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We present a calculation of the Nucleon and Delta excited state spectra on dynamical anisotropic clover

lattices. A method for operator construction is introduced that allows for the reliable identification of the

continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this

method, we are able to determine a spectrum of single-particle states for spins up to and including J ¼ 7
2 ,

of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states

identifiable as admixtures of SUð6Þ �Oð3Þ representations and a counting of levels that is consistent with

the nonrelativistic qqq constituent quark model. This dense spectrum is incompatible with quark-diquark

model solutions to the ‘‘missing resonance problem’’ and shows no signs of parity doubling of states.
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I. INTRODUCTION

Explaining the excitation spectrum of baryons is core to
our understanding of QCD in the low-energy regime, and if
we truly understand QCD in the strong-coupling regime,
we should be able to confront experimental spectroscopic
data with first-principles calculations within QCD. The
experimental investigation of the excited baryon spectrum
has been a long-standing element of the hadronic-physics
program. An important goal has been the search for so-
called ‘‘missing resonances,’’ baryonic states predicted by
the quark model based on three constituent quarks but
which have not yet been observed experimentally; should
such states not be found, it may indicate that the baryon
spectrum can be modeled with fewer effective degrees of
freedom, such as in quark-diquark models. In the past
decade, there has been an extensive program to collect
data on electromagnetic production of one and two mesons
at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and
GRAAL. To analyze these data, and thereby refine our
knowledge of the baryon spectrum, a variety of physics
analysis models have been developed at Bonn, George
Washington University, Jefferson Laboratory, and Mainz.

The experimental efforts outlined above should be com-
plemented by high-quality ab initio computations within
lattice QCD. Historically, the calculation of the masses of
the lowest-lying states, for both baryons and mesons, has
been a benchmark calculation of this discretized, finite-
volume computational approach, where the aim is well-
understood control over the various systematic errors that
enter into a calculation; for a recent review, see [1].
However, there is now increasing effort aimed at calcu-
lating the excited states of the theory, with several groups

presenting investigations of the low-lying excited baryon
spectrum, using a variety of discretizations, numbers of
quark flavors, interpolating operators, and fitting method-
ologies [2–5]. Some aspects of these calculations remain
unresolved and are the subject of intense effort, notably the
ordering of the Roper resonance in the low-lying Nucleon
spectrum.
A basis of baryon operators for states at rest, respecting

the (cubic) symmetry of the lattice, was developed in
Refs. [6,7], and subsequently used in calculations of the
excited state Nucleon spectrum in both quenched QCD [8],
and with two dynamical quark flavors [9]. In parallel, we
studied Clover fermions on anisotropic lattices [10,11],
with a finer temporal than spatial resolution, enabling the
hadron correlation functions to be observed at short tem-
poral distances and hence many energy levels to be ex-
tracted. Crucial to our determination of the spectrum has
been the use of the variational method [12–14] with a large
number of interpolating operators at both the source and
the sink; we developed and used the ‘‘distillation’’ method,
enabling the necessary correlation functions to be com-
puted in an efficient manner. A recent calculation of the
Nucleon,� and� excited-state spectrum demonstrated the
efficacy of the method [15].
In this paper, we expand the above program of compu-

tations considerably, extending to baryons the spin-
identification techniques developed for mesons in
Refs. [16,17]. We develop a new basis of interpolating
operators with good total angular momentum, J, in the
continuum, which are then subduced to the various lattice
irreducible representations (irreps). We find that the sub-
duced operators retain a memory of their continuum ante-
cedents to a remarkable degree. For example, hadron
correlation functions between operators subduced from
different continuum spins J are suppressed relative to those
subduced from the same J, illustrating an approximate
realization of rotational symmetry at the scale of hadrons.
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This allows us to determine reliably the spins of most of the
(single-particle) states, which helps to delineate between
the nearly degenerate energy levels we observe in the
spectrum. We are thereby able to determine the highly
excited spectrum, including spins up to J ¼ 7

2 , and to

resolve the masses of the low-lying states with a statistical
precision at or below 1%.

The remainder of the paper is organized as follows. In
Sec. II we describe the parameters of the lattice gauge fields
used in our calculation. The distillation method, and its
application to the construction of baryon correlation func-
tions is outlined in Sec. III. Section IV describes the proce-
dure for constructing baryon interpolating operators with
good continuum spin. Angular dependence transforming
like orbital angular momenta is incorporated through cova-
riant derivatives that transform as representations with
L ¼ 1 and L ¼ 2; a detailed construction is provided in
AppendixA.We also develop subductionmatrices that allow
the continuum operators to be subduced to irreducible rep-
resentations of the cubic group; a derivation for half-integer
spins up to 9

2 is given in Appendix B, where tables of the

subduction matrices are also given. Our implementation of
the variational method is presented in Sec. V, and our proce-
dure for determining the spins of the resulting lattice states is
described in Sec. VI, which also shows tests of the approxi-
mate rotational invariance in the spectra. The stability of the
resultant spectra with respect to changes in the analysis
method is discussed in Sec. VII. We present our results in
Sec. VIII, beginning with a detailed discussion of the spec-
trum at the heaviest of our quark masses before examining
the quark-mass dependence. Discussion of multiparticle
states is given in Sec. IX. We summarize our findings and
provide our conclusions in Sec. X.

II. GAUGE FIELDS

A major challenge in the extraction of the spectrum of
excited states from a lattice calculation is that the correla-
tion functions, or more specifically the principal correla-
tors of the variational method that correspond to excited
states, decay increasingly rapidly with Euclidean time as
the energy of the state increases, while the noise behaves
in the same manner as in the ground state. Hence the
signal-to-noise ratio for excited-state correlators exhibits
increasingly rapid degradation with Euclidean time with
increasing energy. To ameliorate this problem we have
adopted a dynamical anisotropic lattice formulation
whereby the temporal extent is discretized with a finer
lattice spacing than in the spatial directions; this approach
avoids the computational cost that would come from re-
ducing the spacing in all directions, and is core to our
excited-state spectroscopy program. Improved gauge and
fermion actions are used, with two mass-degenerate light
dynamical quarks and one strange dynamical quark, of
masses ml and ms respectively. Details of the formulation

of the actions as well as the techniques used to determine
the anisotropy parameters can be found in Refs. [10,11].
The lattices have a spatial lattice spacing as � 0:123 fm

with a temporal lattice spacing approximately 3.5 times
smaller, corresponding to a temporal scale a�1

t � 5:6 GeV.
In this work, results are presented for the light quark
baryon spectrum at quark-mass parameters atml ¼
ð�0:0808;�0:0830;�0:0840Þ and atms ¼ �0:0743, and
lattice sizes of 163 � 128 with spatial extent �2 fm. The
bare strange quark mass is held fixed to its tuned value of
atms ¼ �0:0743; some details of the lattices are provided
in Table I. The lattice scale, as quoted above, is determined
by an extrapolation to the physical quark-mass limit using
the � baryon mass (denoted by atm�). To facilitate com-
parisons of the spectrum at different quark masses, the ratio
of hadron masses with the � baryon mass obtained on the
same ensemble is used to remove the explicit scale depen-
dence, following Ref. [11].

III. CORRELATOR CONSTRUCTION
USING DISTILLATION

The determination of the excited baryon spectrum pro-
ceeds through the calculation of matrices of correlation
functions between baryon creation and annihilation opera-
tors at time 0 and t respectively:

CijðtÞ ¼ h0jOiðtÞOy
j ð0Þj0i:

Inserting a complete set of eigenstates of the Hamiltonian,
we have

CijðtÞ ¼
X
n

1

2En

h0jOijnihnjOy
j j0ie�Ent; (1)

where the sum is over all states that have the same quantum
numbers as the interpolating operators fOig. Note that in a
finite volume, this yields a discrete set of energies.
Smearing is a well-established means of suppressing the

short-distance modes that do not contribute significantly to
the low-energy part of the spectrum, and in turn, allows for
the construction of operators that couple predominantly
to the low-lying states. A widely adopted version is Jacobi
smearing, which uses the three-dimensional Laplacian,

�r2
xyðtÞ¼6�xy�

X3
j¼1

ð ~Ujðx;tÞ�xþ|̂;yþ ~Uy
j ðx� |̂; tÞ�x�|̂;yÞ;

TABLE I. The lattice data sets and propagators used in
this paper. The light and strange quark mass as well as the �
baryon mass in temporal lattice units are shown. The pion
mass, lattice size and number of configurations are listed, as
well as the number of time-sources and the number of distillation
vectors Nvecs.

atm‘
atms

m�=MeV mK=m� atm� volume Ncfgs Ntsrcs Nvecs

�0:0808
�0:0743 524 1.15 0.3200(7) 163 � 128 500 7 56

�0:0830
�0:0743 444 1.29 0.3040(8) 163 � 128 601 5 56

�0:0840
�0:0743 396 1.39 0.2951(22) 163 � 128 479 8 56
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where the gauge fields, ~U may be constructed from an
appropriate covariant gauge-field-smearing algorithm
[18]. From this a simple smearing operator,

J�;n�ðtÞ ¼
�
1þ �r2ðtÞ

n�

�
n�
;

is subsequently applied to the quark fields c ; for large n�,
this approaches a Gaussian form exp�r2ðtÞ. Distillation
[19], the method we adopt, replaces the smearing function
by an outer product over the low-lying eigenmodes of the
Laplacian,

hxyðtÞ ¼
XN
k¼1

�ðkÞ
x ðtÞ�ðkÞy

y ðtÞ; (2)

where the �ðkÞðtÞ is the kth eigenvector ofr2
xyðtÞ, ordered by

the magnitude of the eigenvalue; the (volume-dependent)
number of modes N should be sufficient to sample the

required angular structure at the hadronic scale [17,19],
but is small compared to the number of sites on a time
slice. Thus distillation is a highly efficient way of comput-
ing hadron correlation functions.
To illustrate how distillation is applied to the construc-

tion of the baryon correlators, we specialize to the case of a
positively charged isospin- 12 baryon. A generic annihila-

tion operator can be written

O iðtÞ ¼ �abcSi���ð�1hdÞa�ð�2huÞb�ð�3huÞc�ðtÞ; (3)

where u and d are u- and d-quark fields, respectively, �j is

a spatial operator, including possible displacements, acting
on quark j, a, b, c are color indices, and �, �, � are spin
indices; S encodes the spin structure of the operator, and is
constructed so that the operator has the desired quantum
numbers, as discussed in the next section. We now con-
struct a baryon correlation function as

CijðtÞ¼�abc� �a �b �cSi���
�S�j
�� �� ��

h½ð�1hdÞa�ð�2huÞb�ð�3huÞc�ðtÞ��½ð �dh ��1Þ �a��ð �uh ��2Þ �b��ð �uh ��3Þ �c��ð0Þ�i;

where the bar over S and � indicate these belong to the
creation operator. Inserting the outer-product decomposition
ofh fromEq. (2), we can express the correlation function as

CijðtÞ¼�i;ðp;q;rÞ
��� ðtÞ�j;ð �p; �q;�rÞy

�� �� ��
ð0Þ�½	p �p

� ��ðt;0Þ	q �q� ��
ðt;0Þ	r�r� ��ðt;0Þ

�	p �p
� ��ðt;0Þ	q�r� ��ðt;0Þ	r �q� ��

ðt;0Þ�; (4)

where

�i;ðp;q;rÞ
��� ¼ �abcSi���ð�1�

ðpÞÞað�2�
ðqÞÞbð�3�

ðrÞÞc

encodes the choice of operator and

	p �p
� ��ðt; 0Þ ¼ �yðpÞðtÞM�1

� ��ðt; 0Þ�ð �pÞð0Þ

is the operator-independent ‘‘perambulator’’, with p, �p the
eigenvector indices, and M the usual discretized Dirac
operator. The perambulators play the role of the quark
propagators between smeared sources and sinks. Once the
perambulators have been computed, the factorization
exhibited in Eq. (4) enables the correlators to be computed
between any operators expressed through�i,�j, including
those with displaced quark fields, at both the source and the
sink. This feature will be key to our use of the variational
method and the subsequent extraction of a spin-identified
baryon spectrum.

IV. CONSTRUCTION OF BARYON OPERATORS

The construction of a comprehensive basis of baryon
interpolation operators is critical to the successful applica-
tion of the variational method. The lowest-lying states
in the spectrum can be captured with color-singlet

local baryon operators, of the form given in Eq. (3).1

Combinations of such fields can be formed so as to
have definite quantum numbers, including definite symme-
try properties on the cubic lattice. The introduction
of a rotationally symmetric smearing operation, be it
Jacobi smearing or distillation, in which the quark fields
c ðxÞ are replaced by quasilocal, smeared fields hc ðxÞ,
does not change the symmetry properties of the interpolat-
ing operators. However, such local and quasilocal opera-
tors can only provide access to states with spins up to 3

2 . In

order to access higher spins in the spectrum, and to have
a sufficient basis of operators to effectively apply the
variational method, it is necessary to employ nonlocal
operators.
A basis of baryon interpolating operators incorporating

angular structure, respecting the cubic symmetry of the
lattice, and able to access higher spins in the spectrum,
was constructed in Refs. [6,7], and these operators were
employed in our earlier determinations of the spectrum.
The identification of the continuum spins corresponding to
the calculated energy levels remained challenging, how-
ever. To overcome this challenge, we adopt a different
procedure for operator construction: we first derive a basis
of operators in the continuum, with well-defined contin-
uum spin quantum numbers, and then form the subduction
of those operators into the irreducible representations of
the octahedral group of the lattice.

1With, in this case, � being just ordinary Dirac gamma
matrices.
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A. Continuum baryon interpolating operators

Baryons are color-singlet objects, and thus they involve
totally antisymmetric combinations of the color indices of
the three valence quarks. Furthermore baryon interpolating
operators have to be antisymmetric under the exchange of
any pair of quarks, which is automatically satisfied since
they are constructed from anticommuting Grassmann
fields. Thus the remaining quark labels, namely, those of
flavor, spin and spatial structure, have to be in totally
symmetric combinations.

We will construct our baryon interpolating operators
from products of three-quark fields. Before proceeding to
classify our operators, we note that three objects fx; y; zg
can exist in four definite symmetry combinations: symmet-
ric (S), mixed-symmetric (MS), mixed-antisymmetric
(MA) and totally antisymmetric (A)2; projection operators
that generate these combinations are specified in
Appendix A, in Eqs. (A1) and (A2). We will write our
baryon interpolating operators by applying projection op-
erators that act on the flavor, spin and spatial labels of a
generic three-quark operator, c 1c 2c 3:

B ¼ ðF �F
� S�S

�D�D
Þfc 1c 2c 3g;

where F , S and D are flavor, Dirac spin and spatial
projection operators, respectively, and the subscripts �F,
�S and �D specify the symmetry combinations of flavor,
Dirac spin and spatial labels. For each operator B, we must
combine the symmetry projection operators such that the
resulting baryon operator is overall symmetric. The rules
for combining symmetries of such direct products are
given in Eq. (A3).

