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We describe the meson-meson data for the (IJPC ¼ 00þþ) wave at 280 � ffiffiffi
s

p � 1900 MeV in two

approaches: (i) the K-matrix approach and (ii) the dispersion relation D-matrix method. With a good

description of low-energy data (at 280 � ffiffiffi
s

p � 900 MeV) as well as the data of two-meson transition

amplitudes and antiproton-proton annihilation into three pseudoscalar meson states (at 450 � ffiffiffi
s

p �
1950 MeV) we have found the positions of the resonance poles: (i) for the � meson pole: M� ¼
ð390� 35Þ � ið235� 50Þ MeV; (ii) two poles for the f0ð980Þ, on the second sheet (under the �� cut):

MI ¼ ð1011� 5Þ � ið35� 5Þ MeV, and on the third sheet (under the �� and K �K cuts), MII ¼ ð1035�
50Þ � ið460� 50Þ MeV; for the f0ð1370Þ meson, M ¼ ð1285� 30Þ � ið160� 20Þ MeV; for the

f0ð1500Þ meson, M ¼ ð1488 � 4Þ � ið53 � 5Þ MeV; for the f0ð1790Þ meson, M ¼ ð1775� 25Þ�
ið140� 15Þ MeV; and for the broad state f0ð1200–1600Þ M ¼ ð1540� 120Þ � ið550� 70Þ MeV. Our

estimation of the scalar-isoscalar scattering length obtained under different parameterizations and

assumptions about the quality of low-energy �� scattering data is a00 ¼ ð0:215� 0:040Þm�1
� . We also

discuss the idea according to which the � meson could be a remnant of the confinement singularity, 1=s2,

in a white channel.
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I. INTRODUCTION

In spite of lengthy and persistent investigations, at
present we have no firm determination for the mass of
the � meson—the resonance in the 280–900 MeV region.
This resonance reveals itself in the �� channel as a pole in
the complex-M plane, in the ðIJPC ¼ 00þþÞ partial wave.
Numerous calculations produced mass values distributed
over all the low-energy interval

ffiffiffi
s

p � M & 900 MeV,
with various widths from 200 MeV up to 1000 MeV.
Such a situation emerged in the nineties [1]. The results
of the latest analyses are clustered in a smaller mass
region 400–600 MeV: see, for example, [2] ð552þ84

�106Þ �
ið232þ81

�72Þ MeV and [3] ð484� 17Þ � ið255� 10Þ MeV
and the review of Bugg [4] ð472� 30Þ � ið271�
30Þ MeV. The solution of the Roy equation at low energies
produced a smaller mass ð441þ16

�8 Þ MeV� ið272þ9
�13Þ MeV

[5]. A detailed investigation of theoretical uncertainties
in the parametrization of the low-energy data is given
in [6].

We see three sources for emerging uncertainties in the
analyses of the �� amplitude near the threshold:

(i) a not sufficiently good determination of the 00þþ
amplitude above M ¼ 900 MeV

(ii) uncertainties in the definition of the left-hand cut in
the �� amplitude and

(iii) uncertainties in low-energy �� ! �� data.

In the present paper we analyzed in detail all these sources
of uncertainties. The examples considered in the paper
demonstrate that the results obtained for the low-energy
amplitude depend strongly on the assumptions made in the
analysis.
A very important source of the information about the

isoscalar-scalar partial wave is the proton-antiproton anni-
hilation at rest into three pseudoscalar mesons. In the
�pp ! 3�0 reaction on the liquid hydrogen the S-wave
annihilation contributes about 94% to the decay rate and
the scalar-isoscalar partial wave about 75%. The analysis
of the Dalitz plot provides a possibility to study interfer-
ences of the high-mass contributions with low-mass con-
tributions produced in different kinematic channels. The
first analyses of the Crystal Barrel data for this reaction
was reported in [7]. A good compatibility of the obtained
solution with the elastic data extracted by the CERN-
Munich group [8] was demonstrated in [9]. The analysis
of the proton-antiproton data allows us to extract the states
with a small inelasticity which can escape an identification
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from the analysis of the elastic channel alone (see for
example [10]). In the paper [11] the elastic data were
analyzed together with central production data. However,
the analysis of such data is a rather complicated task and
this is probably the reason why the obtained spectrum is
not fully compatible with that observed in the analysis of
the proton-antiproton annihilation data.

The meson spectra in the 00þþ wave were fitted by our
group using the K-matrix technique in [12–14]. This tech-
nique provides us with an opportunity to fit simultaneously
several reactions (such as ��, K �K, ��, etc.), taking into
account correctly analytical properties and unitarity in all
investigated amplitudes. This way we have determined the
resonance structure of the scalar-isoscalar wave at 500 �ffiffiffi
s

p � 1950 MeV; our results were summarized in [15].
However, in the K-matrix amplitude the left-hand cut

owing to crossing channels is determined ambiguously
(note that t and u channel meson exchanges depend on
couplings and form factors, which are not well known).
The impossibility to write down precisely the contributions
of left-hand cuts leads to a freedom in the interpretation of
the �� ! �� amplitude in the

ffiffiffi
s

p
< 500 MeV region. In

our K-matrix analyses [12–14] of the isoscalar-scalar wave
we modeled the contribution from the left-hand cut at
s < 0 by introducing several poles in this region with fitted
parameters. Describing this partial amplitude in the region
280 � ffiffiffi

s
p � 1900 MeV, we usually did not observe a pole

which could be interpreted as the � meson. However, in
some solutions (not the best ones) such a pole appeared.

Having this background, we fitted in [16] the amplitude
00þþ in the region 280 � ffiffiffi

s
p � 900 MeV separately in

the framework of the dispersion relation approach sewing
the N=D solution with the K-matrix one at 450 � ffiffiffi

s
p �

900 MeV. As a result, the best fit, accounting for the
left-hand cut contribution (it was a fitting function), con-
tained the �-meson pole at M� ¼ ð430� 150Þ � ið320�
130Þ MeV [16].

One can think that the ambiguity problem may be solved
with the help of the investigation of the�� scattering in all
three ðu; d; sÞ channels (see [5,17] and references therein).
However, this procedure requires the analytical continu-
ation of the pole terms into regions being rather far from
the pole mass. This supposes the knowledge not only of
both resonance form factors and the energy dependence of
resonance widths. The high spin states lead to the diver-
gence in crossing channels. It is only the summing over all
sets of states that resolves these divergences resulting
finally in the Regge behavior and therefore, requires
model-dependent calculations.

