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This article provides an in-depth look at hadron high-energy scattering by using gravity dual

descriptions of strongly coupled gauge theories. Just like deeply inelastic scattering (DIS) and deeply

virtual Compton scattering (DVCS) serve as clean experimental probes into nonperturbative internal

structure of hadrons, elastic scattering amplitude of a hadron and a (virtual) photon in gravity dual can be

exploited as a theoretical probe. Since the scattering amplitude at sufficiently high energy (small Bjorken

x) is dominated by parton contributions (¼ Pomeron contributions) even in strong coupling regime,

there is a chance to learn a lesson for generalized parton distribution (GPD) by using gravity dual models.

We begin with refining derivation of the Brower–Polchinski–Strassler–Tan (BPST) Pomeron kernel in

gravity dual, paying particular attention to the role played by the complex spin variable j. The BPST

Pomeron on warped spacetime consists of a Kaluza–Klein tower of 4D Pomerons with nonlinear

trajectories, and we clarify the relation between Pomeron couplings and the Pomeron form factor. We

emphasize that the saddle-point value j� of the scattering amplitude in the complex j-plane representation

is a very important concept in understanding qualitative behavior of the scattering amplitude. The total

Pomeron contribution to the scattering is decomposed into the saddle-point contribution and at most a

finite number of pole contributions, and when the pole contributions are absent (which we call saddle-

point phase), kinematical variable ðq; x; tÞ-dependence of lnð1=qÞ evolution and lnð1=xÞ evolution

parameters �eff and �eff in DIS and t-slope parameter B of DVCS in HERA experiment are all reproduced

qualitatively in gravity dual. All of these observations shed a new light on modeling of GPD.

Straightforward application of those results to other hadron high-energy scattering is also discussed.
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I. INTRODUCTION

Despite plenty of data of hadron scattering, from which
various qualitative features have been extracted, it remains
difficult to derive and understand those features from the
first principle, QCD, formulated as a perturbation theory.
Gauge/gravity duality, however, can be exploited to study
nonperturbative aspects of ‘‘hadron’’ in strongly coupled
gauge theories. Many papers along this line focus on static
properties of hadrons, such as mass spectra and three point
couplings, but nothing prevents us from using gravitational
dual descriptions to study hadron scattering of strongly
coupled gauge theories at arbitrary energy scale [1–3].
Hadron–hadron scattering [1], total cross sections of deep
inelastic scattering (DIS) [2], form factors of various con-
served currents [4–6], and saturation/unitarity [7–17] are
examples of nonperturbative observables that can be
studied in gravitational dual, but the potential power of
gauge/gravity duality in hadron scattering is far from being
fully exploited so far.

Although perturbative QCD can describe the q2 evolu-
tion of parton distribution functions (PDF) and generalized
parton distributions (GPD), initial data of the evolution
cannot be determined by perturbation theory. Such non-
perturbative initial data for PDF can be obtained from DIS
experiments (and have also been studied in gravitational
dual models [2]; see [18] for a list of articles on DIS in

gravitational dual), but GPD cannot be determined even
from experimental data without some theoretical modeling
of nonperturbative physics. GPD describes parton distri-
bution in the transverse directions [19–22] and two parton
correlation in a hadron in general [23–28], and hence it is
an interesting object on its own. In this article, we take this
nonskewed GPD and more generally deeply virtual
Compton scattering (DVCS) [23–28] amplitude at small
x as examples of hadron scattering, and see that gravita-
tional dual descriptions can determine how those nonper-
turbative scattering amplitudes depend on kinematical
variables such as center-of-mass energy, momentum trans-
fer, impact parameter, and photon virtuality. Gauge/gravity
dual also tells us how to think about various theoretical
ideas that various models of GPD have been based on.
High-energy behavior of the elastic scattering amplitude

Aðs; tÞ of two hadrons is characterized by poles and their
residues of its partial wave amplitude Aðj; tÞ on the com-
plex angular momentum j-plane (e.g., [29–31]); the poles
and residues depend on momentum transfer t. The poles in
the j-plane have often been assumed to depend linearly in
t, which is supported by the spectrum of mesons and
hadron scattering cross sections at least for the finite range
of momentum transfer t. Given the fact that the earliest
version of string theory was born out of efforts to describe
hadron scattering, it is not surprising that some successful
aspects of classical Regge theory are preserved in gravity
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dual, string theory on a warped background. Notable as-
pects of string theory on a warped spacetime, however,
include i) a single ‘‘Regge trajectory’’ of string theory on
10 dimensions gives rise to a Kaluza-Klein tower of infinite
‘‘Regge trajectories’’ on 4 dimensions, and ii) those tra-
jectories do not remain linear for arbitrary negative t [3].
The nonlinear trajectories immediately result in a non-
Gaussian profile of GPD in the transverse directions (see
Sec. IVB of this article as well as [18]), although the
Gaussian profile of GPD is often assumed in phenomeno-
logical analysis. We will also describe how the residues of
the Regge poles are determined by holographic setup, and
also explain how the Kaluza-Klein tower of Regge trajec-
tories organizes itself to become a single contribution with
a form factor in momentum-transfer t < 0.

An extra energy scale q—photon virtuality—is available
in photon-hadron scattering, in addition to the center-
of-mass energy W and confinement scale �. This extra
parameter makes theoretical understanding of the nonper-
turbative amplitude interesting. The scattering amplitude is
dominated by a contribution from a saddle point in the
complex j-plane, not from a pole, for sufficiently large
q� �. The saddle-point value j� depends on kinematical
variables such as W, q, and t. We find, by following this
dependence of j�, instead of naively taking small x limit or
large q2 limit, that observables characterizing scattering
amplitude such as lnð1=qÞ-evolution parameter �eff ,
lnð1=xÞ-evolution parameter �eff and t-slope parameter B
show qualitatively the same behavior in the strong cou-
pling regime (gravity dual) as expected in perturbative
QCD or observed in the HERA DVCS experiment. As
the saddle-point value j� and the leading poles are both
given by the kinematical variables of the scattering, cross-
over from the saddle-point phase to the leading pole phase
may also be expected, when the photon virtuality decreases
to a smaller value.1

This article is organized as follows. Section II explains
the setup of gravitational dual for our calculation of
photon-hadron scattering amplitude, while summarizing
conventions and providing brief mini-reviews. Section III
explains how the two-body-to-two-body scattering ampli-
tudes are given in the gravitational dual setup, and presents
an explicit form of Pomeron kernel; this section is largely
a repetition of the contents of [3], but we believe that
some small improvements are also made and subtleties
clarified in derivation and final expression of the ampli-
tudes and kernel. The photon-hadron scattering amplitude
is discussed for zero-skewedness in Secs. IVA, IVB, and
IVC; Sec. IVA explains momentum-transfer t-dependence
of the imaginary part of the scattering amplitude, while its
impact-parameter b-dependence (i.e., transverse profile) is

described in Sec. IVB. Section IVC is devoted to the real
part of the amplitude. The interpretation of the scattering
amplitude on a warped spacetime in Froissart-Gribov-
Regge language on four dimensions is given in detail in
Sec. IVA3, while Sec. IVA4 is devoted to the t-slope
parameter of the scattering amplitude. We will see in
Sec. IVD that GPD can be identified within the scattering
amplitude even in the strong coupling regime, and discuss
the form factor of GPD. In Sec. V, we address a question
whether there is anything we can learn about GPD of the
real world from the GPD calculation in the strong coupling
regime. Section VI briefly describes straightforward appli-
cation of various results and observations in this article to
other high-energy hadron scattering processes.

II. MODEL

Such gravitational backgrounds as [32–35] are an ideal
framework for holographic calculation of certain types of
hadron interactions, as they have built-in confinement
mechanism at IR, and allow renormalization group inter-
pretation in terms of holographic radius. Those models
have background geometry that are approximately
AdS5 �W with some compact five-dimensional manifold
W, apart from the region near the IR boundary. The hard-
wall model [2] replaces these geometries with an
AdS5 �W background2

ds2 ¼ GMNdx
MdxN ¼ gmndx

mdxn þ R2ðgWÞabd�ad�b;
(1)

gmndx
mdxn ¼ e2AðzÞð���dx

�dx� þ dz2Þ;

e2AðzÞ ¼ R2

z2
:

(2)

An IR boundary is introduced at z ¼ ��1 and boundary
conditions on various fields are set by hand instead. The
dilaton vev is simply assumed to be constant, e� ¼ gs.
Such a background is not obtained as a stable solution to
the Type IIB string theory, but Type IIB string calculations
on such a background (while ignoring NS-NS tadpoles) are
expected to maintain qualitative aspects of certain hadronic
processes in the original holographic models. We use the
hard-wall model in the rest of this article, as it makes it
possible to compute various physical quantities and study
dynamics without consuming too much time.
Deeply virtual Compton scattering (DVCS) and

double deeply virtual Compton scattering (DDVCS) are
elastic scattering of a hadron h and a (virtual) photon,

��ðq1Þ þ hðp1Þ ! �ð�Þðq2Þ þ hðp2Þ, Fig. 1, with the kine-
matics

1A similar crossover behavior has already been observed in the
real part to imaginary part ratio of the hadron-virtual photon
scattering amplitude in gravity dual [11]. We will elaborate more
on this crossover behavior in Sec. IVC.

2In our convention, ��� ¼ diagð�1; 1; 1; 1Þ. We use M;N; . . .
in labeling coordinates of 10-dimensional spacetime,m; n; . . . for
the AdS5 part, and �; �; �;	; 
 . . . for the coordinates of the
3+1-dimensional Minkowski spacetime. �a; �b; � � � are dimen-
sionless coordinates ofW, and ðgWÞabd�ad�b is the metric ofW.
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q21��2; q22 ¼ 0ðDVCSÞ; q21; q
2
2��2ðDDVCSÞ:

(3)

As the target hadron, we use one of normalizable modes in
a scalar degree of freedom �ðx; zÞ on AdS5 in the holo-
graphic setup. In particular, we use a scalar field �ðx; zÞ
originating from 10-dimensional SUGRA fields upon the
Kaluza-Klein reduction on W, just like in [36]. In case of
reduction of dilaton, for example,

�ðx; z; �Þ ¼ �ðx; zÞYð�Þ (4)

with a nontrivial harmonic function Yð�Þ on W, the target
hadron h corresponds to a glueball.3

The holographic wave function of the target hadron h is
obtained by solving equation of motion derived from an
effective action of the scalar field �ðx; zÞ on AdS5. The
bilinear part is

S� ¼
Z

d4xdz
ffiffiffiffiffiffiffi�gp �

� c�

2
2
5

ð@m�@m�� þM2���Þ
�
; (5)

where

1


2
5

¼ R5volðWÞ

2
IIB

�O
�
N2

c

R3

�
; (6)

and a dimensionless constant4 c� of order unity and a mass

parameter M2 depend on the choice of Yð�Þ. When a
Dirichlet condition5 is imposed on�ðx; zÞ at the IR bound-
ary z ¼ ��1, the wave function6 of a hadron hn (corre-
sponding to the n-th normalizable mode) with incoming
momentum p� is given by

�ðx; zÞ ! eip�x�nðzÞ;
ffiffiffiffiffiffi
c�
p

�nðzÞ ¼
�
2
2

5

R3

�
1=2 ffiffiffi

2
p

�z2
J��2ðj��2;n�zÞ
J0��2ðj��2;nÞ

;

(8)

where J�ðxÞ is the Bessel function, j�;n the n-th zero point

of J�ðxÞ, and� ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þM2R2
p

. Mass of the hadron hn
is given by

mn ¼ �j��2;n: (9)

We will not specify the excitation level n of the target
hadron hnðxÞ, as we will pay attention only to qualitative
aspects of DVCS/DDVCS amplitudes, not to numerical
details that depend on the excitation level n.
As the (virtual) photon probe of DVCS/DDVCS ampli-

tudes, we gauge an R-symmetry associated with W, and
use it as a probe, just like in [2]. The type IIB metric field
on 10 dimensions becomes a massless vector field on AdS5
through

�Gmaðx; z; �Þ ¼ Amðx; zÞvað�Þ; (10)

where vað�Þ@=@�a is a Killing vector of W, and va ¼
R2ðgðWÞÞabvb. The kinetic term of the effective action of

Amðx; zÞ on AdS5 is given by

SA ¼ R2cBcA
2
2

5

Z
d4xdz

ffiffiffiffiffiffiffi�gp �
� 1

4
FmnF

mn

�
; (11)

with dimensionless coefficients7 cA and cB. The non-
normalizable wave function of the vector field Amðx; zÞ
for the ‘‘photon probe’’ with incoming spacelike momen-
tum q� is given byffiffiffiffiffi
cA
p

F��ðx;zÞ! icJðq������q�Þ

�qz

�
K1ðqzÞþK0ðq=�Þ

I0ðq=�Þ I1ðqzÞ
�
eiq�x; (13)

ffiffiffiffiffi
cA
p

F�zðx; zÞ ! cJðq2�� � ðq � �Þq�Þ

� z

�
K0ðqzÞ � K0ðq=�Þ

I0ðq=�Þ I0ðqzÞ
�
eiq�x; (14)

where cJ is a dimensionless constant of order unity.

q ¼ ffiffiffiffiffi
q2

p
, and �ðqÞ� is the polarization within the four

FIG. 1. A cartoon picture showing elastic scattering of DVCS/
DDVCS, with momentum labels on the external lines.

3To study DVCS and DDVCS of baryons, D-branes should be
used in the holographic setup, instead of a Kaluza-Klein mode of
Type IIB SUGRA fields. We hope that there is still something to
learn in an easier study with a scalar glueball target.

4It is defined as follows:

c� ¼ 1R
W d5�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gWð�Þ

p Z
W
d5�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gWð�Þ

q
jYð�Þj2: (7)

5Qualitative aspects of our results will not change, when a
Neumann boundary condition is imposed, instead.

6The wave function �nðzÞ satisfies 1
2
2

5

�R
��1
0 dz

ffiffiffiffiffiffiffi�gp
e�2A�nðzÞ�mðzÞ ¼ �nm, so that the hadron field

hnðxÞ in �ðx; zÞ ¼ hnðxÞ�nðzÞ has a canonical kinetic term upon
dimensional reduction to 3þ 1 dimensions.

7Arbitrary chosen normalization of the Killing vectors vi ¼
va
i ð@=@�aÞ does not remain in cA, as we define it by

T�1R trRðtitjÞcA ¼ 1R
W d5�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gWð�Þ

p Z
W
d5�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gWð�Þ

q
va
i v

b
j gWð�Þ;

(12)

the generators ti’s are chosen so that they satisfy the same
commutation relation ½ti; tj� ¼ ifkijtk as the Killing vectors,

fvi; vjg ¼ fkijvk, and the Cartan metric remain the same. In the

case a non-Abelian subalgebra of the Killing vectors of W is
gauged, FmnF

mn in the kinetic term above should be understood
as T�1R trRðFmnF

mnÞ using the generators we explained above.
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dimensions. For sufficiently spacelike q2 much larger than
�2, the second terms I1ðqzÞ and I0ðqzÞ are negligible in
(13) and (14), but the full expression needs to be used for
the final state on-shell photon in the DVCS.

The elastic scattering amplitude Að��h! �ð�ÞhÞ of a

hadron h and a (virtual) photon probe �ð�Þ is calculated
in a holographic model by using the world-sheet nonlinear
sigma model with the background metric (1) and (2) and
inserting vertex operators whose Born-Oppenheimer ap-
proximation [37,38] are specified by the wave functions
(4), (8), (10), (13), and (14) [3]. The Compton tensor8 T��

is defined by removing polarization vectors,

Að��h! �ð�ÞhÞ ¼ �
�
1 T��ð��2Þ�; (16)

and the goal of this article is to determine five independent
structure functions9 V1;2;3;4;5 (e.g., [43]) in

T�� ¼ V1P½q1���P½q2��� þ V2ðp � P½q1�Þ�ðp � P½q2�Þ�
þ V3ðq2 � P½q1�Þ�ðq1 � P½q2�Þ�
þ V4ðp � P½q1�Þ�ðq1 � P½q2�Þ�
þ V5ðq2 � P½q1�Þ�ðp � P½q2�Þ�
þ A����	q1�q2	: (17)

The last term with the coefficient function A should vanish
for a scalar target hadron h in a parity-invariant theory.
Here, we introduced a convenient notation

P½q��� ¼
�
��� �

q�q�

q2

�
: (18)

Those structure functions, V1;2;3;4;5ðx; �; t; q2Þ, should be

expressed in terms of Lorentz invariant kinematical varia-
bles x, �, t, and q2, where

p� ¼ 1

2
ðp�

1 þ p
�
2 Þ;

q� ¼ 1

2
ðq�1 þ q�2 Þ;

�� ¼ p�
2 � p�

1 ¼ q�1 � q�2 ;

(19)

x ¼ �q2
2p � q ; � ¼ �� � q

2p � q ;

s ¼ W2 ¼ �ðpþ qÞ2; t ¼ ��2;
(20)

just as in standard literature in perturbative QCD. The
parameter t is assumed to be small

jtj � q2; W2 (21)

throughout this article. The two conditions on the kine-
matical variables (3) and (21) combined is sometimes
referred to as generalized Bjorken regime. In this article,
we focus on nonskewed DDVCS (� ¼ 0). A more general
case (� � 0) including DVCS (� ¼ x) requires further
analysis. Holographic calculation of the DDVCS ampli-
tude should reproduce the pure forward amplitude (whose
imaginary part is the deeply inelastic scattering (DIS)
amplitude studied in [2]) when the skewedness � and
momentum-transfer t are set to zero; ImV1ðx; �; t; q2Þ !
F1ðx; q2Þ and ðq2=ð2xÞÞ � ImV2ðx; �; t; q2Þ ! F2ðx; q2Þ.
For simplicity, we will study the sphere amplitude con-

tribution to the four closed string external states. Although
the sphere amplitude alone cannot discuss how the unitar-
ity is maintained in the scattering, sphere amplitude is
sufficient for large enough Nc (or for not too large
s ¼ W2, for sufficiently large q2, or for sufficiently large
impact-parameter b). It is also possible to discuss with the
sphere amplitude how the scattering approaches unitarity
limit [11]. The pion cloud [44–46] contribution to the
impact parameter-dependent profile [47,48], however,
can be studied only in a more realistic holographic model
containing pion [49–52] by examining 
 ¼ 2� 2g� h ¼
�1 amplitude.

III. POMERON CONTRIBUTION TO THE
STRUCTURE FUNCTIONS

Holographic QCD has already been used to study
DDVCS/DVCS amplitudes in the literature.
References [43,53] calculated DDVCS/DVCS amplitudes
(a setup that we explained in the previous section), with a
single supergravity field in the s-channel resonance (see
Fig. 2). This contribution to the amplitude corresponds to
the resonant contribution to the deeply inelastic scattering
in the t ¼ 0 limit, and is known to be dominant in the large
q2 limit for moderately large ’t Hooft coupling � and
moderate x [2]. We can certainly learn the structure func-
tions of DDCVS/DVCS processes in this way for the
kinematical range mentioned above, but this SUGRA reso-
nance contribution in the holographic calculation corre-
sponds to the higher twist double trace operators of weakly
coupled gauge theories, and does not tell us much about the
nonperturbative input of GPDs.
The operators that are approximately twist-2 in pertur-

bative gauge theories, on the other hand, have large cor-
rections to the anomalous dimensions in strongly coupled

8In the real-world QCD with QED probe, where only fermion
partons are charged under the probe,

ð2�Þ4�ðp1þq1�p2�q2ÞiT��

¼�
Z
d4x2

Z
d4x1e

�iq2�x2eiq1�x1 hhðp2ÞjTfJ�ðx2ÞJ�ðx1Þgjhðp1Þi:
(15)

9Leading order perturbative QCD result in terms of nonper-
turbative GPD is found in [39] in the case of a scalar target
hadron, and in [40] in the case of a fermion target hadron. See
also [41,42].
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regime (except the spin 2 operator). This ‘‘twist-2’’ con-
tribution still dominates in the DIS amplitude for given q2

at sufficiently small x [2], and are naturally expected to be
so in the off-forward DDVCS amplitude as well [53]. In
this article, we study this twist-2 contribution in the small x
region by using holographic calculation, to get some hint
on the nonperturbative input of the GPDs.

The twist-2 operators of gauge theories correspond to
string states in graviton trajectory in holographic descrip-
tions [3,54]. Contributions that involve such string states
in the graviton trajectory to hadron scattering processes
are called Pomeron amplitudes, and are known to be ex-
pressed as in (62) [2,3,11,12]. In this section, we begin
with refining the derivation of (62). Our derivation largely
follows the ones in Secs. 2 and 3 of [3] and combine
various improvements already made in [11,12], but we
believe that the following presentation also made a couple
of small improvements. All of the following issues are
closely related:

(a) choice of integration contour in complex angular
momentum plane,

(b) validity of deformation of the integration contour,
(c) origin of signature factor ½1þ e��ij�= sinð�jÞ,
(d) absence of non-sense poles at negative integer an-

gular momenta j, and
(e) the fact that the sphere amplitude of string theory is

at best interpreted as a sum of t-channel and
u-channel exchange of particles with various spins,
not purely a sum of t-channel amplitudes.

It will be made clear how we should think10 about these
issues a)–e) in writing down the Pomeron amplitude (62);
interpretation provided in Sec. IVC of this article is af-
fected by the understanding on the issue e) we obtain here.

Another improvement is to replace �2, a derivative
operator on AdS5 often used in Pomeron propagator in
the literature, by �jðtÞ in (47) for complex angular mo-

mentum j. The Pomeron wave function�ðjÞi� for spin j 2 C
is also introduced. Although this change does not leave a
practical impact on the expression to be used as the
Pomeron kernel (64), this extra conceptual clarification
of the role played by complex angular momentum j in
the Pomeron kernel will enable us to provide clear theo-
retical understanding of the form factor associated with
Pomeron-hadron-hadron coupling in Sec. IVA.
In Sec. III B, we focus on DDVCS amplitude and find

explicit expressions of Pomeron contributions to the five
independent structure functions. It may be an option for
busy and practical readers with some familiarity to
[3,11,12] to skip Sec. III A for the first reading.

