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We continue our lattice simulations of QCD with 2 flavors of color-sextet quarks as a model for

conformal or walking technicolor. A 2-loop perturbative calculation of the � function which describes the

evolution of this theory’s running coupling constant predicts that it has a second zero at a finite coupling.

This nontrivial zero would be an infrared stable fixed point, in which case the theory with massless quarks

would be a conformal field theory. However, if the interaction between quarks and antiquarks becomes

strong enough that a chiral condensate forms before this IR fixed point is reached, the theory is QCD-like

with spontaneously broken chiral symmetry and confinement. However, the presence of the nearby IR

fixed point means that there is a range of couplings for which the running coupling evolves very slowly,

i.e. it ‘‘walks.’’ We are simulating the lattice version of this theory with staggered quarks at finite

temperature, studying the changes in couplings at the deconfinement and chiral-symmetry restoring

transitions as the temporal extent (Nt) of the lattice, measured in lattice units, is increased. Our earlier

results on lattices with Nt ¼ 4, 6 show both transitions move to weaker couplings as Nt increases

consistent with walking behavior. In this paper we extend these calculations to Nt ¼ 8. Although both

transitions again move to weaker couplings, the change in the coupling at the chiral transition from Nt ¼ 6

to Nt ¼ 8 is appreciably smaller than that from Nt ¼ 4 to Nt ¼ 6. This indicates that at Nt ¼ 4, 6 we are

seeing strong-coupling effects and that we will need results from Nt > 8 to determine if the chiral-

transition coupling approaches zero as Nt ! 1, as needed for the theory to walk.
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I. INTRODUCTION

We are interested in extensions of the standard model
which have a strongly-coupled (composite) Higgs sector.
The most promising theories of this type are the so-called
technicolor theories [1,2], QCD-like gauge theories with
massless (techni-)quarks, where the (techni-)pions play the
role of the Higgs field, giving masses to theW and Z. Such
theories tend to have phenomenological problems, espe-
cially when they are extended to give masses to quarks and
leptons. Walking technicolor theories, where gauge group
and fermion content are chosen so that the running cou-
pling constant evolves very slowly (‘‘walks’’), might be
able to avoid such difficulties [3–6]. Deciding whether a
candidate gauge theory has the properties needed is a
nonperturbative question. Hence lattice gauge theory simu-
lation methods are the only way to answer this reliably.

For a given gauge group with Nf fermions in a specified

representation of that group, there is some value of Nf,

below which the gauge theory is asymptotically free.
Below this value there is a range of Nf for which the

second term in the perturbative Callan-Symanzik � func-
tion has the opposite sign from the first. Hence, if the 2-
loop � function describes the physics the theory withNf in

this range, � has a second nontrivial zero representing an
infrared (IR) fixed point. If this is true the theory is a

conformal field theory with a continuous spectrum.
However, there is a second possibility. If the fermion-
antifermion coupling becomes strong enough that a chiral
condensate forms before the would-be fixed point is
reached, this effectively removes the fermions from con-
sideration for longer distances, the IR zero is avoided, and
the coupling approaches infinity at large distances. In this
case the theory is QCD-like with confinement as well as
chiral-symmetry breaking. However, the presence of the
nearby IR fixed point means that the � function becomes
small at some value of the coupling, and the coupling
constant walks.
If we restrict ourselves to SUðNcÞ gauge groups with Nc

relatively small, there are a limited number of potential
candidates. These have been identified and rough estimates
of the value of Nf, which separates conformal from walk-

ing behavior, have been made [7–14]. Extensive lattice
studies have been made for Nc ¼ 3 with fermions in the
fundamental representation of the color group [15–36].
There have also been studies with Nc ¼ 2 and fermions
in the fundamental representation of color [15,37,38] as
well as studies with Nc ¼ 2 and fermions in the adjoint
(symmetric tensor) representation [39–48]. Finally, there
have been studies with Nc ¼ 3 and fermions in the
sextet (symmetric-tensor) representation of the gauge
group [49–56].
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We are concentrating our efforts on QCD (Nc ¼ 3) with
color-sextet quarks. For this choice, asymptotic freedom is
lost at Nf ¼ 3 3

10 . This means that only Nf ¼ 2, 3 are of

interest. Both of these have � functions where the 1 and 2-
loop terms are of opposite sign. Nf ¼ 3 is close enough to

the number of flavors for which asymptotic freedom is lost
that the IR fixed point occurs for very weak coupling, for
which perturbation theory can probably be trusted. Hence
it is believed that this theory is almost certainly a confor-
mal field theory. Estimates of the value of Nf, which

separates conformal from walking behavior, suggest that
Nf ¼ 2 is a good candidate for walking behavior.

However, there is enough uncertainty in these methods
that a more reliable study of the Nf ¼ 2 is warranted.

We have thus chosen to study the Nf ¼ 2 theory, using

lattice gauge simulations with staggered quarks. Lattice
studies of QCD with 2 flavors of color-sextet Wilson
quarks have been performed by Degrand, Shamir, and
Svetitsky. To date these have been unable to tell unambig-
uously whether this theory is conformal or walking. The
Lattice Higgs Collaboration has been studying this theory
using improved staggered quarks. Recently they have re-
ported evidence that this theory spontaneously breaks chi-
ral symmetry which would indicate that it has walking
behavior (unless there is a bulk chiral transition at even
weaker coupling).