To illustrate the construction, we specialize to the case
of local or quasilocal operators, where the spatial depen-
dence is the same for each quark, and thereby symmetric.
Thus we write this simplified interpolating operator as

B ¼ ðF �F
� S�S

Þfc 1c 2c 3g:
Furthermore, we will only consider the case of two-
component Pauli spin rather than four-component Dirac
spin. In the standard convention, Pauli spin involves a label
s that can take two values:þ and�. It is straightforward to
extend the construction to Dirac spins using the Dirac-
Pauli representation of Dirac matrices, as in Refs. [6,7].
Dirac spins involve direct products of two Pauli spin
representations: one for s-spin and the other for 
-spin
(intrinsic parity). The operator construction for Dirac
spin is described in Appendix A.

The product rules of Eq. (A3) specify three ways to
combine these flavor and spin projectors to yield an overall
symmetric projector:

F SSS (5)

F ASA (6)

1ffiffiffi
2

p ðFMSSMS þFMASMAÞ (7)

The four symmetric spin combinations SS simply corre-
spond to the four states or operators of spin 3

2 : fþ þþgS,
fþ þ�gS, fþ ��gS, f� ��gS, while the two mixed-
symmetric and two mixed-antisymmetric combinations
each correspond to states or operators of spin 1

2 ; there is

no antisymmetric combination of three objects taking only
two values.
For the case of SUð3Þ flavor, the flavor-symmetric com-

bination F S yields the decuplet (10). Hence Eq. (7), with
F S ! fuuug, specifies the operators for the spin- 32 �

þþ.
The mixed-symmetric combinations FMS;MA specify the

octet (8), so that fudugMA;MS correspond to the Nucleon.

Thus we see that Eq. (7) specifies the operators for the
spin- 12 octet. Since there is no SA spin combination, this

example cannot provide flavor-singlet (1) interpolating
operators—angular structure through nonlocal behavior is
required.
Covariant derivatives defined as in Ref. [6] are incorpo-

rated into the three-quark operators in order to obtain
suitable representations that transform like orbital angular
momentum. This is necessary in order to obtain operators
with total angular momentum J > 3

2 . First the covariant

derivatives are combined in definite symmetries with
respect to their action on the three-quark fields. A single

derivative is constructed from f ~D11g�D
. There are two

relevant symmetry combinations,

L ¼ 1:

8<
:
D½1�

MS ¼ 1ffiffi
6

p ð2Dð3Þ �Dð1Þ �Dð2ÞÞ
D½1�

MA ¼ 1ffiffi
2

p ðDð1Þ �Dð2ÞÞ
(8)

where the notation DðqÞ means that the derivative acts on
the q-th quark. There is no totally antisymmetric construc-
tion of one derivative and the symmetric combination

Dð1Þ þDð2Þ þDð3Þ is a total derivative that gives zero
when applied to a baryon with zero momentum—it is
omitted. Each derivative additionally has a direction index
(suppressed above) for which we choose a circular basis
such that they transform under rotations like components
of a spin-1 object:

Dm¼�1 ¼ � i

2
ðDx � iDyÞ Dm¼0 ¼ � iffiffiffi

2
p Dz:

Totally symmetric baryon operators with one derivative
are constructed by applying Eq. (8) to the mixed symmetry
spin-flavor operators according to the rules given inEq. (A3),

c ½1�
S ¼ 1ffiffiffi

2
p ðD½1�

MSc
½0�
MS þD½1�

MAc
½0�
MAÞ;

where superscripts in brackets indicate the number of deriva-
tives in the operator.

2Mixed symmetry combinations are of definite symmetry
under exchange of the first two objects.
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Two-derivative operators can be formed in definite
three-quark symmetry combinations that transform like
L ¼ 0, 1, 2 as follows,

L ¼ 0; 2: D½2�
S ¼ 1ffiffiffi

2
p ðþD½1�

MSD
½1�
MS þD½1�

MAD
½1�
MAÞ; (9)

L ¼ 0; 2: D½2�
MS ¼ 1ffiffiffi

2
p ð�D½1�

MSD
½1�
MS þD½1�

MAD
½1�
MAÞ; (10)

L ¼ 0; 2: D½2�
MA ¼ 1ffiffiffi

2
p ðþD½1�

MSD
½1�
MA þD½1�

MAD
½1�
MSÞ; (11)

L ¼ 1: D½2�
A ¼ 1ffiffiffi

2
p ðþD½1�

MSD
½1�
MA �D½1�

MAD
½1�
MSÞ: (12)

The projection into L ¼ 0, 1, 2 comes from combining a
pair of derivatives via their (suppressed) direction indices
using an SOð3Þ Clebsch-Gordan coefficient, i.e. as
h1; m1; 1; m2jL;MiDm1

Dm2
.

Although it is allowed, we omit the D½2�
S combination

that couples to L ¼ 0. It corresponds to the spatial
Laplacian and vanishes at zero momentum. Several possi-
bilities occur when totally symmetric baryon operators are
formed using the rules of Eq. (A3) to combine the spatial
derivatives and spins,

c ½2�
S ¼D½2�

S c ½0�
S ;

1ffiffiffi
2

p ðD½2�
MSc

½0�
MSþD½2�

MAc
½0�
MAÞ; D½2�

A c ½0�
A ;

where no total derivatives are formed from these construc-
tions. The angular momenta of spinors and derivatives are
combined using the standard Clebsch-Gordan formula of
SUð2Þ in order to obtain operators with good J in the
continuum,

j½J;M�i ¼ X
m1;m2

j½J1; m1�i � j½J2; m2�ihJ1m1; J2m2jJMi:

The scheme outlined in this section provides a classifi-
cation of all baryon operators constructed from three
quarks with either light or strange masses, up to two
derivatives in their spatial structure and respecting classical
continuum symmetries.

A naming convention for such operators is useful. A
Nucleon operator, with spin and parity of the three quarks
equal to 3

2
�, two derivatives coupled into L ¼ 2 and total

spin and parity JP ¼ 7
2
�, is denoted as�

NM �
�
3

2

��1
M
�D½2�

L¼2;S

�
J¼7=2

; (13)

where subscripts show that the flavor construction is mixed
symmetry (M), the spin construction also is mixed sym-
metry and the two derivatives are in a symmetric combi-
nation (S) as in Eq. (9). Direct products of these flavor, spin
and space constructions yield an overall symmetric set of
flavor, spin and spatial labels, as required.

A spin state like 3
2
� can be constructed in several ways

because Dirac spinors are used and they have four compo-
nents, two upper and two lower components. A superscript
1 attached to the spin part indicates that the operator is the
first of several embeddings with the same quantum num-
bers. Because of this, the basis set presented here is over-
complete since operators featuring both derivatives and
lower components are specified. However, this redundancy
is intentional as we need a basis with multiple operators in
each irrep for use with the variational method. If only Pauli
spinors were used, we would have an SUð6Þ �Oð3Þ clas-
sification of operators. That subset of our operators is
referred to as ‘‘nonrelativistic.’’
We reiterate that the operator construction described

here provides a basis set for spectrum calculations. We
are not forcing the symmetries manifested in the operator
basis into the spectrum results to be shown later. Rather,
the dynamics of QCD will decide on the eigenstates, which
can correspond to any linear superpositions of the operator
basis which may exhibit quite different symmetries to
those diagonalized by this basis.

B. Subduction

In lattice QCD calculations the theory is discretized on a
four-dimensional Euclidean grid. The full three-
dimensional rotational symmetry that classifies energy
eigenstates in the continuum is reduced to the symmetry
group of a cube (the cubic symmetry group, or equivalently
the octahedral group). Instead of the infinite number of
irreducible representations labeled by spin and parity, JP,
the double-cover cubic group for half-integer spin has only
six irreducible representations (irreps): G1g, Hg, G2g, G1u,

Hu, G2u, where parity is denoted by the g (gerade) sub-
script for positive parity or the u (ungerade) subscript for
negative parity. The distribution of the various M compo-
nents of a spin-J baryon into the lattice irreps is known as
subduction, the result of which is shown in Table II.
Extending the analysis of Refs. [16,17] to baryons, we

use ‘‘subduction’’ matrices for half-integer spins to project
the continuum-based operators to irreducible representa-
tions of the octahedral group,

O ½J�
n�;r ¼

X
M

SJ;M
n�;rO

½J;M�; (14)

TABLE II. Continuum spins subduced into lattice irreps
�ðdimÞ. There are two embeddings of H in J ¼ 9

2 .

J irreps, �ðdimÞ
1
2 G1ð2Þ
3
2 Hð4Þ
5
2 Hð4Þ 	 G2ð2Þ
7
2 G1ð2Þ 	Hð4Þ 	 G2ð2Þ
9
2 G1ð2Þ 	 1Hð4Þ 	 2Hð4Þ
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whereO½J;M� is a lattice operator constructed as outlined in
Appendix A 3. As seen in Table II, subduction of J ¼ 9

2

yields two occurrences of the H irrep. Multiple occur-
rences of lattice irreps are the general rule for spins higher
than 4. We denote by n� the nth occurrence of irrep � in
the subduction of spin J. For example, the two occurrences
of octahedral irrep H in the subduction of J ¼ 9

2 are de-

noted as 1H and 2H. For each J ! n� there is a subduction
matrix S in the values ofM and the rows of the irrep, r, that
maps the continuum spin operators to irreducible represen-
tations of the octahedral group. These subduction matrices
are derived for half-integer spins up to 9

2 in Appendix B.

Classifying operators by SUð3ÞF symmetry, we have the
total number of operators in each lattice irrep as shown in
Table III (top). Considered as a broken symmetry with an
unbroken SUð2ÞF isospin symmetry, we have the number of
operators shown in Table III (bottom). The operator basis
used in this work is constructed using SUð3ÞF flavor sym-
metry. Of course, the SUð3ÞF symmetry is broken in QCD,
most notably by the mass of the strange quark. The SUð3ÞF
operator basis allows the flavor symmetry breaking to be
determined by the relative degree of overlap onto operators
transforming in different representations of SUð3ÞF. This is
comparable to what is done in quark models and other
approaches, which helps to relate the lattice results to
phenomenology.

With the construction of operators and their subduction
to irreps of the cubic group outlined as above, we defer
further details to the appendices. Appendix A provides
details of the operator constructions, Appendix B derives
the subduction matrices through an analysis of the quan-
tum mechanics of continuum spin in the octahedral repre-
sentation, and also provides the subduction matrices for
half-integer spins.

V. CORRELATOR ANALYSIS

The variational method for spectral extraction [12–14],
which takes advantage of the multiplicity of operators
within a given symmetry channel to find the best (in a
variational sense) linear combination of operators for each
state in the spectrum, is now in common usage [15,20–23].
Our application of the method follows that developed in
Refs. [16,17,24], and applied to the analysis of the excited
meson spectrum, and we summarize it here.
The starting point is the system of generalized eigen-

value equations for the correlation matrix:

CðtÞvnðtÞ ¼ �nðtÞCðt0ÞvnðtÞ (15)

where �nðt0Þ ¼ 1, and where there is an orthogonality
condition on the eigenvectors of different states (n, n0),
vn0yCðt0Þvn ¼ �n;n0 . This orthogonality condition pro-

vides eigenvectors that distinguish clearly between nearly
degenerate states, which would be difficult to distinguish
by their time dependence alone. Equation (15) is solved for
eigenvalues, �n, and eigenvectors, vn, independently on
each time slice, t. Rather than ordering the states by the
size of their eigenvalue, which can become uncertain be-
cause of the high level of degeneracy in the baryon spec-
trum, we associate states at different time slices using the
similarity of their eigenvectors. We choose a reference
time slice on which reference eigenvectors are defined,
vn
ref 
 vnðtrefÞ, and compare eigenvectors on other time

slices by finding the maximum value of vn0y
ref Cðt0Þvn which

associates a state n with a reference state n0. Using this
procedure we observe essentially no ‘‘flipping’’ between
states in either the principal correlators, �nðtÞ, or the
eigenvectors, vnðtÞ, as functions of t.
Any two-point correlation function on a finite spatial

lattice can be expressed as a spectral decomposition

CijðtÞ ¼
X
n

Zn�
i Zn

j

2mn

e�mnt (16)

where we assume that t � Lt, the temporal length of the
box, so that the opposite-parity contributions arising from
the other time ordering on the periodic lattice can be

ignored. The ‘‘overlap factors’’, Zn
i 
 hnjOy

i j0i are related
to the eigenvectors by Zn

i ¼ ffiffiffiffiffiffiffiffiffi
2mn

p
emnt0=2vn�

j Cjiðt0Þ.
We obtain the masses from fitting the principal correla-

tors, �nðtÞ, which for large times should tend to e�mnðt�t0Þ.
In practice we allow a second exponential in the fit form,
and our fit function is

�nðtÞ ¼ ð1� AnÞe�mnðt�t0Þ þ Ane
�m0

nðt�t0Þ; (17)

where the fit parameters aremn,m
0
n and An. Typical fits for

a set of excited states within an irrep are shown in Fig. 1
where we plot the principal correlator with the dominant
time-dependence due to state n divided out. If a single
exponential were to dominate the fit, such a plot would
show a constant value of unity for all times. For the form of

TABLE III. (top) Number of distinct operators, categorized by
SUð3ÞF in each lattice irrep �g;u, using operators with up to two

derivatives. (bottom) Number of distinct operators, categorized
by SUð2ÞF isospin (I) and strangeness (S) in each lattice irrep
�g;u, using operators with up to two derivatives. Each operator

has dimð�Þ ‘‘rows.’’ There are equal numbers of operators in
positive and negative-parity.

G1 H G2

Singlet, 1 13 22 9

Octet, 8 28 48 20

Decuplet, 10 15 26 11

I S G1 H G2

N 1
2 0 28 48 20

� 3
2 0 15 26 11

� 0 0 41 60 29

� 1 �1 43 74 31

� 1
2 �2 43 74 31

� 0 �3 15 26 11
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Eq. (17), the data would approach a constant 1� A at large
times, and this is clearly satisfied for t > t0.

Empirically we find that the size of the second exponen-
tial term decreases rapidly as one increases t0. Further we
find, in agreement with the perturbative analysis of
Ref. [14] and with our earlier meson analysis, that for large
t0 values the m0

n extracted are larger than the value of
mn¼dimðCÞ, the largest ‘‘first’’ exponential mass extracted.

At smaller t0 values this is not necessarily true and is
indicative of an insufficient number of states in Eq. (16)
to describe Cðt0Þ completely. The values of An and m0

n are
not used elsewhere in the analysis.