A. Pomeron kernel from sphere amplitude

Reference [3] derives Pomeron kernel in its Sec. II by
modifying Virasoro-Schapiro scattering amplitude of
closed string on 10-dimensional flat spacetime so that it
is understood as an amplitude of scattering on a curved
spacetime background (with small curvature �0=R2 � 1);
we will combine it with the discussion in Sec. 3 of [3] to fill
a small gap in the process of modifying the scattering
amplitude on flat 10-dimensions to that on the curved
spacetime.
In flat 10-dimensional spacetime, the sphere-level scat-

tering amplitude of two NS-NS closed strings has a factor-
ized form

Aðs10; t10Þð2�Þ10�10ðp1 þ q1 � p2 � q2Þ ¼ KG; (22)

where s10 and t10 are Mandelstam variables in
10-dimensions. The factor G is a function of s10 and t10,
and independent of polarizations of the external strings;

FIG. 2. Contribution to the DDVCS amplitude from double trace protected operators (s-channel SUGRA field resonances).
ðc2J2x=q2Þ�1ImV2 is shown in (a) as functions of x 2 ½�; 1� for four different values of skewedness �. The solid line is for � ¼ 0,
and dashed lines are for � ¼ 0:1, 0.2 and 0.3. We set t ¼ 0 in panel (a). On the other hand, the panel (b) shows the (�t) dependence,
while we set � ¼ 0. The solid line is for ð�tÞ=q2 ¼ 0, and three dashed lines are for ð�tÞ=q2 ¼ 0:1; 0:2 and 0.3, and are shown for the
range 0 	 x 	 ð1þ t=ð4q2ÞÞ�1. q2=�2 ¼ 102 is used for both (a) and (b). As a target hadron, the lowest normalizable mode of a scalar
with � ¼ 5 was used.

10By no means, we consider that the logical derivation in the
following is the only possible one.
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Gðs10; t10Þ ¼ ��03s210
64

Y
�¼s10;t10;u10

�ð��0�=4Þ
�ð1þ �0�=4Þ : (23)

The factor K, on the other hand, is given by wave func-
tions—momentum and polarization—of states involved in
the scattering, whose explicit form is found in textbooks
[55].11 Normalization of the factor K is

K � �04g2ss210ð2�Þ10�10ðp1 þ q1 � p2 � q2Þ
� 1

2
2
IIB

Z
d10x½�02gseip1�x�½�02gseiq1�x�

� ½�02gse�ip2�x�½�02gse�iq2�x�s210 (24)

for dilation-dilaton scattering, up to a constant of order
unity. The factor K for the case of our interest, dilaton-
graviton scattering as a holographic model of DDVCS, is a
little more complicated because (dimensionless) polariza-
tions of graviton external states are involved. We will first
present the derivation of the scattering amplitude (62) and
explicit expression of Pomeron kernel (64), using the case
of dilaton-dilaton scattering. Polarization-dependent state-
ments are deferred to Sec. III B.

We will study small x ’ q2=s DDVCS amplitude, with
momentum-transfer ð�tÞ � q2, (21), that is not neces-
sarily smaller than the hadronic scale �2; here, s ¼ W2

and t are Mandelstam variables of 4D kinematics of
DDVCS. This means, as we explain later, that we need to
examine the Virasoro-Schapiro amplitude in the kinemati-
cal region �0s10 � 1, and ð�t10Þ=s10 � 1, but not neces-
sarily12 j�0t10j � 1. Ignoring terms that are suppressed by
ð�0s10Þ or ðs10=t10Þ, one finds that

Y
�¼s10;t10;u10

�ð��0�=4Þ
�ð1þ�0�=4Þ

’ �

sinð��0t10=4Þ
1

�2ð1þ�0t10=4Þ
�
cos

�
��0t10

4

�

þ cot

�
��0s10

4

�
sin

�
��0t10

4

���
�0s10
4

��2þ�0t10=2
: (25)

In this expression, cotð��0s104 Þ contains s-channel poles of
strings. As long as13 0< args10 <�, in j�0s10j ! 1,

cot

�
��0s10

4

�
! �i: (26)

As a result, one arrives at a well-known expression of the
Regge behavior of the Virasoro-Schapiro amplitude on flat
10-dimensional spacetime:

Gðs10; t10Þ ’ ��0�
4

1þ e�i��0t10=2

sinð��0t10=2Þ
� 1

�2ð1þ �0t10=4Þ
�
�0s10
4

�
�0t10=2


 Gðs10; t10Þ: (27)

There are a number of merits in seeing amplitudes in
complex spin j-plane in classical Regge theory [29–31], as
well as in perturbative QCD [30,56], and furthermore, the
j-plane description also has a couple of extra advantages in
the present context. For one, we can clarify subtle points in
how the derivation of Pomeron amplitude based on vertex-
operator OPE in Sec. 3 of [3] is related to the somewhat
heuristic modification of the flat spacetime amplitude in
finding a scattering amplitude on a curved spacetime in
Sec. 2 of [3], as we explain shortly. Furthermore, we
can find a clear guiding principle in the heuristic modifi-
cation process of the scattering amplitude, although this
process has not been crystal clear so far (in our eyes) in the
literature.
Let us first see, with the j-plane description, that

Gðs10; t10Þ can be decomposed into three pieces. First,
note that the amplitude (27) is the same as

Gðs10; t10Þ ¼ 1

2�i

Z
C1

dj

�
��0�

4

�
1þ e�i�j

sin�j

1

�2ðj=2Þ
�
�
�0s10
4

�
j�2 1

j� �ðt10Þ ; (28)

where �ðt10Þ 
 2þ �0t10=2, which is the trajectory of
graviton, and the contour of integration in complex
j-plane C1 is set as in Fig. 3. Mathematically, one can
add to the integrand a function of j holomorphic at �ðt10Þ.

FIG. 3. Integration contours C1, C2 and C3, and various sin-
gularities that appear in the complex j-plane. The contour C2

comes from cj � i1, avoids the j ¼ �ðt10Þ singularity to the

left, and goes to cj þ i1; cj 2 R is the real part value of the

contour of C2 in the asymptotic region (both ends). In order for
the integral GðC2Þðs10; t10;�j��ðt10ÞÞ to return a finite value, we
need to take cj >�1.

11We follow [2], however, to use the factor K that is s�210 times
that of [55], and further includes the delta function of momentum
conservation; s�210 can be factored out from the factor K [55],
because we are interested only in the large s10 small jt10j
scattering, as in [2,3].
12This is a difference from the application to DIS in [2], where
�0t10 ! Oð1= ffiffiffiffi

�
p Þ can be ignored.

13This is consistent with the well-known i� prescription in the
quantum field theory, which defines the physical amplitude in the
limit of args10 ! þ0. Moreover, one can understand (26) as
the average of cotð��0s104 Þ in �0s10 � 1 as in [2].

RYOICHI NISHIO AND TAIZAN WATARI PHYSICAL REVIEW D 84, 075025 (2011)

075025-6



In order to see the explicit relation with vertex-operator
OPE, we choose the following expression:

Gðs10; t10Þ ¼ 1

2�i

Z
C1

dj

�
��0�

4

�
1þ e�i�j

sin�j

1

�2ðj=2Þ

�
�
�ðt10Þ

j

�
2
�
�0s10
4

�
j�2 �j��ðt10Þ

j� �ðt10Þ : (29)

Wewill explain their relation soon, along with the meaning
of�, which is a real positive number. Second, suppose for
now that

argðs10Þ ¼ �=2: (30)

Then the integrand of (29) vanishes fast enough when jjj
goes to infinity while satisfying Rej >�1. It is, thus,
possible to change the contour from C1 to C3 � C2; see
Fig. 3. The �ðj=2Þ factor in the denominator is crucial in
the convergence of integration at large real positive j; the
condition (30) and the choice cj >�1 of C2 are necessary

for the convergence of the integral along C2. Finally, let us
split the integral along C3 into two pieces, one with the

�j��ðt10Þ factor in the integrand replaced by 1, and the

other with the same factor replaced by [�j��ðt10Þ � 1]. As a
whole, Gðs10; t10Þ is given by a sum of three pieces,

G ðs10; t10Þ ¼ GðC1Þðs10; t10;�j��ðt10ÞÞ
¼ �GðC2Þðs10; t10;�j��ðt10ÞÞ
þGðC3Þðs10; t10; 1Þ
þGðC3Þðs10; t10;�j��ðt10Þ � 1Þ: (31)

Physical meaning of the second term above will be clear.
Replacing the j-plane integral along C3 by residues at the
poles j ¼ 0; 2; 4; � � � ,

G ðC3Þðs10; t10; 1Þ ¼ �0

2

X
j¼0;2;4;���

1

�2ðj=2Þ
�
�ðt10Þ

j

�
2

�
�
�0s10
4

�
j�2 1

j� �ðt10Þ ; (32)

which is regarded as t-channel exchange of spin j string on
the graviton trajectory;14 the 1=ðj� �ðt10ÞÞ factor is under-
stood as the propagator of a string with mass m2 ¼
4ðj� 2Þ=�0, and this contribution to the total amplitude
KG is proportional to ðs10Þj, as the dominant contribution
to the factor K in s10 � jt10j is proportional to s210.

Vertex-operator OPE in [3] in world-sheet calculation
also yields the same expression as (32). The schematic
pictures are described in Fig. 4. Let us use
(0,0)-picture vertex operators

V ð0;0Þ
1 ðw; �wÞ ¼ :�ð1ÞM1N1

�
i@XM1 þ �0

2
ðq1 � c ÞcM1

��
i �@XN1

þ �0

2
ðq1 � ~c Þ ~c N1

�
eiq1�XðwÞ:; (33)

V ð0;0Þ
2 ð0; 0Þ ¼ :�ð2ÞM2N2

�
i@XM2 � �0

2
ðq2 � c ÞcM2

��
i �@XN2

� �0

2
ðq2 � ~c Þ ~c N2

�
e�iq2�Xð0Þ:; (34)

for a massless incoming NS-NS string with ðq1Þ210 ¼ 0 and
a massless outgoing NS-NS string with ðq2Þ210 ¼ 0. The
OPE of these two vertex operators includes the following
series of operators:

V ð0;0Þ
1 ðw; �wÞV ð0;0Þ

2 ð0; �0Þ

�
�
ð�ð1Þ � �ð2ÞÞ

�
�0

2

�
2
�
�ðt10Þ
2

�
2jwj�4 þ � � �

�
� jwj��0t10=2:eiq1�ðw@Xþ �w �@XÞeiðq1�q2Þ�Xð0; �0Þ:: (35)

In the first line, we omitted terms which are less singular
than jwj�4 in the w, �w! 0 limit.15 Keeping only jwj�4
terms for simplicity, we obtain

V ð0;0Þ
1 ðw; �wÞV ð0;0Þ

2 ð0; �0Þ

� ð�ð1Þ � �ð2ÞÞ
�
�0

2

�
2
�
�ðt10Þ
2

�
2

� X
k;~k�0

1

k!~k!
wL0�1 �w ~L0�1Ok;~kð0; �0Þ; (36)

where16

L0 � 1 ¼ ��0

4
t210 þ k� 2;

~L0 � 1 ¼ ��0

4
t210 þ ~k� 2;

(37)

are weights of operator Ok;~k, and

O k;~kð0; �0Þ ¼ :ðiq1 � @XÞkðiq1 � �@XÞ~keiðq1�q2Þ�Xð0; �0Þ::
(38)

The sphere amplitude is given by integrating w over the
entire complex plane. Only the L0 ¼ ~L0 terms remain, and

14Although the factor 1=ðj� �ðt10ÞÞ of j ¼ 0 term in the
summation seems to give rise to �ðt10Þ ¼ 0 tachyon pole (i.e.,

�0t10 ¼ �4), the amplitude GðC3Þðs10; t10; 1Þ actually does not

have such a tachyon pole. This is because a factor 1
�2ðj=2Þ ð�ðt10Þj Þ2

cancels the �ðt10Þ ¼ 0 pole in j ¼ 0 term.

15The jwj�4 terms become those with the greatest power of s10,

that is, s�ðt10Þ10 . Less singular terms of OPE, whose coefficients are
jwj�2w�1; jwj�2 �w�1 . . . , have lower power of s10. This leading
term in the OPE of string scattering in 10 dimensions becomes
the leading term in small x (large s ¼ W2) in the structure
function V1 in four dimensions in Sec. III B. Leading terms of
other structure functions in small x, however, are determined in
Sec. III B without using such an OPE on world sheet.
16We adopt a convention of [55], where L0 and ~L0 vanish on
physical states. Thus, L0 and ~L0 here correspond to L0 � 1 and
~L0 � 1 in [3].
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Z jwj	�
d2whV ð0;0Þ

1 ðwÞV ð0;0Þ
2 ð0ÞV ð�1;�1Þ

3 ð1ÞV ð�1;�1Þ
4 ð1Þi

�j1j4 (39)

� ð�ð1Þ � �ð2ÞÞ
�
�0

2

�
2
�
�ðt10Þ
2

�
2 Z �2

0
djwj2 X1

k¼0

ðjwj2ÞL0�1

ðk!Þ2
� hOk;kð0ÞV 3ð1ÞV 4ð1Þi � j1j4

¼ 2ð�ð1Þ � �ð2ÞÞ
�
�0

2

�
2 X
j¼0;2;4;���

1

�2ðj=2Þ
�
�ðt10Þ

j

�
2

� ½�
j��ðt10Þ � 0�
j� �ðt10Þ hOj=2;j=2ð0ÞV 3ð1ÞV 4ð1Þi � j1j4:

(40)

Because hOj=2;j=2ð0ÞV 3ð1ÞV 4ð1Þi � j1j4 � ð�0s10Þj, we
find that the jwj 	 1 contribution to this world-sheet am-

plitude has the structure of GðC3Þðs10; t10; 1Þ in (32).
Now � in (28) has a clear meaning: the cutoff of

integration of jwj. The third term in (31),

GðC3Þðs10; t10;�j��ðt10Þ � 1Þ, corresponds to the 1 	
jwj 	 � contribution of the world-sheet amplitude above.
Obviously the cutoff � should be taken to infinity. Thus,
the sphere amplitude using V 1–V 2 OPE should be pro-
portional to

G ðs10; t10Þ ¼ lim
�!1
½GðC3Þðs10; t10; 1� 0Þ

þGðC3Þðs10; t10;�j��ðt10Þ � 1Þ�: (41)

There is no contradiction between (41) and (31); whenever

� 1<�ðt10Þ; (42)

the contour C2 can be chosen as a straight line from
cj � i1 to cj þ i1 for some �1< cj < �ðt10Þ. Now, it
is easy to see that

lim
�!þ1

GðC2Þðs10; t10;�j��ðt10ÞÞ ¼ 0; (43)

because of the �j��ðt10Þ factor.17 Although each piece of
(31) is well-defined and such relations as (31), (41), and
(43) can be established only under the conditions (30) and
(42), the expression (28) is always well-defined, and it

should be regarded as analytic continuation of the world-
sheet amplitude18 (41) off the kinematical constraints (30)
and (42).
We have so far discussed Regge limit of closed string

scattering amplitude in flat 10-dimensional spacetime, but
our true interest is in scattering in a curved spacetime
’ AdS5 �W. The prescription ofSec. 2 of [3] is to rewrite
the factor K in (24) by using wave functions of four
external states in the scattering, and replacing s10 and t10
in Gðs10; t10Þ by appropriate differential operators acting
on the wave functions. We also follow this line of argu-
ment, while making a couple of improvements.
As the expression for K becomes a little messy for

dilaton-graviton scattering (holographic dual model of
DDVCS amplitudes), we postpone working out the K
factor for this case until Sec. III B. For an easier case, the
K factor for dilaton-dilaton scattering (holographic dual of
elastic glueball scattering) becomes

K ’ cs
2
2

IIB

Z
d4xdzd5�

ffiffiffiffiffiffiffiffi�Gp ð�ðzÞYð�ÞÞ2ð�0ðzÞY0ð�ÞÞ2

� ðe�2AsÞ2eiðp1þq1�p2�q2Þ�x;

¼ ð2�Þ4�4ðp1 þ q1 � p2 � q2Þ csR
5

2
2
IIB

�
Z

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðzÞ

q Z
d5�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gWð�Þ

q
ðe�2AsÞ2

� ð�ðzÞYð�ÞÞ2ð�0ðzÞY0ð�ÞÞ2; (45)

where �ðzÞYð�Þ and �0ðzÞY0ð�Þ are normalizable wave
functions of the initial state hadrons, and cs is a dimen-
sionless constant of order unity. s10 in (25) is replaced by
ðe�2AsÞ, including the warped metric.19

In order to obtain the factor Gðs10; t10Þ for scattering in
the curved spacetime AdS5 �W, s10 is replaced by the
Minkowski part (e�2As) with the warped metric, just as
above for the K factor. As for t10 in Gðs10; t10Þ, on the other
hand, one cannot drop such terms as @2z or @2�, unless
jtj � �2 [3]. Although it is not immediately obvious
which derivative operators should be used in curved space-
time, we adopt a prescription to go to j-plane description
(29), (32), (40), and (41), first, and then replace t10 in the
spin j partial wave by

t10 ! �jðtÞ þ R�2r2
W þ R�2�j; (46)

where

�jðtÞ ¼ e�2Atþ ejAð�gÞ�1=2@zð�gÞ1=2e�2A@ze�jA; (47)

17This also means that the u-channel contribution

GðC3Þðs10; t10;�j��ðt10Þ � 1Þ has a finite �! þ1 limit.
Moreover, because the total amplitude is also equal to

G ðC1Þðs10; t10; 1Þ ¼ GðC3Þðs10; t10; 1Þ � GðC2Þðs10; t10; 1Þ; (44)

one can see that the u-channel (1 	 jwj 	 1) contribution

lim�!1½GðC3Þðs10; t10;�j��ðt10ÞÞ� is equal to �GðC2Þðs10; t10; 1Þ,
at least mathematically. The t-channel and u-channel contribu-
tions are given by integral along C3 and �C2, respectively, and
the total amplitude is given by C1.

18The same story is in between the Virasoro-Schapiro ampli-
tude (23) and

R
d2wjwj��0t=2j1� wj��0s=2.

19Although s10 also contains derivatives in z and �, such terms
are ignored, because they are suppressed relatively by of order
�2=s and are negligible in the high-energy scattering.
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r2
W ¼ ð�gWÞ�1=2

@

@�a
ð�gWÞ1=2ðgWÞab @

@�b
: (48)

Since the 1=ðj� �ðt10ÞÞ factor in (32) is regarded as a
propagator, the first two terms in (46) are the rank-2
differential operators appearing in the equation of motion
of spin j modes on the curved background.20 In addition to
this reasoning based on local field theory intuition, it is also
possible to determine j� �ðt10Þð¼ 2L0Þ in direct calcula-
tion in world-sheet nonlinear sigma model. The last term
R�2�j is a mass correction; �j is a constant of order unity,

and does not contain a derivative. The above prescription
also can be applied to (28), because (28) is equivalent
to (29).

Combining both the factors K and G, we obtain

Aðs; tÞ ’ csR
5

2
2
IIB

Z
dz

ffiffiffiffiffiffiffi�gp
d5�

ffiffiffiffiffiffiffi
gW
p ðe�2AsÞ2

�ð�ðzÞYð�ÞÞ2Gðe�2As; t10Þð�0ðzÞY0ð�ÞÞ2; (49)

Gðe�2As; t10Þ ¼ 1

2�i

Z
C1

dj

�
��0�

4

�
1þ e�i�j

sin�j

1

�2ðj=2Þ
�
�
�0e�2As

4

�
j�2

� 1

j� �ð�jðtÞ þ R�2ð�j þr2
WÞÞ

: (50)

Note that all the derivatives @z in t10 are placed on the right
of all the z-dependent factors

ffiffiffiffiffiffiffi�gp
and ðe�2AsÞ2 in the first

line, and ðe�2AsÞj�2 in the third line; �jðtÞ simply acts on

the wave functions ð�0ðzÞY0ð�ÞÞ2. This is not asymmetric in
½�ðzÞYð�Þ�2 and ½�0ðzÞY0ð�Þ�2, because the z derivative

part of �jðtÞ is Hermitian under the measure

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffi�gðzÞp

e�2jAðzÞ.
We will dropr2

W in the following; this is becauser2
W on

a compact space W has nonpositive discrete spectrum.
Apart from the constant mode, whose eigenvalue of r2

W

is zero, r2
W eigenvalues are negative and at least of order

unity. Thus, at high-energy scattering,

lnðs=�2Þ � ffiffiffiffi
�
p

; (51)

a factor

ð�0e�2AsÞð�0=2Þð1=R2Þr2
W ! e�ððlnðs=�2Þþlnðð�zÞ2= ffiffiffi

�
p ÞÞ=2 ffiffiffi

�
p ÞOð1Þ

(52)

in ð�0e�2AsÞj is always suppressed, unless z is extremely
small. The condition (51) corresponds to exponentially
small x in DIS/DDVCS,

ln

�
1ffiffiffiffi
�
p

x

�
� ffiffiffiffi

�
p

; (53)

which we will assume in later sections. The scattering
amplitude now has an effective description in five dimen-
sions,

Aðs; tÞ ’ csc�c�0
2
2

5

Z 1=�

0
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðzÞ

q
ðe�2AsÞ2

�½�ðzÞ�2Gðe�2As;�jðtÞþ�j=R
2Þ½�0ðzÞ�2; (54)

where c� and c�0 are defined in (7).

The ð�0e�2AsÞj / ð�0e�2AsÞ�0�jðtÞ=2 factor is nonlocal,
and one can rewrite the factor G as a diffusion kernel by
inserting a complete system of the operator �jðtÞ [3].
Eigenfunctions of �jðtÞ,

�jðtÞ�ðjÞi� ðt; zÞ ¼ �
�2 þ 4

R2
�ðjÞi� ðt; zÞ; (55)

FIG. 4. A sphere amplitude describing scattering of four NS-NS string massless states. Later on, the vertex operatorsV 3 andV 4 are
used for incoming and outgoing hadron states, and V 1 and V 2 used for incoming virtual photon and outgoing virtual/real photon for
DDVCS, respectively. V 2;3;4 are fixed at w ¼ 0, 1, 1 on the g ¼ 0 world sheet, and the sphere amplitude is obtained by integrating

over the complex coordinate ðw; �wÞ of V 1 over the sphere. Contribution from integration over the 0 	 jwj 	 1 region (a) and the one
over the 1 	 jwj 	 1 region (b) can be regarded as t-channel and u-channel amplitudes, respectively.