Whereas the other groups have concentrated their efforts
on determining the nature of QCD with 2 sextet quarks
from studies of the zero-temperature behavior of the theory
(apart from some early thermodynamics simulations by
Degrand, Shamir, and Svetitsky), we are studying the
thermodynamics of this theory. Here we are measuring
the dependence of the lattice (bare) coupling at the decon-
finement and chiral-symmetry restoration transitions onNt,
the temporal extent of the lattice in lattice units. If these are
indeed finite-temperature transitions, the couplings at
which they occur should tend to zero as Nt ! 1 in a
manner controlled by asymptotic freedom. Such behavior
would indicate walking. If the theory is conformal, these
couplings should approach a nonzero constant as Nt ! 1,
indicating a bulk transition. Simulations at Nt ¼ 4 and 6,
reported in our earlier publication showed that both tran-
sition couplings did decrease with increasing Nt. This
work reports the results of simulations at Nt ¼ 8. While
both transitions do tend to weaker couplings as Nt goes
from 6 to 8, the change in coupling at the chiral transition,
which occurs at a considerably weaker coupling than the
deconfinement transition, is much smaller than that be-
tween Nt ¼ 4 and 6. (Such separation of the deconfine-
ment and chiral-symmetry restoration transitions, which is
not observed for fundamental quarks, has been observed
with adjoint quarks [57,58].) The most likely interpreta-
tion is that between Nt ¼ 4 and 6, this transition is in the
strong-coupling domain where the quarks have condensed
to form a chiral condensate at length scales of order of the

lattice spacing and do not participate in the running of the
coupling constant, which now runs as in quenched QCD.
Between Nt ¼ 6 and 8 the chiral-transition coupling fi-
nally emerges into the weak-coupling regime where the
quarks also participate in the running of the coupling
constant. This means that we will need to simulate at
even larger Nt’s to determine whether this theory is con-
formal or walking.
As for Nt ¼ 6, the Nt ¼ 8 lattice shows a clear 3-state

signal above the deconfinement transition. These states are
characterized by the phase of the Wilson Line (Polyakov
Loop) having the values 0, � 2�

3 , a vestige of the Z3 color

symmetry of the quenched theory. Within the limitations of
our simulations, all 3 states appear stable. At even weaker
couplings—close to the chiral transition—the 2 states with
complex phases disorder to a phase with a negative Wilson
Line. This phase structure, which is richer than that for
fundamental quarks, where the Wilson Line is always real
and positive, was predicted by Machtey and Svetitsky and
observed in their simulations with Wilson quarks [59].
In Sec. II we describe our simulation techniques and

how one can measure the running of the coupling constant
from thermodynamics. Section III describes our simula-
tions and results. Finally in Sec. IV we discuss our results,
draw conclusions, and indicate directions for future
investigations.

II. METHODOLOGY

For the gauge fields we use the standard Wilson
(plaquette) action:

Sg ¼ �
X
h

�
1� 1

3
ReðTrUUUUÞ

�
: (1)

For the fermions we use the unimproved staggered-quark
action:

Sf ¼
X
sites

2
4XNf=4

f¼1

c y
f ½ 6Dþm�c f

3
5; (2)

where 6D ¼ P
���D� with

D�c ðxÞ ¼ 1

2
½Uð6Þ

� ðxÞc ðxþ �̂Þ �Uð6Þy
� ðx� �̂Þc ðx� �̂Þ�;

(3)

where Uð6Þ is the sextet representation of U, i.e. the sym-
metric part of the tensor product U �U. When Nf is not a

multiple of 4 we use the fermion action:

Sf ¼
X
sites

�yf½ 6Dþm�½� 6Dþm�gNf=8�: (4)
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The operator which is raised to a fractional power is
positive definite, and we choose the real positive root.
This yields a well-defined operator. We assume that this
defines a sensible field theory in the zero lattice-spacing
limit, ignoring the rooting controversy. (See for example
[60] for a review and guide to the literature on rooting.)

We use the RHMC method for our simulations [61],
where the required powers of the quadratic Dirac operator
are replaced by diagonal rational approximations to the
desired precision. By applying a global Metropolis accept/
reject step at the end of each trajectory, errors due to the
discretization of molecular-dynamics time are removed.

Finite-temperature simulations are performed by using a
lattice of finite extent Nt in lattice units in the Euclidean
time direction and of infinite extent Ns in the spatial
direction. In practice this means we choose Ns � Nt.
The temperature T ¼ 1=Nta, where a is the lattice spacing.
(In our earlier equations we set a ¼ 1.) Since the decon-
finement temperature Td and the chiral-symmetry restora-
tion temperature T� should not depend on a, and since

a ¼ 1=NtT, measuring the coupling g at Td or T� as a

function of Nt gives gðaÞ for a series of a values which
approach zero as Nt ! 1. If the ultraviolet behavior of the
theory is governed by asymptotic freedom, gðaÞ should
approach zero as a ! 0, i.e. Nt ! 1. The way gd and g�
approach zero should be determined by the perturbative �
function. The 2-loop � function

�ðgÞ ¼ �b1g
3 � b2g

5: (5)

Then expressing our coupling constant evolution in terms
of � ¼ 6=g2 (we apologize for the fact that we are using �
for 2 different purposes)

��ð�Þ ¼ �ðaÞ � �ð�aÞ ¼ ð12b1 þ 72b2=�Þ lnð�Þ (6)

through this order. For Nf flavors of sextet quarks,

b1 ¼
�
11� 10

3
Nf

��
16�2

b2 ¼
�
102� 250

3
Nf

��
ð16�2Þ2:

(7)

If, on the other hand, the Nf ¼ 2 theory is conformal,

the continuum, zero coupling (� ! 1) limit has an un-
broken chiral symmetry (and is unconfined). Hence there
will be a bulk chiral transition at a finite coupling, which
survives in the Nt ! 1 limit, so the coupling and hence �
at the chiral transition will tend to a finite value in this
limit. [Since the � value at the deconfinement transition
(�d) is expected to be less than that at the chiral transition
(��), it follows that �d will also approach a finite value as

Nf ! 1.]