Our choice of t0 is made using the ‘‘reconstruction’’
scheme [17,24]: the masses, mn, extracted from the fits
to the principal correlators, and the Zn

i extracted from the
eigenvectors at a single time slice are used to reconstruct

the correlator matrix using Eq. (16). This reconstructed
matrix is then compared with the data for t > t0, with the
degree of agreement indicating the acceptability of the
spectral reconstruction. Adopting too small a value of t0
leads to a poor reconstruction of the data for t > t0. In
general, the reproduction is better as t0 is increased until
increased statistical noise prevents further improvement.
The sensitivity of extracted spectral quantities to the value
of t0 used will be discussed in detail in section VIIA, but in
short the energies of low-lying states are rather insensitive
to t0 and the reconstruction of the full correlator matrix
usually is best when t0 * 7, but not too large.
From the spectral decomposition of the correlator,

Eq. (16), it is clear that there should in fact be no time
dependence in the eigenvectors. Because of states at higher
energies than can be resolved with dimðCÞ operators, there
generally is a contribution to energies and Z’s that decays
more rapidly than the lowest mass state that contributes
to a principal correlator. As for energies, we obtain
‘‘time-independent’’ overlap factors, Zn

i from fits of
Zn
i ðtÞ, obtained from the eigenvectors, with a constant or

a constant plus an exponential, in the spirit of the pertur-
bative corrections outlined in [14]).

VI. DETERMINING THE SPIN OF A STATE

A. Motivation and procedure

A new method for identifying the spins of excited mes-
onic states was introduced in Refs. [16,17]. In this work,
we extend the method to identify spins of excited baryonic
states. The explanation for the success of the new method
is that there is an approximate realization of rotational
invariance at the scale of hadrons in our correlation func-
tions. There are two reasons for this claim. The first is that
there are no dimension-five operators made of quark bi-
linears that respect the symmetries of lattice actions based
on the Wilson formalism and that do not also transform
trivially under the continuum group of spatial rotations.
Thus, rotational symmetry breaking terms do not appear
untilOða2Þ in the action. This argument holds even though
the action used in this work describes an anisotropic lattice.
The second reason is that our baryon operators are con-
structed from low momentum filtered, smeared quark
fields, where the smearing is designed to filter out fluctua-
tions on small scales. Possible divergent mixing with lower
dimensional operators is then expected to be suppressed.
The baryon operators then are reasonably smooth on a size
scale typical of baryons, which is R � 1 fm. With the
lattice spacing of �0:12 fm, the breaking of rotational
symmetry in the action or the baryon operators can be
small: ða=RÞ2 � 0:015. Of course, these qualitative argu-
ments should be backed up by evidence of approximate
rotational invariance in explicit calculation.
The operators constructed in Sec. IV using subduction

matrices transform irreducibly under the allowed cubic
rotations, that is they faithfully respect the symmetries of
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FIG. 1 (color online). Principal correlator fits according to
Eq. (17). For ten states of the Nucleon Hu irrep for m� ¼
524 MeV, the plots show �nðtÞ � emnðt�t0Þ data and the fit for
t0 ¼ 9. Data used in the fit are shown in black, while points
excluded from the fit are in grey.
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the lattice. They also carry information about the contin-
uum angular momentum, J, from which they are subduced.
To the extent that approximate rotational invariance is
realized, we expect that an operator subduced from spin

J to overlap strongly only onto states of continuum spin J,
and have little overlap with states of different continuum
spin. In fact this is clearly apparent even at the level of the
correlator matrix as seen in Fig. 2. Here the correlator
matrix for the NucleonHu is observed to be approximately
block diagonal when the operators are ordered according to
the spin from which they were subduced.
To identify the spin of a state, we use the operator

‘‘overlaps’’ Zn
i ¼ hnjOy

i j0i for a given state extracted
through the variational method presented in the previous
section. In Fig. 3 we show the overlaps for a set of low-
lying states in the Nucleon Hu and G2u irreps of the
m� ¼ 524 MeV 163 calculation. The principal correlators
for these states in Hu are shown in Fig. 1, and the corre-
sponding mass spectrum is shown in Fig. 9. The overlaps
for a given state show a clear preference for overlap onto
only operators of a single spin. While we show only a
subset of the operators for clarity, the same pattern is
observed for the full operator set.
The assignment of spin must hold for states with con-

tinuum spin J subduced across multiple irreps. In the
continuum our operators are of definite spin such that

h0jOJ;MyjJ0;M0i ¼ Z½J��J;J0�M;M0 , and therefore from

Eq. (14) the overlap of the subduced operator is

h0jO½J�y
n�;rjJ0;Mi ¼ SJ;M

n�;rZ
½J��J;J0 . Only the spin J states

will contribute, and not any of the other spins present in
the irrep n�. Inserting a complete set of hadronic states
between the operators in the correlator and using the
fact that the subduction coefficients form an orthogonal

matrix (B7),
P

MS
J;M
�;r S

J;M
�0;r0 ¼ ��;�0�r;r0 , we thus obtain

0.2 0.4 0.6 0.8 1.0

FIG. 2 (color online). The magnitude of matrix elements in a
matrix of correlation functions, Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
, at time-slice 5 is

shown according to the scale at the lower right. The matrix is for
the Nucleon Hu irrep, with 28 [J ¼ 3

2 ] operators, 16 [J ¼ 5
2 ]

operators and 4 [J ¼ 7
2 ] operators.

FIG. 3 (color online). Histograms of spectral overlaps, Z, are shown for a selection of eight operators (shown at the top using the
naming convention of Eq. (13)). The 4 operators labeled with J ¼ 3

2 (color red) have subductions only to the Hu irrep. The 3 operators

labeled with J ¼ 5
2 (color green) and the 1 labeled with J ¼ 7

2 (color blue) have subductions to both Hu and G2u irreps. Each histogram

is labeled by the value of mass m of the state (in units of m�) and has 8 vertical bars showing the relative Z values for each of the
operators. The data are from them� ¼ 524 MeV ensemble and Z’s are normalized so that the largest value across all states, for a given
operator, is equal to 1. The lighter area at the head of each bar represents the one sigma statistical uncertainly. Note that for each state
only one or two operators have a large relative Z value, and it is the same operators appearing across each of the irreps. Note also that
nearly the same energies are obtained in Hu and G2u irreps for state subduced from one J value.
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terms in the correlator spectral decomposition proportional

to Z½J��Z½J� for each � we have subduced into, up to
discretization uncertainties as described above. Hence,
for example, a J ¼ 7

2 baryon created by a ½J ¼ 7
2� operator

will have the same Z value in each of the G1, H, G2 irreps.
This suggests that we compare the independently obtained
Z-values in each irrep. In Fig. 4 we show the extracted
Z values for negative-parity states suspected of being spin 5

2

across theHu and G2u irreps, and of being spin
7
2 across the

G1u, Hu and G2u irreps. As can be seen, there is good
agreement of Z values in the different irreps that are
subduced from spin J, with only small deviations from
exact equality.

These results demonstrate that the Z values of carefully
constructed subduced operators can be used to identify the
continuum spin of states extracted in explicit computation
for the lattices and operators we have used.

We take the next step and use the identification of the
components of the spin-J baryon subduced across multiple
irreps to make a best estimate of the mass of the state. The

mass values determined from fits to principal correlators in
each irrep differ slightly due to what we assumed to be
discretization effects and, in principle, avoidable fitting
variations (such as the fitting intervals). We follow
Ref. [17] and perform a joint fit to the principal correlators
with the mass being common. This method provides a
numerical test that the state has been identified. We allow
a differing second exponential in each principal correlator
so that the fit parameters aremn, fm0�

n g and fA�
n g. These fits

are typically very successful with correlated �2=Ndof close
to 1, suggesting again that the descretization effects are
small. An example for the case of 72

� components identified

in G1u, Hu, G2u is shown in Fig. 5. When we present our
final, spin-assigned spectra it is the results of such fits that
we show.

B. Additional demonstration of approximate
rotational invariance

A further demonstration of approximate rotational in-
variance is based on the spectrum of energy levels. If
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FIG. 4 (color online). Selected Z values across irreps�u are shown for states suspected of being J ¼ 5
2 (left panel) and

7
2 (right panel),

based on the m� ¼ 524 MeV ensemble. The boxes at the top show the mass for the various states. There are two states of J ¼ 5
2
�. The

operators in the left panel, all projected onto J ¼ 5
2
�, are left to right, NM � ð12�Þ1M �D½2�

L¼2;S, NM � ð12�Þ1S �D½2�
L¼2;M, NM � ð32þÞ1M �

D½1�
L¼1;M, NM � ð32þÞ1S �D½1�

L¼1;M, NM � ð32�Þ1M �D½1�
L¼2;S, NM � ð32�Þ1S �D½1�

L¼2;M. Overlaps of these operators after subduction into Hu and

G2u, agree well for each of the two states shown. The operators in the right panel, all projected onto J ¼ 7
2
�, are left to right, NM �

ð32�Þ1M �D½2�
L¼2;M, NM � ð32�Þ1M �D½2�

L¼2;S, NM � ð32�Þ1S �D½2�
L¼2;M, NM � ð32�Þ2S �D½2�

L¼2;M. Similarly, the operator overlaps for this state

agree well across G1u, Hu, and G2u.
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FIG. 5 (color online). Fit to the three subduced principal correlators of lowest-lying 7
2
� Nucleon using a common mass. Results are

from the m� ¼ 524 MeV ensemble. These levels correspond to the sixth excited G1u, the seventh Hu and the fourth G2u. Plotted is
�ðtÞ � emðt�t0Þ. Grey points not included in the fit.
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indeed the mixing between states of different continuum
spin J is small, then the omission of such coupling should
not much affect the excited state spectra. That proposition
can be tested by extracting energies using all operators, and
comparing them with the energies obtained from only
operators subduced from a single J value. If approximate
rotational invariance were achieved in the spectrum, the
energies would be nearly the same. As an example, we
show results for the Nucleon Hu irrep, in Fig. 6. The left
column of the Fig. 6, labeled ‘‘all’’, shows the lowest 12
energy levels obtained from matrices of correlation
functions using the set of all 48 Hu operators, and spin
identified using the methods previously described. The
states listed in Fig. 3 correspond to a few of these 12 levels.
The second column shows the lowest 6 levels resulting
from the variational method when the operator basis is
restricted to only those with continuum spin J ¼ 3

2 .

Similarly, the third shows the lowest 4 levels when the
operator basis is restricted to only those with continuum
spin J ¼ 5

2 , and the last column are the lowest two levels

when the basis is restricted to only J ¼ 7
2 operators.

The results are striking. We see that the masses of the
levels in each of the restricted bases agree quite well with
the results found in the full basis. The agreement is quite
remarkable because one expects operators in the Hu irrep
that can couple with the ground state (the lowest J ¼ 3

2

state), will allow for the rapid decay of correlators down to
the ground state as a function of time, t. However, the
higher-energy spin 5

2 and
7
2 states do not show such a decay;

we obtain good plateaus in plots like those in Fig. 1. These

results provide rather striking demonstration for the lack of
significant rotational symmetry breaking in the spectrum.

VII. STABILITY OF SPECTRUM EXTRACTION

In this section, we consider to what extent the extracted
spectrum changes as we vary details of the calculation,
such as the metric time slice, t0, used in the variational
analysis, and the number of distillation vectors. Wewill use
the Nucleon Hu and the Delta Hg irreps in the m� ¼
524 MeV dataset to demonstrate our findings.

A. Variational analysis and t0

Our fitting methodology was described in Sec. V where
reconstruction of the correlator was used to guide us to an
appropriate value of t0. As seen in Fig. 7, for t0 * 7, the
low-lying mass spectrum is quite stable with respect to
variations of t0. This appears to be mostly due to the
inclusion of a second exponential term in Eq. (17), which
is able to absorb much of the effect of states outside the
diagonalization space. The contribution of this second
exponential typically falls rapidly with increasing t0 both
by having a smaller A and a larger m0.
Overlaps, Zi

n ¼ hnjOy
i j0i, can show more of a sensitiv-

ity to t0 values being too low, as was found also in the
analysis of mesons, Ref. [17].
In summary it appears that variational fitting is reliable

provided t0 is ‘‘large enough.’’ Using two-exponential fits
in principal correlators we observe relatively small t0
dependence of masses, but more significant dependence
for the Z values which we require for spin-identification.

B. Number of distillation vectors

The results presented so far are based on the analysis of
correlators computed on 163 lattices using 56 distillation
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FIG. 6 (color online). Extracted Nucleon Hu mass spectrum
for various operator bases. (a) Full basis ( dim ¼ 48), (b) Only
J ¼ 3

2 operators ( dim ¼ 28), (c) Only J ¼ 5
2 operators ( dim ¼

16), (d) Only J ¼ 7
2 operators ( dim¼ 4). Results are from the

m� ¼ 524 MeV ensemble. The dimensionality of the operator
basis in each J is shown in Table X.
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FIG. 7 (color online). Extracted Nucleon Hu mass spectrum as
a function of t0. Horizontal bands serve to guide the eye. For
clarity of presentation, only one of the highly excited J ¼ 3

2
� and

J ¼ 5
2
� levels are shown.
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vectors. We consider how the determination of the spec-
trum varies if one reduces the number of distillation vectors
and thus reduces the computational cost of the calculation.
This is particularly important given that, as shown in [19],
to get the same smearing operator on larger volumes one
must scale up the number of distillation vectors by a factor
equal to the ratio of spatial volumes. To scale up to a 323

lattice this would require 56� ð3216Þ3 ¼ 448 vectors which

is not currently a realizable number without using stochas-
tic estimation [25].

In Fig. 8 we show the low-lying part of the extracted
Delta Hg spectrum on the m� ¼ 524 MeV lattice as a

function of the number of distillation vectors used in the
correlator construction. It is clear that the spectrum is
reasonably stable for N * 32 but that the spectrum quality
degrades rapidly for fewer vectors. In particular, the meth-
ods for spin identification fail for the highest JP ¼ 5

2
þ state

as well as the first JP ¼ 7
2
þ state.

The need for a large number of distillation vectors has
been discussed in Ref. [17] for the case of isovector me-
sons. The conclusion drawn is that to describe high-spin
hadrons having large orbital angular momentum, one needs
to include sufficient vectors to sample the rapid angular
dependence of the wavefunction over the typical size of a
hadron. The results for baryons presented here are consis-
tent with these observations.

In summary, one is limited as to how few distillation
vectors can be used if one requires reliable extraction of
high-spin states. The results shown here suggest 32 distil-
lation vectors on a 163 lattice is the minimum, so at least 64
distillation vectors on a 203 lattice are likely to be required.

VIII. RESULTS

Our results are obtained on 163 � 128 lattices with pion
masses between 396 and 524 MeV. More complete details

of the number of configurations, time sources and distil-
lation vectors used are given in Table I. The full basis of
operators in each irrep listed in Table III is used for the
variational method construction.

A. m�¼524 MeV results

Using the variational method outlined in Sec. V, the
spectrum of energies in each lattice irrep for the Nucleon
and for the Delta are shown in Figs. 9 and 10, respectively.
By applying the spin-identification procedure described
above, we can subsequently associate continuum JP labels
to each of these states, as labeled on the figures. For the
remainder of this paper, wewill therefore label the energies
by their assigned continuum spins; these are shown for the
lattices at m� ¼ 524 MeV in Fig. 11, with the energies
obtained from a joint fit to the principal correlators as
described in Sec. V.
There are several notable features in these spectra.