20�z
zz ¼ �1=z and ��

�z ¼ ���
�=z under the metric (2).
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are given by

�ðjÞi� ðt; zÞ ¼ ieAðj�2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

2R sinh��

r 2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I�i�ð
ffiffiffiffiffiffi�tp

=�Þ
Ii�ð

ffiffiffiffiffiffi�tp
=�Þ

s
Ii�ð

ffiffiffiffiffiffi�tp
zÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ii�ð

ffiffiffiffiffiffi�tp
=�Þ

I�i�ð
ffiffiffiffiffiffi�tp

=�Þ

s
I�i�ð

ffiffiffiffiffiffi�tp
zÞ
3
5; (56)

where I�ðxÞ is the modified Bessel function. Here, we

imposed a Dirichlet boundary condition at IR in order to
keep the expressions a little simpler, but the essence will
not change when a Neumann condition is imposed in-

stead.21 For negative22 t, the eigenfunctions�ðjÞi� for eigen-
values �ð�2 þ 4Þ=R2 with 0 	 � 2 R form a complete
system. Replacing ½�0ðzÞ�2 by

R
dz0�ðz� z0Þ½�0ðz0Þ�2

and using a relation

Z 1
0

d��ðjÞi� ðt; zÞ�ðjÞi� ðt; z0Þ ¼ ½ð�gÞ1=2e�2jA��1�ðz� z0Þ;
(58)

we find that

Aðs;tÞ’csc�c�0
2
2

5

Z 1
0
d�

1

2�i

Z
C1ð�Þ

dj
Z
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðzÞ

q

�
Z
dz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðz0Þ

q
e�2jA0 ðe�2AsÞ2

�½�ðzÞ�2
�
��0�

4

�
1þe�i�j

sin�j

1

�2ðj=2Þ
�
�0e�2As

4

�
j�2

� 1

j�ðj�þ�j=ð2
ffiffiffiffi
�
p ÞÞ�

ðjÞ
i� ðt;zÞ�ðjÞi� ðt;z0Þ½�0ðz0Þ�2;

(59)

where eA
0 ¼ eAðz0Þ, and

j� ¼ 2� �2 þ 4

2
ffiffiffiffi
�
p : (60)

With a little more work, the expression above can be made
completely symmetric for the two initial/final state had-
rons; with a notation

~s ¼ e�A�A0s; (61)

one finally arrives at the expression we are familiar with
in [3,11,12]:

Aðs; tÞ ’ cs
2
2

5

�

2R3

Z
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðzÞ

q
PðzÞ

�
Z

dz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðz0Þ

q
Pðz0ÞKðs; t; z; z0Þ; (62)

where

PðzÞ ¼ c�ð�ðzÞÞ2; P0ðz0Þ ¼ c�0 ð�0ðz0ÞÞ2 (63)

for glueball-glueball elastic scattering. The Pomeron
kernel Kðs; t; z; z0Þ becomes

Kðs; t; z; z0Þ ¼ �8R ffiffiffiffi
�
p Z 1

0
d�

1

2�i

Z
C1ð�Þ

dj
1þ e�i�j

sin�j

� 1

�2ðj=2Þ
�
�0~s
4

�
j 1

j� ðj� þ �j

2
ffiffiffi
�
p Þ

� e�jAðzÞ�ðjÞi� ðt; zÞe�jAðz0Þ�ðjÞi� ðt; z0Þ: (64)
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FIG. 5 (color online). The panel (a) shows the form factor F (100) as a function of �t=�2 in low momentum transfer (�t & �2)
region. We used the scalar target hadron with � ¼ 5, n ¼ 1 explained in section II. The three curves in the panel (a) correspond to finite
x, i�� ¼ 4, smaller x, i�� ¼ 2, and small x limit, i�� ¼ 0 from above (yellow/light) to below (blue/dark). The panel (b) is a schematic
picture of form factor for large momentum transfer. Dashed curve corresponds to a smaller x than the one for the solid curve, and short
dashed curve to an even smaller x. The form factor eventually shows a power-law behavior for sufficiently large momentum transfer; this
power behavior is reached for smaller momentum transfer for smaller x (see discussion around (101)), as indicated in the figure.

21The reflection coefficient Rð�; tÞ defined by

�ðjÞi� ðt; zÞ / Ii�ð
ffiffiffiffiffiffi�tp

zÞ þ Rð�; tÞI�i�ð
ffiffiffiffiffiffi�tp

zÞ (57)

becomes Rð�; tÞ ¼ �½Ii�ð�0Þ=Ii�ð�0Þ�j�0¼
ffiffiffiffiffi�tp

=� under the

Dirichlet boundary condition. It satisfies Rð��; tÞ ¼ 1=Rð�; tÞ
and ð1þ Rð��; tÞÞ ¼ 0 for i� 2 Z. (If both

ffiffiffiffiffiffi�tp
and � are real

valued, Rð�; tÞ� ¼ Rð��; tÞ, although we do not use this prop-
erty in this article.) When the Neumann boundary condition

@z½e�jA�ðjÞi� ðt; zÞ� ¼ 0 is imposed instead [3], Rð�; tÞ defined
as above also has all of these properties.
22We understand that

ffiffiffiffiffiffi�tp
is real positive for negative t, that is,

arg
ffiffiffiffiffiffi�tp ¼ 0. In its analytic continuation to real positive t

through the upper half-plane in complex t, then, arg
ffiffiffiffiffiffi�tp ¼

��=2.
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Because e�jAðzÞ�ðjÞi� ðt; zÞ ¼ e�2AðzÞ�ð2Þi� ðt; zÞ (see (56)),

½e�jA�ðjÞi� � in the kernel can be replaced by ½e�2A�ð2Þi� �
mathematically. We should remark that this expression
(64) is valid only in zero-skewedness scattering.

It should be emphasized that we have ½e�jA�ðjÞi� ðt; zÞ��
½e�jA�ðjÞi� ðt; z0Þ� in the Pomeron kernel, not

½e�jA�ðjÞi� ðt; zÞ�½e�jA�ðjÞi� ðt; z0Þ�� that uses complex conju-
gate. This is a big difference, because the integrand in (64)
can be regarded as a holomorphic function of ðj; �Þ (except
some pole loci), and the kernel itself is expressed as a
holomorphic integral in the spin-anomalous dimension
ðj; �Þ plane;23 note that � ¼ �� j� 2 ¼ i�� j [3].
The kernel (64) is also holomorphic in the momentum-
transfer t of hadron scattering, and we will exploit this
nature in later sections.

The j ¼ 2; 4; � � � poles from 1= sinð�jÞ correspond to
the spin j particle exchange, and contribute to the real
part of the kernel. The so-called nonsense poles j ¼
0;�2;�4; � � � of 1= sinð�jÞ in Regge theory are can-
celed,24 and even become zeros in the j-plane due to the
factor 1=�2ðj=2Þ in the j-plane representation of the kernel.
The absence of nonsense poles can easily be traced back to
the Virasoro-Schapiro amplitude (23) and its Regge limit
(27). One can also trace the origin of 1=�2ðj=2Þ factor in
the argument of vertex-operator OPE; see (36).

The remaining singularity in the j-plane comes from

1=ðj� j� � �j=ð2
ffiffiffiffi
�
p ÞÞ. �j vanishes at j ¼ 2 [3], because

the massless graviton does not receive mass correction
even in curved spacetime (put another way, the energy
momentum tensor has vanishing anomalous dimension).
j� is a function of �, and hence the zero locus of the
denominator determines the relation between j and �.
The contour C1ð�Þ of j integration is around this
(�-dependent) pole, and after integration, this pole locus
determines the large s (high-energy) behavior of the scat-
tering amplitude.

The pole locus jrð�Þ in the j-plane is given approxi-
mately by

jrð�Þ ¼ j� þOð��1Þ (65)

for j�j & Oð1Þ, and hence for jj� � 2j & Oð1= ffiffiffiffi
�
p Þ. For

j�j � �1=4, and hence for jj�j �Oð1Þ, one can still find the
pole locus jrð�Þ recursively [13]:

jrð�Þ ¼ j� þ
�j¼j�
2

ffiffiffiffi
�
p þOð��1Þ ¼ j� þOð��1=2Þ: (66)

This means that the pole locus jrð�Þ is shifted from j� due
to the �j correction, not by an amount as large as the

leading Oð1Þ term, but by of order Oð��1=2Þ. The

Oð1= ffiffiffiffi
�
p Þ corrections are just as important as the �2= ffiffiffiffi

�
p

term in j�. Finally, for j�j � �1=4, and hence for jj�j �
Oð1Þ, it even becomes impossible to try to find the pole
locus j ¼ jrð�Þ recursively. It is also known that for

j *
ffiffiffiffi
�
p

, �-j relation changes drastically [54]. To recap,
the high-energy behavior of the Pomeron kernel is de-
scribed fairly well by sj� for j�j & Oð1Þ, but the exponent
jrð�Þ begins to deviate from j� quadratic in �, when j�j
becomes comparable to �1=4. This is equivalent to

�j�j
R

�
2 � 1

�0
; (67)

loosely speaking, that is when j�j=R, ‘‘the Kaluza-Klein
momentum of Pomeron in the holographic radius direc-
tion’’ becomes comparable to the string scale.25

B. Extracting structure functions of
DDVCS amplitudes

Although the Pomeron kernel (64) is universal for all the
hadron scattering processes at high energy (small x), the
impact factors PðzÞ and P0ðz0Þ should be chosen for indi-
vidual processes. PðzÞ in (8) and (63) can be used for
elastic scattering of two scalar glueballs [3,12]. Two inde-
pendent structure functions of DIS cross section are also
expressed as in (imaginary part of) (62), using (8) and (63)
for the target hadron impact factor P0ðz0Þ; the impact
factors PðzÞ for the virtual photon have also been deter-
mined for the two structure functions [2]. In the case of
DDVCS amplitudes for a scalar target hadron, there are
five independent structure functions, and we need to de-
termine the impact factors PðzÞ for these individual struc-
ture functions.
As a holographic model of DDVCS scattering, we use

graviton—dilaton scattering, as we have announced in
Sec. II. In order to determine the impact factors for the
DDVCS scattering, it is easiest to start from the known
form of the factor K in (22) for the graviton-dilaton scat-
tering, and carry out the process corresponding to (45), the
same strategy as in [2]. For DDVCS,

K ’ ð2�Þ4�4ðp1 þ q1 � p2 � q2Þ c0s
2
2

IIB

�
Z

dz
ffiffiffiffiffiffiffi�gp Z

d5�R5 ffiffiffiffiffiffiffi
gW
p

vað�Þvað�ÞF�m
1 ðzÞF	

2mðzÞ
� fðp1Þ�ðp2Þ	 þ ðp2Þ�ðp1Þ	gð�ðzÞYð�ÞÞ2; (68)

23This is quite common in perturbative QCD; e.g., [3,30,57,58].
24The 1=�2ðj=2Þ factor also renders the total t-channel ex-
change contribution GðC3Þðs10; t10; 1Þ finite, and makes the de-
composition (31) possible, as we have already mentioned.

25Another condition js10=t10j � 1, which was used already at
(25), is satisfied for � smaller than or saturating (67); this is

because j�0t10j remains j�0�jðtÞj � ð�2 þ 4Þ= ffiffiffiffi
�
p

& Oð1Þ, while
we consider �0s10 � ½s=�2�= ffiffiffiffi

�
p � e

ffiffiffi
�
p
=

ffiffiffiffi
�
p � 1.
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where c0s is a constant of order unity; F1 and F2 should be
understood as wave functions in (13) and (14) except the
plane wave part already taken into account in the four
momentum conservation. For the F1 for the incoming
virtual photon and F2 for the outgoing virtual photon, the
wave function with q� ¼ ðq1Þ� and the one with q� ¼
ð�q2Þ� should be used, respectively. We have kept only the

terms where four momenta of graviton ðq�Þ’s and dilaton

ðp�Þ’s are contracted in (68), because such terms dominate

in high-energy scattering, as in [2]. p1 and p2 are made
symmetric in f� � �g in (68) because the polarization of the
graviton propagator is symmetric. Inserting the Regge limit
process-universal amplitude G to the right of

ffiffiffiffiffiffiffi�gp
and

ðe�2Aq � pÞ2, we find that

��1 T��ð��2Þ� ’
c0sR5

2
2
IIB

�
Z
dz

ffiffiffiffiffiffiffi�gp Z
W
d5�

ffiffiffiffiffiffiffi
gW
p

vav
agmnðF1Þ�0mðzÞ

�ðF2Þ	0nðzÞe�2A��0�e�2A�	0	fðp1Þ�ðp2Þ	
þðp2Þ�ðp1Þ	gGðe�2As;t10Þð�ðzÞYð�ÞÞ2:

(69)

For DDVCS at exponentially small x ¼ �q2=ð2q � pÞ �
�q2=ðpþ qÞ2 ¼ q2=s, (53), only the constant mode onW
contributes, and the expression above is reduced to an
effective description on 4þ 1 dimensions, just like in
(54) and (62); csc�c�0 is now replaced by c0scAc�.

We are now ready to read off the impact factors for the
DDVCS amplitude. The impact factor for the target hadron
is the same as in the elastic scattering of the target hadrons,
and P0ðz0Þ ¼ Phhðz0Þ is the same as (63). The impact factor
for the virtual photon is

PðzÞ ¼ cAR
2s�2gmnðF1Þ�mðzÞðF2Þ	nðzÞfðp1Þ�ðp2Þ	

þ ðp2Þ�ðp1Þ	g: (70)

It can be decomposed into the five structure functions of
(17); the result is as follows [53]:

V1 ’ 1

2
I1; V2 ’ 2x2

q2
ðI0 þ I1Þ; V3 ’ x2

2q2
ðI0 þ I1Þ;

V4 ’ x

q2
I1; V5 ’ x

q2
I1; (71)

where we treated all of ð�2=q2 ¼ �t=q2Þ and x to be much
smaller than unity.26 Here,

Iiðx;�;t;q2Þ’ c0s
2
2

5

�

2R3

Z
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðzÞ

q

�
Z
dz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðz0Þ

q
PðiÞ���� ðzÞKðs;t;z;z0ÞPhhðz0Þ;

(72)

with

Pð1Þ���� ðzÞ ¼ c2JR
2e�2AðzÞ½ðq1zÞðK1ðq1zÞ�½ðq2zÞK1ðq2zÞ�;

(73)

Pð0Þ���� ðzÞ ¼
c2JR

2e�2A

q2
½ðq21zÞðK0ðq1zÞ�½ðq22zÞK0ðq2zÞ�: (74)

When one ignores terms that are suppressed by powers of
x, as we have done so far, the five structure functions are in
fact given by only two contributions, I0 and I1. Although
the longitudinal and transverse polarization of photon in
the incoming ��ðq1Þ þ hðp1Þ beam axis is different from
those in the outgoing ��ðq2Þ þ hðp2Þ beam axis in the
presence of nonzero momentum-transfer, they become
approximately the same in small angle (and hence in small
x) scattering; the two beam axes are precisely the same in
the t ¼ 0 limit. In this sense, I0 and I1 correspond to the
amplitude of the virtual photons with ‘‘longitudinal’’ and
‘‘transverse’’ polarizations, respectively.

IV. DDVCS AMPLITUDE AND GPD
AT SMALL x IN GRAVITY DUAL

Now that concrete expressions are given to the
(Pomeron contribution to the) structure functions of
DDVCS amplitude (71) and (72), with an explicit expres-
sion for the Pomeron kernel (64), let us evaluate the
integrals to get physics out of them. The momentum-
transfer t-dependence27 of DDVCS amplitude at small
momentum-transfer 0 	 �t & �2 is highly nonperturba-
tive information, and this is where gauge/gravity dual can
play an important role.
We will first focus on scattering amplitude (i.e., struc-

ture functions) in Secs. IVA, IVB, and IVC; the imaginary
part of the amplitude is studied in Secs. IVA and IVB,
which sheds a light on nonperturbative form of the parton
distribution in the transverse direction at small x [22]. The
real part of the amplitude is described in Sec. IVC. Wewill
argue in Sec. IVD that GPD can be defined as an inverse
Mellin transformation of the operator matrix element and
is calculable even in gravity dual; the structure functions
and the scattering amplitude as a whole are given in the
convolution form involving GPD, just like in the QCD
factorization formula.
It is useful in studying the DDVCS amplitude in the

generalized Bjorken regime (3) and (21) to write down the
Pomeron kernel explicitly as follows. Carrying out j inte-
gral around the pole j ¼ jrð�Þ, and using the explicit form

of �ðjÞi� ðt; zÞ in (56) for the hard-wall model, we obtain

26We have already assumed � ¼ 0.

27For very large momentum-transfer �t� �2 in the QCD in
the real world, however, perturbative QCD can be used to argue
rough scaling behavior [59–63] of the DDVCS amplitude.
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Kðs; t; z; z0Þ ¼ 4
ffiffiffiffi
�
p

e�2A�2A0
Z 1
�1

d�

�
� 1þ e�i�j�

sin�j�

�

� 1

�2ðj�=2Þ
�
�0ŝ
4

�
j� �

sinh��

�
�
Ii�ð

ffiffiffiffiffiffi�tp
zÞI�i�ð

ffiffiffiffiffiffi�tp
z0Þ

� I�i�ð
ffiffiffiffiffiffi�tp

=�Þ
Ii�ð

ffiffiffiffiffiffi�tp
=�Þ Ii�ð

ffiffiffiffiffiffi�tp
zÞIi�ð

ffiffiffiffiffiffi�tp
z0Þ
�
;

(75)

¼4
ffiffiffiffi
�
p

e�2A�2A0
Z 1
�1

d�

�
�1þe�i�j�

sin�j�

�

� 1

�2ðj�=2Þ
�
�0~s
4

�
j� 2i�

�
Ii�ð

ffiffiffiffiffiffi�tp
zÞ

�
�
Ki�ð

ffiffiffiffiffiffi�tp
z0Þ�Ki�ð

ffiffiffiffiffiffi�tp
=�Þ

Ii�ð
ffiffiffiffiffiffi�tp

=�Þ Ii�ð
ffiffiffiffiffiffi�tp

z0Þ
�
:

(76)

Although both of the second lines of (75) and (76) are
equivalent to (77) when integrated over �, those in (75) and
(76), which is not symmetric under the exchange of z and
z0, turn out to be a little more convenient than the z$ z0
symmetric expression (77) in evaluating the DDVCS am-
plitude;28 dominant contribution to the amplitudes comes
from small z region (z & 1=q� 1=�) because of the
virtual photon wave functions localized toward the UV
boundary, and for such a small value of (

ffiffiffiffiffiffi�tp
z), the

Ii�ð
ffiffiffiffiffiffi�tp

zÞ and I�i�ð
ffiffiffiffiffiffi�tp

zÞ terms in �ðjÞi� ðt; zÞ have quite
different behavior as a function of (i�). Ii�ð

ffiffiffiffiffiffi�tp
zÞ de-

creases rapidly toward positive Reði�Þ, while I�i�ð
ffiffiffiffiffiffi�tp

zÞ
toward negative Reði�Þ. This is why the I�i�ð

ffiffiffiffiffiffi�tp
zÞ term

has been turned into Ii�ð
ffiffiffiffiffiffi�tp

zÞ in (75) and (76) by relabel-
ing �� by �.

A. Momentum-transfer dependence of the
imaginary part

The imaginary parts of the structure functions simply
come from the imaginary parts of the integrals I1 and I0
(72), and their imaginary parts come from the imaginary
part of [1þ e�i�j] in the Pomeron kernel. It must be

straightforward to substitute the expression of the kernel
above into (72) and evaluate them for kinematical variables
of our interest; References [2,11] (see the reference list of
[18] for other articles) have done that for purely forward
case t ¼ 0, and we can just carry out a similar procedure of
calculation for 0 	 �t case as well. Before doing so,
however, we find it worthwhile to write down the ampli-
tude in the following form, which leads us to a better
theoretical understanding of the t � 0 amplitude.
Exploiting the kinematical constraint of the generalized

Bjorken regime (21), we expand Ii�ð
ffiffiffiffiffiffi�tp

zÞ in the Pomeron
kernel (76) in a power series and keep only the first term.
Contributions to Ii from the higher order terms are sup-
pressed by powers of (�t=q2), because the integration
over the holographic coordinate z is dominated by the
region z & 1=q. Ignoring the higher order terms is like
dropping higher twist contributions in perturbative
QCD. One can then see that the structure functions can
be written as

Iiðx;�¼0;t;q2Þ

’ ffiffiffiffi
�
p Z 1

�1
d�

�
�1þe��ij�

sin�j�

�
1

�2ðj�=2Þ
CðiÞi�Ahh; (78)

where

CðiÞi� ¼
1

R3

Z
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðzÞ

q
PðiÞ���� ðzÞe�2AðzÞ

�
z

R

�
i�ðRzÞj� ; (79)

Ahh ’ c0s

2
5

Z
dz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðz0Þ

q
Phhðz0Þ

�
e�2Aðz0ÞW2

4
ffiffiffiffi
�
p

�
j�

�
�
eðj��2ÞAðz0Þ

Ki�ð
ffiffiffiffiffiffi�tp

RÞ
�
Ki�ð

ffiffiffiffiffiffi�tp
z0Þ

� Ki�ð
ffiffiffiffiffiffi�tp

=�Þ
Ii�ð

ffiffiffiffiffiffi�tp
=�Þ Ii�ð

ffiffiffiffiffiffi�tp
z0Þ
��

: (80)

We will see in Sec. IVA3 that CðiÞi� and Ahh correspond to
OPE coefficient and matrix element of a twist-2 spin
j ¼ j� operator.29

The two factors CðiÞi� and Ahh depend on kinematical
variables q2 and x as follows:

CðiÞi� ’ c2J
1

ðqRÞ��

1

ðq2Þj� �c
ðiÞ
i� ; (81)

where �� ¼ i�� j�, and

28The second line of (75) and (76) can also be written as

2�

�2

�
sinhð��ÞKi�ð

ffiffiffiffiffiffi�tp
zÞKi�ð

ffiffiffiffiffiffi�tp
z0Þ

� i�
Ki�ð

ffiffiffiffiffiffi�tp
=�Þ

Ii�ð
ffiffiffiffiffiffi�tp

=�Þ Ii�ð
ffiffiffiffiffiffi�tp

zÞIi�ð
ffiffiffiffiffiffi�tp

z0Þ
�
: (77)

The second term vanishes in the �! 0 limit for fixed z, z0, s, t,
and the Pomeron kernel on AdS5 in [10] is reproduced; the
�! 0 limit of the Pomeron kernel in this article is different
from the one in [10] only by a factor of ð4 ffiffiffiffi

�
p Þj�2=�2ðj=2Þ,

which becomes 1 at j ¼ 2.