We determine the position of the deconfinement transi-
tion as that value of � where the magnitude of the triplet

Wilson Line (Polyakov Loop) increases rapidly from a
very small value as � increases. The chiral phase transition
is at that value of � beyond which the chiral condensate
h �c c i vanishes in the chiral limit. Because we are forced to
simulate at finite quark mass, this value is difficult to
determine directly. We therefore estimate the position of
the chiral transition by determining the position of the peak
in the chiral susceptibility � �c c as a function of quark mass

and extrapolating to zero quark mass. The chiral suscepti-
bility is given by

� �c c ¼ V½hð �c c Þ2i � h �c c i2�; (8)

where the hi indicates an average over the ensemble of
gauge configurations and V is the space-time volume of the
lattice. Since the fermion functional integrals have already
been performed at this stage, this quantity is actually the
disconnected part of the chiral susceptibility. Since we use
stochastic estimators for �c c , we obtain an unbiased esti-
mator for this quantity by using several independent esti-
mates for each configuration (5, in fact). Our estimate of
ð �c c Þ2 is then given by the average of the (10) estimates
which are ‘‘off diagonal’’ in the noise.
Our Nt ¼ 8 simulations are performed on 163 � 8 latti-

ces. Near the chiral transition, where finite size effects are a
concern, we also perform simulations on a 243 � 8 lattice
for the lowest quark mass. We perform simulations with
quark masses m ¼ 0:005, m ¼ 0:01, and m ¼ 0:02 in
lattice units, to enable continuation to the chiral (m ¼ 0)
limit. (Since we do not have any zero-temperature mea-
surements, the more desirable method of choosing lines of
constant physics is impossible.) Our trajectory length is
chosen to be �� ¼ 1 where � is the molecular-dynamics
‘‘time’’ in HEMCGC normalization [62].
A more detailed discussion of our methods of choosing

parameters, run lengths, etc. is given in our earlier paper
describing our Nt ¼ 4, 6 simulations [53].

III. SIMULATIONS AND RESULTS

We simulate QCD with 2-flavors of color-sextet stag-
gered quarks on 163 � 8 and 243 � 8 lattices. For the
smaller lattice we perform simulations with masses m ¼
0:005, m ¼ 0:01, and m ¼ 0:02 to allow extrapolation to
the chiral limit, for a set of � values covering the range
5:5 � � � 7:4. To probe the various phases of the Wilson
Line, we use 2 different sets of runs. In the first set of runs
we use an ordered start, in which the gauge fields are set to
the unit matrix on all links, at the highest �, and use
configurations from higher �’s to start runs at lower �’s.
The second set of runs uses a start in which the gauge fields
are set to the unit matrix, except for the timelike gauge
fields on a single time slice, which are set to the matrix
diagð1;�1;�1Þ. This puts the system in a state with a real
negative Wilson Loop at large �’s.
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The length of a typical run at a fixed ð�;mÞ away from
the transitions is 10 000 trajectories. Close to the decon-
finement transition, this is increased to 50 000 trajectories.
Run lengths of 50 000 trajectories are also used close to the
transition from a state where the Wilson Line has phase
�2�=3 to one where it has phase �. We have detailed our
run lengths in the Appendix.

Since finite (spatial) volume effects are most likely to be
present in the weak-coupling domain at small quark
masses, where they have the potential to shift the chiral
transition, we have also performed a set of simulations on
243 � 8 lattices at the lowest quark mass. These simula-
tions at m ¼ 0:005 cover the range 6:2 � � � 7:4 with
mesh �� ¼ 0:1, and with 10 000 trajectories at each �,
from positive Wilson line starts.

A. Results

Starting from large � values, the runs which start from a
completely ordered state with Wilson Line þ3 continue to

have positive Wilson Lines down to� ¼ 5:8 form ¼ 0:02,
and down to � ¼ 5:7 for m ¼ 0:01 and m ¼ 0:005. Below
these � values, which are just above the deconfinement
transition, we see a clear 3-state signal, where the system
tunnels between states where the Wilson Line has phases 0,
�2�=3. Because of this, we bin our data according to the
phase 	 of the Wilson Line for each configuration.
Configurations where ��=3<	<�=3 are considered
to be in the 	 ¼ 0 bin. Outside of this range the configu-
rations are considered to be in the �2�=3 bins depending
on whether the imaginary part of the Polyakov loop is
positive or negative. These last 2 bins are combined by
complex conjugating those Wilson Lines which have nega-
tive imaginary parts.
Starting from large �’s, in those runs which start from

the second ordering with Wilson Line�1, the Wilson Line
remains negative down to � � 6:9 for m ¼ 0:02, � � 6:8,

FIG. 1 (color online). a) Wilson Line and chiral condensate for
real positive Wilson Line states as functions of � on a 163 � 8
lattice. b) Magnitude of Wilson Line and chiral condensate for
states with complex or real negative Wilson Lines as functions of
� on a 163 � 8 lattice.