As we will discuss, the patterns of states have a good
correspondence with single-hadron states as classified
by SUð6Þ �Oð3Þ symmetry. The numbers of low-lying
states in each JP are similar to the numbers obtained
in the nonrelativistic quark model which is a particular
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FIG. 8 (color online). Extracted Delta Hg mass spectrum as a
function of number of distillation vectors in the m� ¼ 524 MeV
dataset. For N & 32, spin identification is lost for the highest
J ¼ 5

2
þ and J ¼ 7

2
þ levels. Colors are red ( 32 ), green ( 52 ), blue

( 72 ), and orange is undetermined (J).
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FIG. 10 (color online). Extracted Delta spectra by irrep for
m� ¼ 524 MeV. Colors are black (J ¼ 1

2 ), red ( 32 ), green ( 52 ),

blue ( 72 ). Masses are shown in ratios of the � baryon mass.
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FIG. 9 (color online). Extracted Nucleon spectra by irrep for
m� ¼ 524 MeV. Colors are black (J ¼ 1

2 ), red ( 32 ), green ( 52 ),

blue ( 72 ). Masses are shown in ratios of the � baryon mass.
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realization of the symmetry above (e.g., [26,27]). For the

purposes of these comparisons, it is helpful to introduce a

spectroscopic notation: X2Sþ1L�J
P, where X is the

Nucleon N or the Delta �, S is the Dirac spin, L ¼
S; P;D; . . . denotes the combined angular momentum of

the derivatives, � ¼ S, M, or A is the permutational sym-

metry of the derivative, and JP is the total angular momen-

tum and parity. This notation also is used in Table IV,

which we discuss now.
In the negative-parity N� spectrum, there is a pattern of

five low-lying levels, consisting of two N1
2
� levels, two

N3
2
� levels, and one N5

2
� level. The triplet of higher levels

in this group of five is nearly degenerate with a pair of �1
2
�

and �3
2
� levels. This pattern of Nucleon and Delta levels is

consistent with an L ¼ 1� P-wave spatial structure with
mixed symmetry, PM . As shown in Table IV, the same
numbers of states are obtained in the SUð6Þ �Oð3Þ classi-
fication for the negative-parity Nucleon and Delta states

constructed from the ‘‘nonrelativistic’’ Pauli spinors as we
find in the lattice spectra. The lowest two N�� states are
dominated by operators constructed in the notation of
Eq. (13) as NM � ðS ¼ 1

2
þÞM � ðL ¼ 1�ÞM ! JP ¼ 1

2
�

and 3
2
�, while the three higher N�� levels are dominated

by operators constructed according to NM � ðS ¼ 3
2
þÞS �

ðL ¼ 1�ÞM with JP ¼ 1
2
�, 3

2
� and 5

2
�. Similarly, the low-

lying Delta levels are consistent with a �1
2
� and �3

2
�

assignment. There are no low-lying negative-parity S ¼ 3
2

Delta states since a totally symmetric state (up to antisym-
metry in color) cannot be formed. Consequently, there is no
low-lying �5

2
�, which agrees with the lattice spectrum. In

the nonrelativistic quark model [26], a hyperfine contact
term is introduced to split the doublet and quartet states up
and down, respectively, compared to unperturbed levels
and the tensor part of the interaction provides some addi-
tional splitting. The result is that the doublet Delta states
are nearly degenerate with the quartet Nucleon states as is
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FIG. 11 (color online). Spin-identified spectrum of Nucleons and Deltas from the lattices at m� ¼ 524 MeV, in units of the
calculated � mass.
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FIG. 12 (color online). Spin-identified spectrum of Nucleons and Deltas from the lattices at m� ¼ 396 MeV, in units of the
calculated � mass.
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observed in the lattice spectra, Fig. 11. In the language of
SUð6Þ �Oð3Þ, these low-lying N and � states constitute
the strangeness zero part of a ½70; 1�� multiplet, as indi-
cated in Table IV.

In the positive-parity sector, there also are interpretable
patterns of lattice states in the range m=m� � 1:3–1:5.
There are fourN1

2
þ levels, fiveN3

2
þ levels, threeN5

2
þ levels

and one N7
2
þ level, which are the same numbers of levels

for each JP as in Table IV. The lattice spectra also have two
�1

2
þ levels, three �3

2
þ levels, two �5

2
þ levels, and one �7

2
þ

level, which are the same numbers of levels for each JP as
in Table IV. In this case we are considering the multiplets
½70; 0þ�, ½56; 2þ�, ½70; 2þ�, ½20; 1þ� and a radially excited
½56; 0þ� and within nonrelativistic qqq constituent quark
models [27], the mass eigenstates are admixtures of these
basis states.
In general for both the Nucleon and Delta spectrum,

there are reasonably well-separated bands of levels across
the range of J values, alternating in parity, with each band
higher in energy than the previous one. We remark that
there are no obvious patterns of degenerate levels with
opposite parities for the same total spin, J as in Ref. [28].
The discussion up to now has focused on observables;

namely, the level energies. More information about the
internal structure of the lattice states can be obtained by
analyzing the spectral overlaps. We remind the reader that
the full basis of operators listed in Table III is usedwithin the
variational method. We find that only a few operators have
large overlaps in the lowest negative-parity Nucleon levels
of the G1u, Hu and G2u irreps, and these are the subduced
versions of ‘‘nonrelativistic’’ operators. From the construc-
tion of operators in Appendix A, those featuring only upper
components in spin are in the first embedding of Dirac spin
in Table VI. There is a one-to-one correspondence between
these operators, and those listed in Table IV, and we will
adopt the spectroscopic names as a shorthand. This spectro-
scopic notation is used in Table IV to identify operators, but
is also applicable for identification of states. (Details of the
derivative construction for the operators can be found in
Appendix A 3.) The Nucleon (and Delta) J ¼ 1

2
�, 32

� and 5
2
�

operators all feature one derivative inPM coupled to either a
spin S ¼ 1

2 (doublet) or S ¼ 3
2 (quartet). Spectral overlaps

(Z) for these operators can be directly compared since they
all have a consistent normalization. An S ¼ 3

2 spin coupled

to one derivative can be projected to either J ¼ 1
2 , J ¼ 3

2 or

J ¼ 5
2 . The first and second constructions are subduced into

the G1u and Hu irreps, while the J ¼ 5
2 construction is

subduced into the Hu and G2u irreps.
In Fig. 13, we compare these nonrelativistic operator

overlaps for the lowest-lying states and across irreps. We
see that one operator is dominant for each state, with
magnitudes that are roughly consistent across all irreps.
In particular, the constructions coupled to different J have
similar magnitudes. These results suggest that these low-
lying levels form a multiplet with little mixing among the
states. In the language of SUð6Þ �Oð3Þ (spin-flavor and
space), these states, and their negative-parity Delta part-
ners, are part of a ½70; 1�� multiplet.
Similarly, we can examine the first group of excited

positive-parity levels in the Nucleon channel that cluster
aroundm=m� � 1:4. Again, we find that the positive-parity
Nucleon operators fromTable IVare dominant in the spectral

TABLE IV. Subset of the operator basis classified by SUð6Þ �
Oð3Þ multiplets and total spin and parity JP. The entries are the
orbital angular momentum structures outlined in Section IV and
Appendix A that contribute within each JP. The operators listed
here are all from the first embedding in Dirac spin in Table VI,
and correspond to only upper components (referred to as ‘‘non-
relativistic’’). A spectroscopic notation of X2Sþ1L�J

P is used,
where X ¼ N or �, S is the Dirac spin, L ¼ S; P;D; . . . is the
combined angular momentum of the derivatives, � ¼ S,M, or A
is the permutational symmetry of the derivatives, and JP is the
total angular momentum and parity. In Secs. IV, V, and VI, an

operator notation like ðNM � ð32þÞ1S � D½1�
L¼1;MÞJ¼5=2 was used

which in this spectroscopic notation would be N4PM
5
2
�.

Dimensions and parities of SUð6Þ �Oð3Þ representations are
listed in column 4 for the doublet spin states of column 2, and
in column 5 for the quartet spin states of column 3. The number,
n, of operators for each JP is listed in the rightmost column. This
same spectroscopic notation and classification of spatial struc-
ture is also used for comparisons with models where L represents
the orbital angular momentum.

Nucleon (8) SUð6Þ �Oð3Þ n

JP ¼ 1
2
� N2PM

1
2
� N4PM

1
2
� ½70; 1�� ½70; 1�� 2

JP ¼ 3
2
� N2PM

3
2
� N4PM

3
2
� ½70; 1�� ½70; 1�� 2

JP ¼ 5
2
� N4PM

5
2
� ½70; 1�� 1

JP ¼ 1
2
þ N2SS

1
2
þ N4DM

1
2
þ ½56; 0þ� ½70; 2þ� 4

N2SM
1
2
þ ½70; 0þ�

N2PA
1
2
þ ½20; 1þ�

JP ¼ 3
2
þ N2DS

3
2
þ N4SM

3
2
þ ½56; 2þ� ½70; 0þ� 5

N2DM
3
2
þ N4DM

3
2
þ ½70; 2þ� ½70; 2þ�

N2PA
3
2
þ ½20; 1þ�

JP ¼ 5
2
þ N2DS

5
2
þ N4DM

5
2
þ ½56; 2þ� ½70; 2þ� 3

N2DM
5
2
þ ½70; 2þ�

JP ¼ 7
2þ N4DM

7
2
þ ½70; 2þ� 1

Delta (10) SUð6Þ �Oð3Þ n

JP ¼ 1
2
� �2PM

1
2
� ½70; 1�� 1

JP ¼ 3
2
� �2PM

3
2
� ½70; 1�� 1

JP ¼ 5
2
� 0

JP ¼ 1
2
þ �2SM

1
2
þ �4DS

1
2
þ ½70; 0þ� ½56; 2þ� 2

JP ¼ 3
2
þ �2DM

3
2
þ �4SS

3
2
þ ½70; 2þ� ½56; 0þ� 3

�4DS
3
2
þ ½56; 2þ�

JP ¼ 5
2
þ �2DM

5
2
þ �4DS

5
2
þ ½70; 2þ� ½56; 2þ� 2

JP ¼ 7
2
þ �4DS

7
2
þ ½56; 2þ� 1
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overlaps. One of themhas a quasilocal structure (indicated as
SS for no derivatives) with J ¼ 1

2 , while the others involve

two derivatives coupled either to L ¼ 0, 1 or 2 and are
labeled as SM, PA or DS and DM. We find that there is not
a unique mapping of each state to one particular operator,
rather each operator contributes invaryingmagnitude to each
state, indicating significant mixing in this basis.

These results, along with the observation that the num-
bers of states are consistent with the numbers of nonrela-
tivistic operators in each Jþ, suggest that this band of
positive-parity states belongs to more than one SUð6Þ �
Oð3Þ multiplet, with now mixing among the multiplets
mentioned before; namely, the ½70; 0þ�, ½56; 2þ�, ½70; 2þ�
½20; 1þ� and a radially excited ½56; 0þ�. It is notable that
there is overlap with all the allowed L�J

P multiplets with
L  2, and, in particular, there is mixing with the ½20; 1þ�
multiplet. There does not appear to be any ‘‘freezing’’ of
degrees of freedom as suggested in some diquark models
(for some reviews see Refs. [29,30]). We will return to this
point in the summary.

As we move up to the second excited negative-parity
band in the Nucleon and Delta channels, we find the
‘‘nonrelativistic’’ PM operators discussed previously do

not feature prominently in the spectral overlaps in these
higher lying excited states. Instead, operators using two
derivatives together with one quark having a lower-
component (
 ¼ �) Dirac structure appear, some of which
appear in Figs. 3 and 4. The lower-component spinor con-
tributes a factor�1 to the parity. Similarly, those operators
that featured prominently in the first excited positive-parity
band do not appear significantly in the second excited
positive band in the Nucleon and Delta channels. Instead,
operators involving two derivatives and two lower-
component Dirac spinors appear. The lower components
effectively bring in angular momentum, but are not equiva-
lent in spatial structure. To adequately resolve the internal
structure of these higher lying states will require the in-
troduction of operators featuring three and four derivatives.

B. Quark-mass dependence

At the two lighter pion masses,m� ¼ 444 and 396MeV,
we find the spectra for Nucleons and Deltas, classified by
irreps, to be qualitatively similar to the heaviest pion mass
case. The spin-identification techniques described above
are successful, and the resulting spectrum, identified by
spin is shown in Fig. 12 for the ensemble at m� ¼
396 MeV, normalized in units of the measured � baryon
mass determined at this quark mass.

0.02

0.04

0.06

0.08

FIG. 13 (color online). Spectral overlaps for the negative-
parity Nucleon operators in Table IV within the lowest-lying
states for the m� ¼ 524 MeV ensemble. The operators are
subduced into the G1u, Hu and G2u irreps, and their spectral
overlaps are shown for the lowest-lying states with the masses
listed in units of the � baryon mass. In the spectroscopic
notation, these are the N2PM

1
2
� and N4PM

1
2
� subduced into

G1u, the N2PM
3
2
� and N4PM

5
2
� subduced into Hu, and

N4PM
5
2
� subduced into both Hu and G2u. As can be seen, for

each level one operator is dominant.
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FIG. 14 (color online). Lightest few Nucleon J ¼ 1
2
þ, 3

2
þ, 5

2
þ,

and 7
2
þ states. Also shown in N1

2
þ is the threshold for N� and

N��. The influence in the spectrum from these thresholds is
complicated by the use of a finite spatial cubic box. Further
discussion is in Sec. IX.
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TheNucleon andDelta spectrum is qualitatively similar to
that determined at the heaviest pion mass—the m� ¼
524 MeV lattices—albeit typically at smaller mass in units
of the� baryonmass. There are the same number and pattern
of low-lying negative-parity nucleon and delta states, as well
as in the first excited band of positive-parity states.Again, the
low-lying negative-parity delta states are slightly higher than
the corresponding nucleon states. There is a slightly en-
hanced splitting for the first excited band of positive-parity
delta states across Jþ, as well as more mixing among the
positive-parity nucleon states around m=m� � 1:3.

In Figs. 14–17, we show extracted state masses as a

function of ‘� 
 9
4

ðatm�Þ2
ðatm�Þ2 which we use as a proxy for

the quark-mass [11] for the three-quark masses listed in

Table I. The state masses are presented via atmH

atm�
mphys

� . The

ratio of the state mass (mH) to the �-baryon mass com-
puted on the same lattice removes the explicit scale depen-
dence and multiplying by the physical �-baryon mass
conveniently expresses the result in MeV units. This is
clearly not a unique scale-setting prescription, but it serves
to display the data in a relatively straightforward way. We
remind the reader that the data between different quark
masses are uncorrelated since they follow from computa-
tions on independently generated dynamical gauge-fields.