29Because of the factor 1=Ki�ð
ffiffiffiffiffiffi�tp

RÞ in the integrand of (80),
the second line in (80) is normalized to be unity at UV boundary
z0 ¼ Rð� 1=

ffiffiffiffiffiffi�tp Þ. A careful reader may notice that Reði�Þ> 0
is assumed in the expression of (80). This assumption gives rise
to no problem, since throughout this article we always estimate
the � integral (78) in the lower-half �-plane.
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Ahh ’ c0s
�
W2

4
ffiffiffiffi
�
p

�
j�ðR�Þ��ghi�ð

ffiffiffiffiffiffi�tp
=�Þ

’ c0s
�

1

4
ffiffiffiffi
�
p

x

�
j�ðq2Þj�ðR�Þ��ghi�ð

ffiffiffiffiffiffi�tp
=�Þ; (82)

�cðiÞi� is a constant of order unity that depends only on
� (when � ¼ 0, so that q2 ¼ q1 ’ q), while the
t-dependence of the structure functions Ii now remains
only in a dimensionless factor ghi�ð

ffiffiffiffiffiffi�tp
=�Þ whose defini-

tion can be read out from (80) and (82). Therefore, the
imaginary part of the structure functions are given by

Im Ii ’ c0s
ffiffiffiffi
�
p Z 1

�1
d�

c2J
�2ðj�=2Þ

�
1

4
ffiffiffiffi
�
p

x

�
j�

�
�
�

q

�
��

�cðiÞi�ghi�ð
ffiffiffiffiffiffi�tp

=�Þ: (83)

1. Small momentum transfer: �t & �2

Now let us evaluate the amplitudes (83), first, for the
case with small momentum-transfer 0 	 �t & �2. The
purely forward amplitude (i.e., one for the DIS total cross
section) is a part of this story. The � integration can be
evaluated by the saddle-point method for exponentially
small x (53), just like in [11]. The factor ghi�ð

ffiffiffiffiffiffi�tp
=�Þ has

a nonzero finite (dimensionless and Oð1Þ) limit when
�t! 0, and ghi�ð

ffiffiffiffiffiffi�tp
=�Þ is a slowly changing function

of (i�), unless �2 ��t. Thus, large �-dependence comes
only from �

1ffiffiffiffi
�
p

x

�
j�
�
�

q

�
��

(84)

in (83). The saddle-point �� is determined by the kinemati-
cal variables30 x and q2 as in

i��ðq=�; x;�t & �2Þ ¼ ffiffiffiffi
�
p lnðq=�Þ

ln
�
q=�ffiffiffi
�
p

x

	 ; (86)

and the amplitudes approximately become

Im Ii ’ c0s
ffiffiffiffi
�
p c2J

�2ðj��=2Þ
� lnq=�ffiffiffi

�
p

x

2�
ffiffiffiffi
�
p

��1=2� 1

4
ffiffiffiffi
�
p

x

�
j��

�
�
�

q

�
���

�cðiÞi��g
h
i�� ð

ffiffiffiffiffiffi�tp
=�Þ: (87)

This leading order expression of the saddle-point approxi-
mation (87) can be improved by going to higher order;

those terms would give rise to corrections that are sup-

pressed relatively by powers of
ffiffiffiffi
�
p

= ln½ðq=�Þ=ð ffiffiffiffi
�
p

xÞ�.
Ignoring all the factors of order unity and the Gaussian

measure of the saddle-point approximation, we find that
the DDVCS amplitude for small momentum transfer is
roughly of the form

Im Iiðx; � ¼ 0;�t & �2; q2Þ �
�

1ffiffiffiffi
�
p

x

�
j��
�
�

q

�
���

¼
�

1ffiffiffiffi
�
p

x

�
j0
�
q

�

�
j0
e�ðð

ffiffiffi
�
p ½lnðq=�Þ�2Þ=ð2 lnððq=�Þ= ffiffiffi

�
p

xÞÞÞ:

(88)

These results can also be used for the DIS structure
functions, with F1ðx; q2Þ ¼ ImI1=2, and F2ðx; q2Þ ¼
Im½xðI0 þ I1Þ� in the purely forward limit t ¼ 0 and
� ¼ 0.
To characterize the q2-dependence and x-dependence of

the DDVCS and DIS structure functions, let us introduce
effective exponents, as is often done in phenomenological
analysis of structure functions.

�effðx; t; q2Þ ¼ @ ln½xIiðx; � ¼ 0; t; q2Þ�
@ lnð�=qÞ ;

�effðx; t; q2Þ ¼ @ ln½xIiðx; � ¼ 0; t; q2Þ�
@ lnð1=xÞ :

(89)

From (88), we find that

�effðx; t; q2Þ ¼ ��� ; �effðx; t; q2Þ ¼ j�� � 1: (90)

Both �eff and �eff , and hence the q
2 and lnð1=xÞ evolutions,

are controlled by the saddle-point value i��; the saddle-
point value i�� 2 R�0 in (86) becomes large for large q2

and decreases to zero for smaller x.
The effective anomalous dimension �eff ¼ i�� � j�� �

ði�� � 2Þ for a given q2 is positive for larger x, and
negative for smaller x. This means that the (generalized)
parton density decreases in q2 evolution for larger x and
increases for smaller x. For a given value of x, �eff turns
from negative to positive as q2 increases, and the (gener-
alized) parton density at that value of x begins to decrease;
the parton splitting from x to smaller x0 becomes faster than
the splitting from larger x0 to x. This is precisely the
behavior expected in [2]. Note that the essence of seeing
this expected behavior is in keeping the ðq; xÞ-dependence
of the saddle-point value �� in small x ( lnð1=xÞ � ffiffiffiffi

�
p

)
and large q2 (q2 � �2) region, without naively taking
q2 ! 1 limit. The parton picture still remains even in
the strong coupling regime, although the parton contribu-
tions do not dominate in the DIS structure functions at

moderate x (
ffiffiffiffi
�
p

& x� 1), and the DGLAP evolution is
very fast.

30As we discussed around (66), the expression of the kernel
(75) is valid for j�j & �1=4. Therefore, the kinematical variables
are restricted within the following region:

ji��j & �1=4 , ��1=4 ln
�

1ffiffiffiffi
�
p

x

�
* ln

�
q

�

�
: (85)
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Similarly, for a fixed value of q2, �eff becomes smaller
than 1 for sufficiently small x, rendering the x-integration
for j ¼ 2 moment convergent at x ¼ 0 [11].31 For a given
value of x, �eff ¼ j�� � 1 increases for larger q2, implying
that the (generalized) parton distributions rise more
steeply toward x ¼ 0 for higher q2 [see Fig. 8(a)]. This
observation has already been made in the purely forward
t ¼ 0 case [18].

The discussion so far clearly shows the conceptual im-
portance of the saddle-point value of i�� and hence of j�� .
The Pomeron amplitude corresponds to a sum of contribu-
tions from various states/operators of spin j 2 2N, and the
sum can be expressed as a holomorphic integral in the
complex �-plane. Equivalently, this integral can also be
expressed in the complex j-plane, via the relation j ¼ j�.
The saddle-point value j�ð¼ j�� Þ reflects the ‘‘center of
weight’’ of contributions from various j 2 2N. The whole
amplitude approximately shows the x-evolution and
q2-evolution of ‘‘spin j� operator,’’ as clearly shown in
(90). We will see later in this article that not just the
W2- and q2-dependence of �eff and �eff in (90) but that
of almost all the observable parameters (t-slope parameter
in Sec. IVA4 and real part to imaginary part ratio in
Sec. IVC) of the photon-hadron scattering amplitude are
governed by the saddle-point value j�.

The essence of the saddle-point approximation is in the
following expression:Z dj

2�i
x�j

�
�

q

�
�ðjÞ

; (91)

where we already assume that we are interested in the
small x and large q2 region, and are ignoring various
factors that are irrelevant to the determination of the
saddle-point. The anomalous dimension �ðjÞ as a function
of complex spin variable j is [3]

�ðjÞ ¼ ��j
¼ i�j � j ¼ f2 ffiffiffiffi

�
p ðj� j0Þg1=2 � j (92)

in the hard-wall model, where �j is the inverse function of

j ¼ j�. We obtain an approximationZ dj

2�i
x�j

�
�

q

�
�ðjÞ � x�j�þ�ðj�Þððlnðq=�ÞÞ=ðlnð1=xÞÞÞ;

@�ðjÞ
@j









j¼j�
¼ lnð1=xÞ

lnðq=�Þ :
(93)

The saddle-point value of j is a function32 of
½lnðq=�Þ�=½lnð1=xÞ�, just like in (86) and in (93). The

saddle-point approximation at the leading order ignores
terms that are suppressed by 1= lnð1=xÞ, but keeps full
½lnðq=�Þ�=½lnð1=xÞ�-dependence at all order. Higher-order
corrections in the saddle-point approximation take account
of 1= lnð1=xÞ suppressed corrections.
One will notice that this argument does not rely on

detailed form of the anomalous dimension �ðjÞ very
much. Indeed, exactly the same line of argument has
been used in perturbative QCD for the study of behavior
of PDF in the small x and large q2 region [56]. The
anomalous dimensions �ðjÞ of the twist-2 series of opera-
tors in weak coupling gauge theories (with some variations
in the approximation scheme (e.g., double leading log
approximation (DLLA)) are not the same as those in
gravity dual models such as (92), but they can be contin-
uously deformed from one to the other by changing the
value of the ’t Hooft coupling [3]. Discussion so far makes
it clear i) that contribution associated with the twist-2
series of operators (parton contribution) does exist in the
weak coupling and strong coupling regimes alike, ii) that
the kinematical variable dependence of the parton contri-
bution in the small x and large q2 region can be captured by
the saddle-point approximation (91) and (93), and iii) that
the ðq; xÞ evolution of the parton contribution remains
qualitatively the same in the both regimes, despite the
difference in the anomalous dimensions. This similarity
of the parton component of a hadron in the both regimes is
an encouraging factor in trying to take advantage of gravity
dual descriptions to study nonperturbative aspects of par-
tons in a hadron of a confining gauge theory (like the real-
world QCD). We will elaborate more on this in Sec. V.

2. Large momentum transfer: �2 ��t
Let us now evaluate the holographic DDVCS amplitudes

(83) for large momentum-transfer, �2 ��t� q2. In this
case, the second term of the integrand in (80) is negligible
for almost all the range of z0 	 1=�, and moreover, the

range of z0 integration is effectively limited by z0 &
ð�tÞ�1=2, because the modified Bessel function

Ki�ð
ffiffiffiffiffiffi�tp

z0Þ falls off exponentially for z0 � ð�tÞ�1=2. In
the region, 0< z0 & ð�tÞ�1=2, the wave function of the
hadron shows the power-law behavior, �ðz0Þ / ðz�Þ�.
Hence, ghi�ð

ffiffiffiffiffiffi�tp
=�Þ is approximately

ghi�ð
ffiffiffiffiffiffi�tp

=�Þ ’
�

�ffiffiffiffiffiffi�tp
����þ2��2

~ghi�; (94)

where ~ghi� is independent of t, and is of order unity.
Because the factor ð�=

ffiffiffiffiffiffi�tp Þ��� in (94) is a rapidly
changing function of i� for �2 ��t, this factor has an
impact on the saddle-point value �� of � integration in (83).
The saddle point now depends on t, as in

i��ðq=�; x;�t� �2Þ ¼ ffiffiffiffi
�
p lnðq= ffiffiffiffiffiffi�tp Þ

ln
�
q=

ffiffiffiffiffi�tpffiffiffi
�
p

x

	 ; (95)

31One can also see the convergence directly, when the scatter-
ing amplitude is given by a complex j-plane integral; the
x-integration for j ¼ n moments converge for all n larger than
the largest real part of the singularities in the j-plane.
32A little more careful discussion should be given in non-
conformal theories. It will not be difficult, however, to incorpo-
rate the running coupling effect within weakly coupled gauge
theories or separately within gravity dual descriptions.
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and the saddle-point approximation of the DDVCS ampli-
tudes at leading order is given by

Im Ii ’ c0sc2J
ffiffiffiffi
�
p

�2ðj��=2Þ

0
@ln

ffiffiffiffiffi�tp
=�ffiffiffi
�
p

x

2�
ffiffiffiffi
�
p

1
A�1=2� 1

4
ffiffiffiffi
�
p

x

�
j��
�
�

q

�
���

�
�

�ffiffiffiffiffiffi�tp
�����þ2��2

�cðiÞi�� ~g
h
i�� : (96)

Ignoring factors of order unity and the Gaussian measure
of the saddle-point approximation,33

ImIiðx; � ¼ 0; t; q2Þ �
�

1ffiffiffiffi
�
p

x

�
j��
�
�

q

�
���
�

�ffiffiffiffiffiffi�tp
�����þ2��2

;

(97)

¼
�

1ffiffiffiffi
�
p

x

�
j0
�
q

�

�
j0
�

�ffiffiffiffiffiffi�tp
�
2��2þj0

�e�ð
ffiffiffi
�
p

=2Þððlnðq= ffiffiffiffiffi�tp ÞÞ2=ðlnððq= ffiffiffiffiffi�tp Þ= ffiffiffi�p xÞÞÞ:

(98)

It is customary in perturbative QCD to describe the
momentum-transfer t-dependence of GPD in terms of a
‘‘form factor’’ F defined by

Hðx; �; t; q2Þ ¼ Hðx; � ¼ 0; t ¼ 0; q2ÞFðx; �; t; q2Þ: (99)

Since the GPDs become PDFs Hðx; q2Þ for � ¼ 0 and
t ¼ 0, the form factor Fðx; �; t; q2Þ should be 1 in that
limit. This form factor takes account of finite size of
hadrons, and is nonperturbative in nature. There is no
way calculating the form factor in perturbative gauge
theories,34 and experimentally measurable form factors
(such as the electromagnetic form factor) are sometimes
used for theoretical modeling of GPD (though it should
depend on ðx; �; q2Þ) and for fitting of DVCS experimental
data. With the holographic setup, however, it can be calcu-
lated from the first principle.
Just one common form factor F is necessary for all the

structure functions35 V1;���;5, because the expressions (88)

and (98) are both not much different for I0 and I1, at least
for small x we have assumed so far. Taking the ratio of
(87), (88), and (98) to Iiðx; � ¼ 0; t ¼ 0; q2Þ, we find that

Fðx; � ¼ 0; t; q2Þ ’
8><
>:
ghi�� ð

ffiffiffiffiffiffi�tp
=�Þ=ghi�� ð0Þ ð0 	 �t & �2Þ;�

�ffiffiffiffiffi�tp
�
2��2þj0

e�ð
ffiffiffi
�
p

=2Þð½lnðq= ffiffiffiffiffi�tp Þ�2=ðlnððq= ffiffiffiffiffi�tp Þ= ffiffiffi
�
p

xÞÞÞeþð
ffiffiffi
�
p

=2Þð½lnðq=�Þ�2=ðlnððq=�Þ= ffiffiffi
�
p

xÞÞÞ ð�2 ��t� q2Þ:
(100)

The behaviors of the form factor F are described by Fig. 5.
The form factor largely shows power-law dependence on
(� t) at large momentum transfer, and for sufficiently large
momentum transfer,

ln

�
qffiffiffiffiffiffi�tp
�
� 1ffiffiffiffi

�
p ln

�
1ffiffiffiffi
�
p

x

�
; (101)

the exponent of
ffiffiffiffiffiffi�tp

is approximately given by
�ð2�� 2þ j0Þ.

The Regge behavior in the Virasoro-Schapiro amplitude

ðs10Þ�0t10=2 does not lead to exponential dependence on the
momentum-transfer t of DDVCS processes, because this

factor works as an exponential cutoff ð~sÞ��2=2
ffiffiffi
�
p

for con-
tributions from Pomeron with large Kaluza-Klein momen-
tum in the direction of holographic radius. Pomeron with
small � still contributes, but the Pomeron wave function

�ðjÞi� ðt; zÞ � Ki�ð
ffiffiffiffiffiffi�tp

zÞ cuts off the IR z * 1=
ffiffiffiffiffiffi�tp

region
of AdS5 for spacelike momentum-transfer [3]. This expo-
nential cutoff and the power-law wave function (8) of the

target hadron combined results in the power-lawffiffiffiffiffiffi�tp �ð2��2þj0Þ dependence of the form factor, as we have
already seen in (94).36

Note that this power-law dependence of the form factor
is a generic consequence of asymptotically conformal
theories, and is independent of details of IR geometry in
holographic models. The power is determined by the con-

34In the approach of [59–63], power-law scaling in energy can
be concluded for large (� t) region, but still nonperturbative
wave functions of partons are required for quantitative results.
35Here, we talk of form factors describing t-dependence in the
structure functions, rather than the t-dependence of GPD.
Characterization of GPD in strong coupling regime is given
in section IVD, where we will see that the form factor of
structure functions (100) can also be taken as that of GPD in the
sense of (99).

33The effective exponents introduced in (89) are still given by
�eff ¼ ��� and �eff ¼ j�� � 1; the saddle-point value of �� is
now given by (95). Thus, the discussion following (90) holds true
also for this case without modification.

36This mechanism is similar to the way the power-law
q2-dependence of the DIS cross section was obtained for moderate
x [2], although the integration along the holographic radius was
limited by the non-normalizable wave functions of virtual photons
PðiÞ���� ðzÞ (73) and (74) in the DIS case, not by the Pomeron wave
function �ðjÞi� ðt; zÞ as in this case. Gravitational form factor—the
j ¼ 2moment of nonskewed GPD—also shows power-law depen-
dence on the momentum-transfer [4,64–67].
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formal dimension� of the bulk field the hadron belongs to.
The power-law behavior in the UV conformal holographic
models is due to the cost of squeezing the entire hadron
into a size of 1=

ffiffiffiffiffiffi�tp
. This power-law behavior in holo-

graphic picture, however, should not be taken as an
explanation for the power-law behavior observed in the
real-world hadron-hadron elastic scattering data at large
momentum-transfer �2 ��t, because the holographic
models assuming large ’t Hooft coupling even at high
energy is not truly dual to the real-world QCD. The
power-law behavior expected from the naive power count-
ing based on the number of valence partons [59–63] should
be close to the truth of the power law in the �2 ��t
region. Despite this difference, it is an encouraging fact
that the form factor Fðx; t; q2Þ of holographic models ge-
nerically matches to something semirealistic (power-law
behavior) at large momentum-transfer �2 ��t, rather
than to something totally different. There is a long tradition
of using a GPD form factor with a power-law behavior in t
at the �2 ��t region (e.g., [68–70]), and it might be
possible to provide a better theoretical foundation to such
form factors. See also Sec. V.

To learn more about the structure of the nonperturbative
form factor (100) in the strong coupling regime, let us
examine the kinematical variable dependence of the form
factor (100) more carefully. First, the x-dependence and
(�t)-dependence are not completely factorized. Although
the form factor gradually approaches to power law in

ffiffiffiffiffiffi�tp
with a common power �ð2�� 2þ j0Þ, it does so under
x-dependent condition (101). Even within the region (101),
the coefficient of the power-law ð�=

ffiffiffiffiffiffi�tp Þ2��2þj0 also
depends on x and q2; we find that an effective energy scale

�eff in F� ½�2
eff=ð�tÞ���1þj0=2 is given by

�2
eff ¼ �2 � eð

ffiffiffi
�
p ½lnðq=�Þ�2Þ=ðð2��2þj0Þ ln½ðq=�Þ=

ffiffiffi
�
p

x�Þ (102)

and, in particular, �2
eff decreases for small x (large W2).

�eff is described in Fig. 4(b).Note also that this form factor
and �2

eff properly take account of q2-dependence, not just
ðx; tÞ-dependence at a fixed value of q2.

In the extremely small x limit (for a given value of q2),
however, �eff does not become arbitrarily small, but ap-
proaches a finite value, �2. In this limit, the form factor
greatly simplifies to become

Fðx; � ¼ 0; t; q2Þ ’
�

�ffiffiffiffiffiffi�tp
�
2��2þj0 ð�2 ��t� q2Þ;

(103)

from which x and q2-dependence has disappeared. This is
when i�� ¼ 0.

3. Regge theory revisited

Regge theory and the dual resonance model had a
close relation in description of hadron scattering in late

1960s to early 1970s. Certainly the dual amplitude on
3þ 1 dimensions was not able to explain power-law be-
havior in the fixed angle high-energy scattering on one
hand, and the theoretical consistency of string theory
hinted a spacetime dimension higher than 3þ 1 on the
other. But, string theory on a warped spacetime has resur-
rected as a theoretical framework of high-energy scattering
of hadrons in strongly coupled gauge theories [1–3]. When
the scattering amplitudes of holographic QCD are seen as
an amplitude of hadrons in four dimensions, some part of
the Regge behavior of the scattering amplitude of strings in
10 dimensions still seem to remain. The Pomeron trajecto-
ries predicted by holographic QCD are not linear, on the
other hand, and the complex j-plane description of hadron
scattering amplitude of holographic QCD may be a little
different from what one naively imagines from traditional
Regge theory with some linear trajectories. The question
is, then, how they are different.
Preceding literatures [3,11,12] have already made ef-

forts in providing complex j-plane description of the scat-
tering amplitudes of holographic QCD. Our discussion in
Secs. IVA1 and IVA2 already shows the importance of
the saddle-point value j ¼ j�� of the scattering amplitude
in j-plane in extracting kinematical variable dependence of
the scattering amplitudes. It is thus worthwhile to take a
moment in this Sec. IVA 3 and elaborate more on the
j-plane description of the hadron scattering amplitudes in
holographic QCD. It is known that i) holographic QCD
gives rise to Kaluza-Klein towers of Pomeron trajectories,
and that ii) they are not linear. From these properties, we
will see in the following that scattering amplitudes are
described better by treating those trajectories individually
for some kinematical range, while they are better described
by treating a Kaluza-Klein tower as a whole for some other
kinematical regions. Such transitions are triggered by the
location of the saddle-point in the j-plane relatively to
other singularities of the amplitude.
Let us begin with studying behavior of the DDVCS

amplitude, not just for the physical region of the ðs; tÞ
plane, but for the region including real positive t. The
integrand of (75) can be regarded as a holomorphic func-
tion of � and t. The denominator of the second term,
Ii�ð

ffiffiffiffiffiffi�tp
=�Þ, becomes zero if

t ¼ �2ðji�;nÞ2; n ¼ 1; 2; � � � ;2 N; (104)

and these zeros in the denominator can be regarded as
poles in the �-plane for a given kinematical variable t.
As we analytically continuate the integrand from real
negative t���2 in the physical kinematical region to
real positive t� �2 through the upper-half complex plane
of t, the poles in the �-plane move and some of them show
up in the region with real positive i�; see (104). We
introduce a notation tc;n ¼ ð�j0;nÞ2; if tc;m < t < tc;mþ1,
there are m poles in the lower-half �-plane. The positions
of such poles satisfying (104) are denoted by �nðtÞ. Thus,

HIGH-ENERGY PHOTON-HADRON SCATTERING IN . . . PHYSICAL REVIEW D 84, 075025 (2011)

075025-17



for �2 � t, the integration contour in the �-plane needs to
be deformed as in Fig. 6(a), which can then be rearranged
as in Fig. 6(b).