The K-matrix analysis [12–14], being performed at a
distance from the left-hand cut, gives masses and full
widths of resonances (i.e. the position of poles) as well
as the residues of the poles, namely, couplings of reso-
nances to different channels. These couplings are factor-
ized; this is a criterium for dealing just with a particle,

though unstable. Besides, the coupling interrelations allow
one to define the quark content of a particle, provided this
is a q �q state. This way the states found in the K-matrix
analysis can be classified as q �q nonets. The K-matrix
analysis determines two nonets and one extra state in the
600–2000 MeV region. One of the possible classifications
is given in [15]:

½f0ð980Þ; f0ð1300Þ�n¼1; ½f0ð1500Þ; f0ð1750Þ�n¼2;

where n ¼ 1, 2 are the radial quantum numbers. Here the
broad state f0ð1200–1600Þ and the �-meson are super-
fluous for the q �q nonet classification. The position of
resonances in the IJPC ¼ 00þþ wave is shown in Fig. 1.
In this classification the broad state f0ð1200–1600Þ is a

glueball descendant [18,19]. Because of another classifi-
cation the broad f0ð1200–1600Þ state belongs to the first
nonet and the extra state is f0ð1300Þ. Both these states are
flavor blind and one of them is superfluous for the q �q
systematics. The f0ð1200–1600Þ state acquired a large
width because of the accumulation of widths of neighbor-
ing states: in nuclear physics such a phenomenon had been
studied in [20–22], in meson physics in [23].
The paper is organized as follows. In Sec. II we provide

formulae used in the K-matrix and D-matrix approaches.
In Sec. III we discuss an idea of the confinement singular-
ity 1=s2. Such a singularity in the t channel (1=t2) corre-
sponds to the linear rising potential which describes meson
spectra in q �q [24], b �b [25] and c �c [26] channels and gives
correct values for the partial widths of radiative and had-
ronic decays of confined q �q states [27]. Although this
singularity is expected to be in the color octet state, it
can have also a color singlet component and appear in
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FIG. 1. Complex-M plane for the ðIJPC ¼ 00þþÞmesons [15].
The dashed line encircles the part of the plane where the
K-matrix analysis [13] reconstructs the analytical K-matrix
amplitude: in this area the poles corresponding to resonances
f0ð980Þ, f0ð1300Þ, f0ð1500Þ, f0ð1750Þ and the broad state
f0ð1200–1600Þ are located. Beyond this area, in the low-mass
region, the pole of the light � meson is located (shown by the
point the position of pole, M ¼ ð430� i320Þ MeV, corresponds
to the result of N=D analysis; the crossed bars stand for �-meson
pole found in [16]. In the high-mass region one has resonances
f0ð2030Þ, f0ð2100Þ, f0ð2340Þ, see [39]. Solid lines stand for the
cuts related to the thresholds ��, ����, K �K, ��, ��0.
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the s channel. The K-matrix and D-matrix analyses of the
00þþ wave in the energy interval 280 � ffiffiffi

s
p � 1900 MeV

are presented in Sec. IV. In the Conclusion we summarize
the results concentrating on the low-energy region.

Some clarifying points are made in the Appendices. In
Appendix A the dynamical mechanism of the singularity
1=s2 in the q �q ! q �q amplitude is discussed. A simple
description in terms of the dispersion relation approach
which allows to incorporate easily the singularity 1=s2 into
the analytic and unitary amplitudes is given in Appendix B.
In Appendix C we present the unitary �� scattering in the
threshold regions taking into account the mass differences
of the �þ�� and �0�0 systems which are essential for the
extraction of a00.

II. THE K-MATRIX AND
D-MATRIX TECHNIQUES

Here we discuss the analytic properties of amplitudes
restored in terms of theK-matrix andD-matrix techniques.

The comparison of results obtained by these two meth-
ods is one of the main subject of the present investigation.
In the K-matrix approach the real part of loop diagrams is
neglected, or, more precisely, is taken into account effec-
tively as renormalization of resonance masses. In the
D-vector approach, real parts of loop diagrams are calcu-
lated directly and amplitude does not have false kinemati-
cal singularities in the region of left-side singularities.

Although the D-matrix method is theoretically better
founded, the majority of the partial wave analyses are
performed in the framework of the K-matrix approach
and a good understanding of stability and limitations of
the obtained results is an important task.

A. The K-matrix approach

For the S-wave interaction in the isoscalar sector we use,
as previously [13], the 5-channel K-matrix:

KabðsÞ ¼
�X

�

gð�Þa gð�Þb

M2
� � s

þ fab
1 GeV2 þ s0

sþ s0

�
s� sA
sþ sA0

; (1)

where Kab is a 5� 5 matrix (a, b ¼ 1, 2, 3, 4, 5), with the
following notations for meson states: 1 ¼ ��, 2 ¼ K �K,
3 ¼ ��, 4 ¼ ��0 and 5 ¼ multimeson states (four-pion

state mainly at
ffiffiffi
s

p
< 1:6 GeV). The gð�Þa are coupling

constants of the bare state � to meson channels; the
parameters fab and s0 describe the smooth part of
the K-matrix elements (s0 > 1:5 GeV2). The factor
ðs� sAÞ=ðsþ sA0Þ, where sA � ð0:1–0:5Þm2

�, describes
Adler’s zero in the two-pion channel. However, in the
K-matrix analysis we introduced this factor also in other
channels to suppress the effect of the left-hand side false
kinematic singularities in the K-matrix amplitude.

Spectral integral equation for the K-matrix amplitude

Discussing meson-meson scattering and production am-
plitudes, we use the dispersion relation (or spectral inte-
gral) technique. In terms of this technique we write for the
K-matrix amplitude a spectral integral equation which is an
analog of the Bethe-Salpeter equation [28] for the
Feynman technique. The spectral integral equation for
the transition amplitude from the channel a to channel b
is presented graphically in Fig. 2 and reads:

AabðsÞ¼
Z ds0

�

Aajðs;s0Þ
s0 �s� i0

�jðs0ÞKjbðs0;sÞþKabðsÞ: (2)

Here �jðs0Þ is the diagonal matrix of the phase volumes,

Aajðs; s0Þ is the off-shell amplitude and Kjbðs; s0Þ is the off-
shell elementary interaction. Let us remind that in the
dispersion relation technique, just as in quantum mechan-
ics, there is no energy conservation for the intermediate
states.
The standard way of the transformation of Eq. (2) into

the K-matrix form is the extraction of the imaginary and
principal parts of the integral. The principal part has no
singularities in the physical region and can be omitted (or
taken into account by a renormalization of the K-matrix
parameters):

Z ds0

�

Aajðs;s0Þ
s0 �s� i0

�jðs0ÞKjbðs0;sÞ

¼P
Z ds0

�

Aajðs;s0Þ
s0 �s

�jðs0ÞKjbðs0;sÞþ iAajðs;sÞ�jðsÞKjbðsÞ
! iAajðs;sÞ�jðsÞKjbðsÞ: (3)

For the amplitude AabðsÞ one obtains the standardK-matrix
expression which in the matrix form reads:

Â ¼ Âi�̂ K̂þK̂; or Â ¼ K̂ðI� i�̂ K̂Þ�1: (4)

The factor ðI � i�̂ K̂Þ�1 describes the rescattering of me-
sons, it is inherent not only in two-meson transition am-
plitudes but in production amplitudes as well. TheP-vector
method describes the production of particles in cases when
an initial interaction should be taken into account only
once, for example, for the production of mesons from the
�� collision or from proton-antiproton annihilation:

Akð �ppÞ ¼ Pj½ðI � i�̂ K̂Þ�1�jk: (5)

Elements of the vector Pj have a form similar to the

K-matrix elements, Eq. (1):

s s s s s ss′A A K K= +

FIG. 2. Graphical representation of the spectral integral equa-
tion for the K-matrix amplitude.
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Pj ¼
X
�

��g
ð�Þ
j

M2
� � s

þ Fj: (6)

The first term in Eq. (6) refers to the production of reso-
nances; the second one, Fj, to a nonresonant production.