In Fig. 14 we show the mass of some of the lowest
identified positive-parity levels. In Fig. 15 we show the
lowest few negative-parity Nucleon levels. To help resolve
near degeneracies, we slightly shift symbols at the same pion
mass horizontally in l�. In some cases, for comparison, we
plot the mass of the lightest N� and N�� thresholds—the
mass follows from the simple sumof the extractedmasses on
these lattices. In general, the lattice levels decrease with the
quark mass. There is no observed dramatic behavior, for
example, from crossing of thresholds.

Notable in these plots is the clustering of bands of levels

as seen in Figs. 11 and 12 and described above. In the first

excited positive-parity Nucleon band, there is a tendency

for the levels across Jþ to cluster, and is most readily

apparent in the J ¼ 1
2
þ to cluster around m=m� � 1:3 as

the pion mass decreases. Another notable feature in these

figures is the absence of an excited Nucleon J ¼ 1
2
þ state

comparable, or slightly below, the lowest-lying 1
2
� level as

reported in the PDG [31]. Similarly, there is no low-lying

Delta J ¼ 3
2
þ state comparable in mass to the 3

2
�. The

ordering of the low-lying states in the Nucleon spectrum,

and, in particular, the spectrum of the N1
2
þ channel, has

been the subject of much effort in lattice QCD.
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FIG. 15 (color online). Lightest few Nucleon J ¼ 1
2
�, 3

2
�, 5

2
�,

and 7
2
� states. Also shown in N1

2
� is the threshold for N� and

N��. The influence in the spectrum from these thresholds is
complicated by the use of a finite spatial cubic box. Further
discussion is in Sec. IX.
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FIG. 16 (color online). Lightest few Delta J ¼ 1
2
þ, 32

þ, 52
þ, and

7
2
þ states. Also shown in �3

2
þ is the threshold for N� and N��.

The influence in the spectrum from these thresholds is compli-
cated by the use of a finite spatial cubic box. Further discussion
is in Sec. IX.
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C. Comparisons

In Fig. 18, we show a comparison of our result for the
Nucleon J ¼ 1

2
þ spectrum with other calculations in full

QCD. Those shown in grey are from Ref. [32] using 2 	 1
dynamical quark flavors, while those in orange are from
Ref. [4] using two dynamical light-quark flavors. Each of
these calculations employs a different means to set the
lattice scale, and we have made no attempt to resolve these
calculations to a common scale-setting scheme. Rather our
aim in this discussion is to compare the pattern of states
that has emerged in each calculation, and to provide a
possible explanation for the differences.
References [4,32] find only two excited levels below

2.8 GeV, notably isolated from one another in the case of
Ref. [32], at pion masses comparable to those in this study.
At the lightest quark mass reported in this work, there are
four nearly degenerate excited states found at approxi-
mately 2.2 GeV, and three nearly degenerate states near
2.8 GeV. A possible explanation for the discrepancy in the
number of levels is the operator constructions used.
Refs. [4,32] use a basis of local or quasilocal operators,
without, for example, derivatives, but with multiple smear-
ing radii. These operators, which have an S-wave spatial
structure concentrated at the origin, can have overlap with
radial excitations of S-waves, but will have limited overlap
with higher orbital waves. The results presented here sug-
gest the observed excited J ¼ 1

2
þ states are admixtures of

radial excitations as well as D-wave and antisymmetric
P-waves structures, and the inclusion of operators featur-
ing such structures is essential to resolve the degeneracy of
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FIG. 17 (color online). Lightest few Delta J ¼ 1
2
�, 32

�, 52
�, and

7
2
� states. Also shown in �1

2
� is the threshold for N� and N��.

The influence in the spectrum from these thresholds is compli-
cated by the use of a finite spatial cubic box. Further discussion
is in Sec. IX.
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CSSM
BGR

this paper

FIG. 18 (color online). Comparison of results for the Nucleon J ¼ 1
2
þ channel. The results shown in grey are from Ref. [32], while

those in orange are from Ref. [4]. Note that data are plotted using the scale-setting scheme in the respective papers. Results from this
paper are shown in red (the ground state), green and blue. At the lightest pion mass, there is a clustering of four states as indicated near
2 GeV, while there are three nearly degenerate states close to 2.7 GeV. Operators featuring the derivative constructions discussed in this
paper feature prominently in these excited states.
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states. The impact of an incomplete basis of operators will
be addressed more in Sec. IX.

The authors of Ref. [32] note the large drop in the
energies of the first and second excited states at their
lightest pion mass, and ascribe this to the emergence of a
light ‘‘Roper’’ in their calculation. While we do not reach
correspondingly light pion masses and large volumes in
this study, the work presented here clearly shows the need
for a sufficiently complete basis of operators before a
faithful description of the spectrum can emerge, and the
identification of the Roper resonance be warranted. Indeed,
even our work remains incomplete since we have entered a
regime of open decay channels, discussed next, requiring
the addition of multiparticle operators to the basis.

IX. MULTI-PARTICLE STATES

In the previous section, we presented the extracted spec-
tra from calculations with three different light-quark
masses. In each case we were able, using the operator
overlaps, to match states across irreps that we believe are
subduced from the same continuum spin state. This sug-
gests an interpretation of the spectrum in terms of single-
hadron states, while in principle our correlators should
receive contributions from all eigenstates of finite-volume
QCD having the appropriate quantum numbers. This in-
cludes baryon-meson states which in finite volume have a
discrete spectrum. Where are these multiparticle states?

This issuewas investigated in themeson sector [17] where
the spectrum was compared between multiple volumes and
on multiple mass data sets. In particular, under change of
volume, the extracted spectrum did not resemble the chang-
ing pattern of levels one would expect from two-meson
states, but rather was largely volume-independent. As such,
the interpretation of the observed levels was that of a single-
particle spectrum. In this work, some initial investigations
were made with a 203 � 128 lattice at the lightest pion mass
available, and similar observations are made; namely, the
spectrum between different volumes does not change sub-
stantially.We are thus led to interpret the spectrum is terms of
single-hadron states. The subsequent observations we make
are quite similar to those made for mesons [17].

The overlap of a localized three-quark operator onto a

baryon-meson state will be suppressed by 1=
ffiffiffiffi
V

p
, where V

is the lattice volume, if the operator creates a resonance
with a finite width in the infinite volume limit. This fall-off
is matched by a growth in the density of states with the
volume and the resonant state thus maintains a finite width
as the mixing with each discrete state falls. The simulations
in this study are carried out in cubic volumes with side-
lengths �2 fm, which might be sufficiently large that the
mixing between one of the low-lying two-particle states
and a resonance is suppressed sufficiently for it to be
undetectable with the three-quark operator basis.

Even if the mixing between localized single-hadron
states and baryon-meson states to form resonancelike

finite-volume eigenstates is not small, there still remains
a practical difficulty associated with using only three-quark
operators. In this case the state can be produced at the
source time-slice through its localized single-hadron com-
ponent, while the correlator time dependence obtained
from e�Ht will indicate the mass of the resonant eigenstate.
Consider a hypothetical situation in which a single-baryon-
meson state, denoted by j2i, mixes arbitrarily strongly with
a single localized single-hadron state, j1i, with all other
states being sufficiently distant in energy as to be negli-
gible. There will be two eigenstates

jai ¼ cosj1i þ sinj2i jbi ¼ � sinj1i þ cosj2i;

with masses ma, mb. At the source (and sink) only the
localized single-hadron component of each state overlaps
with the operators in our basis and hence the overlaps,

Za;b
i 
 ha;bjOy

i j0i, will differ only by an overall

multiplicative constant, Za
i ¼ cosZj1i

i , Zb
i ¼ � sinZj1i

i .

As such the eigenvectors va, vb point in the same direc-
tion and cannot be made orthogonal. Thus the time depen-
dence of both states will appear in the same principal
correlator as

�ðtÞ � Aae
�maðt�t0Þ þ Abe

�mbðt�t0Þ þ . . .

Since ma and mb most likely do not differ significantly
(on the scale of a�1

t ) it will prove very difficult to extract a
clear signal of two-exponential behavior from the principal
correlator. This is precisely why the variational method’s
orthogonality condition on near-degenerate states is so
useful, but we see that it cannot work here and we are
left trying to extract two nearby states from a �2 fit to time-
dependence. Typically this is not possible and reasonable
looking fits to data are obtained with just one low-mass
exponential. This is analogous to the interpretation made in
the comparison between our computed N1

2
þ spectrum,

and those computed using only rotationally-symmetric
smeared (quasi-)local sources [4,32], shown in Fig. 18;
our results showed a cluster of four near-degenerate states,
while the other analyses showed one or perhaps two since
all four states would only couple through their S-wave
components.
Thus, in some portions of the extracted spectrum, we

might be observing admixtures of ‘‘single-particle’’ and
baryon-meson states. A conservative interpretation then of
our spectrum is that the mass values are only accurate up to
the hadronic width of the state extracted, since this width is
correlated with mixing with baryon-meson states via a
scattering phase-shift.
In order to truly comparewith the experimental situation,

we would like to explicitly observe resonant behavior,
thus to obtain a significant overlap with multihadron states,
we should include operators with a larger number of fer-
mion fields into our basis, and, in particular, multiparticle
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operators. The construction of single-meson and single-
baryon operators of definite continuum helicity and sub-
duced into the ‘‘in-flight’’ little-group irreps can be done
using the tables in [33,34]. Spin-identification is possible
and will be reported in future work. These in-flight opera-
tors can be used in two-particle constructions, and along
with single-particle operators, provide a far more complete
determination of the excited levels in an irrep.

As shown by Lüscher [35], one can map these discrete
energy levels onto the continuum energy dependent phase
shift within a partial wave expansion, including the phase
shift for higher partial waves. Such a technique was
recently used to determine the L ¼ 0 and L ¼ 2 phase
shift for nonresonant I ¼ 2 �� scattering [36]. The map-
ping of the phase shift is both volume and irrep dependent.
This is the origin of the cautionary remarks in the captions
of Figs. 14–17. Namely, the location of the threshold en-
ergies are in fact irrep dependent and not solely determined
by the energy of the continuum states.

With suitable understanding of the discrete energy spec-
trum of the system, the Lüscher formalism can be used to
extract the energy dependent phase shift for a resonant
system, such as has been performed for the I ¼ 1 
 system
[37]. The energy of the resonant state is determined from
the energy dependence of the phase shift. It is this resonant
energy that is suitable for chiral extrapolations.

Annihilation dynamics feature prominently in resonant
systems, and these dynamics arise from quark-disconnected
diagrams in multiparticle constructions. Utilizing the tech-
niques developed recently for the study of isoscalar systems
[38], distillation, and stochastic variants [39], can be
used for the efficient numerical evaluation of multiparticle
systems.

X. SUMMARY

We have described in detail our method for extracting a
large number of Nucleon and Delta excited states using the
variational method on dynamical anisotropic lattices. Key
to the success of the method has been the use of a large
basis of carefully constructed operators, namely, all three-
quark baryon operators consistent with classical contin-
uum symmetries, and with up to two derivatives, that are
subsequently projected onto the irreducible representations
of the cubic group. We have exploited the observed ap-
proximate realization of rotational symmetry to devise a
method of spin-identification based on operator overlaps,
enabling us to confidently assign continuum spin quantum
numbers to many states. We have demonstrated the im-
portance of having a suitable operator basis with overlap to
all the continuum spin states that contribute to the spec-
trum. We have then demonstrated the stability of the
spectra with respect to changing the number of distillation
vectors and the details of the variational analysis. We have
successfully applied these techniques at one lattice volume
with three different light quark masses. We are able to

reliably extract a large number of excited states with JP

ranging from J ¼ 1
2 up through J ¼ 7

2 in both positive and

negative parity. These are the first lattice calculations to
achieve such a resolution of states in the baryon sector with
spin assignments and J � 5

2 .

We find a high multiplicity of levels spanning across JP

which is consistent with SUð6Þ �Oð3Þ multiplet counting,
and hence with that of the nonrelativistic qqq constituent
quark model. In particular, the counting of levels in the
low-lying negative-parity sectors are consistent with the
nonrelativistic quark model and with the observed experi-
mental states [31]. The spectrum observed in the first
excited positive-parity sector is also consistent in counting
with the quark model, but the comparison with experiment
is less clear with the quark model predicting more states
than are observed experimentally, spurring phenomeno-
logical investigations to explain the discrepancies (e.g.,
see Refs. [27,29–31,40–42]).
We find that each of the operators in our basis features

prominently in some energy level, and there is significant
mixing among each of the allowed multiplets, including
the 20-plet that is present in the nonrelativistic qqq quark
model, but does not appear in quark-diquark models [29],
and, in particular, Ref. [43]. This adds further credence to
the assertion that there is no freezing of degrees of freedom
with respect to those of the nonrelativistic quark model.
These qualitative features of the calculated spectrum ex-
tend across all three of our quark-mass ensembles.
Furthermore, we see no evidence for the emergence of
parity-doubling in the spectrum[28].
We have argued that the extracted spectrum can be

interpreted in terms of single-hadron states, and based on
investigations in the meson sector [17] and initial inves-
tigations of the baryon sector at a larger volume, we find
little evidence for multihadron states. To study multipar-
ticle states, and hence the resonant nature of excited states,
we need to construct operators with a larger number of
fermion fields. Such constructions are in progress, and we
believe that the addition of these operators will lead to a
denser spectrum of states which can be interpreted in terms
of resonances via techniques like Lüscher’s and its inelas-
tic extensions [44].
The extraction and identification of a highly excited,

spin-identified single-hadron spectrum, represents an
important step towards a determination of the excited
baryon spectrum. The calculation of the single-baryon
spectrum including strange quarks is ongoing.
Combining the methods developed in this paper with
finite-volume techniques for the extraction of phase shifts,
future work will focus on the determination of hadronic
resonances within QCD.
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APPENDIX A: CONSTRUCTIONOF FLAVOR/SPIN/
SPACE SYMMETRIC STATES

Consider the construction of sets of definite symmetry
for three objects that can be labeled by x, y, and z, where
the first object is labeled by x, the second is labeled by y
and the third is labeled by z. There are in general, four
definite symmetry combinations: symmetric, mixed-
symmetric, mixed antisymmetric, and totally antisymmet-
ric, denoted by S, MS, MA, A.