FIG. 2 (color online). a) The chiral susceptibilities as functions
of � for each of the 3 masses on a 163 � 8 lattice. b) The chiral
susceptibilities at m ¼ 0:005 as functions of � on a 163 � 8
lattice and on a 243 � 8 lattice.
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m ¼ 0:01 and� � 6:7,m ¼ 0:005. Below these values the
system makes a transition to a state withWilson Line phase
�2�=3. Below these � values, these runs remain in states
with Wilson Line phases �2�=3 down to � ¼ 5:8, for
eachm. For� ¼ 5:7 and below we see clear 3-state signals
where the system tunnels between the 3 states. For this
reason we again bin our data according to the Wilson Line
phase, 	.

In Fig. 1(a) we present the Wilson Line and chiral
condensate for the states with a real positive Wilson Line
plotted against � for each of the 3 masses. In Fig. 1(b) we
plot the magnitude of the Wilson Line and the chiral
condensate for those states with complex or real negative
Wilson Lines.

In both sets of graphs in Fig. 1 we observe a rapid
increase in the (magnitude of the) Wilson Line at
� � 5:65, corresponding to the deconfinement transition.
The sudden drop in the magnitudes of the Wilson Lines of
Fig. 1(b) for 6:6 & � & 7:0 marks the transition where
states with complex Wilson Lines (	 ¼ �2�=3) disorder
to a state with a real negative Wilson Line 	 ¼ �.

It is clear that the chiral condensate becomes small for
large � and decreases with decreasing quark mass, which
suggests that it will vanish in the chiral limit, for � large
enough. However, extrapolating the chiral condensate to
zero quark mass to determine the chiral transition from
these quark masses where the � dependence is so smooth
would be exceedingly difficult. We therefore estimate the
position of the chiral transition from determinations of the
positions of the peaks in the chiral susceptibilities for each
mass. These are plotted in Fig. 2(a). For the lower two
masses, the peaks in the chiral susceptibilities are well
defined. (This is the best evidence we have that our quark
masses are small enough to perform the chiral extrapola-
tion.) In addition, for the limited set of � values of our
simulations, both the m ¼ 0:01 and the m ¼ 0:005 ‘‘data’’
peak at the same �, namely, � ¼ 6:7. We therefore esti-
mate that the position of the peak and thus the chiral phase
transition at m ¼ 0 are at �� ¼ 6:7ð1Þ. This means that �d

and �� are well separated as was observed for Nt ¼ 4 and

6. Atm ¼ 0:005, close to the chiral transition, we have also
performed simulations on larger (243 � 8) lattices. The

FIG. 3 (color online). Histograms of magnitudes of Wilson Lines: a) for m ¼ 0:005, b) for m ¼ 0:01, and c) for m ¼ 0:02.
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Wilson Lines and chiral condensates show little difference
between the two lattice sizes. The chiral susceptibilities
plotted in Fig. 2 indicate that finite size effects are indeed
small. This is more significant, since such fluctuation
quantities are most sensitive to finite volume effects.

We have also looked at the chiral susceptibilities for
the states with real negative or complex Wilson lines and
find peaks at � ¼ 6:8ð1Þ for m ¼ 0:02, � ¼ 6:7ð1Þ for
m ¼ 0:01, and � ¼ 6:6ð1Þ for m ¼ 0:005. Since these
values are close to the transitions from the state with a
negative Wilson Line to states with complex Wilson
Lines, there is a possibility of interference between these
two transitions. For this reason we concentrate our studies
on the chiral transition measured in the positive Wilson
Line state.

We now turn our attention to more precise estimates of
�d. For this purpose, we histogram the magnitudes of the
Wilson Lines in the neighborhood of the deconfinement
transition. Such histograms are shown in Fig. 3 for each
quark mass. We estimate that the transition occurs at
� ¼ �d ¼ 5:66ð1Þ for m ¼ 0:02, at �d ¼ 5:65ð1Þ for
m ¼ 0:01, and at �d ¼ 5:65ð1Þ for m ¼ 0:005.

The positions of the deconfinement and chiral transi-
tions, extrapolated to the chiral limit, are given in Table I
for each of the 3 Nt values (Nt ¼ 4, 6 from [53], Nt ¼ 8
this work).

B. Interpretation

We now compare the changes in �d and �� with what

would be expected if the running of the lattice coupling
constant is given by the 2-loop (perturbative) � function—
Eq. (6).

