — 13, 13),
F%T(tz) = 8’[01_[2 Aty T\ (ty, 1o, 1 — 1, — 1),
FS (t5) = 4[0H3 dt[ A, + V1t 1 — 1, — 13, 13).
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Finally, for the form factor H;(Q?), we get the following
sum rule:

. 1 Ldt
H (0% = 3 f —= ﬂ(tz)/Mz(l—l)Fl (Iz)
myA

em%,/M-{ 1
NN

M2

1
T, e =) Fy (xo)
1 ldt3 )
= e WML —FL (1
7.5 k- (1-DF3, (1)
1 —s0/M? 2
s e A0 ) a3)
where
1— ~ ~
Fy (1)) = 4my [12 dpf "an[T, +T,]
r 1 0
X (ty, p, 1 —t; — p),
1— N -
F2 (13) = 4my [p dpf " dn[- A, + Vsl
r 1 0
X (t;,1 =1, = p, p),
and we use
V(1) = Vi(t;) — Va(t;) = Va(t)),
A, (1) = —A(t;) + Ay (1) — As(1),
A1) = —2A,(1;) — A3 (1;) — Ay(1;) +245(1),

As(t) = As(1;) — Ag(t),

Aty = A\ (1) — Ay(t;) + Az (1) + Ay (1) — As(2) + Ag(1)),
T5(t) = Ty(1;) + To(t;) — 2T5(1;),

T 4(t) =Ty (1;) —
T5(1;) = — T, (t;) + Ts(t;) + 2T5(1)),
T o(t) =2 Ts(1;) — T5(t;) — Ta(t)

T,(t;) — 2T4(t,),

+ Ts(t;) + T7(t,) + Ts(2,)],
Ij—/7(ti) =T5(t;) — Ts(1;),
Sy(t) = 8,(1;) = $,(1,),

j)z(ti) =P,(1;) — P1(1,),

In these expressions, we also use

Fx) = Flxp,x, 1 —x1 — xp),
f(xﬁ) = Flx;, I = x; — x3,x3),
03 = (1 - oy + P g2

where xy(so, Q%) is the
s(xo, Q%) = s0.

The residue Ay is determined from two-point sum rule.
For the general form of the interpolating current, it is
calculated in [25], whose expression is given as

solution to the equation
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2 2 M
Ay = emv/M { E)(x)(5 + 2t + 1)

2567
<uu>[6(1

#)dd) — (1 — 1)*(au)]

2

@121 — )dd) ~ (1 - ol

where

2 2\i
eAYO/MZ Z (SO/M ) '

Ey(so/M?*) =1 — i

i=0

The Borel transformations are implemented by the follow-
ing subtraction rules [21-23],

X dx 2
fd (q fi(x)p)z _ fyp(x)e*s(x)/M }

p(x) 1 dx _ 5
/d (q — xp)4 M2 /?p(x)e s(x)/ M

+ p(XO) est/MZ’

0% + x3m3
fdx P(X) . 1 f@p(x)ei‘y(x)/”ﬁ
(g — xp)° 2m? ) X
1 (xO) 750/M2
2 x0(0? + )comN)M2
1 x(z)

202+ xgm3,

SR LR, PV
dxoLxy Q° + xgmy

III. NUMERICAL ANALYSIS OF THE SUM
RULES FOR THE TENSOR FORM
FACTORS OF NUCLEON

In this section, numerical results of the tensor form
factors of nucleon are presented. It follows from sum rules
for the form factors that the main input parameters are the
DAs of nucleon, whose explicit expressions and the values
of the parameters fy, A;, Ay, f4, f¢, AY, and V¢ in the DAs
are all given in [21-23].

In the numerical analysis, we use two different sets of
parameters:

(a) All eight nonperturbative parameters fy, Aj, Ay, f7,

¢ f4, A¥, and V{ are estimated from QCD sum
rules (set 1).