Let symmetry projection operator

S�
x y z
x0 y0 z0

� �

be defined so that its action on a generic object with labels
x0, y0 and z0 is to create a superposition of objects, denoted
by fxyzg�, with symmetry � of their labels as follows,

fxyzg� ¼ X
x0y0z0

S�
x y z
x0 y0 z0

� �
fx0y0z0g: (A1)

Permutation operators S� can be inferred from their
action on an object with three labels to produce the four
allowed symmetry combinations as follows,

fxyzgS¼NS½fxyzgþfyxzgþfzyxgþfyzxgþfxzygþfzxyg�;
fxyzgMS¼NMS½fxyzgþfyxzgþfzyxgþfyzxg�2fxzyg

�2fzxyg�;
fxyzgMA¼NMA½fxyzg�fyxzgþfzyxg�fyzxg�;
fxyzgA¼NA½�fxyzgþfxzyg�fyzxgþfyxzg�fzxyg

þfzyxg�: (A2)

If two or more labels are the same, then equivalent terms
must be combined and the normalization constants ad-
justed to give an appropriate normalization, e.g., for ortho-
normal quantum states NS ¼ 1ffiffi

6
p when x, y and z all are

different. By convention, mixed symmetries areMS orMA
according to whether the first two labels are symmetric or
antisymmetric.
The use of projection operators allows the same con-

structions to be applied to the labels of operators as are
applied to the labels of the states created by the operators.
They also provide the basis for a straightforward computa-
tional algorithm that yields the desired superpositions.
Baryon operators have sets of labels for flavor, spin, and

spatial arguments that transform independently, therefore
as direct products. Each of these sets of labels can be
arranged according to Eq. (A2). Then the symmetries of
the sets of flavor labels must be combined with the sym-
metries of the sets of spin and spatial labels in order to
make an overall symmetric object as discussed in the text.
The general rules for combining direct products of objects
with independent labels sets 1 and 2 to make overall
symmetries of the combined sets of all labels, denoted by
1, 2, are as follows,

f1gSf2gS ¼ f1; 2gS; f1gSf2gMS ¼ f1; 2gMS; f1gSf2gMA ¼ f1; 2gMA; f1gSf2gA ¼ f1; 2gA;
f1gAf2gS ¼ f1; 2gA; f1gAf2gMS ¼ f1; 2gMA; �f1gAf2gMA ¼ f1; 2gMS; f1gAf2gA ¼ f1; 2gS;
1ffiffiffi
2

p ðþf1gMSf2gMS þ f1gMAf2gMAÞ ¼ f1; 2gS; 1ffiffiffi
2

p ð�f1gMSf2gMS þ f1gMAf2gMAÞ ¼ f1; 2gMS;

1ffiffiffi
2

p ðþf1gMSf2gMA þ f1gMAf2gMSÞ ¼ f1; 2gMA;
1ffiffiffi
2

p ð�f1gMSf2gMA þ f1gMAf2gMSÞ ¼ f1; 2gA

(A3)

1. Dirac spin

The construction of Dirac spin representations follows
Table 14 in Appendix B of Ref. [7]. A Dirac spinor with an
index that takes four values is formed from direct products
of two spinors that have indices that take two values: one
for ordinary spin (s-spin) and the other for intrinsic parity

(
-spin). The s-spin indices are s ¼ þ for spin up and

s ¼ � for spin down while the 
-spin indices are 
 ¼ þ
for positive intrinsic parity and 
 ¼ � for negative intrin-

sic parity. These 
- and s-spin indices determine the Dirac

spin index (in the rest frame) as shown in Table V, based on

the Dirac-Pauli representation of Dirac matices.
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There are eight s-spin states for a three-quark baryon
and they are obtained by projecting an arbitrary state to
combinations with good symmetry. The resulting states
follow from Eq. (A2) with x, y and z taking two values,
þ and �, which produces four symmetric (S) states with
total spin 3

2 ,

j3
2
;þ3

2
iS¼jþþþiS; j3

2
;þ1

2
iS¼jþþ�iS;

j3
2
;�1

2
iS¼jþ��iS; j3

2
;�3

2
iS¼jþ��iS;

(A4)

two mixed-symmetric (MS) states with total spin 1
2 ,

j 1
2
;þ 1

2
iMS ¼ þj þ�þiMS;

j 1
2
;� 1

2
iMS ¼ �j �þ�iMS;

(A5)

and twomixed-antisymmetric (MA) states with total spin 1
2 ,

j 1
2
;þ 1

2
iMA ¼ þj þ�þiMA;

j 1
2
;� 1

2
iMA ¼ �j �þ�iMA:

(A6)

The states on the right side are normalized states of definite
symmetry. The eight 
-spin states take exactly the same
form as the s-spin states.

The 64 Dirac spin labels of three quarks are obtained
from direct products of 
-spin and s-spin states of the
quarks. The possible symmetries of the Dirac spinors are
obtained from the multiplication rules in Eq. (A3), together
with Table V, which shows how each quark’s Dirac index is

determined by its s-spin and 
-spin indices. Examples of
the construction are given in Ref. [7]. Equal numbers of
positive- and negative-parity states are always produced.
The octahedral irrep of the product is G1 for s-spin 1

2

and H for s-spin 3
2 representations of SUð2Þ. Table VI

shows the irreps of SUð2Þ that are produced. The number
of embeddings of each irrep also is listed. Parities of the
states are determined by products of the 
-spins of the
three quarks.

2. Flavor

The flavor states with well-defined symmetries also are
constructed using Eq. (A2). For the purposes of discussion,
we will consider the flavor-symmetric limit, i.e., degenerate
quark masses. There are three separate representations – the
symmetric (S) states are the SUð3Þ decuplet, j10iS, the
mixed-symmetric ðMS;MAÞ states are the SUð3Þ octets,
j8iMS;MA, and the antisymmetric (A) state is the SUð3Þ
flavor-singlet state, j1iA. The �þ is juudiS, while the
proton is juduiMA;MS. The �0 is jusdiMA;MS. The octet,

singlet and decuplet constructions are shown in Table VII.
Within the SUð3Þ flavor representations, we also have

SUð2Þ isospin states. In the construction that follows, it is
straightforward to generalize to the case of broken SUð3Þ.
The combinations of symmetry states remain valid, how-
ever, there are some new states, such as � in a S flavor
state.

3. Orbital angular momentum based on
covariant derivatives

Smearing of quark fields is based on the distillation
method of Ref. [19]. It is used in order to filter out the
effects of small scale fluctuations of the gauge fields and it
provides a spherically symmetric distribution of each
quark field that carries no orbital angular momentum. In
order to obtain higher spins, it is necessary to add spatial
structure using covariant derivative operators, as described
in the text, which are combined in definite symmetries
that correspond to orbital angular momenta in the contin-

uum. For a single derivative, (D½1�), the two symmetry

TABLE VI. Symmetries of Dirac spin states based on direct products of 
-spin and s-spin states for three quarks. States labeled as
j
i� refer to a 
-spin state with symmetry � from Eqs. (A4)–(A6). Similarly, states labeled as jsi� refer to a s-spin state with
symmetry � from Eqs. (A4)–(A6). Direct products of the 
-spin and s-spin states yield sums of three-quark terms in which each quark
has a 
 and s label. That determines each quark’s Dirac index according to Table V.

Dirac IR Emb 
 � s

S 1
2 1 1ffiffi

2
p ðþj
iMSjsiMS þ j
iMAjsiMAÞ

3
2 1, 2 j
iSjsiS

M 1
2 1, 2 MS j
iSjsiMS MA j
iSjsiMA

3 1ffiffi
2

p ð�j
iMSjsiMS þ j
iMAjsiMAÞ 1ffiffi
2

p ðþj
iMSjsiMA þ j
iMAjsiMSÞ
3
2 1 j
iMSjsiS j
iMAjsiS

A 1
2 1 1ffiffi

2
p ð�j
iMSjsiMA þ j
iMAjsiMSÞ

TABLE V. Mapping of Dirac spin indices to 
 and s labels.

Dirac 
 s

1 þ þ
2 þ �
3 � þ
4 � �
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combinations are given in Eq. (8), while for two deriva-

tives, (D½2�), the combinations are given in Eqs. (9)–(12).
Operators that have good spin in the continuum are built

by applying some number of derivatives to the Dirac
spinors. Using the SUð2Þ Clebsch-Gordan coefficients to
combine orbital and spin angular momenta, the one-
derivative operators are,

ðD½1��½S�Þ½J;M� ¼ X
m;s

h1; m;S; sjJ;Mi ~D½1�
L¼1;m�

S;s; (A7)

where S ¼ 1
2 or

3
2 are the possible spin states of three quarks

in the absence of derivatives. Reference [7] developed
single derivative operators for baryons and it provides
some examples of the incorporation of combinations of
covariant derivatives into three-quark operators.

Additional derivatives together with SUð2Þ Clebsch-
Gordan coefficients are used to obtain higher J states.
For example, the two-derivative operators are first com-
bined to get L ¼ 2,

D½2�
L¼2;M ¼ X

m1;m2

h1; m1; 1; m2j2;MiD½1�
m1
D½1�

m2
: (A8)

This L ¼ 2 derivative operator is then applied to a spinor
�S;s as follows,

ðD½2�
L¼2�

½S�Þ½J;M� ¼ X
m;s

h2; m;S; sjJ;MiD½2�
L¼2;M�

S;s: (A9)

Derivative operator constructions for singlet, octet and
decuplet follow from Table VIII. The single-site operators
are symmetric in space, flavor and Dirac indices. With one
derivative, a mixed symmetry flavor and spin construction
is combined with mixed symmetry derivative operators to
make the overall symmetric combinations. Similarly, with
two derivatives, various spin-flavor symmetry states are
combined with the derivative operators to make overall
symmetric operators.
As noted above, three quarks with no derivatives can

form at most spin 1
2 and

3
2 states. The corresponding lattice

irreps G1 and H are faithful representations of these

TABLE VII. Flavor octet, decuplet, and singlet constructions.

Octet, 8
I Iz S �MS �MA

p 1
2 þ 1

2 0 juduiMS juduiMA

n 1
2 � 1

2 0 �jdudiMS �jdudiMA

�8 0 0 �1 1ffiffi
2

p ðjsudiMS � judsiMSÞ 1ffiffi
2

p ðjsudiMA � judsiMAÞ
�þ

8 1 þ1 �1 jusuiMS jusuiMA

�0
8 1 0 �1 jusdiMS jusdiMA

��
8 1 �1 �1 jdsdiMS jdsdiMA

�0
8

1
2 þ 1

2 �2 �jsusiMS �jsusiMA

��
8

1
2 � 1

2 �2 �jsdsiMS �jsdsiMA

Decuplet, 10
I Iz S �S

�þþ 3
2 þ 3

2 0 juuuiS
�þ 3

2 þ 1
2 0 juudiS

�0 3
2 � 1

2 0 juddiS
�� 3

2 � 3
2 0 jdddiS

�þ
10 1 þ1 �1 juusiS

�0
10 1 0 �1 judsiS

��
10 1 �1 �1 jddsiS

�0
10

1
2 þ 1

2 �2 jsusiS
��

10
1
2 � 1

2 �2 jsdsiS
�� 0 0 �3 jsssiS

Singlet, 1
I Iz S �A

�0
1 0 0 �1 jdusiA
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continuum spins, and hence form the basis of the construc-
tions of higher spins. The numbers of operators with up to
two derivatives are shown in Table IX. The number of
operators classified according to total spin J and irrep are

shown in Table X. A general feature of the operator con-
struction is that there is always an equal number of posi-
tive- and negative-parity operators. For example, for every
operator in G1g, there is a corresponding operator in G1u

TABLE IX. Numbers of singlet, octet and decuplet operators
for each parity according to the irrep and the number of deriva-
tives, d. Total derivative constructions have been removed.

Singlet, 1
IR d ¼ 0 d ¼ 1 d ¼ 2 Total

G1 1 4 9 14

H 0 5 17 22

G2 0 1 8 9

Octet, 8
IR d ¼ 0 d ¼ 1 d ¼ 2 Total

G1 3 8 17 28

H 1 11 36 48

G2 0 3 17 20

Decuplet, 10
IR d ¼ 0 d ¼ 1 d ¼ 2 Total

G1 1 4 10 15

H 2 5 19 26

G2 0 1 10 11

TABLE X. Number of singlet, octet and decuplet operators
according to continuum spin and subduced irrep. With two
derivatives, at most J ¼ 7

2 can be reached.

Singlet, 1
Rep J ¼ 1

2 J ¼ 3
2 J ¼ 5

2 J ¼ 7
2 Total

G1 13 1 14

H 13 8 1 22

G2 8 1 9

Octet, 8
Rep J ¼ 1

2 J ¼ 3
2 J ¼ 5

2 J ¼ 7
2 Total

G1 24 4 28

H 28 16 4 48

G2 16 4 20

Decuplet, 10
Rep J ¼ 1

2 J ¼ 3
2 J ¼ 5

2 J ¼ 7
2 Total

G1 12 3 15

H 15 8 3 26

G2 8 3 11

TABLE VIII. Local operators classified according to symmetry of flavor and Dirac spin. The dimensionality of the SUð3Þ representa-
tion is shown. The number ofDirac spin embeddings (number of operators) in a nonrelativistic (
 ¼ þ) construction are shown in column
Nnonrel, and the number of constructions featuring some number of lower components is shown in column Nrel. The total number of
embeddings is the sum ofNnonrel þ Nrel. The multiplicity of operators in the nonrelativistic case is 56 (S), 70 (MS), 70 (MA) and 20 (A),
and corresponds to the conventional nonrelativisticSUð6Þ �Oð3Þ construction.The relativistic construction,which involves both positive
and negative-parity operators, corresponds to the reduction ofSUð12Þ. Note that the flavor-singlet operators are distinct from the octet and
decuplet operators. In the SUð3Þ flavor limit, the flavor-singlet states do not mix with the octet or decuplet states.

� SUð3ÞSUð2Þ Nnonrel Nrel

S ð10; 4Þ 1 1 �S�S

ð10; 2Þ 1 �S�S

ð8; 4Þ 1 1ffiffi
2

p ð�MS�MS þ�MA�MAÞ
ð8; 2Þ 1 2 1ffiffi

2
p ð�MS�MS þ�MA�MAÞ

ð1; 2Þ 1 �A�A

M ð10; 4Þ 1 MS �S�MS MA �S�MA

ð10; 2Þ 1 2 �MS�S �MA�S

ð8; 4Þ 1 1 �MS�S �MA�S

ð8; 4Þ 1 1ffiffi
2

p ð��MS�MS þ�MA�MAÞ 1ffiffi
2

p ð�MS�MA þ�MA�MSÞ
ð8; 2Þ 1 �MS�S �MA�S

ð8; 2Þ 1 2 1ffiffi
2

p ð��MS�MS þ�MA�MAÞ 1ffiffi
2

p ð�MS�MA þ�MA�MSÞ
ð8; 2Þ 1 �MA�A �MS�A

ð1; 4Þ 1 �A�MA �A�MS

ð1; 2Þ 1 2 �A�MA �A�MS

A ð10; 2Þ 1 �S�A

ð8; 4Þ 1 1ffiffi
2

p ð�MS�MA ��MA�MSÞ
ð8; 2Þ 1 2 1ffiffi

2
p ð�MS�MA ��MA�MSÞ

ð1; 4Þ 1 1 �A�S

ð1; 2Þ 1 �A�S
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and similarly for Hg and Hu. There are no single-site

operators in G2.
These constructions provide operators that have good

total angular momentum up to J ¼ 7
2 in the continuum

limit. However, they are reducible with respect to the
octahedral group that represents the symmetry of a cubic
lattice.