For the deconfinement transition

��dð6; 4Þ ¼ �dðNt ¼ 6Þ � �dðNt ¼ 4Þ � 0:14 (9)

compared with the prediction of Eq. (6) which predicts
��dð6; 4Þ � 0:12, whereas

��dð8; 6Þ ¼ �dðNt ¼ 8Þ � �dðNt ¼ 6Þ � 0:11: (10)

compared with the 2-loop prediction ��dð8; 6Þ � 0:09. If
the quarks were actively screening color at these couplings
(5:40 & � & 5:65), it would not be unreasonable to as-
sume that these deconfinement couplings were weak

enough to be governed by the perturbative � function.
The fact that the measured ��’s are within � 20% of
those predicted by 2-loop perturbation theory would tend
to support this interpretation. However, examining the
running of the coupling constant at the chiral transition,
will lead us to a different conclusion.
For the chiral transition, we find

���ð6; 4Þ ¼ ��ðNt ¼ 6Þ � ��ðNt ¼ 4Þ � 0:3 (11)

while

���ð8; 6Þ ¼ ��ðNt ¼ 8Þ � ��ðNt ¼ 6Þ � 0:1: (12)

Using Eq. (6) to estimate ��� yields

���ð6; 4Þ � 0:122 (13)

and

���ð8; 6Þ � 0:087: (14)

While ���ð8; 6Þ appears consistent with our measure-

ments, ���ð6; 4Þ does not. What this suggests is that for

Nt in the range 6–8, �� is in the weakly-coupled domain

where scaling is controlled by asymptotic freedom, while
Nt in the range 4–6 is in the strongly-coupled domain.
In the strongly-coupled domain, the fermions have

formed a chiral condensate, which effectively stops them
from contributing significantly to the running of the cou-
pling constant. Hence we expect that the running of the
coupling in this region will be that of the quenched theory,
i.e. that for Eq. (6) with Nf ¼ 0. This yields

���ð6; 4Þ � 0:357; (15)

which is consistent with what we observe. (It also gives

���ð8; 6Þ � 0:253; (16)

which is larger than what we observe.) Thus we conclude
that the chiral transition emerges from the strongly-
coupled domain, where the quarks play little part in the
coupling constant evolution, into the weak-coupling re-
gime, where the running of the coupling is determined by
asymptotic freedom, around ��ðNt ¼ 6Þ.
One might argue that both ���’s are consistent with

either Nf ¼ 0 or Nf ¼ 2 scaling because of the relatively

large error-bars in Table I. However, comparing the graphs
of the chiral condensates for fixed masses for each Nt—see
Fig. 4—we see that ���ð6; 4Þ really does appear to be

much larger than ���ð8; 6Þ and that the estimates of

Eqs. (11) and (12) are more accurate than the errors in
the individual ��’s would suggest.

TABLE I. Nf ¼ 2 deconfinement and chiral transitions for
Nt ¼ 4, 6, 8.

Nt �d ��

4 5.40(1) 6.3(1)

6 5.54(1) 6.6(1)

8 5.65(1) 6.7(1)
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This interpretation of the running of the lattice cou-
pling constant at the chiral transition indicates that the
region � & 6:6 is one of strong coupling, governed by
quenched dynamics. In particular, the change in �d as Nt

is varied from 4 to 6 to 8 should be governed by quenched
dynamics. However, it has been determined that the evo-
lution of the deconfinement coupling in quenched QCD is
only well described by 2-loop perturbation theory for
� * 6:1 [63,64]. Hence the changes in �d that we ob-
serve are not expected to be described by quenched
perturbation theory. We note, however, that �dðNt ¼ 6Þ ¼
5:54ð1Þ is close to �dðNt ¼ 3Þ � 5:55 found for the
quenched theory [65], while �dðNt ¼ 8Þ ¼ 5:65ð1Þ, com-
pared to �dðNt ¼ 4Þ � 5:69 for the quenched theory
[65–67]. Since the ratios of lattice spacings in these 2
cases are identical, such comparison is justified. Taking
into account the fact that small Nt effects are expected to
make the Nt ¼ 3 quenched �d anomalously small, the
comparison is remarkably good. Unfortunately we cannot
expect similar comparisons between �dðNt ¼ 4Þ and
�dðNt ¼ 2Þ for the quenched theory to work, since it is
well known that �dðNt ¼ 2Þ � 5:1 for quenched lattice
QCD is anomalously low [65]. Still it is reasonable that a
strong-coupling quenched interpretation of the running of
�d is correct for Nt ¼ 4, 6, 8. The fact that the changes in
�d between Nt ¼ 4, 6, and 8 are appreciably less than
predicted by quenched perturbation theory is a well-
known feature of the strong-coupling domain of quenched
lattice QCD [63,64].

IV. DISCUSSION AND CONCLUSIONS

We are studying thermodynamics of QCD with 2 mass-
less color-sextet ‘‘quarks’’ in an attempt to distinguish
whether it is a conformal field theory or if it walks, i.e. is

a confined, chiral-symmetry broken theory, with a slowly
evolving coupling. Simulations are performed on lattices
with spatial extent Nsa and temporal extent Nta (a is the
lattice spacing) with Ns � Nt. We use staggered quarks
with several small masses to extrapolate to the massless
quark limit. The temperatureT ¼ 1=Nta. Hence for fixedT,
chosen to be either the deconfinement temperature Td or the
chiral-symmetry restoration temperature T�, we can vary a

by varying Nt, thus studying the running of the coupling
gðaÞ as a ! 0 by simulating at a series of Nt’s increasing
towards infinity. Our earlier simulations were performed
using Nt ¼ 4, 6. Those we report here use Nt ¼ 8.
At Nt ¼ 8, as at the smaller Nt’s, the chiral transition

occurs at a much weaker coupling than the deconfinement
transition (see Table I). (This contrasts with the case with
quarks in the fundamental representation of color, where
these transitions appear coincident.) BetweenNt ¼ 4 and 6
both transitions move to appreciably smaller couplings.
While this trend continues between Nt ¼ 6 and 8, the
change in couplings at the chiral transition is much smaller
than that between Nt ¼ 4 and 6. A possible explanation is
that for couplings between those at the Nt ¼ 4 and the
Nt ¼ 6 chiral transitions, the system is in the strong-
coupling regime, where the quarks are bound in a chiral
condensate at distances & a and thus do not contribute
significantly to the evolution of the coupling constant,
which thus evolves as in quenched (Nf ¼ 0) QCD.