Contributions from the poles � ¼ �nðtÞ can be written
as37

Ii ’
Xm
n¼1

�
� 1þ e��ij�nðtÞ

sinð�j�nðtÞÞ
�

1

�2ðj�nðtÞ=2Þ
�nð�P;nðtÞ; t; q2Þ

�
�

q2

4
ffiffiffiffi
�
p

x�2

�
j�nðtÞ

; (105)

where

j�nðtÞ ¼
�
j0 þ ði�Þ

2

2
ffiffiffiffi
�
p

�







�¼�nðtÞ

 �P;nðtÞ; (106)

and

�nð�P;nðtÞ;t;q2Þ

¼c0s
2
2�

ffiffiffiffi
�
p �

4�

j�;n
@j�;n

@�

�







�¼i�nðtÞ

������Pnð�P;nðtÞÞ�hhPnð�P;nðtÞÞ; (107)

�hhPnðjÞ ¼ 1


2
5

Z
dz

ffiffiffiffiffiffiffi�gp
PhhðzÞðz�Þj

� e�2AðzÞ
Ji�jðmj;nzÞ
J0i�j
ðji�j;nÞ

�

2
5

R3

�
1=2

(108)

¼ 1


2
5

Z
dz

ffiffiffiffiffiffiffi�gp
PhhðzÞðR�Þj

� e�2jA
�
eðj�2ÞA

�Ji�jðmj;nzÞ
J0i�j
ðji�j;nÞ

��

2
5

R3

�
1=2
�
:

(109)

Under the conditions that

j ¼ j� ðequiv� ¼ �jÞ and

� ¼ �nðtÞ ðequiv
ffiffi
t
p

=� ¼ ji�;nÞ; (110)

(from which j ¼ �P;nðtÞ follows), � ¼ �j ¼ �nðtÞ, and a

j-dependent mass parameter mj;n ¼ mð�Þn is defined by

mj;n 
 �ji�j;n ¼
ffiffi
t
p ¼ �ji�;n 
 mð�Þn : (111)

The factor �����PnðjÞ can also be defined similarly to

(108) and (109) by replacing PhhðzÞ by PðiÞ���� ðzÞ (i ¼ 0, 1)

in (73) and (74). Because the wave function of photon
depends on q2, it has dependence on q2. Explicitly, one

can find �����Pnð�P;nðtÞÞ � ð�=qÞ�ð�P;nðtÞÞþ2�P;nðtÞ, and

Ii ’
Xm
n¼1

�
� 1þ e��ij�nðtÞ

sinð�j�nðtÞÞ
�

� 1

�2ðj�nðtÞ=2Þ
~�nðtÞ

�
�

q

�
�ð�P;nðtÞÞ�1

x

�
�P;nðtÞ

; (112)

where ~�nðtÞ ¼ �nð�P;nðtÞ; t; q2Þðq=�Þ�ð�P;nÞþ2�P;n is inde-

pendent of q.
The expression (105) is precisely in the form assumed in

traditional Regge theory:

AReggeðs; tÞ ¼ �
I
j¼�ðtÞ

dj

2�i

1þ e�i�j

sin�j

�ðj; tÞ
j� �ðtÞ

�
s

s0

�
j

¼ � 1þ e�i��ðtÞ

sin��ðtÞ �ð�ðtÞ; tÞ
�
s

s0

�
�ðtÞ

: (113)

Traditional theory was only able to assume a linear form

�ðtÞ ¼ �P;0 þ �0Pt (114)

for simplicity or from fit to experimental data, but holo-
graphic QCD predicts a trajectory (106); it is approxi-
mately linear for �2 � t (but not too large �t), but it is
not unless �2 � t. The residues �nð�P;nðtÞ; t; q2Þ satisfy
factorization condition; they factorize into �����Pnð�P;nðtÞÞ
and �hhPnð�P;nðtÞÞ holomorphically in j ¼ �nðtÞ. This

factorization is necessary for unitarity of hadronic scatter-
ing processes in 3þ 1 dimensions, which is not guaranteed
a priori in a theory that is not based on a local field theory
on 3þ 1 dimensions [29,71,72].38 Scattering amplitudes
of dual resonance model and superstring theory in 10

FIG. 6. integration contour in �-plane.

37Although we obtained (105) by analytical continuation of the
amplitude from t < 0 into t > 0 through the upper-half plane,
there is another derivation. In Sec. III A, we derived the Pomeron
kernel by inserting the complete system (58) into (54), but we
implicitly assumed that t < 0. For�2 � t, however, (58) is not a
complete system, as the ‘‘Schrödinger equation’’ ��jðtÞ�ðjÞ ¼ðE�=R

2Þ�ðjÞ may have discrete spectrum as well [3]. Indeed, the
wave functions (117) become the discrete spectrum of �jðtÞ by
replacing i�j with i�nðtÞ and mj;n with

ffiffi
t
p

, respectively. The pole
contributions (105) come from the discrete spectrum part of the
inserted complete system.

38Factorization predicts relations among differential cross sec-
tions: d	elðAþ BÞ=d	elðAþ CÞ ¼ d	elðDþ BÞ=d	elðDþ CÞ
[31].
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dimensions have the factorization property [73], and the
factorization (107) in four dimensions is remnant of the
factorization in string theory on higher dimensions.

We have so far dealt with the (analytic continuation of
the) scattering amplitude Ii, but closer connection to the
classical Regge theory can be established by clarifying
physical meaning of �P;nðtÞ in (106) and of the factorized

residues �n / �hhPnðj ¼ �P;nðtÞÞ (107) and (109). The

Pomeron-hadron-hadron coupling �hhPnðtÞ (109) looks
like an overlap integration of three wave functions; two
of them PhhðzÞ ¼ c�½�ðzÞ�2 are those of the target hadron,
and the last one satisfies

�
�jðtÞ þ �2 þ 4

R2

�
½eAðj�2ÞJi�ð

ffiffi
t
p

zÞ� ¼ 0: (115)

For a special case as in (109), when �, t, and j are related
by � ¼ �j and t ¼ m2

j;n, this means

�
�jðm2

j;nÞ �
2

�0
ðj� 2Þ

�
½eAðj�2ÞJi�jðmj;nzÞ� ¼ 0; (116)

which is the equation of motion for spin j string state39 on
the graviton trajectory in AdS5, when j 2 2N; this mo-
mentum in the 3þ 1-dimensional Minkowski spacetime is
on the mass shell t ¼ m2

j;n in this wave function, when the

IR boundary condition is satisfied. Therefore, j ¼ �P;nðtÞ
describes the spin–mass relation of 4D hadrons corre-
sponding to the n-th Kaluza–Klein mode in the spin j
string state in the graviton trajectory; j ¼ �P;n¼1ðtÞ is the
leading trajectory, and j ¼ �P;nðtÞ with 2 	 n 	 m be-

come daughter trajectories [3]. Normalizable wave func-
tions of all the 4D hadrons in the trajectory j ¼ �P;nðtÞ
(110) are reproduced from a single wave function

c ðjÞn ðzÞ ¼ eðj�2ÞA
Ji�j
ðmj;nzÞ

J0i�j
ðji�j;nÞ

�

2
5

R3

�
1=2

(117)

defined for j 2 C; the wave function for j 2 2N is simply
the special case of the one above. One might refer to (117)
as a wave function of the n-th Pomeron trajectory. The
Pomeron-hadron-hadron coupling �hhPnðjÞ is given by an
overlap integral of two �’s along with this wave function

c ðjÞn ðzÞ of the n-th trajectory. That is,

�hhPnðjÞ ¼ 1


2
5

Z
dz

ffiffiffiffiffiffiffi�gp
PhhðzÞe�2jAc ðjÞn ðzÞ � ðR�Þj:

(118)

When t < tc;1, on the other hand, all the poles in the

lower-half �-plane have moved back to the upper-half
plane, and the scattering amplitude Ii is given by a con-
tinuous integration of � real axis. The � integration in (83)
can be converted into j integration40 through a change of
variables j ¼ j�, but there is no pole in this j integration,
unlike in the traditional form of Regge theory amplitude
(113); the DDVCS amplitude (78), (83), and (87) that we
studied in Secs. IVA 1 and IVA2 for t < tc;1 do not seem to

be based on the Pomeron pole exchange idea, at least
apparently.41 If so, while the coefficient of the

ðW2Þj¼�nðtÞ factor for tc;n < t, �hhPn
ðjÞ, can be character-

ized as hadron–hadron–[Pomeron j ¼ �nðtÞ] three point
coupling (118), how should we characterize the coefficient
of the ðW2Þj�� factor for t < tc;1, ghi�� ð

ffiffiffiffiffiffi�tp
=�Þ, in the

absence of Pomeron exchange picture?
Field theory dual language is useful in characterizing the

factorsCðiÞi� , Ahh and g
h
i�ð

ffiffiffiffiffiffi�tp
=�Þ in (78)–(80). Let us define

½CðiÞðj; qÞ�1=� ¼ CðiÞi�j
�
�
�

R

���ðjÞ
;

½Ahhðj;W2; tÞ�1=� ¼ Ahh �
�
�

R

�
�ðjÞ

(119)

for a parameter � that has a dimension of [length]. Then

one can see that the two factors ½CðiÞðj; qÞ�1=� and

½Ahhðj;W2; tÞ�1=� correspond to OPE coefficient of a twist-

2 spin j operator renormalized at � ¼ 1=�, and matrix
element of the spin j operator renormalized at ��1
[74–76]. To be more precise, we can define

½�hhP� ðj; tÞ�1=� 
 ½ghi�j
ð ffiffiffiffiffiffi�tp

=�Þ� � ð��Þ�ðjÞ;

¼ 1


2
5

Z
dz

ffiffiffiffiffiffiffi�gp
Phhe

�2jAðR�Þj
� ffiffiffiffiffiffi�tp
2�

�
i�j

� 2

�ði�jÞ ð��Þ
�ðjÞ

�
eðj�2ÞA

�
Ki�jð

ffiffiffiffiffiffi�tp
zÞ

� Ki�j
ð ffiffiffiffiffiffi�tp

=�Þ
Ii�j
ð ffiffiffiffiffiffi�tp

=�Þ Ii�j
ð ffiffiffiffiffiffi�tp

zÞ
��

(120)

by pulling out ðW2Þj � ð2q � pÞj from ½Ahhðj;W2; tÞ�1=�. It
is easy to see that the short distance scale R drops out from
(120), and ½�hhP� ðj; tÞ�1=� can be expressed only in terms of

low-energy data and renormalization scale � ¼ 1=�. Now
one can see that

39The mass of the string will differ from one in the flat space.
But we have shown in Sec. III A that the mass shift �j can be
consistently neglected within our approximation.

40The integration contour becomes the one in Fig. 7(a).
41It should also be kept in mind that the subleading contribution
comes from the exchange of the second Pomeron trajectory (the
n ¼ 2 term in (105) for tc;2 < t, which is power suppressed,
�ð�2=W2Þ�1ðtÞ��2ðtÞ. Corrections to (87) and (96) on the other
hand, are suppressed only by

ffiffiffiffi
�
p

= lnðW2=�2Þ.
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X
j22N
½CðiÞðj; qÞ�1=�½Ahhðj;W2; tÞ�1=�

� X
j22N

1

ð�qÞ�ðjÞ
1

ðq2Þj ðq � pÞ
j½�hhP� ðj; tÞ�1=�

� X
j22N

1

ð�qÞ�ðjÞ
1

ðq2Þj ½q�1
� � �q�j

�

� hhðp2Þj½T�1����j�1=�jhðp1Þi: (121)

Therefore, ½�hhP� ðj; tÞ�1=� is regarded as the coefficient of

[p�1 � � �p�j] of the matrix element of the target hadron h
with insertion of a twist-2 spin j operator ½T�1����j�1=� (that
is, spin j form factor or reduced matrix element). �hhP� ðj; tÞ
is now defined for arbitrary j 2 C in the expression above,
not just for j 2 2N.

Using the Kneser-Sommerfeld expansion of modified
Bessel functions,42 one can see for arbitrary complex j
and t that

½�hhP� ðj; tÞ�1=� ¼
X1
n¼1

�2
t�m2

j;n

�hhPnðjÞ
�j�2

ðmj;n

2 Þjðmj;n�

2 Þ�ðjÞ
½j0i�jðji�j;nÞ�

� 2

�ði�jÞ
�
R3


2
5

�
1=2

: (123)

The spin j form factor �hhP� ðj; tÞ to be used in describing
the DDVCS amplitude for t < tc;1 and the hadron-hadron-

[Pomeron j ¼ �nðtÞ] three-point couplings �hhPnðjÞ are
related as above. Such a relation between a form
factor FðtÞ and three-point couplings of Kaluza-Klein
hadrons ghhn,

FðtÞ ¼ X1
n¼1

1

t�m2
n

ghhnFn; (124)

has been known for conserved currents [4–6]. Here, (123)
establishes such a relation simultaneously for arbitrary
j 2 C, not just for a given spin, and that makes it possible
to ‘‘sum up’’ Pomeron exchange amplitudes labeled by the
Kaluza-Klein excitation level n.

Now we know that the amplitude is given (approxi-
mately) by Kaluza-Klein tower of Pomeron pole ex-
change43 for large positive t (tc;1 � t), while the entire

amplitude as a whole is approximated by the saddle-point
method for large negative t (t & tc;1). Since tc;1 ¼ ð�j0;1Þ2
in the hard-wall model is positive, the latter should be
applied for all the physical region t 	 0. Such subtle
things, however, depend on details of infrared geometry
of holographic models, and cannot be regarded as a robust
prediction of holographic QCD.
Imagine, for example, a holographic model correspond-

ing to an asymptotic free running coupling constant (e.g.
[77]). With the AdS5 curvature changing over the holo-
graphic radius, the entire spectrum of the Schrödinger

equation ��jðtÞ�ðjÞi� ðt; zÞ ¼ ðE�=R
2Þ�ðjÞi� ðt; zÞ becomes

discrete [3].44 It is now more convenient to write the
amplitude in complex j-plane, rather than in �-plane.
The branch cut at j 	 j0 in the hard-wall model is replaced
by a densely packed pole along the real j axis, and there is
no special value like tc;1 for some critical change in the

spectrum. The spectrum may change for different values of
t, like in Fig. 7(c)–7(e), but they are not different qualita-
tively. Thus, there is nothing wrong a priori in choosing the
integration contour as in (d) or (e), even for a given
spectrum.
There exists a convenient choice of the contour in the

j-plane, however. That is to let the contour to pass the
saddle-point j ¼ j�� , and treat all the poles to the right of
the saddle-point (i.e., j�� < Rej) as isolated discrete con-
tributions. All the rest are treated as if they formed a
continuous spectrum as in the hard-wall model. As
we will see in the following, whether there are some
poles remaining to the right of the saddle point (e.g.,
Fig. 7(b), 7(d), and 7(e)) or not still works as a criterion
for various physical transitions, independently of detailed
difference in various holographic models.
The saddle point in the j-plane is understood as a con-

sequence of two competing effects in the DDVCS. One is
the ðW2=�2Þj ’ ðq2=x�2Þj factor, which is large for large
real j. The coupling of spin j string state with a virtual

photon, on the other hand, behaves as ð�=qÞ2jþ�ðjÞ, where
�ðjÞ is the anomalous dimension of the operator corre-
sponding to the string state. This second factor is small for
large real j. These two factors combined, (91), forms a
saddle-point j� in the j-plane for W � q� � (meaning
x� 1); it is quite generic for holographic models with42For 0	w	W	1 and arbitrary complex numbers � and �,

�

4

J�ð�wÞ
J�ð�Þ ½J�ð�ÞY�ð�WÞ � Y�ð�ÞJ�ð�WÞ�

¼ X1
n¼1

1

�2 � ðj�;nÞ2
J�ðwj�;nÞJ�ðWj�;nÞ

½J0�ðj�;nÞ�2
: (122)

This is regarded as the Green function on AdS5 with an infrared
cutoff, seen as a propagation of a 5D field (left hand side), or of a
Kaluza-Klein tower of 4D fields (right-hand side).
43As we are talking about closed string amplitude, contributions
from a single trajectory cannot be regarded as their t-channel
exchange; they can be regarded as a sum of t-channel and
u-channel exchange, however. See the review material in
Sec. III A.

44Although we talk of ‘‘asymptotic free’’ running, it is safer to
consider gravity dual models corresponding to gauge theories
with asymptotic free running only up to some energy scale,
above which they become strongly coupled conformal theories
(e.g. [77]). In this case, although there are many bound states in
the spectrum of the Schrödinger equation, the continuous spec-
trum still remains. Thus, the densely packed poles are still
followed by a branch cut along the real j axis in the small Rej
region. As long as one pays attention to a certain region in the
j-plane, rather than to formal difference in the literally large
negative Rej limit, the such models pass for asymptotic free
gravity dual models. Whenever we refer to asymptotic free
gravity dual models in this article, this must be understood.
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R2 � �0 that the large j behavior45 of the anomalous

dimension is �ðjÞ � ½ ffiffiffiffi
�
p

j�1=2. (We neglect here correction
from the factor of power of

ffiffi
t
p

=�.) Thus, in the right-hand
side of the saddle-point j� in the j-plane, j� < Rej, the
larger the real part of a pole, the larger the contribution of
the pole is. Writing down the amplitude as a sum of these
poles, starting from the one with the largest real part of Rej
to the ones with smaller Rej, we obtain a finite term sum
that gives a good approximation to the amplitude.
Individual contributions from the poles in the left-hand
side of the saddle-point j�, on the other hand, becomes
larger and larger as the real part of j of the poles become
smaller. Thus, their sum does not make sense46; all con-
tribution in the left hand side should be treated as an
integration on a contour as in Fig. 7(d). All of these
contributions combined can be evaluated by the saddle-
point method, as we have presented by using the hard-wall
model, and their contribution is

�
1ffiffiffiffi
�
p

x

�
j���

q

�
�j�

: (125)

This contribution is even smaller than the one from a pole
whose real part is even slightly larger than j�. This is why it
is convenient to take the contour in j-plane so that it passes
the saddle-point as shown in Fig. 7(d).
Then we can understand that there is a transition depend-

ing on whether the saddle-point value j�ðx; q; tÞ has a larger
real part than that of the leading singularity (one in the
j-plane with the largest real part), j ¼ �P1ðtÞ. It is easy to
see this in �eff (which we have already discussed in
Sec. IVA1).

�effðx; t; q2Þ ¼
8<
:�P;1ðtÞ � 1 q < qcðx; tÞ;
j� � 1 q > qcðx; tÞ;

(126)

where the transition is induced (assuming that �ðjÞ is a
decreasing function of j along the real axis) at

@�ðjÞ
@j









j¼�P;1ðtÞ
¼ @�ðjÞ

@j









j¼j�ðq¼qcÞ
¼ lnð1= ffiffiffiffi

�
p

xÞ
lnðqc=�Þ : (127)

Schematically, it behaves as in Fig. 8(a). In the following,
we will refer to the two phases47 as

FIG. 7. Singularities and integration contours in complex j-plane. Hard-wall model is assumed for (a) t� tc;1 and (b) tc;1 � t, while
a holographic model for asymptotic free running coupling is assumed (c) with a smaller t and (d, e) with a larger t. The panels (d) and
(e) differ only in the choice of contour. Black dots are poles, wiggling lines in (a, b) are branch cuts, and open circles in (a–e) denote
saddle points of the amplitude on the complex j-plane.

45We are not talking about j as large as
ffiffiffiffi
�
p

, however.
46In asymptotic free gravity dual models in the sense of foot-
note 44, the series of poles stop at a certain small value of Rej,
and a branch cut starts toward large negative Rej. Thus, the
contour can be chosen so that the amplitude is given by a sum of
all the individual pole contributions and an integral around the
branch cut. The sum is thus, formally, well-defined in this sense.
It will be obvious, because of the discussion in the main text,
however, that the resulting many-term summation contains large
cancellation between the cut contribution and the pole contribu-
tions, and is not as practically useful an expression as what we
described in the main text.

47The KK-sum Spin-sum phase (saddle-point phase) is divided
into two phases, when the real part of the scattering amplitude is
studied. One of them is still called KK-sum Spin-sum phase
(saddle-point phase), and the other as KK-sum low-spin phase
(spin-2 phase). See [11] and Sec. IVC of this article.
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(i) Low-KK Spin-sum phase or Leading pole phase
(leading singularity phase), where the leading singu-
larity has a larger real part than the saddle point, and

(ii) KK-sum Spin-sum phase or Saddle-point phase,
where the saddle-point value is larger than the real
part of the leading singularity in the j-plane.

It is intuitively obvious in gravity dual descriptions that the
saddle-point phase is realized (and such observables as �eff

and �eff are controlled by the saddle-point value j�) for
larger q2, not the other way around; the holographic wave
function of photon with larger virtuality makes the photon-
[spin-j string] couplings weaker, and the couplings for
larger spin states are affected more severely than those
for smaller spin states, because of the stronger power-law
behavior of the holographic wave functions of the higher
spin states. See (79) and definition of �����PnðjÞ. The factor
ð�=qÞ2jþ�ðjÞ comes from there, and consequently, the
saddle-point value j� shifts to the right in the j-plane to
enter into the saddle-point phase. See Fig. 9.

In fact, the transition between the two phases is not a
singular phase transition but a crossover, unless we literally

take a small x limit. As long as lnð1=xÞ= ffiffiffiffi
�
p

remains finite,
the saddle-point approximation is never exact, and the
notion of the saddle-point itself should be accompanied

by a width proportional to ½lnð1=xÞ= ffiffiffiffi
�
p ��1=2. Although we

defined the two phases by simply comparing the real part
of the leading singularity j ¼ �P;n¼1ðtÞ and the saddle-

point j�, we should also keep in mind that the n ¼ 2 and
higher Kaluza-Klein contributions give rise to finite cor-

rections (for finite lnð1=xÞ= ffiffiffiffi
�
p

) to the leading pole contri-
bution in the leading pole phase; the corrections (and
cancellation) may be sizable for negative t and finite

lnð1=xÞ= ffiffiffiffi
�
p

. For those reasons, the transition between the
two phases can be a singular genuine phase transition only

in the lnð1=xÞ= ffiffiffiffi
�
p ! 1 limit.

Phases are determined by kinematical variables
ðx; t; q2Þ, and kinematical variable dependence of all the
observables, not just �eff , will be different for different
phases. Real part to imaginary part ratio of the scattering
amplitude, which we study in Sec. IVC, is an example.

Note also that the saddle-point value j� depends on
momentum-transfer t, not just on ðx; q2Þ, and the leading
Pomeron pole also depends on t. Thus, the crossover
should also be induced by the kinematical variable t (at
least somewhere in the t-plane). In Sec. IVA4, we study
another observable, t-slope parameter Bðx; � ¼ 0; t; q2Þ,
and discuss its crossover behavior (like in Fig. 8(b)).