The standard form of the two-particle phase volume is

�aðs;m1a;m2aÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs�ðm1aþm2aÞ2Þðs�ðm1a�m2aÞ2Þ

s2

s
;

a¼1;2;3;4; (7)

where m1a and m2a are masses of the final particles. In the
case of different masses this expression includes the termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� ðm1a �m2aÞ2

p
which in theK-matrix approach can be

a source of false kinematic singularities on the first (physi-
cal) sheet: the loop diagram amplitude, BðsÞ, does not
contain this type of singularities. Such a cancellation can
be taken into account effectively by replacing the ��0
phase volume:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs� ðm1a þm2aÞ2Þðs� ðm1a �m2aÞ2Þ
s2

s

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� ðm1a þm2aÞ2

s

s
: (8)

For the restoration of the amplitude we need to take into
account not only the cuts related to threshold singularities
of the stable particles but nonstable ones as well. In the
00þþ amplitude the four-pion state gives cuts related to
���� (at the real s-axis,

ffiffiffi
s

p ¼ 4m�) and in the complex-s
plane related to the production of vector and scalar parti-
cles: ��� (at

ffiffiffi
s

p ¼ 2m� þm� with a complex mass m�),

�� (at
ffiffiffi
s

p ¼ 2m�) and f0f0. Let us write the phase space

factor for the �� state which contains 4�, ��� and ��
threshold singularities:

�4�ðsÞ¼
Z ð ffiffi

s
p �2m�Þ2

4m2
�

ds12
�

�
Z ð ffiffi

s
p � ffiffiffiffiffi

s12
p Þ2

4m2
�

ds34
�

G2
inðs;s12;s34Þ�ðs;

ffiffiffiffiffiffi
s12

p
;

ffiffiffiffiffiffi
s34

p Þ

�G2ðs12Þðs12�4m2
�Þ�ðs12;m�;m�Þ

ðs12�M2
�Þ2þðM���Þ2

�G2ðs34Þðs34�4m2
�Þ�ðs34;m�;m�Þ

ðs34�M2
�Þ2þðM���Þ2

: (9)

The form factors Ginðs; s12; s34Þ, Gðs12Þ, Gðs34Þ are intro-
duced into Eq. (9) to provide the convergency of the
integrals. This phase volume describes production of ��
in the S-wave and P-wave production of pions in the
�-meson decays and was used, for example, in the analysis
[9]. As in this analysis GðsijÞ are parameterized as P-wave

Blatt-Weisskopf form factors and Gin ¼ 1.

Being near a pole, hadronic production cuts split this
pole into several ones located on different sheets of the
complex-s plane.

B. The D-matrix approach

The considered above approaches allow us to distinguish
between ‘‘bare’’ and ‘‘dressed’’ particles: due to meson
rescattering the bare particles, with poles on the real-s axis,
are transformed into particles dressed by ‘‘coats’’ of meson
states. In the K-matrix approach we deal with a ‘‘coat’’
formed by real particles—the contribution of virtual ones
is included in the principal part of the loop diagram, BðsÞ,
and is taken into account effectively by the renormalization
of mass and couplings.
In the dispersion relation D-matrix approach one can

take into account the coat of virtual mesons. The D-matrix
amplitudes describe transitions of bare states.
Let us consider the block D�� which describes a tran-

sition between the bare state � (but without the propagator
of this state) and the bare state � (with the propagator of
this state included). For such a block one can write the
following equation:

D�� ¼ D��

X
j

Bj
��d�� þ d��; (10)

or, in the matrix form:

D̂ ¼ D̂ B̂ d̂þd̂; D̂ ¼ d̂ðI � B̂ d̂Þ�1 (11)

Here the d̂ is a diagonal matrix of the propagators:

d̂¼diag

�
1

M2
1�s

;
1

M2
2�s

; . . . ;
1

M2
N�s

;R1;R2 . . .

�
; (12)

where R� are propagators for nonresonant transitions (dis-

cussed below), and the elements of the B̂-matrix are
equal to

B̂��¼
X
j

Bj
��¼

X
j

Z ds0

�

gRð�Þj �jðs0;m1j;m2jÞgLð�Þj

s0 �s� i0
: (13)

The gRð�Þj and gLð�Þj are right and left vertices for a tran-

sition from the bare state � to the channel j. For the pole
terms there is a clear factorization:

gRð�Þj ¼ gLð�Þj ¼ gð�Þj : (14)

However, nonresonant terms do not provide such a
factorization. A solution to this problem is to introduce
for nonresonant transitions a separate propagator and ver-
tices from every initial state i. Moreover, for the descrip-
tion of the nonresonant terms between different initial and
final states a second propagator with permutated left and
right vertices is needed. In this case the propagator index
provides automatically a unique identification of the tran-
sition term. Then for nonresonant transitions from the ��
channel we have

A.V. ANISOVICH et al. PHYSICAL REVIEW D 84, 076001 (2011)
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gLðNþ1Þ
i R1g

RðNþ1Þ
j þ gLðNþ2Þ

i R2g
RðNþ2Þ
j ; (15)

where N is the number of pole terms. The nonzero left and
right vertices can be taken as

gLðNþ1Þ
j ¼f1j

1GeV2þs0
sþs0

; gRðNþ1Þ
1 ¼1;

R1¼1; gLðNþ2Þ
1 ¼1; gRðNþ2Þ

j>1 ¼f1j
1GeV2þs0

sþs0
;

R2¼1 and gRðNþ1Þ
j>1 ¼gLðNþ2Þ

j>1 ¼gRðNþ2Þ
1 ¼0: (16)

Another alternative parametrization for the nonzero
terms is

gLðNþ1Þ
j ¼f1j; gRðNþ1Þ

1 ¼1; R1¼1GeV2þs0
sþs0

;

gLðNþ2Þ
1 ¼1; gRðNþ2Þ

j>1 ¼f1j; R2¼1GeV2þs0
sþs0

:

(17)

With such a definition the amplitude Aab is the convo-
lution of the matrix D�� with right and left coupling

vectors, gðR;�Þa and gðL;�Þb :

Aab ¼ X
�;�

gRð�Þa d��D��g
Lð�Þ
b : (18)

The P-vector amplitude has the form:

Ab ¼
X
�;�

~Pð�Þd��D��g
Lð�Þ
b ;

~P ¼ ð�1;�2; . . . ;�n; F1=R1 . . .Þ; (19)

where couplings �� and nonresonant terms Fj are the

same as in Eq. (6).