Between the couplings for the Nt ¼ 6 and Nt ¼ 8 transi-
tions, the system emerges into the weak-coupling domain,
where the fermions contribute and the coupling evolves
according to Nf ¼ 2 asymptotic freedom. Although we

have given semiquantitative evidence for this interpreta-
tion, we cannot rule out the possibility that the coupling at
the chiral transition is approaching a fixed nonzero value.
This would be evidence for a bulk chiral transition, imply-
ing that the continuum theory has unbroken chiral symme-
try and is thus conformal.
In order to distinguish conformal from walking behav-

ior, we will need to perform simulations at largerNt values.
We have already begun simulations on Nt ¼ 12 lattices. In
addition, since the changes in �� between Nt ¼ 6 and

Nt ¼ 8 and those expected between Nt ¼ 8 and Nt ¼ 12
are of order 0.1, we will need more � values in the
neighborhood of �� to determine this value more accu-

rately. We are currently performing such simulations and
additional simulations with a smaller quark mass (m ¼
0:0025) at Nt ¼ 8, to aid with the chiral extrapolation.
With these new simulations, we are concentrating on the
chiral transition, since it would require Nt values much
greater than what is currently feasible to have �d in the
weak-coupling (� * 6:6) regime.
Our runs at Nt ¼ 8 show a phase structure similar to

what was observed at Nt ¼ 6. Above the deconfinement
transition, the Wilson Line exhibits a definite 3-state struc-
ture. In addition to the state with a positive Wilson Line,

FIG. 4 (color online). Chiral condensates for m ¼ 0:005 for
Nt ¼ 4, 6, and 8, in the high � (weak coupling) regime.
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which is all that is observed for fundamental quarks, there
are states characterized by Wilson Lines oriented (at least
approximately) in the directions of the 2 complex cube
roots of unity. The existence of this 3-state signal is proba-
bly because chiral symmetry is still broken in this regime,
effectively removing the fermions from the dynamics so
that it behaves as a quenched theory. This suggests that the
3-state signal is the vestige of the spontaneously broken Z3

symmetry of the deconfined pure gauge theory. The fact
that this Z3 symmetry is explicitly broken manifests itself
in the fact that the magnitude of the Wilson Line in the
complex Wilson Line states is smaller than that in the
positive Wilson Line state. Within the limitations of our
simulations, all 3 states appear to be stable. At some �
value close to the chiral transition, the complex Wilson
Line states disorder to a state with a negative Wilson Line.
Above this transition the magnitude of the Wilson Line in
the negative Wilson Line state is around 1=3 of that for the
positive Wilson line state. This leads us to speculate that
the transition indicates a breaking of color SUð3Þ to color
SUð2Þ �Uð1ÞY . Arguments for the existence of states with
Wilson Lines having phases �2�=3 and � in addition to
that with phase 0 have been given by Machtey and
Svetitsky, who showed evidence for them in their simula-
tions with Wilson quarks.

We also plan simulations to measure the zero-
temperature properties of this theory. In the weak-coupling
regime �>��, we will check whether the theory is a

conformal field theory or if it is in the quark-gluon plasma
phase of a QCD-like gauge theory. If the theory is a
conformal field theory (for massless fermions) all ‘‘had-
ron’’ masses will vanish with the same anomalous dimen-
sion, and the chiral condensate will also vanish with an
anomalous dimension in the chiral limit. Because such
anomalous dimensions are determined by the infrared
attractive fixed point, they should be independent of �.

If we do not find evidence of conformal behavior, we
will check for QCD-like behavior in the chirally-broken
phase and for evidence that this phase has a continuum
limit controlled by asymptotic freedom. This will require
very large lattices, since we need to choose � values large
enough for asymptotic freedom to control the renormal-
ization group scaling of observables, while keeping �<

�dð<��Þ. Here we will need to measure the masses of the

‘‘hadrons’’ to determine if our quark masses are small
enough and our lattices large enough to observe that the
‘‘pion’’ masses vanish in the chiral limit proportional toffiffiffiffi
m

p
, while the other hadrons remain massive. We will also

need to check for evidence that the chiral condensate
remains finite in the chiral limit. In addition we will
measure f� and study propagators of vector and axial
vector mesons which contribute to the S parameter, as is
being done by the Lattice Strong Dynamics Collaboration,
for fundamental quarks [35]. Simulations will be per-
formed at several � values to determine the running of

the bare coupling and of some appropriately-defined re-
normalized coupling. This is necessary to check that the
theory has the correct ultraviolet completion.
Zero-temperature simulations with sextet quarks are al-

ready being performed using improved staggered quarks
by the Lattice Higgs Collaboration, who presented prelimi-
nary results at Lattice 2010 [56].
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TABLE II. Numbers of trajectories for each � and m for runs
on 163 � 8 lattices. The first number is for simulations starting
with positive Wilson Lines; the second is for simulations starting
with negative or complex Wilson Lines.