(b) Requiring that all higher conformal spin contribu-
tions vanish, fixes five A%, V¢{, fu, f¢, and A, and
the values of the parameters fy, )tl, A, are taken
from QCD sum rules. This set is called asymptotic
set or set 2.

The values of all eight nonperturbative parameters (see,

for example, [26]) are presented in Table I.
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TABLE I. The values of eight input parameters entering the
DAs of nucleon.

Set 1
fxv  (5.0*0.5)x 1073 GeV?
A (=27+0.9) X 1072 GeV?
A (5.4 % 1.9) X 1072 GeV?

Asymptotic set (set 2)
(5.0 £ 0.5) X 1073 GeV?
(—=2.7£0.9) X 1072 GeV?
(5.4 £ 1.9) X 1072 GeV?

Al 0.38 = 0.15 0
v 0.23 +0.03 1/3
1 0.40 = 0.05 1/3
14 0.22 +0.05 4/15
1 0.07 = 0.05 1/10

The next input parameter of the LCQSR for the tensor
form factors is the continuum threshold s,. This parameter
is determined from the two-point sum rules whose value is
in the domain s, = (2.25-2.50) GeV?. The sum rules also
contain two extra auxiliary parameters, namely, Borel

051 Q* = 1.0 GeV?
50 = 2.25 GeV?

t=+5 -t

Hy

0.0

oo B 0-e08onae0es0en

10 15 2.0 2.5
M? (GeV?)

FIG. 1. The dependence of the form factor Hy of nucleon on
M? at Q* = 1 GeV? and s, = 2.25 GeV?, at six different values
of t: t = —5;—3;—1;1;3;5, using the first set of DAs for the
isoscalar current.

JUIRRRS St poaanamy
Loy JUMIOPE
- - -©-0-0-0-CI
P -0~ 000-8-9*8-(}(}00-@"0'8-0‘90
-0-0-0-9-9-0-© 0-6-0-
0000988 Y
t=—-5 —m—
0.5 t= o5
1 Q* = 1.0 GeV? -
50 =2.25 GeV? t=+1 —m
» t=+3 --e--
£ t=+5 -t
0.0
[ e aatzNctadagatatiat eln oaoE
-0.5 hx’&zx;x-XX&
55559559 6% %t
BB B LAA DA DDA DDA A B BB BB AL A A B Ao DBDeo A 20
1.0 1.5 2.0 25

M? (Gev?)

FIG. 2. The same as in Fig. 1, but at s, = 2.5 GeV? and using
the second set of DAs.
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parameter M and the parameter ¢ entering the expression
of the interpolating current for nucleon. Obviously, any
physical quantity should be independent of these artificial
parameters. Therefore, we try to find such regions of M?
and ¢, where the tensor form factors are insensitive to the
variation of these parameters.

First, we try to obtain the working region of M2, where
the tensor form factors are independent of it, at fixed values
of sy and 7. As an example, in Figs. 1 and 2, we present the
dependence of the tensor form factor H,(Q?) induced by
the isoscalar current on M? at different fixed values of Q2
and ¢, and at s, = 2.25 GeV? and s, = 2.50 GeV? for
sets 1 and 2, respectively. From these figures, we see that
H;(Q?) is practically independent of M? at fixed values of
the parameters Q2, s, and t for both sets 1 and 2. Our
calculations also show that the results are approximately
the same for two sets, therefore in further discussion, we
present the results only for set 1. We perform similar
analysis also at s, = 2.40 GeV? and observe that the re-
sults change maximally about 5%. The upper limit of M? is
determined by requiring that the series of light cone ex-
pansion with increasing twist converges, i.e., higher twist
contributions should be small. Our analysis indeed con-
firms that the twist-4 contributions to the sum rules con-
stitute maximally about 8% of the total result when
M? = 2.5 GeV2. The lower bound of M? is determined
by requiring that the contribution of the highest power of
M? is less than, say, 30% of the higher powers of M?. Our
numerical analysis shows that this condition is satisfied
when M? = 1.0 GeV?. Hence, the working region of M? is
decided to be in the interval 1.0 GeV? = M? < 2.5 GeV>.
The working region of the parameter ¢ is determined in
such a way that the tensor form factors are also indepen-
dent of it. Our numerical analysis shows that the form
factors are insensitive to cosf (with r = tanf) when it
varies in the region —0.5 = cosf = 0.3.