4. Slope parameter of the forward peak

We have so far focused on various features of the
DDVCS amplitude that are robust and do not depend on
detailed difference of holographic models. Individual holo-
graphic models, however, have full control over nonper-
turbative aspects of hadron physics, and more (possibly
model dependent) information can be extracted. The ex-
pression (87), for example, tells us how to calculate full
t-dependence of the (imaginary) part of the DDVCS am-
plitude, not just for t ¼ 0 and the �2 ��t asymptotic
region.
The slope parameter of forward peak (t-slope parameter)

in the elastic scattering of two hadrons,

Bðs; tÞ 
 @

@t
ln

�
d	el

dt
ðs; tÞ

�
; (128)

is an observable that characterizes the transition from t � 0
region to �2 ��t region, and has been measured for
pþ p and pþ �p scattering at various energy scales
(e.g., [31]). The slope parameter has also been measured
in HERA experiment for �� þ p! �þ p scattering
(DVCS) [78–80]. In this Sec. IVA 4, we will first use the
hard-wall model to derive an explicit prediction of the

FIG. 8. Transitions (crossover, to be more precise) in (a) �eff as
a function of q2 for fixed ðx; tÞ, and (b) in [d½ImIi�2=dt] as a
function of t for fixed ðx; q2Þ. FIG. 9. Phase diagram (at a given value of t) in the strong

coupling regime. I: leading singularity phase, II: saddle-point
phase with �eff < 0 and III: saddle-point phase (spin-2 phase)
with 0< �eff . A region where higher genus amplitudes are just
as important as the sphere amplitude, phase IV, is characterized
by the condition j
sphereðb� 1=�Þj �Oð1Þ, just as in [11]. The
leading singularity phase I is absent in the forward scattering
t ¼ 0 in the hard-wall model, as in [11]. This phase diagram in
the strong coupling regime looks quite similar to that of QCD.
The boundary lines between the phase I and II, and II and III,
however, are nearly vertical in the strong coupling regime, rather
than being nearly horizontal as in the weak coupling regime.

RYOICHI NISHIO AND TAIZAN WATARI PHYSICAL REVIEW D 84, 075025 (2011)

075025-22



slope parameter in the photon–hadron scattering at vanish-
ing skewedness � ¼ 0 (DDVCS process) for simplicity.
Later on, we will discuss how much predictions on the
slope parameter could be different for different holo-
graphic models, and discuss the possible crossover to be
seen in the slope parameter (for some holographic models).

We define the slope parameter in nonskewed DDVCS
by48

Biðx; � ¼ 0; t; q2Þ ¼ 2
@

@t
lnImIiðx; � ¼ 0; t; q2Þ: (129)

Let us first work out the prediction of the slope parameter
in the saddle-point phase, and then present the result in the
leading pole phase later.

In the saddle-point phase (KK-sum spin-sum phase), the

factor ð1=xÞj� � ð�=qÞ�ðj�Þ in (87) does not contribute to
the slope parameter, because the saddle-point value
j� ¼ j�� does not depend on t for 0 & ð�tÞ & �2. The
slope parameter comes entirely from Pomeron–hadron
form factor ½�hhP� ðj�; tÞ�1=� / ghi�� ð

ffiffiffiffiffiffi�tp
=�Þ, which is re-

garded as a ‘‘spin j ¼ j� form factor.’’ The Pomeron-
hadron-hadron coupling behaving like a form factor is
similar to the idea advocated in [81,82], but the form factor
turns out not to be precisely the same as the electromag-
netic (spin 1) or gravitational (spin 2) one. There exists a
notion of form factor �hhP� ðj; tÞ that is holomorphic in spin
j, and the one with the saddle-point value of j ¼ j� is
relevant for the DDVCS amplitude; the saddle-point value
j� ¼ j�� is determined by ðx; t; q2Þ as we have already seen
in sections IVA 1 and IVA2.

It is straightforward to calculate the slope parameter in
the saddle-point phase,

Bðx; � ¼ 0; t; q2Þ ’ 2
@

@t
ln½�hhP� ðj�; tÞ�; (130)

by using the explicit expression of the form factor49 (120).
The result is shown in Fig. 10. The larger the spin j� (and
hence i��), the smaller the slope. At t ¼ 0, the slope
parameter is now the same as the ‘‘charge radius square’’
of the hadron under a ‘‘spin-j� probe’’.

When the slope parameter is seen as a function of q2 and
W2, it changes only through the change in the saddle-point
value j� ¼ j�� . Because

@½i��ðq2; W2Þ�
@ lnðq2=�2Þ ’

i��

lnðq2=�2Þ> 0;

@½i��ðq2; W2Þ�
@ lnðW2=�2Þ ’ �

i��

lnðW2=�2Þ< 0;

(131)

the slope parameter decreases for larger lnðq2=�2Þ, and
increases for larger lnðW2=�2Þ in this saddle-point phase
prediction. It must be more sensitive to lnðq2=�2Þ than to
lnðW2=�2Þ for small x [ lnð1=xÞ � lnðq2=�2Þ], because of
the denominators in (131). That is, we find the following
qualitative prediction of the saddle-point phase50:

@B

@ lnðq=�Þ< 0;
@B

@ lnðW=�Þ> 0;







 @B

@ lnðW=�Þ








�









 @B

@ lnðq=�Þ








:

(132)

There are three remarks here, before we move on to
discuss predictions on the slope parameter from the leading
pole phase. The first remark is on the size of the slope
parameter of the forward peak. It is of order 1=�2 in this
prediction of the saddle-point phase, and is not tied to the
slope of Pomeron trajectories; the asymptotic slope of the

trajectories is of order ð1=�2Þ � ð1= ffiffiffiffi
�
p Þ (see (154)).

Second, let us discuss the momentum-transfer depen-
dence of the slope parameter within the saddle-point phase.
All the physical kinematical region t 	 0 is in the saddle-
point phase in the hard-wall model, and the phase appears
at least for sufficiently negative t (t < tc;1) for any other

holographic models. Because of the power-law behavior of

0 1 2 3 4
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0.2

0.3

0.4

0.5

FIG. 10 (color online). Slope B of the forward peak in
DDVCS. The dimensionless value B��2 is shown as
a function of i�� (86); from top to bottom, blue (solid line)
curve is for

ffiffiffiffiffiffi�tp
=� ’ 0:01� 0:1, red (long dashed) one forffiffiffiffiffiffi�tp

=� ¼ 1., yellow (dashed) one for
ffiffiffiffiffiffi�tp

=� ¼ 3., and green
(short dashed) one for

ffiffiffiffiffiffi�tp
=� ¼ 6. We used the wave function

of the target hadron (8) for the first excited (n ¼ 1) mode with
conformal dimension � ¼ 5, and the ’t Hooft coupling was set
to

ffiffiffiffi
�
p ¼ 10 in this calculation. t-dependence is very weak for

0 	 �t & �2.

48We could define the slope parameter B by the absolute value
jIij, not by the imaginary part ImIi as in (129). This choice,
however, makes no difference as long as ð�tÞ & �2, and
�eff < 0 (the condition for the real part to be outside spin-2
phase); see Sec. IVC 1. This is because in this region the real-to-
imaginary ratio of Ii is not dependent on t, (163). It is very likely
that the most of the kinematical reach of DVCS measurement in
HERA [78–80] is also in this region.
49A grossly incomplete list of literatures on fixed spin form
factor in holographic methods will include [4,6,64–67,83–88].

50In this article, we assume the generalized Bjorken regime, (3)
and (21), exponentially small x (53), and large ’t Hooft coupling,
with an extra constraint j� & Oð1Þ (i.e., i�� & �1=4).
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the form factor in UV conformal theories, the slope pa-
rameter behaves as / 1=ð�tÞ for large (�t). The slope
parameter does not diverge toward t! 0� (if all the range
of t 	 0 is in the saddle-point phase), however, and it
approaches a finite plateau value of order 1=�2 instead.
Whether there is a range of t (in small jtj) where the
amplitude shows exponential falloff in t is about the stabil-
ity of the plateau value of B for a finite range of t, and about
the plateau range and plateau value. This is a quantitative
question whose answer depends on details of holographic
models, and we do not discuss more about this question in
this article.

Finally, it is important to note that the argument above
on the W2 and q2-dependence of the slope parameter B
(132) can be applied to other observables of the DDVCS
amplitudes, as long as they depend on q2 and W2 only
through the saddle-point value j�. Their lnðq2=�2Þ and
lnðW2=�2Þ-dependence are always opposite, and the
lnðq2=�2Þ-dependence must be stronger at sufficiently
small x, because the saddle-point j� has three properties:

@j�

@ lnðq=�Þ> 0;
@j�

@ lnðW=�Þ< 0;







 @j�

@ lnðW=�Þ








�









 @j�

@ lnðq=�Þ








:

(133)

This argument can be applied, for example, to �eff and �eff .
Let us now move on to the leading pole phase. Although

all the physical kinematics t 	 0 are in the saddle-point
phase in the hard-wall model, there may also be a range of
the leading pole phase within the physical region in some
holographic models, such as asymptotic conformal models
with negative tc;1 and asymptotic free models, as we have

seen in Sec. IVA 3. In such holographic models, the cross-
over between the two phases may be observed in the slope
parameter within the physical kinematic range t 	 0. The
slope parameter in the leading pole phase comes mainly
from the factor��

W2

�2

�
j
�����P1

ðjÞ
�







j¼�P;1ðtÞ

�
��

1

x

�
j
�
�

q

�
�ðjÞ�







j¼�P;1ðtÞ

(134)

in the small x and large q2 region; the t-dependence in the
Pomeron coupling �����P1

ð�P;1ðtÞÞ is now ignored. Thus,

we have

Bðx; � ¼ 0; t; q2Þ

’ 2
@�P;1ðtÞ

@t

�
lnð1=xÞ þ @�

@j









j¼�P;1ðtÞ
lnð�=qÞ

�
:

(135)

For sufficiently small x, this is of the order of

B ’ 1

�2

lnð1xÞffiffiffiffi
�
p : (136)

This is larger than the slope parameter in the saddle-point
phase, B�Oð1=�2Þ, in the small x regime (53) we have
been studying in this article. Thus, the crossover between
the two different phases are induced schematically as in
Fig. 8(b), where the large slope falloff of the scattering
amplitude in larger (more positive) t breaks into smaller
slope behavior in smaller (more negative) t, when
½@�=@j�jj¼�P;1ðtÞ comes close to ½@�=@j�jj¼j� .
Even in asymptotic conformal theories with negative tc;1

and in asymptotic free theories, where the leading pole
phase may exist in the physical kinematical region t 	 0,
one always enters into the saddle-point phase for suffi-
ciently high q2; this behavior is understandable just like in
the case of �eff .
It is an interesting question, at least from a theoretical

perspective,51 and also from the context of fitting experi-
mental data, whether such a crossover should be expected
within the physical kinematical range t 	 0. The answer is
‘‘no’’ in the hard-wall model. But, the answer depends on
infrared geometry of holographic models, and a robust
conclusion cannot be drawn only from the experience in
the hard-wall model. It is interesting to know the answer to
this question in holographic models whose infrared geome-
try is fully faithful to the equation of motions of Type IIB
string theory [89].

B. Impact-parameter dependence of the imaginary part

One can take a Fourier transform of ImViðx; �; t; q2Þ’s
with� ¼ 0, to obtain distributions in the impact-parameter
space. Such distributions are interesting on their own,
because they show transverse spacial distribution of longi-
tudinal momenta in the target hadron [22]. Also, unitariza-
tion of high-energy elastic scattering amplitude and DIS
cross section needs to be discussed in the impact-parameter
space, because all the partial wave amplitudes, i.e., for any
values of impact parameter, should be unitary (e.g. [31]).
Although the impact-parameter dependent amplitude of
hadron-virtual photon elastic scattering has already been
formulated in [3,10–12,17,18] in holographic calculations,
we elaborate more on this in the following, and find a result
(151)–(153) and the phase diagram in Fig. 13, which
certainly refines the results that are already found in the
literature.
The impact-parameter dependence, and hence the

momentum-transfer dependence, comes mainly from the
Pomeron kernel. The profile from the Pomeron kernel is

extended over the size of order b��½lnð1=xÞ= ffiffiffiffi
�
p �1=2�1,

as we will also see explicitly later. Although the virtual
photon wave function also have t ¼ ��2 dependence
through q21;2 ¼ q2 þ �2=4, this dependence is relevant to

51In reality, unitarity limit is reached and 1=Nc-suppressed
contributions (that we ignored throughout in this article) also
become important at sufficiently high energy. Such a high energy
region is described as phase IV in Fig. 9.
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the transverse profile only in the short distance of order
b� 1=q, so we neglect this contribution. Thus, the impact-
parameter dependence purely comes from the Pomeron
kernel. Fourier transform of the kernel is

Kðs; b; z; z0Þ ¼
Z d2 ~�

ð2�Þ2 e
�i ~�� ~bKðs; t ¼ ��2; z; z0Þ

¼ 1

4�

Z 1
0

d�2J0ðb�ÞKðs; t; z; z0Þ: (137)

The confinement effects (finite � effects) are crucial for
the impact-parameter profile at long distance, b�� 1.
The profile in hard-wall model shows quite different be-
haviors from one in conformal theory (corresponding to
�! 0) [12]. Because we are interested in hadrons in
confinement, we examine the explicit form of the
Pomeron kernel including the second term of (76), in
detail.

As we have already mentioned in section III and
section IVA, the integrand of the Pomeron kernel (64) and
(76)52 is holomorphic (except some singularities) not just
in spin j and anomalous dimension (i�� j), but also in

momentum-transfer t, except at poles t ¼ ð�ji�;nÞ2 ¼
ðmð�Þn Þ2 in (104). Thus, one can rewrite the kernel for
t ¼ ��2 	 0 on the real negative axis as

K ðs; t; z; z0Þ ¼ 1

2�i

Z
C
dt0

Kðs; t0; z; z0Þ
t0 � t

; (138)

using the function Kðs; t0; z; z0Þ holomorphic in t0 (except
the poles) and an integration contour C which goes around
the nonpositive real axis counterclockwise [Fig. 11(a)]. Its
impact-parameter space representation becomes53

K ðs; b; z; z0Þ ¼ 1

2�i

Z
C
dt0

K0ðbðt0Þ1=2Þ
2�

Kðs; t0; z; z0Þ:
(140)

Because of the holomorphicity in the complex t0-plane,
the contour C can be deformed as in Fig. 11(b), picking
residues at the �-dependent poles in the t0-plane; we can do
this, because the integrand (for given �) vanishes exponen-
tially at jt0j ! 1. One can show that

Kðs; b; z; z0Þ ¼ � 8
ffiffiffiffi
�
p

�2

�2

Z þ1
�1

d�i�

�
1þ e��ij�

sinð�j�Þ
�

� 1

�2ðj�=2Þ
�
�0~s
4

�
j�

�X1
n¼1

e�2AðzÞ
Ji�ðmð�Þn zÞ
J0i�ðji�;nÞ

Ji�ðmð�Þn z0Þ
J0i�ðji�;nÞ

� e�2Aðz0ÞK0ðmð�Þn bÞ: (141)

The imaginary part [resp. real part] of Kðs; b; z; z0Þ
is obtained by taking imaginary part [resp. real part] of
[1þ e��ij�], as the Fourier transform works separately for
the imaginary part and real part in (137). The n-th term
corresponds to the n-th term of (105).
Let us examine the profile of the imaginary parts of I0;1

in the impact-parameter space. We will focus on a region

b� ��1; (142)

where the series of contributions from Kaluza-Klein tower
of Pomeron trajectories (141) converges quickly; since the

real part of mð�Þn is of the same order or larger than the
hadronic scale � at least for moderate value of � 2 R and
n 2 N, we can approximate

K0ðmð�Þn bÞ ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

2mð�Þn b

s
e�m

ð�Þ
n b: (143)

Therefore, in this region, (142), the amplitudes (141) are
dominated by the leading (lowest Kaluza-Klein) Pomeron
trajectory, n ¼ 1, and the contributions from the higher
Kaluza-Klein trajectories are suppressed by of order

e�ðb�Þð�=2Þn.
At small x, (51) and (53), the impact-parameter depen-

dent Pomeron kernel can also be evaluated by the saddle-

point method. In addition to the ð�0~sÞj� and K0ðbmð�Þ1 Þ
factors, another factor Ji�ðmð�Þ1 zÞ may also give rise to a
large dependence in �; dominant contribution to scattering
amplitudes come only from small z� 1=q region in

FIG. 11. (a) contour in the t-plane before deformation, along
with location of singularities (for some fixed �), and (b) the
contour after deformation.

52The ‘‘imaginary’’ part means the imaginary part when both s
and t are real. The ‘‘imaginary part’’ and ‘‘real part’’ of the
kernel separately become holomorphic functions of complex
valued t.
53The following relation is used:

Z 1
0

d�2 J0ðb�Þ
t0 þ�2

¼ 2K0ðbt01=2Þ; ��< argt0 <�: (139)
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DDVCS as well as in DIS, and hence Ji�ðmð�Þ1 zÞ �
ðmð�Þ1 zÞi�. The saddle-point ��ðq=�; x;bÞ is, therefore,
determined by

i��ðq=�; x; bÞ ¼ lnðq�Þ þ b�
@ji�;1
@i� ji�¼i��

1ffiffiffi
�
p lnðq=�ffiffiffi

�
p

x
Þ : (144)

Therefore, we find that

ImIiðx; � ¼ 0; ~b; q2Þ
ImIiðx; � ¼ 0; t ¼ 0; q2Þ �

ð 1ffiffiffi
�
p

x
Þj��ðbÞ ð�qÞ���ðbÞ�2e�m

ð��ðbÞÞ
1

b

ð 1ffiffiffi
�
p

x
Þj��ðt¼0Þ ð�qÞ���ðt¼0Þ

:

(145)

Note that the saddle-point value i��ðbÞ in the numerator is
determined by (144), while i��ðt ¼ 0Þ in the denominator
by (86). The x-dependent transverse profile of parton dis-

tribution54 is given by ImIiðx; � ¼ 0; ~b; q2Þdxd2 ~b.
The transverse profile above is not a simple function,

especially because mð�
�ðbÞÞ

1 depends on x, q2 and b through
(144). In order to extract the qualitative feature of the
profile, let us first consider situations where the saddle-
point value i��ðbÞ is much smaller or much larger than
unity. Then the following expansion of the zeros of Bessel
functions of order i�, ji�;n, can be exploited in order to

understand how the saddle-point value i��ðq=�; x; bÞ is
determined by x, q2 and b through (144):

ji�;n ’ j0;n þ cni�þOðði�Þ2Þ; (146)

ji�;n ’ i�þ dnði�Þ1=3 þOðði�Þ�1=3Þ (147)

with positive numbers cn and dn of order unity [90].
55 The

saddle point stays within j��j � 1, when

lnðq=�Þ
lnð1=x ffiffiffiffi

�
p Þ= ffiffiffiffi

�
p � 1 and

b�

lnð1=x ffiffiffiffi
�
p Þ= ffiffiffiffi

�
p � 1

(148)

and the saddle point is

i��ðq=�; x;bÞ ’ lnðq=�Þ þ c1b�
1ffiffiffi
�
p lnðq=�ffiffiffi

�
p

x
Þ : (149)

On the other hand, when either of the left-hand sides of
(148) is much larger than unity, the saddle point becomes
j��j � 1 and

i��ðq=�; x; bÞ ’ lnðq=�Þ þ b�
1ffiffiffi
�
p lnðq=�ffiffiffi

�
p

x
Þ : (150)

Now it is easy to see the transverse profile for large q2

satisfying lnðq�Þ � ln½q=�ffiffiffi
�
p

x
�= ffiffiffiffi

�
p

; this situation corresponds

to ðx; q2Þ where �eff is positive, that is, PDF decreases in
DGLAP evolution, as we saw in Sec. IVA1.

ImIiðx; � ¼ 0; ~b; q2Þ
ImIiðx; � ¼ 0; t ¼ 0; q2Þ

��2 exp

�
� b� lnðq�Þ þ 1

2 ðb�Þ2
1ffiffiffi
�
p lnðq=�ffiffiffi

�
p

x
Þ

�

�
8><
>:
e�ðð

ffiffiffi
�
p

lnðq=�ÞÞ=ðlnððq=�Þ= ffiffiffi
�
p

xÞÞÞb�
�
b�� ln

�
q
�

	�
;

e�ððb�Þ2=ðð2=
ffiffiffi
�
p Þ lnððq=�Þ= ffiffiffi

�
p

xÞÞÞ
�
ln
�
q
�

	
� ðb�Þ

�
:

(151)

The profile remains linear exponential in the impact-
parameter b for smaller b, until it turns into Gaussian for
larger b.
Let us now study the transverse profile for smaller q2

satisfying lnðq�Þ � ln½q=�ffiffiffi
�
p

x
�= ffiffiffiffi

�
p

instead. This condition on

ðx; q2Þ corresponds to i��ðt ¼ 0Þ � 1, when the PDF still
increases under the DGLAP evolution, �eff < 0. The
saddle-point value i��ðq=�; x; bÞ becomes large for large
bwhich violates the second condition of (148). In this case,
by using (150), the transverse profile turns out to be
Gaussian approximately

ImIiðx; � ¼ 0; ~b; q2Þ
ImIiðx; � ¼ 0; t ¼ 0; q2Þ ��2e�ððb�Þ2=ðð2=

ffiffiffi
�
p Þ lnððq=�Þ= ffiffiffi

�
p

xÞÞÞ

�
for

1ffiffiffiffi
�
p ln

�
q=�ffiffiffiffi
�
p

x

�
� ðb�Þ

�
: (152)

In a range of smaller impact parameter where i��ðbÞ & 1,
however, the expression cannot be simpler than

ImIiðx; � ¼ 0; ~b; q2Þ
ImIiðx; � ¼ 0; t ¼ 0; q2Þ
��2e�bmð�

�ðq=�;x;bÞÞ
eþððð@j�;1=@�Þj�¼i��b�Þ2=ðð2=

ffiffiffi
�
p Þ lnððq=�Þ= ffiffiffi

�
p

xÞÞÞ
�
for ðb�Þ � 1ffiffiffiffi

�
p ln

�
q=�ffiffiffiffi
�
p

x

��
:

(153)

The transverse profile in this range of impact-parameter
b is approximately linear exponential in b (c.f. [18]), with

the mass parameter mð�
�ðq=�;x;bÞÞ

1 changing slowly in

ðq=�; x; bÞ. This approximate linear exponential profile
(153) smoothly turns into the Gaussian profile (152),
because of the b-dependence of the saddle point

54The impact-parameter dependent Pomeron kernel can be
used also to determine the phase shift of the scattering
amplitude in the impact-parameter space, 
ðs; ~b; z; z0Þ [10].
The relation between them is Iiðx; � ¼ 0; ~b; q2Þ �
ðsN2

c Þ
ðs; ~b; z; z0Þjz�1=q;z0�1=�. In Sec. IVC, where we discuss
the real part of the scattering amplitude, we will study the
b-dependent phase shift, rather than b-dependent Ii.
55cn ! �=2 for large n.
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i��ðq=�; x; bÞ. All of these results56 are summarized in
Fig. 13(a).