� m ¼ 0:005 m ¼ 0:01 m ¼ 0:02

5.5 10 000 10 000 10 000

5.55 10 000 10 000 10 000

5.6 50 000 50 000 50 000

5.64 50 000þ 50 000 50 000þ 50 000 	 	 	
5.65 50 000þ 50 000 50 000þ 50 000 50 000þ 50 000
5.66 50 000þ 50 000 50 000þ 50 000 50 000þ 50 000
5.67 50 000þ 50 000 50 000þ 50 000 50 000þ 50 000
5.68 50 000þ 50 000 50 000þ 50 000 50 000þ 50 000
5.7 50 000þ 50 000 50 000þ 50 000 50 000þ 50 000
5.8 10 000þ 10 000 10 000þ 10 000 10 000þ 10 000
5.9 10 000þ 10 000 10 000þ 10 000 10 000þ 10 000
6.0 10 000þ 10 000 10 000þ 10 000 10 000þ 10 000
6.1 10 000þ 10 000 10 000þ 10 000 10 000þ 10 000
6.2 10 000þ 10 000 10 000þ 10 000 10 000þ 10 000
6.3 10 000þ 10 000 10 000þ 10 000 10 000þ 10 000
6.4 10 000þ 10 000 10 000þ 10 000 10 000þ 10 000
6.5 10 000þ 50 000 10 000þ 10 000 10 000þ 10 000
6.6 20 000þ 50 000 10 000þ 50 000 10 000þ 10 000
6.7 20 000þ 50 000 10 000þ 50 000 10 000þ 10 000
6.8 20 000þ 50 000 10 000þ 50 000 10 000þ 50 000
6.9 10 000þ 20 000 10 000þ 50 000 10 000þ 50 000
7.0 10 000þ 10 000 10 000þ 50 000 10 000þ 50 000
7.1 10 000þ 10 000 10 000þ 10 000 10 000þ 30 000
7.2 10 000þ 10 000 10 000þ 10 000 10 000þ 10 000
7.3 10 000þ 10 000 10 000þ 10 000 10 000þ 10 000
7.4 10 000þ 10 000 10 000þ 10 000 10 000þ 10 000
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APPENDIX: RUN DETAILS

Table II gives the length of our 163 � 8 runs in length-1 trajectories, for each � and mass. Where 2 numbers are given,
the first is for a series of runs which started from an ordered configuration at large �, while the second is from a start which
gives negative Wilson Loops at large �.

[1] S. Weinberg, Phys. Rev. D 19, 1277 (1979).
[2] L. Susskind, Phys. Rev. D 20, 2619 (1979).
[3] B. Holdom, Phys. Rev. D 24, 1441 (1981).
[4] K. Yamawaki, M. Bando, and K. i. Matumoto, Phys. Rev.

Lett. 56, 1335 (1986).
[5] T. Akiba and T. Yanagida, Phys. Lett. B 169, 432 (1986).
[6] T.W. Appelquist, D. Karabali, and L. C. R. Wijewardhana,

Phys. Rev. Lett. 57, 957 (1986).
[7] D. D. Dietrich and F. Sannino, Phys. Rev. D 75, 085018

(2007).
[8] T. Appelquist, K.D. Lane, and U. Mahanta, Phys. Rev.

Lett. 61, 1553 (1988).
[9] F. Sannino and K. Tuominen, Phys. Rev. D 71, 051901

(2005).
[10] E. Poppitz and M. Unsal, J. High Energy Phys. 09 (2009)

050.
[11] A. Armoni, Nucl. Phys. B 826, 328 (2010).
[12] T.A. Ryttov and F. Sannino, Phys. Rev. D 78, 065001

(2008).
[13] O. Antipin and K. Tuominen, Phys. Rev. D 81 076011

(2010).
[14] M. Mojaza, C. Pica, and F. Sannino, Phys. Rev. D 82,

116009 (2010).
[15] J. B. Kogut, J. Polonyi, H.W. Wyld, and D.K. Sinclair,

Phys. Rev. Lett. 54, 1475 (1985).
[16] M. Fukugita, S. Ohta, and A. Ukawa, Phys. Rev. Lett. 60,

178 (1988).
[17] S. Ohta and S. Kim, Phys. Rev. D 44, 504 (1991).
[18] S. y. Kim and S. Ohta, Phys. Rev. D 46, 3607 (1992).
[19] F. R. Brown, H. Chen, N.H. Christ, Z. Dong, R.D.

Mawhinney, W. Schaffer, and A. Vaccarino, Phys. Rev.

D46, 5655 (1992).
[20] Y. Iwasaki, K. Kanaya, S. Sakai, and T. Yoshie, Phys. Rev.

Lett. 69, 21 (1992).
[21] Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai, and T. Yoshie,

Phys. Rev. D 69, 014507 (2004).
[22] P. H. Damgaard, U.M. Heller, A. Krasnitz, and P. Olesen,

Phys. Lett. B 400, 169 (1997).
[23] A. Deuzeman, M. P. Lombardo, and E. Pallante, Phys.

Lett. B 670, 41 (2008).
[24] A. Deuzeman, M. P. Lombardo, and E. Pallante, Phys.

Rev. D 82, 074503 (2010).
[25] A. Deuzeman, E. Pallante, and M. P. Lombardo, Proc. Sci.,

LAT2010 (2010) 067 [arXiv:1012.5971].
[26] T. Appelquist, G. T. Fleming, and E. T. Neil, Phys. Rev. D

79, 076010 (2009).
[27] T. Appelquist, G. T. Fleming, and E. T. Neil, Phys. Rev.