In the present fits we calculate the elements of the Bj
��

using one subtraction taken at the channel threshold
Mj ¼ ðm1j þm2jÞ:

Bj
��ðsÞ ¼ Bj

��ðM2
j Þ þ ðs�M2

j Þ

�
Z 1

m2
a

ds0

�

gRð�Þj �jðs0; m1j; m2jÞgLð�Þj

ðs0 � s� i0Þðs0 �M2
j Þ

: (20)

In the case of the nonresonant terms parameterized in the
form (17) and the S-wave vertices parameterized as

constants the expression for elements of the B̂ matrix can
be rewritten as

Bj
��ðsÞ ¼ gRð�Þa

�
bj þ ðs�M2

j Þ

�
Z 1

m2
a

ds0

�

�jðs0; m1a; m2aÞ
ðs0 � s� i0Þðs0 �M2

j Þ
�
gLð�Þb ; (21)

where the parameters bj depend on decay channels only.
In the case of the D-matrix approach it is not necessary

to introduce the regularization of the ��0 phase volume
and, therefore, we use the standard expression (7). It is also
not necessary to introduce any regularization for the
D-matrix elements at s ¼ 0: this point is not singular in
this approach. Thus, in the D-matrix fits, the term with the
Adler zero was introduced in the �� channel only.
Technically, it can be done either by the modification of
vertices or by the modification of the �� phase volume:

�1ðs; m�;m�Þ ¼ s� sA
sþ sA0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 4m�

s

s
: (22)

For q �q states one can relate the decay couplings gð�Þa in
terms of the rules of quark combinatorics (see [14] or in
more detail in [15]). The couplings for channels a ¼ ��,
K �K, ��, ��0, calculated in the leading terms of the 1=Nc

expansion, are presented in Table I (this Table is given also
in [1]). The couplings depend on the constant g which is
universal for all nonet states, the mixing angle � which

determines the proportion of the n �n ¼ ðu �uþ d �dÞ= ffiffiffi
2

p
and

s�s components in the decaying q �q state, and the s�s pro-
duction suppression parameter �� 0:5–0:7. Two scalar-
isoscalar states of the same nonet are orthogonal if

�ðIÞ ��ðIIÞ ¼ �90�: (23)

The equality of the coupling constants g and the fulfilment
of the mixing angle relation (23) is a basis for the deter-
mination of mesons of a q �q nonet.
The gluonic states are decaying in the channels a ¼ ��,

K �K,��,��0 with the same couplings as the q �q state but at
a fixed mixing angle� ! �glueball which is determined by

the value of �, namely: �glueball ¼ cos�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2þ �Þp

. The

corresponding couplings are given in Table I as well.

TABLE I. Coupling constants given by quark combinatorics for ðq �qÞI¼0 meson and glueball decays into two pseudoscalar mesons in
the leading terms of the 1=Nc expansion. The� is the mixing angle for n �n ¼ ðu �uþ d �dÞ= ffiffiffi

2
p

and s �s states: n �n cos�þ s �s sin�. The�
is the mixing angle for �� �0 mesons: � ¼ n �n cos�� s�s sin� and �0 ¼ n �n sin�þ s �s cos� with � ’ 37�.

Decay channel q �q-meson decay coupling gg state decay coupling Identity factor

�0�0 g cos�=
ffiffiffi
2

p
G 1=2

�þ�� g cos�=
ffiffiffi
2

p
G 1

KþK� gð ffiffiffi
2

p
sin�þ ffiffiffiffi

�
p

cos�Þ= ffiffiffi
8

p ffiffiffiffi
�

p
G 1

K0 �K0 gð ffiffiffi
2

p
sin�þ ffiffiffiffi

�
p

cos�Þ= ffiffiffi
8

p ffiffiffiffi
�

p
G 1

�� gðcos2� cos�=
ffiffiffi
2

p þ ffiffiffiffi
�

p
sin�sin2�) Gðcos2�þ ffiffiffiffi

�
p

sin2�Þ 1=2
��0 g sin� cos�ðcos�=

ffiffiffi
2

p � ffiffiffiffi
�

p
sin�) Gð1� �Þ cos� sin� 1
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III. CONFINEMENT INTERACTION
IN THE q �q SECTOR

The description of mesons of the q �q sector is a source of
information about quark confinement interaction. These
interactions contain t-channel singularities of scalar and
vector type. The t-channel exchange interaction can be
both in white and color states, c ¼ 1þ 8 though, of
course, the color-octet interaction plays a dominant role
in meson formation.

The observed linearity of the q �q-meson trajectories in
the ðn;M2Þ planes [29], where n is the radial quantum
number of the q �q meson with mass M, provides us the
t-channel singularity Vconf � 1=q4 or, in coordinate repre-
sentation, Vconf � r. In the coordinate representation the
confinement interaction can be written in the following
potential form [15,24]:

Vconf ¼ ðI 	 IÞbSrþ ð�	 	 �	ÞbVr;
bS ’ �bV ’ 0:15 GeV�2:

(24)

The first term in (24) refers to scalar interaction (I 	 I), the
second one to vector (�	 	 �	)—in the q �q sector the

scalar and vector forces are approximately equal.

White remnants of the confinement singularities

We have serious reasons to suspect that the confinement
singularities (the t-channel singularities in the scalar and
vector states) have a complicated structure. In the color
space these are octet states but, may be, they contain also
white components. The octet exchange interaction contains
quark-antiquark and gluonic blocks. Therefore, the ques-

tion is whether Vð1Þ
confinementðq2Þ has the same singular

behavior as Vð8Þ
confinementðq2Þ. The observed linearity of the

ðn;M2Þ trajectories, up to the large-mass region, M�
2000–2500 MeV [29], favors the idea of the universality

in the behavior of potentials Vð1Þ
confinement and Vð8Þ

confinement at

large r, or small q. To see that, let us consider, as an
example, the process �
 ! q �q, Fig. 3(a). We discuss the
color neutralization mechanism of outgoing quarks as a
breaking of the gluonic string by newly born q �q pairs, see
the discussion in [30]. At large distances, which corre-
spond to the formation of states with large masses, several
new q �q pairs should be formed. It is natural to suggest that

a convolution of the quark-gluon combs governs the inter-
action forces of quarks at large distances, see Fig. 3(b). The
mechanism of the formation of new q �q pairs to neutralize
color charges does not have a selected color component. In
this case all color components 3 	 �3 ¼ 1þ 8 behave simi-
larly, that is, at small q2 the singlet and octet components

of the potential are uniformly singular, Vð1Þ
confinementðq2Þ �

Vð8Þ
confinementðq2Þ � 1=q4.
If the confinement singularities have, indeed, white con-

stituents, this raises immediately the following questions:
(i) How do these constituents reveal themselves in

white channels?
(ii) Can they be identified?

In the scalar channel we face the problem of the � meson
ðIJPC ¼ 00þþÞ: what is the nature of this state? If the
white scalar confinement singularity exists, it would be
reasonable to consider it as the � meson revealing itself:
because of the transitions into the �� state, the confine-
ment singularity could move to the second sheet. If so, the
� meson can certainly not reveal itself as a lonely ampli-
tude singularity 1=t2 but a standard amplitude pole or a
group of poles.
A similar scenario may be valid also for the vector

confinement singularity in the ��� ðIJPC ¼ 01��Þ chan-
nel. In this case it is natural to assume that the white
confinement singularity couples with the channel ��,
splits and dives into the complex-M��� plane.
An illustrative example of a set of loop diagrams of the

Fig. 3(c) type is considered in Appendix A. In this example
we demonstrate how the strong singularity, 1=t2, may arise
in scalar and vector channels of the interaction block. An
example of the simple parametrization of this singularity is
given in Appendix B.