In Figs. 3-5, we present the dependence of the
form factors Hy(0Q?%), E;(Q% and H;(Q?) on Q? at

0.75 P
t=—-3 o
t=43 b
0.50 M? =12 GeV? =15 o
s9 = 2.25 GeV'? lattice --a--
s, CSM -
0.25 -
f \.---...'........".. - n
o e esssesessseseleliiIIR
B
qaue ™ aaa
0.25 | L
o
o
B
-0.50 | 45
-0.75 ‘ ‘ ‘
2.0 4.0 6.0 8.0 10.0

Q? (Gev?)

FIG. 3 (color online). The dependence of H; on Q7 at
M? = 1.2 GeV? and s, = 2.25 GeV? and four fixed values of
t: t = —5;—3;3;5, for the isoscalar current.
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so = 2.25 GeV?, M? = 1.2 GeV? and fixed values of 1,
respectively, using the central values of all input parame-
ters in set 1 for the isoscalar current. For a comparison, we
also present the predictions of self consistent chiral soliton
model [16] and lattice QCD calculations [19,20] in these
figures (note that, chiral soliton model result exists only for
Hr(0%).

We see from Fig. 3 that our results on H;(Q?) are close
to the lattice QCD results for Q2 = 2.0 GeV?, while the
results of two models differ from each other in the region
1.0 GeV? = Q% = 2.0 GeV?. Our and lattice QCD results
differ considerably from the predictions of the chiral soli-
ton model. It also follows from these figures that the form
factors get positive (negative) at negative (positive) values
of the parameter .

In Figs. 6-8, we present the dependence of the form
factors Hy(Q?), E+(Q%) and H;(Q? for the isovector
current, i.e., for the io,,u — c_la'#,,d current. Our obser-
vations for set 1 can be summarized as follows:

(i) The Q? dependence of H;(Q?) is similar to the

isoscalar current case, but the values are slightly
larger compared to the previous case.

1.00
t=—5 —a—
t=—3 o
t= 43 a
t=+45 @

M? =12 GeV?
sp = 2.25 GeV?

0.00 |

-0.25

6.0 8.0 10.0
Q% (GeV?)

FIG. 4. The same as in Fig. 3, but for the form factor £(Q?).

1.25
t=-5 —a—
1.00 [y t=—3 o
t=+3 s
0.75 M? =12 GeV? f=+5-a
s0 = 2.25 GeV?
0.50 F
= 0.25
I
0.00
i) aoanass
-0.25 |
-0.50
-0.75
2.0 4.0 6.0 8.0 10.0

Q? (GeV?)

FIG. 5. The same as in Fig. 3, but for the form factor H(Q?).
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(i1) Similar to the isoscalar case, the form factors
H7(Q?%) and E;(Q?) get positive (negative) at nega-
tive (positive) values of the parameter r.

(iii) In contrast to the isoscalar current case, the values

of H;(Q?) are positive (negative) for negative
(positive) values of .

t=-5—=—
1.0 . s
t= 43 et
M? =12 GeV? t=+5 —a
s0 = 2.25 GeV? lattice -~
0.5 [ o
. -y
. \~...‘. 9 - _
- o Tt et eceensee sy TREAE

L]
" ﬁ.va:ﬁﬂﬁﬂ
et
e

2.0 10 6.0 8.0 10.0
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(iv) Our final remark is that the LCQSR results on the

form factors can be improved by taking into ac-
count the «; corrections.

In conclusion, using the most general form of the nu-
cleon interpolating current, we calculate the tensor form
factors of nucleon within the LCQSR. Our results on these
form factors are compared with the lattice QCD and chiral
soliton model predictions.
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