Regardless of whether q2 is large (151) or small (152),
the imaginary part of the (sphere level) DDVCS amplitude
shows the Gaussian profile for sufficiently large impact-
parameter b. The Gaussian profile in the transverse direc-
tion has been used for phenomenological fit of GPD, and
the holographic calculation above justifies the Gaussian
ansatz at least for a sufficiently large impact parameter.

This agreement between the holographic calculation and
the conventional phenomenological ansatz is not an acci-
dent. The phenomenological Gaussian ansatz is a direct
consequence of a linear trajectory (114) in the traditional
Regge ansatz (e.g. [31]). Although the Pomeron trajecto-
ries (110) in holographic QCD are not linear at all, they
become approximately linear at large t and j (but not too
large j [54]), because of (147);

�P;nðtÞ ¼ j0 þ 1

2
ffiffiffiffi
�
p

�
t

�2

�
þ 1

2
ffiffiffiffi
�
p O

��
t

�2

�
2=3
�
: (154)

Since the saddle point for large b is determined by the large
i� behavior (and hence by the large t (and large j) behav-
ior) of the Pomeron kernel, the asymptotically linear tra-
jectory (154) gives rise to the same large-b behavior (that
is, Gaussian profile) as in the phenomenological ansatz
with a linear trajectory. The width-square of the Gaussian
profile should be given by using the asymptotic slope
parameter of the Pomeron trajectory j ¼ �P;1ðtÞ in (154)

2�0P ln

�
q=�ffiffiffiffi
�
p

x

�
¼ 1ffiffiffiffi

�
p

�2
ln

�
q=�ffiffiffiffi
�
p

x

�
; (155)

which is indeed the case in (151) and (152).
The Pomeron trajectories in holographic QCD are far

from being linear, however, except for the large j� t
asymptotic region. As a result, the transverse profile may
well be different from the Gaussian profile at smaller b (the

region where b�� lnð1=xÞ= ffiffiffiffi
�
p

). Indeed, in this region,
the results (151) and (153) show that the profile is not
Gaussian, but approximately linear exponential in the
hard-wall model. Interestingly, the mass scale of linear

exponential profile for small q2 in (153), mð�
�ðq=�;x;bÞÞ

n ,
depends on kinematical variables, and is different from
mass eigenvalues of any 4D hadron states; this linear
exponential profile is not associated with a t-channel ex-
change of a single particle, but emerges after summing up
all the stringy states with different spins in the n-th

Kaluza–Klein trajectory. The mass scale mð�¼0Þn¼1 appearing
in the small x limit (for fixed q2 and b) is smaller than any

one of the mass eigenvalues of the stringy (and graviton)
states in the trajectory, and the range is longer than a simple
t-channel exchange of a glueball.
Although the expressions (151)–(153) rely on the hard-

wall model, most of its qualitative aspects are expected be
in common with other holographic models. The transition
from (152) and (153) to (151) for larger q2, for example,
will be induced in various models. The saddle-point is
dragged to larger j, i� and t for a given value of b, just
like we discussed in Sec. IVA 3.

C. Real part of the amplitudes

The imaginary parts of the structure functions are related
to the GPDs, whose Fourier transforms are interpreted as
the distributions of partons in the transverse spacial direc-
tions. Although the real part of the (D)DVCS amplitude
does not have such an interpretation, it still contributes to
the DVCS cross section.
The large impact-parameter b behavior of the real part

has been discussed in [12], and the behavior in the small b
region (but not as small as b� & 1) is covered by [18].
Overall normalization is found in [11]. The following
discussion provides a clear description of how the small
b behavior of [18] smoothly turns into the large b behavior
of [12], as well as careful interpretation of the physics
behind this phenomenon. This subject has, in fact, quite a
long history (e.g., [71]), but we hope that the following
presentation using the saddle-point value j� as a key con-
cept helps clarify things a little bit.

1. Momentum transfer dependence

It is convenient (and customary) to use a variable

�ðt; x; � ¼ 0; q2Þ 
 ReIiðx; � ¼ 0; t; q2Þ
ImIiðx; � ¼ 0; t; q2Þ (156)

in characterizing the real part of the amplitude, as we
already know the behavior of the imaginary part. The value
of �ðtÞ at t ¼ 0 is often denoted by � in elastic scattering of
hadrons.57 The real part of the amplitude is obtained by
simply taking the real part of [1þ e��ij] in the Pomeron
kernel (64). The ratio �ðtÞ is simply given by

�ðt;x;�¼0;q2Þ¼ tan

�
�

2
ðj�ðx;�¼0;t;q2Þ�1Þ

�
; (157)

using the saddle-point value j� ¼ j��ðx;q2;tÞ in the hard-wall
model [11] for the entire range of physical momentum-
transfer t 	 0. The j� � integration in the kernel can be
evaluated by the saddle-point method for small x (53),
unless q2 is too large to satisfy

i�� < 2 ðequivalently j� < 2Þ: (158)56Note that for ðb�Þ � lnð1=ð ffiffiffiffi
�
p

xÞÞ, neither (151) nor (152)
are reliable, as we have used the form of jrð�Þ that is reliable
only in j�j � ffiffiffiffi

�
p

. For such a large impact-parameter, the
saddle-point value of � is not within this range. Similarly, for
lnðq=�Þ � lnð1=ð ffiffiffiffi

�
p

xÞÞ, (151) cannot be trusted.

57The real part to imaginary part ratio is often denoted by �ðtÞ,
but � is reserved for skewedness in this article.
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The expression for �ðtÞ above remains valid in other holo-
graphic models, as long as ðx; t; q2Þ is in the saddle-point
phase. �ðtÞ � 1 is predicted in gravitational dual in gen-
eral, because j� is closer to 2 than to 1 for �� 1 [11,12].

In holographic models other than the hard-wall model,
there may be a leading pole phase in the kinematical
variable space ðx; t; q2Þ. There, the ratio �ðtÞ is given by
the expression (157) with the saddle-point value j� re-
placed by the leading Pomeron pole �P;1ðtÞ [31].

The relation (157) follows immediately from derivative
analyticity relation [91], if j� � 1 is understood as �eff , the
effective exponent of s ¼ W2 / 1=x of photon–hadron
scattering; such things as j-plane representation of the
scattering amplitude58 or its saddle-point value do not
have to be invoked in deriving the ratio (157). But, we still
find the expression interesting, in that not only � and �eff

but also �eff and B are predicted here to depend on the
kinematical variables ðx; t; q2Þ through a single value j�.
Furthermore, the limit of applicability of (157), the condi-
tion (158), is translated into �eff < 0, which is to say that
the GPD at that ðx; t; q2Þ increases in the DGLAP evolu-
tion. This observation is based simply on the j-plane
representation of the scattering amplitude and an assump-
tion that the kinematical variables ðx; t; q2Þ are in the

saddle-point phase, and thus, does not rely on details of
the hard-wall model.
The condition (158) is not satisfied, however, for suffi-

ciently large q2; that is when �eff > 0, and GPD/PDF
decreases under the DGLAP evolution. In this case, the
contour of � integration should be taken as in Fig. 12(b),
and the structure functions are expressed as a sum of
contributions from j ¼ 2 (i� ¼ 2) pole and a continuous
integration whose contour passes through the saddle-point.
For even larger q2, the saddle-point value i�� may be as

large as �1=4 and j� as large as 4; 6; � � � , and the structure
functions are given by a sum of contributions from some
finite number of poles j ¼ 2; 4; 6; � � � 	 j� and the one
from the saddle-point approximation. Using the Kneser-
Sommerfeld expansion of Bessel functions, these pole
contributions (j ¼ 2; 4; � � � 	 j�) can be written in the
form

Re IðjÞi ’ �c0s
ðs=�2Þj
�2ðj=2Þ

1

ð4 ffiffiffiffi
�
p Þj�2

� X1
n¼1

�2

t�m2
j;n

�hhPnðm2
j;nÞ�����Pnðm2

j;nÞ:

(160)

Therefore, they are interpreted as t-channel exchange of
the n-th Kaluza-Klein mode of the spin j < j� state in the
graviton trajectory [11]. The remaining continuous inte-
gration should then be regarded59 as the u-channel

FIG. 12. The integration contour in the �-plane. The original contour (for t 	 0) is on the real axis from negative infinity to positive
infinity. The contour can be chosen as it is so long as i�� < 2, as shown in (a). When the saddle point is at i�� > 2, however, one will
deform the contour to make it pass the saddle point � ¼ ��; the process of deformation leaves an extra contribution coming from the

pole of ½1= sinð�j�Þ� at i� ¼ 2 (j� ¼ 2), as in (b). The j� ¼ 4 pole corresponds to � ¼ 
2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffi

�
pp

in (b); when the saddle point
value of i�� is even greater than that, the whole amplitude consists of contributions from the j� ¼ 2, 4 poles as well as from the contour
passing through the saddle point [11].

58Dispersion relation

ReAðþÞðs; tÞ ¼ 1

�
P
Z

ds0
ImAðþÞðs0; tÞ

s0 � s
(159)

in the convolution form becomes a simple product form after
Mellin transformation, ½ReAðþÞðj; tÞ� ¼ � cotð�j=2Þ �
½ImAðþÞðj; tÞ�. This is why the ratio is better described in the
j-plane language.

59In this article, we used the dilaton-graviton scattering as the
gravity dual model of the DDVCS process. If a D-brane is used
as the model of the target hadron (baryon), however, the scat-
tering amplitude is not a sphere amplitude with four NS-NS
vertex-operator insertion.
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exchange of j < j� states and all the sphere-level contri-
butions associated with j� < j states.

Let us first focus on the 0 	 �t & �2 region. Then, with
a simple argument like we had in Sec. IVA3, one can see
that the j ¼ 2 (i� ¼ 2) pole contribution dominates, other
poles give rise to subleading corrections, and the saddle-
point contribution is even smaller than them [11].

The real parts of the structure functions are well ap-
proximated by the saddle-point contribution for small
enough q2, but they are expressed as a sum of j ¼
2; 4; � � �< j� pole contributions and the saddle-point con-
tribution, when q2 becomes large enough to satisfy j� > 2,
that is,

ffiffiffiffi
�
p lnðq=�Þ

lnðq=�ffiffiffi
�
p

x
Þ ¼ i�� > 2: (161)

This transition associated with the change in q2 is under-
stood as follows; it is usually better to treat the Pomeron
trajectory exchange as a whole, not as a sum of exchange of
individual spin j ¼ 2; 4; � � � particles, because the ampli-
tude of a spin j particle exchange has an ever-increasing
factor sj. Large virtuality of the photon q2 and the photon
wave function localized near the UV boundary, however,
introduces �� � �� � ½spin j string� coupling suppressed
by powers of ð�=qÞ, and the amplitudes of higher spin j
exchange are suppressed significantly. The transition

means that, for large q2, the power suppression ð�=qÞ�ðjÞ
becomes more important than ð1=xÞj for higher spin j

stringy states propagating in the sphere amplitude, and
the contributions from smaller j, that is, j ¼ 2, 4, etc.
‘‘stand out’’ from all the rest. That is the physical meaning
of the transition observed in the rearrangement of the �
integration contour. Therefore, we refer to this phase as
(i) KK-sum Low-spin Phase or Spin-2 Phase, where the

saddle-point value is larger than 2 (which also means
�eff > 0).

The discussion so far can be extended to the region
�2 � ð�tÞ � q2; the discussion in Sec. IVA3 can be
applicable almost in its form, except that the factor

ð�=qÞ�ðjÞ in (91) needs to be replaced by ð ffiffiffiffiffiffi�tp
=qÞ�ðjÞ for

�2 ��t; the saddle-point j� ¼ j�� is the one using (95)
in the hard-wall model. The spin j pole contributions can
also be evaluated explicitly; they are

Re IðjÞi �
c0s8�

�2ðj=2Þ
�

1

4
ffiffiffiffi
�
p

x

�
j
�
�

q

�
�ðjÞ� �ffiffiffiffiffiffi�tp

�
2��2��ðjÞ

:

(162)

For a given value of x and q2 (so that j� > 2), the real part
of the structure functions scale as ð1= ffiffiffiffiffiffi�tp Þ2��2, because
the j ¼ 2 pole contribution dominates. For sufficiently
large momentum transfer (so that j� < 2), however, the
real part is better described by the saddle-point contribu-
tion alone, and the real part shows the same scaling behav-
ior in

ffiffiffiffiffiffi�tp
as the imaginary part of the structure functions.

Therefore, the real part to imaginary part ratio is given by

�ðt; x; � ¼ 0; q2Þ ¼

8>>>>>><
>>>>>>:

�
1ffiffiffi
�
p

x

��ðj��2Þ�
�
q

���ðj�Þ
for � t & �2 if ð161Þ holds true;�

1ffiffiffi
�
p

x

��ðj��2Þ� ffiffiffiffiffi�tp
q

���ðj�Þ
for �2 ��t while

ffiffiffiffi
�
p

lnðq= ffiffiffiffiffi�tp Þ
lnð½q= ffiffiffiffiffi�tp �=½ ffiffiffi�p x�Þ � 1;

given by ð157Þ otherwise:

(163)

For a given value of q2 and t, the ratio in the small x limit is
eventually given by (157) or possibly by the one with j�
replaced by �P;nðtÞ.

2. Impact parameter dependence

Although the impact-parameter space description of the
real part does not have such an interpretation as transverse
distribution of partons, it still is important in discussing
how the unitarity limit is reached in �� þ h scattering.
Since the unitarity limit is not achieved in the Bjorken
limit �2 � q2 without an extremely small x (and ex-
tremely large W2 ’ q2=x), the following discussion may
be only of academic interest, but we present the result
anyway.

The phase shift 
 in the impact-parameter space ð ~b; z; z0Þ
is given by [10]


sphereðs; ~b; z; z0Þ � 
2
5

R3

e2AðzÞe2Aðz0Þ

s
Kðs; ~b; z; z0Þ (164)

at the leading order in 1=Nc expansion (sphere-level); the
unitarity limit of the photon-hadron scattering in a ‘‘partial
wave’’ b is indicated when j
spherej �Oð1Þ for z� 1=q
and z0 � 1=� [10–12]. The saddle point in � integration in
the Pomeron kernel is determined regardless of whether
we are studying impact-parameter dependent structure
functions or phase shift; for 1� ðb�Þ, where only the
Pomeron trajectory j ¼ �P;1ðtÞ of the lowest KK 4D had-

rons is relevant, we find


sphereðs;b;z;z0Þjz�1=q;z0�1=�
� 1

N2
c

�½1þe�ij
� �

sinð�j�Þ
�

1ffiffiffiffi
�
p

x

�
j��1��

q

�
2þ�ðj�Þ

e�m
ð��Þ
1

b; (165)
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as long as the saddle point is not too large, i�� < 2 and
j� < 2. Here, both the imaginary (absorptive) part and real
(diffractive) part are included. The phase shift above shows
expected dependence on Nc, x and q2, because 1< j� and
2þ �ðj�Þ � 2� j0 > 0.

When the saddle point becomes large, i�� > 2, and
hence j� > 2, the diffractive (real) part of the phase shift
needs to be treated separately, as we have already seen in
studying the momentum-transfer dependence. In terms of
kinematical variables, i�� > 2 for the lowest Kaluza-Klein
mode (n ¼ 1) is equivalent to

1

lnð½q=��=½x ffiffiffiffi
�
p �Þ= ffiffiffiffi

�
p

�
lnðq=�Þ þ @j�;n¼1

@�









�¼2
b�

�
> 2:

(166)

For either large lnðq=�Þ or large (b�), the diffractive part
is written as a sum of j ¼ 2 pole contribution and the
saddle point contribution, possibly with some other finite
number of j ¼ 4; 6; � � � pole contributions. The j ¼ 2 pole
contribution is always the dominant one as long as i�� > 2,
and behaves as

Re
sphereðW2; b; z; z0Þjz�1=q;z0�1=� � 1

N2
c

�
1

x

��
�2

q2

�
� e�m2;1b;

(167)

where m2;1 is the mass eigenvalue of the lowest Kaluza–

Klein mode of graviton in the warped throat. This impact-
parameter dependent profile (167) is also a j� ! 2 (and
i�� ! 2) limit of the real part of (165). All these results are
shown schematically in the phase diagram in Fig. 13.

The total cross section 	��h can be estimated by using
the sphere-level phase shift 
sphere at high energy, provided
that the absolute value of phase shift j
j is of order unity or
larger within the critical radius bc characterized by
j
sphereðbcÞj �Oð1Þ. Thus, the asymptotic form of the total
cross section becomes

	��h
tot ðW; q2Þ � 1

ðmj��ðbcÞ;1
Þ2 ln

2

�
1

N2
c

�
W2

�2

�
j��ðbcÞ�1

�
�
�

q

�
�ðj��ðbcÞÞþ2j��ðbcÞ

�
(168)

as long as i��ðbcÞ< 2. For even smaller x (largerW) with a
given q2, however, bc and i��ðbcÞ become larger, and the
condition i��ðbcÞ< 2 will eventually be violated. The

asymptotic behavior of 	��h
tot ðW; q2Þ then turns into

	��h
tot ðW; q2Þ � 1

m2
2;1

ln2
�
1

N2
c

W2�2

q4

�
: (169)

The total cross section of two light hadrons	hh0 ðsÞ can also
be discussed in a similar way; it can be calculated by
replacing q2 with �2. Then, the asymptotic behavior of

	hh0 ðsÞ becomes

	hh0
tot ðsÞ � 1

ðmj��ðbcÞ;1
Þ2 ln

2

�
1

N2
c

�
s

�2

�
j��ðbcÞ�1

�
(170)

for i��ðbcÞ< 2. In the very large s region (i��ðbcÞ> 2), it
becomes the form which is already shown in [12];

	hh0
tot ðsÞ � 1

m2
2;1

ln2
�
1

N2
c

s

�2

�
: (171)

D. Structure functions and GPD

We have so far used holographic QCD to calculate the
DDVCS amplitude and its gauge-invariant structure func-
tions. While the scattering amplitude is all the necessary
information in describing experimental data, a little more
theoretical object GPD represents internal structure of
hadrons more directly.60 In this subsection, we will argue

FIG. 13. A schematic picture describing qualitatively different behavior of Im
ðbÞ (panel (a)) and Re
ðbÞ (panel (b)) as functions of
the impact parameter b. Behavior is different for different range of b as well as for different value of q2, as shown in this figure.

(I) e�m
ð��Þ
1

b (see (153) for a more precise expression), (II) e�ðð
ffiffiffi
�
p

lnðq=�ÞÞ=ðlnððq=�Þ= ffiffiffi
�
p

xÞÞÞb�, (III) e�ðð
ffiffiffi
�
p ðb�Þ2Þ=ð2 lnððq=�Þ= ffiffiffi

�
p

xÞÞÞ, and
(IV) e�m2;1b.

60At least in weak coupling regime, GPD is also considered
important, not just scattering amplitudes, also because GPD can
be used to describe amplitudes of multiple different scattering
processes.
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that GPD is a well-motivated notion separately from the
scattering amplitude or structure functions even in strong
coupling regime (in holographic QCD), and show how to
extract GPD from holographic calculation.

In the real-world QCD, where only fermion partons
(quarks and antiquarks) are charged under the external
probe (photon) of DDVCS, quark GPD in a scalar hadron
h is defined by

1

2

Z þ1
�1

d


2�
ei
xhhðp2Þj �c

�
�


2
�n

�
�n � �c

�
þ


2
�n

�
jhðp1Þi

¼ Hqðx; �; t; q2Þ;
�n� ¼ �q�

ðp � qÞ : (172)

Its Mellin moment for an even integer j 2 2N is

Z 1
0

dxxj�1½Hqðx; �; t;q2Þ þH �qðx; �; t; q2Þ�

¼
Z þ1
�1

dxxj�1Hqðx; �; t; q2Þ

¼ Xj
k¼0

Aj;kðtÞ
j

k

 !
ð�2�Þk 
 Ajð�; tÞ; (173)

where Aj;kðtÞ is the matrix element of the spin j (symme-

trized traceless) twist-2 operator,

hhðp2Þj½ �c�f�1 iD
$�2 � � � iD$�jgc �ð0Þjhðp1Þi

¼ Xj
k¼0

Aj;kðtÞ
k!ðj� kÞ!

X
	2Sj

��	ð1Þ � � ���	ðkÞp�	ðkþ1Þ � � �p�	ðjÞ :

(174)

Here, D
$ 
 ð ~D�D

 Þ=2. The quark-antiquark GPD,
Hqðx; �; tÞ þH �qðx; �; tÞ, is regarded as the inverse Mellin

transform of AðþÞj ð�; tÞ, a holomorphic function of j which

becomes Ajð�; tÞ for j 2 2N.

Since matrix elements of gauge-invariant local operators
are well-defined notion even in gravitational dual descrip-
tions, we characterize GPD in holographic calculation as
the inverse Mellin transform of a holomorphic function of

j, AðþÞj ð�; tÞ, which becomes matrix element of twist-2 spin

j operator for j 2 2N. We have already seen in Sec. IVA3
that ½�hhP� ðj; tÞ�1=� in (120) is a holomorphic function of j
which becomes Aj;k¼0 of some twist-2 spin j operator for

j 2 2N. Thus, we can define a GPD renormalized at
� ¼ 1=� as the inverse Mellin transform of ½�ðj; tÞ��;
ðx; tÞ dependence of GPD61 can be calculated by using
holographic QCD:

Hðx; � ¼ 0; t;�2Þ ¼
Z dj

2�i
x�j½�ðj; tÞ��: (175)

The GPD obtained in this way satisfy the expected DGLAP
evolution, as one can easily see from the � dependence of
½�ðj; tÞ��¼1=� in (120).

Obviously, GPD can be estimated in completely the
same method as we have done in earlier sections for the
structure functions. For the saddle-point phase,

Hðx; � ¼ 0; t;�2Þ �
�
1

x

�
j���

�

�
�ðj�Þ½�ðj�; tÞ��: (176)

Note that the saddle-point value now depends on� instead
of q. The form factor F for GPD defined in (99) is the same
as (100) obtained by simply taking the ratio of structure
functions at arbitrary t to the ones at t ¼ 0. Therefore, all
the discussion on the form factor at the end of Sec. IVA2
can be read as statements on the form factor of GPD in the
saddle-point phase of strong coupling regime. Note that the
ðx; t; �Þ dependent form factor (100) and the effective mass
scale �2

eff are compatible with the renormalization group

evolution.62 For the leading pole phase,

Hðx; � ¼ 0; t;�2Þ �
�
1

x

�
�P;1ðtÞ��

�

�
�ð�P;1ðtÞÞ

: (177)

This is almost the same as the structure functions at the
leading pole phase (112).
Certainly one can calculate a ‘‘GPD’’ in holographic

QCD, but it is not clear at this moment GPD of which
parton it is. We adopted an asymptotically conformal
(AdS5) geometry for holographic calculation, which means
that the theory has all the particle contents of some con-
formal gauge theory. The reduced matrix element �ðj; tÞ
obtained in holographic calculation must be that of some
linear combination of -twist-2 spin-j operators of gluons,
fermions and scalars of the gauge theory. It must be pos-
sible, at least, to specify the linear combination that has the
smallest anomalous dimension. Purely AdS5 background
may also be replaced by a more realistic background. One
could think of a couple of ways to refine the physical
meaning of GPD obtained in this way, and possibly to
obtain more results, but all of such improvements are
beyond the scope of this article.
Relation between the structure functions of the Compton

tensor T�� and GPD in the strongly coupled regime (holo-
graphic calculation) remains quite similar to the one in the
weakly coupled regime. To see this, let us first remind
ourselves of relation between them in the weak coupling
regime. Contributions from matrix elements of quark/
gaugino twist-2 operators to the Compton tensor T��

61Discussion in this article needs to be refined in order to study
skewedness dependence.