IV. THE K-MATRIX AND D-MATRIX
APPROACHES IN FITS TO THE DATA AT

0:28� ffiffiffi
s

p � 1:95 GEV

Here we present a comparative analysis of the results
obtained with the K-matrix and D-matrix methods.
These approaches give rather similar results for the f0
resonances at

ffiffiffi
s

p � 2 GeV. In Table II we show the data
used in these analyses and give corresponding 
2 for

*γ

a)

M

M

M

M

*γ *γ

b) c)

FIG. 3. (a) Quark-gluonic comb produced by breaking a string by quarks flowing out in the process eþe� ! �
 ! q �q ! mesons.
(b) Convolution of the quark-gluonic combs. (c) Example of diagrams describing interaction forces in the q �q systems.
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different fits. In Table III we list the masses of bare
states, mixing angles and other parameters used in the
minimization procedure.

A. The K-matrix fit

In the analysis of the present data set we fitted data in

two steps. In the first step all couplings were optimized as

free parameters; in the second step we imposed relations

Table I for the poles with masses above 1 GeV. We did not

observe any deterioration of the data description due to

these restrictions but a rather notable improvement in the

convergency of the fits. For the lowest K-matrix pole we

do not impose any constraints: the global coupling and

mixing angle for this pole given in Table III are simply

calculated from the couplings into the �� and K �K
channels.

In the present solutions there are two candidates for a
glueball: it is either the third or the fourth K-matrix pole
(with a mass around 1200MeV). For the glueball candidate
we introduced in addition a glueball decay coupling (see
Table I). However, this coupling provided only a small
improvement and did not allow us to distinguish between
these two cases.
The fit is hardly sensitive to the ���� couplings for the

two lowestK-matrix poles; in the final solution we fix them
to be zero.
To get a combined description of all reactions, we intro-

duced nonresonant terms for the transition from the ��
channel to other final states. We did not find a notable
sensitivity to nonresonant transitions between other
channels. In the paper [31] a more sophisticated nonresonant
behavior was suggested. The exchange of the �ð770Þ
and f2ð1270Þ states was introduced to fix the isotensor

TABLE II. List of the reactions and 
2 values for the K-matrix and D-matrix solutions: Solutions 3, 5 with taken into account
confinement interaction, solutions 1, 2, 4 without it.

Sol. 1

K-matrix 0

Sol. 2

D-matrix 0

Sol. 3

D-matrix �1=s2
Sol. 4

D-matrix 0

Sol. 5

D-matrix �1=s2 N of points

The Crystal Barrel data

From liquid H2:

�pp ! �0�0�0 1.32 1.37 1.39 1.44 1.45 7110

�pp ! �0�� 1.33 1.34 1.34 1.33 1.33 3595

�pp ! �0�0� 1.24 1.33 1.33 1.55 1.55 3475

From gaseous H2:

�pp ! �0�0�0 1.39 1.44 1.45 1.48 1.49 4891

�pp ! �0�� 1.31 1.34 1.30 1.43 1.31 1182

�pp ! �0�0� 1.20 1.22 1.22 1.31 1.32 3631

From liquid H2:

�pp ! �þ�0�� 1.54 1.46 1.45 1.46 1.47 1334

From liquid D2:

�pn ! �0�0�� 1.51 1.47 1.47 1.46 1.46 825

�pn ! �����þ 1.61 1.54 1.55 1.50 1.51 823

From liquid H2:

�pp ! KSKS�
0 1.09 1.10 1.10 1.10 1.10 394

�pn ! KþK��0 0.98 1.00 1.00 1.03 1.02 521

�pn ! KLK
��� 0.78 0.79 0.79 0.79 0.79 737

From liquid D2:

�pp ! KSKS�
� 1.66 1.64 1.64 1.64 1.63 396

�pn ! KSK
��0 1.33 1.31 1.31 1.31 1.31 378

The GAMS data

�� ! ð�0�0ÞS-wave 1.23 1.13 1.15 1.32 1.30 68

�� ! ð��ÞS-wave 1.02 1.05 1.03 1.58 1.43 15

�� ! ð��0ÞS-wave 0.45 0.30 0.35 0.35 0.34 9

The BNL data

�� ! ðK �KÞS-wave 1.32 1.13 1.14 0.97 1.07 35

The CERN-Munich data: Y0
0 . . .Y

1
6

���þ ! ���þ 1.82 1.86 1.86 2.05 2.03 705

The Ke4 decay data

�0
0ð���þ ! ���þÞ 1.51 1.02 0.84 0.80 0.83 17
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component of the�� scattering. In the isoscalar sector these
exchanges were combined with a K-matrix part by the
Dalitz-Tuan approach. However, for the scalar sector such
a parametrization produced a very similar result as a
K-matrix approachwith a constant nonresonant contribution.

The Ke4 data can be described with a very small
re-optimization of the K-matrix parameters found in
[12–14]. We did not find any change in the pole structure
of the scalar-isoscalar amplitude above 900 MeV.
However, one of the pole singularities situated around

s ¼ 0 moved to higher masses. Its position, as well as
the positions of other poles, is given below in Table IV.

B. The D-matrix fits

D-matrix parameters can be expressed in the same
terms (bare masses and couplings) as parameters of a
K-matrix fit. The subtraction point for calculation of the

real part of the loop diagrams, i.e. Bj
��ðM2

s Þ in Eq. (21),

was taken at the corresponding two-particle threshold; the

TABLE III. The fbare0 resonances: masses Mn (in MeV units), decay coupling constants gn (in GeV units, g4� � g5), mixing angles
(in degrees) defined as in Table I, background terms fn and confinement singularity term G=s2 (factor G in GeV units). In all fits the
position of the Adler zero was fixed at sA ¼ 0:5m2

�.

Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5

M1 671 685 697 611 615

M2 1205 1135 1135 1078 1096

M3 1560 1561 1558 1575 1572

M4 1210 1290 1284 1334 1330

M5 1816 1850 1848 1858 1857

g1 0.860 0.926 0.892 1.090 1.083

g2 0.956 0.950 0.935 0.099 1.066

g3 0.373 0.290 0.284 0.302 0.302

g4 0.447 0.307 0.308 0.264 0.275

g5 0.458 0.369 0.370 0.317 0.330

gð1Þ�� �0:382 �0:213 �0:232 �0:176 �0:193

gð1Þ
��0 �0:322 �0:500 �0:500 �0:500 �0:500

gð1Þ4�, g
ð2Þ
4� 0 0 0 0 0

gð3Þ4� 0.638 0.534 0.530 0.511 0.514

gð4Þ4� 0.997 0.790 0.794 0.691 0.702

gð5Þ4� �0:901 �0:862 �0:856 �0:797 �0:814

�1 �74 �83 �82 �81 �82
�2 6 �2:6 �1:9 �1:1 �2:4
�3 9 5 5 5 5

�4 38 31 32 25 25

�5 �64 �71 �68 �77 �77

f��!�� 0.337 0.408 0.358 0.763 0.687

f��!K �K 0.212 0.036 0.044 0.103 0.065

f��!4� �0:199 �0:101 �0:092 �0:051 �0:062
f��!�� 0.389 0.438 0.413 0.538 0.512

f��!��0 0.394 0.518 0.485 0.610 0.597

G=s2 0 0 �0:00077=s2 0 �0:00071=s2

TABLE IV. The positions of the amplitude poles.

Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5

� meson 420-i 395 407-i 281 365-i 283 414-i 186 406-i 192

f0ð980Þ 1014-i 31 1015-i 36 1012-i 31 1005-i 20 1005-i 23

f0ð1300Þ 1302-i 180 1307-i 137 1303-i 140 1332-i 140 1326-i 137

f0ð1500Þ 1487-i 58 1487-i 60 1483-i 55 1487-i 55 1486-i 55

f0ð1750Þ 1738-i 152 1781-i 140 1787-i 143 1795-i 109 1794-i 114
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parameters bj were optimized in the fit. In such an ap-
proach our data base can be described with a very similar
quality as in the framework of the K-matrix approach, see
Table II.

As expected, the D-matrix fit provides a better descrip-

tion of the Ke4 data due to the more correct behavior of the

amplitude near left-hand side singularities. The behavior of

the phase shift �0
0 and its description in the mass region

from the threshold to 1 GeV is shown in Fig. 4.
Below we present four D-matrix solutions: the bare

masses and their couplings are given in Table III
(Solutions 2,3,4,5). In Solutions 2,3 the K ! �� point
near 500 MeV [32] was taken with the error given by the
experimental group. However, these solutions do not re-
produce this point satisfactory. To force the �� phase shift
to describe this point, we decreased the error by a factor 10
and repeated the D-matrix fit of the data. In such an
approach we were able to describe the data at 500 MeV
rather well (Solutions 4,5); however, we obtained a sys-
tematically worse description of the proton-antiproton an-
nihilation into the �0�0�0 and ���0 channels (see
Table II). The data point was criticized in a number
of papers and the reanalysis [33] produced a result which
is lower by about 5 degrees. However, the KLOE
Collaboration did not publish any revision of this point
and we would like to investigate its influence on the
position of the lowest pole and scattering length parameter.
The solution with the 1=s2 term included (Solutions 3,5)
produced a better total 
2 and a slightly better description
of the Ke4 data. The term 1=s2 can produce two additional
poles in the mass region below the �� threshold. The pole
in the mass region around 400 MeV has moved to lower
masses by about 80 MeV compared to solutions without
the 1=s2 term, see Table IV, while the poles situated above
900 MeV practically do not change their positions.

Examples of the description of experimental Dalitz plots
with our D-matrix solution (Solution 2) for proton-
antiproton annihilation into three meson states are shown
in Figs. 3 and 6. Mass and angular distributions for selected
Dalitz plots are given in Figs. 7–9. The description of the
CERN-Munich data [8] is shown in Fig. 10 and the

description of the S-wave intensities for �� transition
into different final states in Fig. 11.
It is seen from Table III that the masses of bare states are

hardly changed from the K-matrix solution and most of the
couplings are shifted by less than 20%. The positions of the
amplitude poles above 900 MeV also changed very little,
see Table IV.
The relative position of the poles and the threshold

singularity cuts is demonstrated in Fig. 1.
We see that a fit of the Ke4 data with the use of the

D-matrix approach unambiguously reveals the pole in the
mass region around 300–400 MeV, the low-mass �
meson.
To trace the origin of the � pole, we multiplied all

couplings by the factor � and the nonresonant terms by
�2, and scanned this parameter from 1 (the physical ampli-
tude) to 0 (amplitude with poles corresponding to the bare
masses). Such an investigation shows that the � pole is
originated from the Adler regularization term. In the best fit
the Adler regularization point is optimized rather close to
the physical region sA0 ’ 0:15 GeV2. To check the stability
of this point we have performed the fit with this point fixed
at sA0 ¼ 0:5 sA0 ¼ 1 and sA0 ¼ 1:5 GeV2. We observe a
small deterioration of the total
2 due to aworse description
of the�� ! K �K and�� ! �� amplitudes. However, the
fit with sA0 ¼ 0:5 GeV2 gives the best description for the
proton-antiproton annihilation into the �0�0�0 channel
that is one of the most sensitive reactions to the description
of the low��mass region. The positions of the poles in all
three solutions coincide remarkably well and hence, we
conclude that the position of the � meson depends
very little on the exact position of the Adler regularization
term.

C. Calculation of the scattering length

In our expression for the �� scattering amplitude which
takes into account the �0�0 and �þ�� phase volumes the
�� phase does not go to zero on the threshold of two
charged pions, see Appendix C. We calculate the scattering
length of the �þ�� system at the threshold of two charged
pions using the following expression:
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FIG. 4. Description of the Ke4 data with the D-matrix solutions 2, 3 (a, b) (with standard errors for the point �0
0ð500 MeVÞ extracted

from the K ! �� data [32]) and solutions 4, 5 (c, d) (with the decreased error for this point).
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ffiffiffi
s

p
m�þþm��

Re½sin�ð0Þ
0 ei�

ð0Þ
0 �k!0’cð�Þ

0 það�Þ
0 kþbð�Þ

0 k3;

a0¼3

2
að�Þ
0 ; k¼1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�ðm�þþm��Þ2

q
; m�þ ¼m�� : (25)

The scattering length values extracted from the D-matrix
solutions are equal to

Solution 2 Solution 3 Solution 4 Solution 5

0:253m�1
� 0:209m�1

� 0:204m�1
� 0:177m�1

�
: (26)

It is seen that the inclusion of the 1=s2 term decreases the
scattering length by�0:05 m�1

� and a similar effect comes
from a precise description of the K ! �� experimental
point at 500 MeV.
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FIG. 5 (color online). Description of the �pp annihilation in liquid hydrogen into the 3�0 (a,b), 2�0 (c,d) and �02� (e,f) final states.
Left-side panels show the experimental Dalitz plots and right-side panels the results of our fit.
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The amplitude phase was extracted by the Ke4 collabo-
ration under the assumption that it is equal to zero at the
threshold of two charged pions. Then there is a question
about the uncertainty which appears when these data are
fitted with an expression which takes into account exactly
the thresholds of neutral and charged pions. To check this
we put in Solution 2 all pion masses equal to the mass of

a charged pion. As expected, notable deteriorations were
observed only in the proton-antiproton annihilation into
three neutral pions and at low-energy points for the Ke4

data. With a very small tuning of the parameters we
obtained very similar 
2 values for the description of
the Ke4 data. The scattering length which in this case is

calculated as a0 ¼ 3
2a

ð�Þ
0 appeared to be 0.248 m�1

� . Then,
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FIG. 6 (color online). Description of the �pp annihilation in liquid hydrogen into the KSKS�
0 (a,b), KþK��0 (c,d) and in liquid

deuterium into KSKS�
0 (e,f) final states. Left-side panels show the experimental Dalitz plots and right-side panels the results of our fit.
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with this parameters fixed, we introduced back the dif-
ference between neutral and charged pion thresholds but
not refitted the data. The scattering length obtained by
Eq. (25) was found to be 0.260 m�1

� : a value which is
very close to that obtained in Solution 2. Thus, we con-
clude that the investigated uncertainty is less than 0.010
m�1

� and is smaller than the systematic error which comes
from different parameterizations of the amplitude.
It is instructive to compare the results of Eq. (26) with

those obtained without taking into account different values
of �0�0 and �þ�� threshold singularities: a0 ¼ ð0:233�
0:013Þm�1

� [3], a0 ¼ ð0:220� 0:005Þm�1
� [34].