APPENDIX B: QUANTUM MECHANICS OF
CONTINUUM SPIN IN THE OCTAHEDRAL

REPRESENTATION

In this appendix, we develop the subduction of SUð2Þ
quantum states to irreducible octahedral states in the con-
tinuum. The lowest spins are trivial as suitable subductions
for spins J ¼ 1

2 and J ¼ 3
2 are provided by the elementary

G1 and H octahedral irrep states, i.e.,��������
�
1

2
; m

��
¼
��������G1; r;

�
1

2

��
; r ¼ 3

2
�m;

��������
�
3

2
; m

��
¼
��������H; r;

�
3

2

��
; r ¼ 5

2
�m:

(B1)

A suitable subduction for spin 1 also is trivial in terms of
octahedral irrep T1,

j½1; m�i ¼ jT1; r; ½1�i; r ¼ 2�m:

Here and in the following we label octahedral states that
carry continuum quantum numbers J, M by placing the
quantum numbers in brackets, i.e., j½J;M�i. The angular
momentum basis states are orthogonal in the continuum
and consequently the octahedral states labeled as j½J;M�i
are orthogonal in the continuum limit as follows,

h½J;M�j½J0;M0�i ¼ �J;J0�M;M0 : (B2)

However, they are reducible.
Irreducible octahedral states, j�; r; ½J�i, that are sub-

duced from a single spin J are labeled by the octahedral
irrep, �, row r, and spin ½J� in brackets. Examples appear
on the right side of Eq. (B1). Owing to the orthogonality of
different octahedral irreps and rows, these states form an
orthonormal set obeying,

h�; r; ½J�j�0; r0; ½J�i ¼ ��;�0�r;r0 : (B3)

A general octahedral irrep can contain an infinite number
of continuum spins. States transforming as the same octa-
hedral irrep and row but subduced from different spins,
such as jH; r; ½32�i, jH; r; ½52�i and jH; r; ½72�i, are distin-

guished by their ½J� labels. These states are orthogonal to
one another as shown in Eq. (B11). The lowest spins have a
one-to-one relation between the j½J;M�i and j�; r; ½J�i
labelings as in Eq. (B1) but higher spins do not.

Higher-spin states can be constructed from direct prod-
ucts of lower-spin states by use of the SUð2Þ Clebsch-
Gordan formula for direct products of states of spins J1
and J2 as follows,

j½J;M�i ¼ X
m1;m2

j½J1; m1�i � j½J2; m2�i

� hJ1m1; J2m2jJMi; (B4)

where hJ1m1; J2m2jJMi is a SUð2Þ Clebsch-Gordan coef-
ficient. Equation (B4) provides a block-diagonal unitary
transformation between the basis of ð2J1 þ 1Þð2J2 þ 1Þ
product states on the right side and the equal number of
states in the basis of total angular momentum on the left
side for J in the range jJ1 � J2j  J  J1 þ J2.
Each of the octahedral states should be expanded in

terms of a set of ð2J1 þ 1Þð2J2 þ 1Þ linearly independent
states transforming as irreducible representations of the
octahedral group and subduced from a single J value.
Tables XI and XII show the relevant states based on using
J1 ¼ 1 and J2 ¼ 3

2 or
5
2 to construct J ¼ 5

2 or J ¼ 7
2 .

The limited dimensions of the octahedral irreps require
multiple occurrences of some irreps in the subduction of
high spins. In the continuum, the different occurrences of
the same irrep and row provide linearly independent states,
as we will show by construction. Representations with
multiple occurrences are denoted as jn�; r; ½J�i, where
n� denotes the nth occurrence of irrep �, r denotes the
row of the irrep and ½J� shows the spin from which the state
is subduced. When there is a single occurrence, the left
superscript is omitted.
Expanding in terms of a complete set of irreducible

octahedral states gives,

j½J;M�i ¼ X
n�;r

jn�; r; ½J�ihn�; r; ½J�j½J;M�i;

¼ X
n�;r

jn�; r; ½J�iSJ;M
n�;r;

SJ;M
n�;r ¼ hn�; r; ½J�j½J;M�i; (B5)

where we sum over all irreps, including multiple occur-
rences of the same irrep, that are linearly independent. The

subduction matrix, SJ;M
n�;r, is defined by the overlap of an

irreducible octahedral state subduced from a single J and
the spin state j½J;M�i. Orthogonality properties of the

TABLE XI. Occurrences of octahedral irrep states with spins
J ¼ 1

2 ,
3
2 and

5
2 based on using J1 ¼ 1 and J2 ¼ 3

2 .

J 1
2

3
2

5
2

IR states jG1; r; ½12�i jH; r; ½32�i jH; r; ½52�i, jG2; r; ½52�i

TABLE XII. Occurrences of octahedral irrep states with spins
J ¼ 3

2 ,
5
2 and

7
2 based on J1 ¼ 1 and J2 ¼ 5

2 .

J 3
2

5
2

7
2

IR

states

jH; r; ½32�i jH; r; ½52�i, jG2; r; ½52�i jG1; r; ½72�i, jH; r; ½72�i, jG2; r; ½72�i
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subduction matrices follow from substituting Eq. (B5) into
Eq. (B2) with J ¼ J0 as follows,

X
�;r

X
�0;r0

SJ;M
�;r S

J;M0
�0;r0 h�; r; ½J�j�0; r0; ½J�i ¼ �M;M0 : (B6)

Because of Eq. (B3), this reduces to

X
�;r

SJ;M
�;r S

J;M0
�;r ¼ �M;M0 : (B7)

Summation of the squares of SJ;M
�;r over � and r gives the

normalization condition,

X
�;r

SJ;M
�;r S

J;M
�;r ¼ 1: (B8)

Because the j½J;M�i states are a complete set over the
subspace of spin J, there is a sum rule

X
M

h�; r; ½J�j½J;M�ih½J;M�j�0; r0; ½J�i

¼ h�; r; ½J�j�0; r0; ½J�i:

where
P

Mj½J;M�ih½J;M�j ¼ 1was used to obtain the right
side. The left side involves a sum over products of sub-
duction matrices and the right side involves the �-functions
of Eq. (B3), yielding

X
M

SJ;M
�;r S

J;M
�0;r0 ¼ ��;�0�r;r0 : (B9)

Multiplying a subduction matrix times both sides of
Eq. (B5) and summing over M yields

X
M

SJ;M
�;r j½J;M�i¼X

M

SJ;M
�;r

X
�0;r0

SJ;M
�0;r0 j�0;r0;½J�i¼ j�;r;½J�i;

(B10)

where Eq. (B9) was used to evaluate the summations
on the right side. This last equation shows how the sub-
duction matrix is used. Once one has a realization of
j½J;M�i states, the subduction matrix is applied to obtain
the octahedral irrep states that are subduced from a single J
value. Using Eq. (B10) leads to an important extension of
Eq. (B3),

h�; r; ½J�j�0; r0; ½J0�i ¼ X
M;M0

SJ;M
�;r h½J;M�j½J0;M0�iSJ0;M0

�0;r0 ;

¼ X
M;M0

SJ;M
�;r �J;J0�M;M0SJ0;M0

�0;r0 ;

¼X
M

SJ;M
�;r S

J;M
�0;r0�J;J0 ;

¼ ��;�0�r;r0�J;J0 ; (B11)

where Eq. (B9) was used in the last step. The octahedral
states subduced from single J values are orthonormal with
respect to J as well as with respect to octahedral irrep, �,
and row, r.
Substituting the expansion in terms of orthonormal irrep

states for each octahedral state in the Clebsch-Gordan
formula of Eq. (B4) givesX

n�;r

jn�; r; ½J�iSJ;M
n�;r

¼ X
m1 ;m2
�1 ;r1
�2 ;r2

j�1; r1; ½J1�i � j�2; r2; ½J2�iSJ1;m1

�1;r1

� SJ2;m2

�2;r2
hJ1m1; J2m2jJMi (B12)

Here the octahedral irrep states on the right side are
assumed not to involve multiple occurrences so left super-
scripts are omitted for �1 and �2.
The rules for combining direct products of octahedral

group irreps are similar to those for continuum spins. The
direct product T1 �H corresponds to a direct product of
J ¼ 1 and J ¼ 3

2 continuum irreps. It yields a G1 irrep that

corresponds to spin- 12 , a H irrep that corresponds to spin- 32
and a pair of irreps, H0 and G2, that taken together corre-
spond to spin-½52�. The H and H0 irrep states are orthogonal
in the continuum limit because they are subduced from
different spins, i.e., J ¼ 3

2 and
5
2 .

Direct products of octahedral states are equal to sums of
irreducible states according to the Clebsch-Gordan for-
mula for the octahedral group,

j�1; r1; ½J1�i � j�2; r2; ½J2�i

¼ X
��1��2

;r

j��1��2
; ri � C �1 �2 ��1��2

r1 r2 r

 !
; (B13)

where the states produced on the right side are labeled by
the irreps involved in the direct products. The ½J1� and ½J2�
labels of the states on the left side are passive anddonot affect
the direct products. This gives the following expansion,

TABLE XIII. Occurrences of octahedral irrep states in the subduction of spin 9
2 based on

J1 ¼ 1 and J2 ¼ 7
2 .

J 5
2

7
2

9
2

IR states jH; r; ½52�i, jG2; r; ½52�i jG1; r; ½72�i, jH; r; ½72�i, jG2; r; ½72�i jG1; r; ½92�i, j1H; r; ½92�i, j2H; r; ½92�i
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X
n�;r

jn�;r;½J�iSJ;M
n�;r¼

X
��1��2

;r

j��1��2
;riRJ;M

��1��2
;r; (B14)

where matrixRJ;M
��1��2

;r is defined by

RJ;M
��1��2

;r ¼
X
m1 ;m2
�1 ;r1
�2 ;r2

C
�1 �2 ��1��2

r1 r2 r

 !
SJ1;m1

�1;r1

� SJ2;m2

�2;r2
hJ1m1; J2m2jJMi: (B15)

The notation used here is based on the fact that the states
produced by the Clebsch-Gordan expansion are general
octahedral irrep states, not states subduced from a single J
value. For the construction based on Eq. (B12), the SUð2Þ
spins in the range jJ1 � J2j  J  J1 þ J2 provide a com-
plete set of ð2J1 þ 1Þð2J2 þ 1Þ linearly independent states
and the octahedral irrep states on the right side of Eq. (B14)
can be expanded as a linear combination of the octahedral
irrep states subduced from a single spin as follows,

j��1��2
; ri ¼ XJ1þJ2

J0¼jJ1�J2j
A��1��2

;n�½J0�jn�; r; ½J0�i (B16)

where A��1��2
;n�½J0�; is a matrix in the ��1��2

and n�½J0�
indices.

Substituting Eqs. (B13) and (B16) into Eq. (B12) and
using Eq. (B5) givesX
n�;r

jn�; r; ½J�iSJ;M
n�;r

¼ X
J0;��1��2

;r

A��1��2
;n�½J0�jn�; r; ½J0�iRJ;M

��1��2
;r (B17)

Because the octahedral states jn�; r; ½J�i that are subduced
from a single spin form an orthonormal set, their coeffi-
cients must be the same on both sides of Eq. (B17). Thus,
the subduction matrix for total spin, J, obeys

S J;M
n�;r ¼

X
��1��2

A��1��2
;n�½J�R

J;M
��1��2

;r (B18)

As will become evident, matrix A is orthogonal:
AAT ¼ 1. When the above equation is multiplied by
j½J;M�i on both sides, and then summed over M, we getX
M

SJ;M
n�;rj½J;M�i¼ X

��1��2

A��1��2
;n�½J�

X
M

RJ;M
��1��2

;rj½J;M�i:

(B19)

Using Eq. (B5), this becomes

jn�; r; ½J�i ¼ X
��1��2

A��1��2
;n�½J�j��1��2

; ri; (B20)

where

j��1��2
; ri ¼ X

M

RJ;M
��1��2

;rj½J;M�i: (B21)

Table XIV shows the subduction matrices for the ele-
mentary states of spin 1

2 , 1 and 3
2 . They are unit matrices

in the basis used. Starting with the known subduction
matrices for spins J1 ¼ 1 and J2 ¼ 3

2 , the subduction

matrix for spin 5
2 can be obtained as follows. Evaluate

Eq. (B15) to obtain matrices Rð5=2Þ;M
H0

T1�H;r
, Rð3=2Þ;M

HT1�H;r
and

Rð5=2Þ;M
G2T1�H;r

. Matrix Rð5=2Þ;M
H0

T1�H;r
is equal within an overall con-

stant factor AH0½5=2�;HT1�H
to subduction matrix Sð5=2Þ;M

H;r .

Similarly, Rð3=2Þ;M
HT1�H;r

and Rð5=2Þ;M
G2T1�H;r

are equal within overall

factors to Sð3=2Þ;M
H;r and Sð5=2Þ;M

G2;r
. The overall factors lead to S

matrices normalized as in Eq. (B8). The subduction matri-
ces that are obtained for spin 5

2 are given in Table XV. The

TABLE XIV. Elementary subduction matrices Sð1=2Þ;m
G1;r

, S1;m
T1;r

and Sð3=2Þ;m
H;r .

J ¼ 1
2 ! G1

r m ¼ þ 1
2 � 1

2

1 1 0

2 0 1

J ¼ 1 ! T1

r m ¼ þ1 0 �1

1 1 0 0

2 0 1 0

3 0 0 1

J ¼ 3
2 ! H

r m ¼ þ 3
2 þ 1

2 � 1
2 � 3

2

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

TABLE XV. Subduction matrices Sð5=2Þ;m
H;r and Sð5=2Þ;m

G2;r
.

J ¼ 5
2 ! H

r m ¼ þ 5
2 þ 3

2 þ 1
2 � 1

2 � 3
2 � 5

2

1 0 þ
ffiffi
1
6

q
0 0 0 þ

ffiffi
5
6

q
2 0 0 �1 0 0 0

3 0 0 0 þ1 0 0

4 �
ffiffi
5
6

q
0 0 0 �

ffiffi
1
6

q
0

J ¼ 5
2 ! G2

r m ¼ þ 5
2 þ 3

2 þ 1
2 � 1

2 � 3
2 � 5

2

1 þ
ffiffi
1
6

q
0 0 0 �

ffiffi
5
6

q
0

2 0 �
ffiffi
5
6

q
0 0 0 þ

ffiffi
1
6

q
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overall factors determine matrix An�½J�;��1��2
, which is a

unit matrix in this example, i.e., Eq. (B16) takes the form,

jHT1�H; ri
jH0

T1�H; ri
jG2T1�H; ri

0
BB@

1
CCA ¼

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA

��������H; r;

�
3
2

��
��������H; r;

�
5
2

��
��������G2; r;

�
5
2

��

0
BBBBBBBBB@

1
CCCCCCCCCA
: (B22)

This block-matrix equation holds when the row indices, r,
are the same on both sides. Note that orthonormality of the
states on the right side implies that the states on the left side
are orthonormal.