62Such models of GPD as �2
eff ¼ m2

2g in [69] and ��2eff ¼½�0ð1� xÞ2 lnð1=xÞ þ Bð1� xÞ2 þ Axð1� xÞ� in [70] introduce
ansatz of ðx; tÞ dependent GPD profile at a given renormalization
scale. The profile at other renormalization scale needs to be
determined numerically by following the DGLAP evolution.
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are formally written in the form of operator product ex-
pansion as

T�� ’X1
j¼1

1þ ð�Þj
2

X1
m¼0
ðCj;mÞ��

�1����j	1���	m

�hhðp2Þjð@mÞ	1���	m½ �c�ðiD$Þj�1c ��1����j jhðp1Þi;
(178)

in perturbative QCD, the OPE coefficient
ðCj;mÞ��

�1����j	1���	m
can be calculated order by order in

QCD coupling �s. Gauge-invariant structure functions
V1;���;5 can be extracted from the expression above. At

tree-level in �s expansion, for example, the quark–anti-
quark contributions to (some of) the structure functions at
� ¼ 0 are given by

V1 ’
X1
j¼2

1þ ð�Þj
2

1

xj
Aj;0ðtÞ;

V3 ’
X1
j¼2

1þ ð�Þj
2

�1
xj

1

q2

�
j

jþ 2
Aj;0ðtÞ þ 4x2Aj;2ðtÞ

�
:

(179)

Thus, the structure functions at tree level at � ¼ 0 are
expressed in terms of j-plane integrals (inverse Mellin
transforms) as in

V1ðx;�¼ 0; tÞ ’
Z dj

4i

�½1þe��ij�
sinð�jÞ

1

xj
AðþÞj ð�¼ 0; tÞ;

¼
Z 1
0

d�

�

�1
2

�
1

1�x=�þ i�
þ 1

1þx=�� i�

�
�ðHqþH �qÞð�;�¼ 0; tÞ; (180)

q2V3ðx;�¼ 0; tÞ

’
Z dj

4i

�½1þ e��ij�
sinð�jÞ

�1
xj

�
�

j

jþ 2
AðþÞj þ

4x2

jðj� 1Þ
@2

@ð2�Þ2A
ðþÞ
j

�
�¼0

;

¼
Z 1
0

d�1

�1

Z þ1
0

d�2

�2

�1
2

�
1

1� x=�2þ i�
þ 1

1þ x=�2� i�

�

�
�
�

�
1��2

�1

�
� 2

�2
2

�2
1

�

�
1��2

�1

��
�ðHqþH �qÞð�1;�¼ 0; tÞþ �� � : (181)

Since the nonskewed structure functions in the complex
j-plane representation are given by products of the
signature factor �½1þ e��ij�= sinð�jÞ, operator reduced
matrix element Aj (or its �-derivative) and its OPE coef-

ficient Cj, the structure functions become convolution of

the inverse Mellin transforms of those factors. The factors
½ð�� xþ i�Þ�1 þ ð�þ x� i�Þ�1� in (180) and (181)
originate from the inverse Mellin transform of the

signature factor [92] here, but it also arises from the light-
cone singularity of the fermion parton in direct calculation
of the Compton tensor using Feynman diagrams [93].
In the holographic calculation of the structure functions

of the DDVCS amplitude, we have seen that all the struc-
ture functions V1;���;5 are given by I0;1, and I0;1 are given by
� integration (78). The �-integration becomes j-plane in-
tegration, when the integration variable is changed through
j ¼ j�. The integrand is a product of the signature factor
�½1þ e��ij�= sinð�jÞ, reduced matrix element ½�ðj; tÞ��
of some twist-2 spin j operator and a remaining
j-dependent factor, which is to be interpreted as the OPE
coefficient and ðq � pÞj / x�j. Therefore, the structure
functions of DDVCS amplitude are given even in the
strong coupling regime by a convolution of a ‘‘propagator’’
½ð�� xþ i�Þ�1 þ ð�þ x� i�Þ�1�, GPD (inverse Mellin
transform of ½�ðj; tÞ��) and inverse Mellin transform of

OPE coefficient, just like in the weak coupling regime. The
OPE coefficients in the strongly coupled regime, however,
are calculated through the vertex-operator OPE on world-
sheet; the OPE coefficients may be improved order by

order in 1=
ffiffiffiffi
�
p

expansion, rather than in �s expansion in
perturbative QCD.

V. IMPLICATION FOR THE REAL-WORLD QCD

We have so far studied DDVCS and GPD by using
holographic QCD. In this section, we discuss how much
we can apply our results in gravity dual to the real-world
QCD. We should keep in mind that the hard-wall model or
other UV conformal holographic models are not equivalent
to the real-world QCD. Dual gauge theories of UV con-
formal gravity descriptions remain strongly coupled, even
in the UV scale, if the gravity descriptions are to be
reliable. If one considers an asymptotic free holographic
model, so that it matches on to the asymptotic free QCD of
the real world, then such a gravity description will not be a
useful framework in the UV region of the holographic
radius. Although there is such a difference, and a big gap
that is very difficult to fill, it is also worthwhile to keep in
mind that there are several features in GPD and structure
functions that are shared by gravity dual descriptions and
the real-world QCD/perturbative QCD.
Factorization theorem holds for (D)DVCS and leptopro-

duction of mesons in the real-world QCD [94,95]. The
structure functions are given by a convolution of hard
kernel and GPD as in (180) and (181). The hard kernel is
calculable in the perturbation of the gauge coupling,
whereas the GPD is incalculable, and should be given as
nonperturbative input. It would be nice if the GPD profile
can be determined by experimental data alone, but that is
known not to be possible. Even in setting constraints on the
profile by using data, GPD has to be modeled and parame-
terized, because observable scattering amplitudes involve
convolution of GPD, not just pure GPD, and furthermore,
depend on GPD only in the limited region of kinematical
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variables. It is thus inevitable to construct physically mo-
tivated model of GPD.

Modeling and parametrization of GPD has already
grown into a large field, as one can see in review articles
(e.g., [26,27]). The simplest model imaginable assumes
factorized form of GPD into PDF qðxÞ and a t-dependent
factor [96,97],

Hðx; � ¼ 0; tÞ ¼ qðxÞFðtÞ; (182)

and models that mimic small x Regge behavior were also
considered [98–101]:

Hðx; � ¼ 0; tÞ ¼ qðxÞetgðxÞ (183)

with some x-dependent function gðxÞ. In order to imple-
ment basic theoretical requirements on GPD, such as
skewedness-polynomiality and proper DGLAP evolution,
however, it is more convenient to have a framework of
parameterizing GPD where such requirements are imple-
mented systematically. There are two such frameworks of
systematic parametrization. The first one is double distri-
bution [102–104] along with D-term [105]; transformation
form this parametrization to GPD (Radon transformation)
and its inverse is known [106–108]. GPD models in this
parametrization framework are found, for example, in
[106,109]. The alternative framework of systematic pa-
rametrization is the collinear factorization approach, which
is also known as dual-parametrization. In this approach,
models of GPD are constructed as an amplitude on the
conformal moment space [110–114]; GPD is given by a
transformation [113] that becomes inverse Mellin trans-
formation of ½�ðj; tÞ�� for zero-skewedness.

Lessons from gravity dual calculation of DDVCS am-
plitude and GPD can be passed on to the understanding of
GPD of the real world best in the form of j-plane repre-
sentation, ½�ðj; tÞ��, that is, in the collinear factorization

approach (dual-parametrization). The transformation be-
tween the j-plane representation and Bjorken x represen-
tation is just a pure mathematical one, and does not rely on
perturbation theory or even on existence of a calculable
theoretical framework. The description of the (D)DVCS
amplitude in j-plane is also based on OPE, which once
again does not rely on perturbation theory [2]. While there
is no way calculating hadron matrix element ½�ðj; tÞ�� in

perturbation theory, or in lattice gauge theory for complex
valued j, various gravity dual models yield at least some
results (if not truly faithful to the real-world QCD), as we
have seen in earlier sections.

The j-plane representation of the scattering amplitude
and GPD also plays an essential role in characterizing the
following three phases of the behavior of GPD and (D)
DVCS amplitude:

(i) j� < Re�P;1ðtÞ: leading pole phase (or leading sin-

gularity phase),
(ii) Re�P;1ðtÞ< j� < 2: saddle-point phase, where

�eff < 0,

(iii) Re�P;1ðtÞ< 2< j�: spin-2 phase, where 0<�eff .

The three phases are also interpreted as Low-KK Spin-sum
phase, KK-sum Spin-sum phase, and KK-sum Low-spin
phase, respectively, from above to below. The distinction
between the last two phases is absent in GPD or in imagi-
nary part of the scattering amplitude (at leading order in
1=Nc expansion), and we simply refer to the last two
phases as the saddle-point phase. Earlier sections of this
article described such a phase structure by relying on
gravity dual calculation, but the essence is in the relative
position of the leading singularity, j ¼ 2 pole and the
saddle point in the j-plane representation, not so much
on details of gravity dual descriptions. As we have studied
in sections IVA1 and IVA3, the parton dynamics charac-
terized by �eff and �eff and the phase structure Fig. 9 in
ðq2; xÞ plane (fixed t slice) in gravity dual are surprisingly
similar (qualitatively) to the one we know in the real-world
QCD. This similarity is traced back to the fact that the
saddle point is determined by (93) in perturbative QCD as
well as in holographic QCD, and that the anomalous
dimensions �ðjÞ in both frameworks are also qualitatively
similar [3]; especially the two properties

@�ðjÞ
@j

> 0;
@2�ðjÞ
@j2

< 0 (184)

are shared for certain range of j.
Most of kinematical regions explored in DIS experi-

ments should be in the saddle-point phase (including the
spin-2 phase in DIS),63 as is clear from the ðx; q2Þ depen-
dence of �eff and �eff in DIS [115].64 Anomalous dimen-
sion �ðjÞ in the weak coupling regime65 should be used,
because of the value of �eff (depending weakly on q2)
closer to 0 than to 1 [115]. The GPD, then, is approximated
by the expression (176) for some form factor ½�ðj; tÞ��
evaluated at j ¼ j�. This suggests (if the skewedness de-
pendence that we did not study in this article does not
screw things up) that various parameters characterizing the
DVCS differential cross section66

d	DVCSð��p! �pÞ
dt

� �2
QED

�4
�
�
W

�

�
�
�
�2

q2

�
n
; (185)

63The leading singularity phase tends to be realized in smaller
x, lower q2 and less negative t, and might be found experimen-
tally. It is difficult, though, to tell theoretically where the phase
boundary is located in the ðx; t; q2Þ variable space in a theory
with running coupling constant.
64It is not very clear in low q2 region, however, whether �eff
increases for larger q2 [116]. c.f. Fig. 8(a). The leading pole
phase may be hidden there.
65There are various approximation schemes in perturbative
QCD, such as DLLA, BFKL and double leading approximation.
66This parametrization of DVCS cross section by ð�; nÞ (con-
ventionally adopted in data analysis) corresponds to Ii �ðW=�Þ2þ�=2ð�2=q2Þn=2.
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namely, � ¼ 4ðj� � 1Þ and n ¼ �ðj�Þ þ 2j� above, as well
as the real part to imaginary part ratio � and the t-slope
parameter B, are all functions of the saddle-point value j�.
Because of the way the saddle-point value is determined,
(93), all the four parameters are more sensitive to lnðq=�Þ
than to lnð1=xÞ or lnðW=�Þ in small x, for the reason that
we have already seen in (133). All of � ¼ 4�eff , �ðj�Þ, n
and � are increasing functions of j�, and hence they
increase67 for larger lnðq2=�2Þ. They should decrease for
larger lnð1=xÞ or larger lnðW=�Þ, but only weakly.
Although it is not immediately clear whether the slope
parameter B increases or decreases for larger j� (and hence
for larger lnðq=�Þ), yet we found by using the spin j form
factor in the gravity dual hard-wall model (in Sec. IVA4)
that the slope parameter decreases for large q2, which is in
nice agreement with the HERA measurements [78–80].68

It is also worthwhile to remind ourselves that GPD
models in the collinear factorization approach (dual-
parametrization) in the saddle-point phase are always com-
patible with the renormalization group evolution. In the
approximate form (176), the renormalization scale � de-
pendence comes into the form factor ½�ðj�; tÞ�� through the
saddle-point value j�.

All of these phenomenological as well as theoretical
successes of the GPD models (176) come directly from
the nature of the saddle-point phase, as we have already
seen above. One more necessary ingredient is that the slope
parameter

2
@

@t
ln½�ðj; tÞ�j�t�½0�1� GeV2 ¼ B (186)

is a decreasing function of j; this property of the hard-wall
model prediction was used in explaining the q2 depen-
dence of the t-slope parameter. It is a blessing indeed
that the various features of experimental data are attributed
to such a small number of conditions. To our knowledge,
the first model of GPD in this category was that of [118],
which introduces an ansatz

½�ðj; tÞ�� � �ðtÞ
j� �ðtÞ ; �ðtÞ ¼

�
1� at

�2

��n
; (187)

a and n are parameters of the model. All possible holo-
graphic models will also have their own predictions of the
reduced matrix element (spin j form factor) ½�ðj; tÞ�, and
hence successful models of GPD in this category are
obtained from these models, as long as (186) is a decreas-
ing function of j.
A general lesson from gravity dual calculations of the

spin j form factor ½�ðj; tÞ� is that even the leading trajec-
tory (containing graviton) in five dimensions (or in 10
dimensions) becomes a Kaluza-Klein tower of infinite
Pomeron trajectories for hadron scattering in four dimen-
sions.69 The form factor is given in the following form:

½�ðj; tÞ�� ¼
X
n

anðjÞ
t�m2

j;n

; (188)

where the n-th term corresponds to the n-th Kaluza-Klein
excited Pomeron trajectory; t ¼ m2

j;n is the ðmassÞ2-spin
relation. After summing up all the contributions in a
Kaluza-Klein tower (188), however, the form factor has a
power-law dependence in (�t). This property is under-
stood simply by using Green function in warped five
dimensions; details of the background geometry of gravity
dual models are irrelevant. This power-law behavior at
large (�t) nicely matches on to the power-law behavior
expected theoretically from naive quark power counting
[59–63], albeit only at qualitative level.
It should be kept in mind, however, that gravity dual

descriptions are not an ideal and flawless framework in
calculating the form factor. Although a gravity dual model
with a carefully chosen background may serve as a faithful
dual to the QCD of the real world, it should work as a
reliable framework of calculation only in the IR region of
the holographic radius. The UV region of the geometry
should correspond to the real-world QCD in the weak
coupling regime, and hence the curvature of the back-
ground should be too large for a reliable calculation. It
will be nice if it is possible to make even a crude estimate
of the error in gravity dual calculation of the form factor
(e.g., the power-law behavior from UV conformal gravity
dual models is dictated by the conformal dimension asso-
ciated with the target hadron, whereas the power is deter-
mined by the number of valence partons in the (empirically
successful) naive power counting rule), and to use pertur-
bative QCD in some way or other in controlling or reduc-
ing the error.
Such a dream may not be totally unrealistic, because at

least one can compare singularities in the j-plane repre-
sentation. Gravity dual models for asymptotic free running
coupling (at least up to some high-energy scale), e.g., [77],
can be used to calculate the isolated poles of ½�ðj; tÞ�. It is

67The HERA measurements give � ¼ 0:44
 0:19 for q2 ¼
2:4 GeV2, � ¼ 0:52
 0:09 for q2 ¼ 3:2 GeV2, � ¼
0:75
 0:17 for q2 ¼ 6:2 GeV2, � ¼ 0:84
 0:18 for q2 ¼
9:9 GeV2, and � ¼ 0:76
 0:22 for q2 ¼ 18 GeV2 in ZEUS
[117], and � ¼ 0:61
 0:10
 0:15 for q2 ¼ 8 GeV2, � ¼
0:61
 0:13
 0:15 for q2 ¼ 15:5 GeV2, and � ¼ 0:90

0:36
 0:27 for q2 ¼ 25 GeV2, in H1 [80].
68In the leading pole phase with an anomalous dimension �ðjÞ
in the weak coupling regime, the slope parameter of the (D)
DVCS differential cross section increases for larger lnð1=xÞ, and
depends only weakly on lnðq=�Þ; �ðjÞ / �s is used in (135).
This prediction does not fit very well with the HERA data
[78–80]. In this article, we did not work out gravity dual
prediction for the t-slope parameter B in the spin-2 pole phase,
where �eff > 0. The contribution from the real part dominated by
a tower of spin-2 glueball exchange should be important there.

69On top of this tower of infinitely many Pomeron trajectories,
gravity dual descriptions predict yet another tower structure of
trajectories, because stringy states form a tower of daughter
trajectories already in the 5D (or 10D) description.
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just to solve a Schrödinger equation [3]. Poles in the large
Rej region are reliable, because the corresponding wave
functions are localized in the IR region of the warped
spacetime, but those with smaller Rej are not. On the other
hand, the BFKL theory can calculate a spectrum of its
kernel. The spectrum is discrete, when the running cou-
pling effect is taken into account, and the discrete spectrum
is mapped into poles in the complex j-plane [30]. The
spectrum of the BFKL theory in large Rej region, however,
corresponds to wave functions that are dominantly in the
small k? (gluon transverse momentum) region, where the
coupling �s is large and perturbation in �s does not work
well. Thus, the BFKL theory might be used in determining
the j-plane singularities of ½�ðj; tÞ� in a region (smaller
Rej) where the results from gravity dual cannot be reliable.

In the calculation of the form factor, the spectrum of the
Pomeron kernel (poles in the j-plane) is not the only
necessary information. We also need corresponding wave
functions of the spectrum, which are to be multiplied by a
hadron impact factor, and integrated over the holographic
radius z, if we are to use the language of gravity descrip-
tion. Based on the similarity between the k? factorization
formula of perturbative QCD and the expression (62) of
hadron scattering amplitudes in gravity dual, correspon-
dence between the k? coordinate of the BFKL theory and
the holographic radius z�1 has been suggested [3,119,120].
Thus, the integration (and integrand) over the z coordinate
in the UV region may be replaced by that of the BFKL
theory over the k? coordinate, in a crude attempt at im-
proving the form factor ½�ðj; tÞ� calculated entirely in
gravity dual models. All such attempts, however, are be-
yond the scope of this article.

VI. DISCUSSION

In this article, we used holographic QCD to study double
deeply virtual Compton scattering (DDVCS) amplitude
and generalized parton distribution (GPD). Analysis pre-
sented in this article, however, is restricted to the scattering
amplitude with vanishing skewedness; in order to exploit
holographic methods to study nonperturbative aspects of
deeply virtual Compton scattering (DVCS), analysis in this
article needs to be extended to cover the case with nonzero-
skewedness. This subject will be covered in a future pub-
lication [89].

We have presented in this article an improved concep-
tual understanding of Pomeron couplings and Pomeron
form factor, and predicted phase transition (crossover, to
be more precise) in DDVCS amplitude. Such results, how-
ever, are not just for DDVCS and DVCS, but are more
general in nature; some of the statements in this article hold
true for some other high-energy scattering processes only
with minor (and almost obvious) modifications. An ob-
vious generalization is to relax the constraint that the final
state hadron h0 is the same as the initial state hadron h;

��h! �ð�Þh0 [Fig. 14(a)]. When the final state hadron h0

and the initial state hadron h are different Kaluza-Klein
modes of the same field in the 5D effective theory,
Pomerons (with vacuum quantum number) can couple to
the transition from h to h0. One only needs to replace the
impact factor Phhðz0Þ by Phh0 ðz0Þ ¼ c�½�nðz0Þ�n0 ðz0Þ� in
writing down the amplitude. Scattering amplitude of
vector meson production ��h! Vh0 (Fig. 14(b)) and time-
like Compton scattering ��h! ��h0 (Fig. 14(a)) where
the final state photon has timelike virtuality) can also be
obtained by simply replacing the final state photon wave
function properly. Since all of those processes involve an
initial state spacelike photon with large virtuality, the
initial state photon wave function localized strongly to-
ward UV region gives rise to much the same q21 and

W2 dependence of the Pomeron contribution to those
scattering amplitudes. All of those processes involve a
hadron-hadron-Pomeron vertex (lower blobs in Fig. 14(a)
and 14(b)), and the nonperturbative vertex (form factor) in
those processes should be essentially the same as in
DDVCS. When the saddle-point j ¼ j�ðx; q2; tÞ of the
complex j-plane representation of the scattering ampli-
tudes has a larger real part than all the singularities in the
j-plane, the form factor depends on various kinematical
variables (such as W2 and q2) only through the saddle-
point value j�, and the form factor becomes that of ‘‘spin j�
current.’’ The t-slope parameter can also be calculated for
these processes, but it will be obvious that the our argu-
ment in Sec. IVA4 is so generic that its conclusion holds
true for vector meson production and timelike Compton
scattering as well. There is sort of universality in the
Pomeron-hadron (h)-hadron (h0) form factor (coupling),
regardless of whether it is used for DDVCS, DVCS, time-
like Compton scattering or vector meson production
(Fig. 14(a) and 14(b)).
We have also seen in this article that the (Pomeron

contribution to the) DDVCS amplitude shows three quali-
tatively different behaviors; the three phases are charac-
terized by the position of the saddle-point j� of the j-plane
representation of the amplitude, relatively to the leading
singularity and j ¼ 2 pole of the signature factor, as

FIG. 14. One can expect straightforward generalization of
various results in this article for the following processes.
(a) DVCS/DDVCS or timelike Compton scattering. The final
state hadron h0 is allowed here to be different from the initial one
h. For example, it can be an excited mode of the initial state
hadron. (b) Vector meson production.
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summarized in Sec. V. The essence of this phase classifi-
cation is shared also by DDVCS/DVCS with h0 � h, vector
meson production and timelike Compton scattering. Since
all of these processes involve the kinematical variable q21,
spacelike virtuality of the initial state photon, it is not
surprising to see a crossover behavior in the differential
cross sections of these processes.
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