V. CONCLUSION

The analysis of the large data sets performed in the
framework of the K-matrix andD-matrix approaches dem-
onstrates a very good stability for the amplitude parameters
and pole positions above 900 MeV. It is seen that in this
region the result obtained in the framework of theK-matrix
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approach is affected only slightly if dispersion corrections
are taken explicitly into account.

The description of the Ke4 data demands the presence of
the pole slightly above the �� threshold already in the
K-matrix fit. As expected, the effect of the dispersion
corrections is the biggest in this mass region. The pole
position in D-matrix approach was found to be at 385�
25� i280� 15 MeV and the scattering length 0:230�
0:025m�1

� in the fits with a systematically lower descrip-
tion of the K ! �� point. If the fit is enforced to fit this
point than the imaginary part of the sigma pole position
moves down to 410� 15� i190� 15 and the scattering
length to 190� 0:020m�1

� .
The confinement singularity, 1

s2
, slightly improves the

overall description but is not crucial for a good description
of the Ke4 data and for the existence of the � meson
pole singularity. The presence of such a term influences
the scattering length, shifting it to lower values (by
�0:05m�1

� ).
The imaginary part of the � pole position in the solu-

tions which fit precisely the K ! �� data at 500 MeV is
lower by about 100 MeV compare to the solutions where
the fit is not forced to describe this point. The scattering

length in such solutions is also systematically shifted to
lower values by �0:05m�1

� .
Within the description of the 00þþ wave in the channels

��, ����, K �K, ��0 we obtain the following complex
masses of the f0 resonances:

f0ð980Þ MI ¼ 1011� 5� i31� 4 MeV

MII ¼ 1035� 50� i460� 50 MeV

f0ð1300Þ M ¼ 1285� 30� i160� 20 MeV

f0ð1500Þ M ¼ 1488� 4� i53� 5 MeV

f0ð1790Þ M ¼ 1775� 25� i140� 15 MeV: (27)

The masses of the D-matrix approach, Eq. (27), coincide
well with those obtained in the K-matrix approximation
[15]. The f0ð980Þ is determined by two poles, on the
second (under the �� threshold) and third (under the ��
and K �K thresholds) sheets—the same splitting of poles we
have in the K-matrix solutions [35].
For the low-mass region the solution with 1=s2 singu-

larity gives several poles on the second sheet:

f0ð�IÞ M ¼ 365� 15� i283� 12 MeV

f0ð�IIÞ M ¼ 80� 10� i187� 15 MeV

f0ð�IIIÞ M ¼ �94� 12� i93� 10 MeV: (28)

If the fit is forced to describe the K ! �� experimental
point at 500 MeV, we have
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f0ð�IÞ M ¼ 406� 15� i192� 15 MeV

f0ð�IIÞ M ¼ 74� 10� i190� 50 MeV

f0ð�IIIÞ M ¼ �96� 22� i100� 25 MeV: (29)

We also test the changes in the description of data with an
elimination of the 1=s2 singularity. In this case the fit to the
data gives the masses of the f0 resonances at

ffiffiffi
s

p
>

900 MeV practically the same as in ref. (27)—the changes
are in the low-mass pole structure. Without the 1=s2 sin-
gularity, the position of the � pole in the fit, neglecting the
500 MeV point, gives

f0ð�IÞ M ¼ 407� 12� i289� 10 MeV (30)

and with the fit forced to describe the 500 MeV point:

f0ð�IÞ M ¼ 412� 12� i186� 15 MeV (31)

So, the � meson arises as a pole near the �� threshold
in both versions, with and without including the confine-

ment singularity (1=s2) into the �� scattering block.
Though the confinement singularity leads to the appear-
ance of several poles under the �� cut, it is hardly
possible to distinguish these two versions on the basis
of the data.
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APPENDIX A: EXAMPLES OF SETS OF
DIAGRAMS RESULTING IN 1=t2 SINGULARITIES

Here we consider, as an example, the confinement set of
the loop diagrams, Fig. 3(c), and present an illustrative
calculation which results in singularities of the 1=t2 type in
scalar and vector channels. We use the following interac-
tion blocks, see Fig. 12(a):

X
n

�mesonðnÞ�

mesonðnÞ ! GðLÞ

S ððk1 � k2Þ2Þc ðk1Þ �c ðk2Þ �GðRÞ
S ððk01 � k02Þ2Þc ðk01Þ �c ðk02Þ

þGðLÞ
V ððk1 � k2Þ2Þc ðk1Þ�	

�c ðk2Þ �GðRÞ
V ððk01 � k02Þ2Þc ðk01Þ�	

�c ðk02Þ: (A1)

Then the confinement interaction turns into a set of the loop diagrams, Figs. 12(b) and 12(c). The scalar and vector
exchanges, correspondingly, read:

VSðtÞ¼ BSðtÞ
1�BSðtÞ ; VV;	�ðtÞ¼��?

	�

BVðtÞ
1�BVðtÞ : (A2)

For a scalar loop diagram one has

BSðtÞ¼
Z 1

4m2

dt0

�
d�2ðP0;k01;�k02Þ

NSðt0ÞSp½ðk̂02�mÞðk̂01þmÞ�
t0�t�i0

;

d�2ðP0;k01;�k02Þ¼
1

2ð2�Þ2d
4k01d4k02�ðk021 �m2Þ�ðk022 �m2Þ! 1

16�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4m2

t0

s
; Sp½ðk̂02�mÞðk̂01þmÞ�!2ðt0�4m2Þ: (A3)

Here we replace GðRÞ
S GðLÞ

S ! NS. An analogous loop for vector exchange reads:

� �?
	�BVðtÞ ¼

Z 1

4m2

dt0

�
d�2ðP0; k01;�k02Þ

NVðt0ÞSp½�?
	 ðk̂02 �mÞ�?

� ðk̂01 þmÞ�
t0 � t� i0

¼ ��?
	�

Z 1

4m2

dt0

�

G2
Vðt0Þð2m2 þ t0Þ
t0 � t� i0

1

16�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

t0

s
(A4)

Confinement singularities appear if BSðtÞ and BVðtÞ behave
near t ¼ 0 as follows:

BSðtÞ¼1� t2

�S

þOðt3Þ; BVðtÞ¼1� t2

�V

þOðt3Þ; (A5)

which means the requirements

d

dt
BSðtÞjt¼0 ¼ 0;

d

dt
BVðtÞjt¼0 ¼ 0: (A6)

APPENDIX B: SIMPLIFIED CONSIDERATION OF
THE 00þþ WAVE IN THE LOW-ENERGY REGION

The partial pion-pion scattering amplitude being a func-
tion of the invariant energy squared, s ¼ M2, can be rep-
resented as a ratio NðsÞ=DðsÞ [36], where NðsÞ has a
left-hand cut due to the ‘‘forces’’ (the interactions caused
by the t- and u-channel exchanges), and the function DðsÞ
is determined by the rescattering in the s channel. The
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standard presentation of the N=D method may be found,
for example, in [37].