For higher spins, the Clebsch-Gordan coefficients of the
octahedral group do not provide a block-diagonal result for
the subduction, i.e., matrixA takes a nontrivial form. This
is demonstrated for the construction of spin 7

2 based on

J1 ¼ 1 and J2 ¼ 5
2 , which involves use of the previous

subduction, ½52� ! H 	G2. Three orthogonal occurrences

of irrep H are produced in the T1 � ½52� ¼ T1 � ðH 	G2Þ
direct products and two orthogonal occurrences of G2 are
produced. Taking into account the fact that two differentH
irreps are produced by each T1 �H product, i.e., T1 �
H ! G1 	H 	H0 	G2, the three H states that occur are
HT1�H, H

0
T1�H and HT1�G2

. The two different G2 states that

occur are G2T1�H and G2T1�G2
.

The procedure is similar to the spin 5
2 case. First one

evaluates Eq. (B15) to obtain matricesRð7=2Þ;M
G1T1�H;r

,Rð7=2Þ;M
HT1�H;r

,

Rð5=2Þ;M
H0

T1�H;r
, Rð3=2Þ;M

HT1�H;r
, Rð7=2Þ;M

G2T1�H;r
and Rð5=2Þ;M

G2T1�G2 ;r
. Each R

matrix corresponds to a single S matrix of the set

Sð7=2Þ;M
G1;r

Sð7=2Þ;M
H;r , Sð5=2Þ;M

H;r , Sð3=2Þ;M
H;r , Sð7=2Þ;M

G2;r
and Sð5=2Þ;M

G2;r
.

In this case the subduction matrices for spin 7
2 can be

obtained simply by imposing the normalization conditionP
MS

J;M
�;r S

J;M
�;r ¼1. That gives the subduction matrices of

Table XVI.
The octahedral states that result from the Clebsch-

Gordan formula are linear combinations of the states
subduced from a single J value. This is expressed by the
block-matrix equation,

jG1T1�H;ri
jHT1�H;ri
jH0

T1�H;ri
jHT1�G2

;ri
jG2T1�H;ri
jG2T1�G2

;ri

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
¼AT1�ð5=2Þ�

��������G1;r;

�
7
2

��
��������H;r;

�
7
2

��
��������H;r

�
5
2

��
��������H;r

�
3
2

��
��������G2;r;

�
7
2

��
��������G2;r

�
5
2

��

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

: (B23)

where matrix AT1�ð5=2Þ is

TABLE XVI. Subduction matrices Sð7=2Þ;m
G1;r

, Sð7=2Þ;m
H;r and Sð7=2Þ;m

G2 ;r
.

J ¼ 7
2 ! G1

r m ¼ þ 7
2 þ 5

2 þ 3
2 þ 1

2 � 1
2 � 3

2 � 5
2 � 7

2

1 0 0 0 þ
ffiffiffiffi
7
12

q
0 0 0 þ

ffiffiffiffi
5
12

q
2 �

ffiffiffiffi
5
12

q
0 0 0 �

ffiffiffiffi
7
12

q
0 0 0

J ¼ 7
2 ! H

r m ¼ þ 7
2 þ 5

2 þ 3
2 þ 1

2 � 1
2 � 3

2 � 5
2 � 7

2

1 0 0 þ
ffiffi
3
4

q
0 0 0 þ

ffiffi
1
4

q
0

2 0 0 0 �
ffiffiffiffi
5
12

q
0 0 0 þ

ffiffiffiffi
7
12

q
3 þ

ffiffiffiffi
7
12

q
0 0 0 �

ffiffiffiffi
5
12

q
0 0 0

4 0 þ
ffiffi
1
4

q
0 0 0 þ

ffiffi
3
4

q
0 0

J ¼ 7
2 ! G2

r m ¼ þ 7
2 þ 5

2 þ 3
2 þ 1

2 � 1
2 � 3

2 � 5
2 � 7

2

1 0 þ
ffiffi
3
4

q
0 0 0 �

ffiffi
1
4

q
0 0

2 0 0 þ
ffiffi
1
4

q
0 0 0 �

ffiffi
3
4

q
0
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AT1�ð5=2Þ ¼

1 0 0 0 0 0

0
ffiffi
4
7

q ffiffi
3
7

q
0 0 0

0 �
ffiffi
1
7

q ffiffiffiffi
4
21

q
�

ffiffi
2
3

q
0 0

0 �
ffiffi
2
7

q ffiffiffiffi
8
21

q ffiffi
1
3

q
0 0

0 0 0 0
ffiffiffiffi
5
21

q
�

ffiffiffiffi
16
21

q
0 0 0 0 �

ffiffiffiffi
16
21

q
�

ffiffiffiffi
5
21

q

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

: (B24)

Note that row indices, r, are the same on both sides
of Eq. (B23) so that it connects the 18 states on the left
side (considering all allowed values of the row indices)
to 18 states on the right side. The states on the right side
are orthonormal as in Eq. (B11) and the rows of the
matrix in Eq. (B23) are orthogonal to one another. It
follows that the states on the left side also form an
orthonormal set by construction. Matrix Eq. (B23) takes
the form of Eq. (B16) and it provides a nontrivial
example of matrix A, demonstrating the relation be-
tween irreducible states resulting from direct products
of octahedral states and the irreducible states that are

subduced from a single spin. It is straightforward to
solve for the irreducible states subduced from a single
spin by applying A�1¼AT to both sides of Eq. (B23).
That demonstrates that the irreducible octahedral states
subduced from a single J are linear combinations of the
irreducible octahedral states resulting from the Clebsch-
Gordan formula.
The same reasoning can be applied to the subduction

of spin 9
2 based on J1 ¼ 1 and J2 ¼ 7

2 . Table XIII shows

the linearly independent states for this case. A total of
four orthogonal occurrences of H, two of G1 and two of
G2 arise from T1 � ½72� ¼ T1 � ðG1 	H 	G2Þ. Two of

the H irreps reproduce the previous results for subduc-
tion of spins 5

2 and
7
2 . The other two H irreps are yet-to-

be-determined subductions of spin 9
2 . The two G1 irreps

provide subductions of spins 9
2 and

7
2 . The two G2 irreps

provide subductions of spins 7
2 and 5

2 . The new element

for spin 9
2 is that two occurrences of irrep H are un-

known. They are determined as follows. First matrices

RJ;M
��1��2

;r are calculated. They are related to the sub-

duction matrices by a matrix AT1�ð7=2Þ, which also
relates the states formed from the R and S matrices
as in Eqs. (B10) and (B21). That relation can be ex-
pressed as follows,

TABLE XVII. Subduction matrices Sð9=2Þ;m
G1;r

, Sð9=2Þ;m
1H;r and Sð9=2Þ;m

2H;r .

J ¼ 9
2 ! G1

r m ¼ þ 9
2 þ 7

2 þ 5
2 þ 3

2 þ 1
2 � 1

2 � 3
2 � 5

2 � 7
2 � 9

2

1 �
ffiffi
3
8

q
0 0 0 �

ffiffiffiffi
7
12

q
0 0 0 �

ffiffiffiffi
1
24

q
0

2 0 �
ffiffiffiffi
1
24

q
0 0 0 �

ffiffiffiffi
7
12

q
0 0 0 �

ffiffi
3
8

q

J ¼ 9
2 ! 1H

r m ¼ þ 9
2 þ 7

2 þ 5
2 þ 3

2 þ 1
2 � 1

2 � 3
2 � 5

2 � 7
2 � 9

2

1 0 0 0 þ
ffiffiffiffi
7
10

q
0 0 0 þ

ffiffiffiffi
3
10

q
0 0

2 �
ffiffi
5
8

q
0 0 0 þ

ffiffiffiffi
7
20

q
0 0 0 þ

ffiffiffiffi
1
40

q
0

3 0 �
ffiffiffiffi
1
40

q
0 0 0 �

ffiffiffiffi
7
20

q
0 0 0 þ

ffiffi
5
8

q
4 0 0 �

ffiffiffiffi
3
10

q
0 0 0 �

ffiffiffiffi
7
10

q
0 0 0

J ¼ 9
2 ! 2H

r m ¼ þ 9
2 þ 7

2 þ 5
2 þ 3

2 þ 1
2 � 1

2 � 3
2 � 5

2 � 7
2 � 9

2

1 0 0 0 þ
ffiffiffiffi
3
10

q
0 0 0 �

ffiffiffiffi
7
10

q
0 0

2 0 0 0 0 �
ffiffiffiffi
1
15

q
0 0 0 þ

ffiffiffiffi
14
15

q
0

3 0 �
ffiffiffiffi
14
15

q
0 0 0 þ

ffiffiffiffi
1
15

q
0 0 0 0

4 0 0 þ
ffiffiffiffi
7
10

q
0 0 0 �

ffiffiffiffi
3
10

q
0 0 0
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jG1T1�G1
; ri

jG1T1�H; ri
jH1T1�G1

; ri
jHT1�H; ri
jH0

T1�H; ri
jHT1�G2

; ri
jG2T1�H; ri
jG2T1�G2

; ri

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

¼ AT1�ð7=2Þ �

��������G1; r;

�
9
2

��
��������G1; r;

�
7
2

��
��������1H; r;

�
9
2

��
��������2H; r;

�
9
2

��
��������H; r

�
7
2

��
��������H; r

�
5
2

��
��������G2; r;

�
7
2

��
��������G2; r

�
5
2

��

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (B25)

where matrix AT1�ð7=2Þ is

ffiffiffiffi
20
27

q
�

ffiffiffiffi
7
27

q
0 0 0 0 0 0

�
ffiffiffiffi
7
27

q
�

ffiffiffiffi
20
27

q
0 0 0 0 0 0

0 0 a1 b1

ffiffiffiffi
10
27

q ffiffi
3
8

q
0 0

0 0 a2 b2

ffiffiffiffiffiffi
1

945

q
�

ffiffi
3
7

q
0 0

0 0 a3 b3 �
ffiffiffiffi
12
35

q ffiffiffiffi
3
28

q
0 0

0 0 a4 b4 �
ffiffi
2
7

q ffiffiffiffi
5
56

q
0 0

0 0 0 0 0 0
ffiffi
4
7

q
�

ffiffi
3
7

q
0 0 0 0 0 0

ffiffi
3
7

q ffiffi
4
7

q

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (B26)

Constants an and bn express the unknown parts of the
matrix that connect the four H irreps on the left
side to linear combinations involving j1H; r; ½92�i and

j2H; r; ½92�i.
The upper-left block of the matrix equation can be

solved for

��������G1;r;

�
9

2

��
¼

ffiffiffiffiffiffi
20

27

s
jG1T1�G1

;ri�
ffiffiffiffiffiffi
7

27

s
jG1T1�H;ri: (B27)

Subduction matrix Sð9=2Þ;M
G1;r

is determined by a linear

combination of R matrices with the same coefficients as
in Eq. (B27), i.e.,

S ð9=2Þ;M
G1;r

¼
ffiffiffiffiffiffi
20

27

s
Rð9=2Þ;M

G1T1�G1 ;r
�

ffiffiffiffiffiffi
7

27

s
Rð9=2Þ;M

G1T1�H;r
: (B28)

The middle block gives four equations for the H irreps.
They can be reduced to three by making linear combina-
tions of pairs of equations to eliminate the jH; r; ½52�i terms,

and then further reduced to two equations by making linear
combinations of pairs of equations to eliminate the
jH; r; ½72�i terms. The resulting equations provide candi-

dates for the 1H and 2H irrep states subduced from spin 9
2

as follows,

a001

��������1H; r;

�
9

2

��
þ b001

��������2H; r;

�
9

2

��

¼
ffiffiffiffiffiffi
5

96

s
jHT1�G1

; ri þ
ffiffiffiffiffiffi
7

60

s
jHT1�H; ri þ

ffiffiffiffiffiffiffiffi
21

320

s
jH0

T1�H; ri

a002

��������1H; r;

�
9

2

��
þ b002

��������2H; r;

�
9

2

��

¼ 5

24
jHT1�G1

; ri þ
ffiffiffiffiffiffi
7

72

s
jHT1�H; ri �

ffiffiffiffiffiffiffiffi
21

320

s
jHT1�G2

; ri;

where a00n and b00n are combinations of the unknown
constants an and bn. There remain four unknown
constants here and three equations that constrain
them in order that states j1H; r; ½92�i and j2H; r; ½92�i
are orthonormal. A one-parameter family of solutions
exists. It is sufficient for our purpose to obtain a single
solution by choosing b001 ¼ 0. From the first equation we
find

��������1H; r;

�
9

2

��
¼

ffiffiffi
2

9

s
jHT1�G1

; ri þ
ffiffiffiffiffiffiffiffi
112

225

s
jHT1�H; ri

þ
ffiffiffiffiffiffi
7

25

s
jH0

T1�H; ri; (B29)

where constant a001 was determined by normalizing the
state. The second equation is then used to obtain a state
that is orthonormal to the first one, which determines
constants a002 and b002 , and yields

��������2H; r;

�
9

2

��
¼

ffiffiffiffiffiffiffiffi
7

216

s
jHT1�G1

; ri þ
ffiffiffiffiffiffiffiffi
49

675

s
jHT1�H; ri

�
ffiffiffiffiffiffiffiffi
27

100

s
jH0

T1�H; ri þ
ffiffiffi
5

8

s
jHT1�G2

; ri:
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The coefficients appearing in Eq. (B29) give the values of a1, a2, a3 (a4 ¼ 0) and the coefficients appearing in
Eq. (B30) give the values of b1, b2, b3 and b4. They complete the determination of matrix A and can be used to show
that it is orthogonal. Subduction matrices are determined as linear combinations ofR matrices with the same coefficients
that appear above for the 1H and 2H states,

Sð9=2Þ;M
1H;r

¼
ffiffiffi
2

9

s
Rð9=2Þ;M

HT1�G1 ;r
þ

ffiffiffiffiffiffiffiffi
112

225

s
Rð9=2Þ;M

HT1�H;r
þ

ffiffiffiffiffiffi
7

25

s
Rð9=2Þ;M

H0
T1�H;r

Sð9=2Þ;M
2H;r ¼

ffiffiffiffiffiffiffiffi
7

216

s
Rð9=2Þ;M

HT1�G1 ;r
þ

ffiffiffiffiffiffiffiffi
49

675

s
Rð9=2Þ;M

HT1�H;r
�

ffiffiffiffiffiffiffiffi
27

100

s
Rð9=2Þ;M

H0
T1�H;r

þ
ffiffiffi
5

8

s
Rð9=2Þ;M

H0
T1�G2 ;r

:
(B30)

The resulting subduction matrices for spin 9
2 are given in Table XVII.
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