The �� scattering block related to the 1=s2 singularity
reads:

GðsÞ 1
s2

GðsÞ: (B1)

The s-channel rescattering gives a set of divergent terms
which convolutes into the following unitary amplitude:

AðsÞ ¼ GðsÞ 1
s2
GðsÞ þGðsÞ 1

s2
�ðsÞ 1

s2
GðsÞ þ . . .

¼ G2ðsÞ
s2 ��ðsÞ ¼ G2ðsÞ

�
s2 �

Z 1

4m2
�

ds0

�

G2ðs0Þ�ðs0Þ
s0 � s

��1
:

(B2)

Here �ðsÞ is the invariant �� phase space. In the physical
region, at s > 4m2

� and s on the upper edge of the threshold
cut, we have:

�ðsÞ ¼
Z 1

4m2
�

ds0

�

G2ðs0Þ�ðs0Þ
s0 � s� i0

¼ P
Z 1

4m2
�

ds0

�

G2ðs0Þ�ðs0Þ
s0 � s

þ iG2ðsÞ�ðsÞ; (B3)

with the following relation to the IJPC ¼ 00þþ phase
shift: �ðsÞAðsÞ ¼ expði�0

0ðsÞÞ sin�0
0ðsÞ. The product of the

vertices G2ðsÞ is actually an N function, and we rewrite
G2ðsÞ ! NðsÞ; this allows to present the amplitude (B2) as

AðsÞ¼NðsÞ
DðsÞ ; DðsÞ¼ s2�

Z 1

4m2
�

ds0

�

�ðs0ÞNðs0Þ
s0 �s� i0

: (B4)

The N function, being determined by the left-hand singu-
larities caused by forces due to t-channel and u-channel
meson exchanges, is written as an integral along the left cut
as follows:

NðsÞ ¼
Z sL

�1
ds0

�

Lðs0Þ
s0 � s

; (B5)

where the value sL marks the beginning of the left-hand
cut. For example, for the one-meson exchange diagram
g2=ðm2 � tÞ the left-hand cut starts at sL ¼ 4m2

� �m2,
and the N function in this point has a logarithmic singu-
larity; for the two-pion exchange, sL ¼ 0.
We replace the left-hand integral for NðsÞ, Eq. (B5), by

the following sum:

NðsÞ ¼
Z sL

�1
ds0

�

Lðs0Þ
s0 � s

! 16�
ffiffiffi
s

p X
n

Ln

sn � s
; (B6)

where Ln and sn are ‘‘force parameters,’’ �1< sn < sL.
The pole approximation ansatz (B6) allows us calculate

the scattering amplitude in the physical region:

expði�0
0ðsÞÞsin�0

0ðsÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�4m2

�

p P
nLnðs�snÞ�1

s2�P
nð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

��sn
p þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s�4m2

�

p ÞLnðs�snÞ�1
: (B7)

Such amplitude has only first order poles in the complex
plane.

APPENDIX C: THE�� SCATTERINGAMPLITUDE
NEAR TWO-PION THRESHOLDS

Here we consider the �� scattering amplitude near two-
pion thresholds taking into account the mass difference of
charged and neutral pion systems, �þ�� and �0�0.
The following �� amplitudes describe scattering reac-

tions near the thresholds:

�þ�� ! �þ��: Aþþ�� ¼ aþþ�� þ ik00½ðaþ0
�0Þ2 � aþþ��a0000�

1� ikþ�aþþ�� � ik00a
00
00 þ k00k

þ�½�a0000a
þþ�� þ ða0þ�0Þ2�

;

�0�0 ! �þ��: A0þ
0� ¼ a0þ0�

1� ikþ�aþþ�� � ik00a
00
00 þ k00k

þ�½�a0000a
þþ�� þ ða0þ0�Þ2�

;

�0�0 ! �0�0: A00
00 ¼

a0000 þ ikþ�½ðaþ0
�0Þ2 � aþþ��a0000�

1� ikþ�aþþ�� � ik00a
00
00 þ k00k

þ�½�a0000a
þþ�� þ ða0þ�0Þ2�

;

with kþ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

4
�m2

�

r
� k; k00 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

4
�m2

�0

r
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �2

p
: (C1)

ψ
−

(k2) ψ(k1)

ψ(k1
′) ψ

−
(k2

′)

a)

S

S

b)

V

V

c)

FIG. 12. Interaction block (a) and sets of loop diagrams for S
and V exchanges.
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Here �2 ¼ m2
� �m2

�0 ’ 0:07m2
�þ . The factor 1=2 in k00 arises due to the identity of pions in the �0�0 state.

We impose on the scattering length values the standard isotopic relations:

aþþ�� ¼ 2
3a0ðsÞ þ 1

3a2ðsÞ; aþ0
�0 ¼ �2

3a0ðsÞ þ 2
3a2ðsÞ; a0000 ¼ 2aþþ�� þ aþ0

�0 ¼ 2
3a0ðsÞ þ 4

3a2ðsÞ: (C2)

Then at large k2, when k2 � �2, the unitary amplitudes of
Eq. (C1) obey the isotopic relations:

Aþþ�� ¼
2
3a0ðsÞ

1� ika0ðsÞ þ
1
3a2ðsÞ

1� ika2ðsÞ ;

Aþ0
�0 ¼

� 2
3a0ðsÞ

1� ika0ðsÞ þ
2
3a2ðsÞ

1� ika2ðsÞ ;

A00
00 ¼

2
3a0ðsÞ

1� ika0ðsÞ þ
4
3a2ðsÞ

1� ika2ðsÞ :

(C3)

The (I ¼ 0) amplitude and the corresponding S-matrix
read:

a0ðsÞ
1� ika0ðsÞ ¼ 2Aþþ�� � 1

2
A00
00 ¼ Aþþ�� � 1

2
Aþ0
�0;

exp½2i�0
0ðsÞ� ¼

Aþþ�� � 1
2A

þ0
�0

ðAþþ�� � 1
2A

þ0
�0Þ


¼ Aþþ�� � 1
2A

þ0
�0

ð2Aþþ�� � 1
2A

00
00Þ


¼ 2Aþþ�� � 1
2A

00
00

ð2Aþþ�� � 1
2A

00
00Þ


: (C4)

In the Kþ ! eþ�ð�þ��Þ decay the S-wave pions are
I ¼ 0 states, and the amplitude can be written as follows:

AðKþ ! eþ�ð�þ��ÞI¼0;S-waveÞ
¼�½1� ik00A

0þ
0�þ ikþ�Aþþ���

¼�
1� ik00a

00
00� ik00a

0þ
0�

1� ikþ�aþþ��� ik00a
00
00þk00k

þ�½�a0000a
þþ��þða0þ0�Þ2�

:

(C5)

Here the first term, �, is a direct production amplitude
while the second and third terms take into account pion
rescatterings.
At large pion relative momentum, when k2 � �2, we

have:

AðKþ ! eþ�ð�þ��ÞI¼0;S-waveÞk2��2 ¼ �
1

1� ika0ðsÞ :
(C6)

Recall that the factor ð1� ika0ðsÞÞ�1 is due to rescatter-
ings of pions in the I ¼ 0 state.
A very similar investigation with taken into account of

the isospin violation in a more sophisticated way can be
found in [38].
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