Lett. 100, 171607 (2008); 102, 149902(E) (2009).
[28] X. Y. Jin and R.D. Mawhinney, Proc. Sci., LAT2008

(2008) 059 [arXiv:0812.0413].

[29] X. Y. Jin and R.D. Mawhinney, Proc. Sci., LAT2009
(2009) 049 [arXiv:0910.3216].

[30] X. Y. Jin and R.D. Mawhinney, Proc. Sci., LAT2010
(2010) 055 [arXiv:1011.1511].

[31] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C.
Schroeder, Phys. Lett. B 681, 353 (2009).

[32] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C.

Schroeder, Proc. Sci. LAT2009 (2009) 055
[arXiv:0911.2463].

[33] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C.
Schroeder, arXiv:1104.3124.

[34] N. Yamada, M. Hayakawa, K. I. Ishikawa, Y. Osaki, S.
Takeda, and S. Uno, Proc. Sci. LAT2009 (2009) 066

[arXiv:0910.4218].
[35] T. Appelquist et al. (LSD Collaboration), Phys. Rev. Lett.

106, 231601 (2011).
[36] A. Hasenfratz, Phys. Rev. D 82, 014506 (2010).
[37] F. Bursa, L. Del Debbio, L. Keegan, C. Pica, and T.

Pickup, Phys. Lett. B 696, 374 (2011).
[38] H. Ohki et al., Proc. Sci., LAT2010 (2010) 066

[arXiv:1011.0373].
[39] S. Catterall and F. Sannino, Phys. Rev. D 76, 034504

(2007).
[40] S. Catterall, J. Giedt, F. Sannino, and J. Schneible, J. High

Energy Phys. 11 (2008) 009.
[41] S. Catterall, J. Giedt, F. Sannino, and J. Schneible,

arXiv:0910.4387.
[42] L. Del Debbio, A. Patella, and C. Pica, Phys. Rev. D 81,

094503 (2010).
[43] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago,

Phys. Rev. D 80, 074507 (2009).
[44] F. Bursa, L. Del Debbio, L. Keegan, C. Pica, and T.

Pickup, Phys. Rev. D 81, 014505 (2010).
[45] A. J. Hietanen, J. Rantaharju, K. Rummukainen, and K.

Tuominen, J. High Energy Phys. 05 (2009) 025.
[46] A. J. Hietanen, K. Rummukainen, and K. Tuominen, Phys.

Rev. D 80, 094504 (2009).
[47] H. Matsufuru, Y. Kikukawa, K. I. Nagai, and N. Yamada,

Proc. Sci., LAT2010 (2010) 090.
[48] T. DeGrand, Y. Shamir, and B. Svetitsky, Phys. Rev. D 83,

074507 (2011).
[49] Y. Shamir, B. Svetitsky, and T. DeGrand, Phys. Rev. D 78,

031502 (2008).
[50] T. DeGrand, Y. Shamir, and B. Svetitsky, Phys. Rev. D 79,

034501 (2009).
[51] T. DeGrand, Phys. Rev. D 80, 114507 (2009).
[52] T. DeGrand, Y. Shamir, and B. Svetitsky, Phys. Rev. D 82,

054503 (2010).
[53] J. B. Kogut and D.K. Sinclair, Phys. Rev. D 81, 114507

(2010).

THERMODYNAMICS OF LATTICE QCD WITH 2 SEXTET . . . PHYSICAL REVIEW D 84, 074504 (2011)

074504-9

http://dx.doi.org/10.1103/PhysRevD.19.1277
http://dx.doi.org/10.1103/PhysRevD.20.2619
http://dx.doi.org/10.1103/PhysRevD.24.1441
http://dx.doi.org/10.1103/PhysRevLett.56.1335
http://dx.doi.org/10.1103/PhysRevLett.56.1335
http://dx.doi.org/10.1016/0370-2693(86)90385-0
http://dx.doi.org/10.1103/PhysRevLett.57.957
http://dx.doi.org/10.1103/PhysRevD.75.085018
http://dx.doi.org/10.1103/PhysRevD.75.085018
http://dx.doi.org/10.1103/PhysRevLett.61.1553
http://dx.doi.org/10.1103/PhysRevLett.61.1553
http://dx.doi.org/10.1103/PhysRevD.71.051901
http://dx.doi.org/10.1103/PhysRevD.71.051901
http://dx.doi.org/10.1088/1126-6708/2009/09/050
http://dx.doi.org/10.1088/1126-6708/2009/09/050
http://dx.doi.org/10.1016/j.nuclphysb.2009.10.010
http://dx.doi.org/10.1103/PhysRevD.78.065001
http://dx.doi.org/10.1103/PhysRevD.78.065001
http://dx.doi.org/10.1103/PhysRevD.81.076011
http://dx.doi.org/10.1103/PhysRevD.81.076011
http://dx.doi.org/10.1103/PhysRevD.82.116009
http://dx.doi.org/10.1103/PhysRevD.82.116009
http://dx.doi.org/10.1103/PhysRevLett.54.1475
http://dx.doi.org/10.1103/PhysRevLett.60.178
http://dx.doi.org/10.1103/PhysRevLett.60.178
http://dx.doi.org/10.1103/PhysRevD.44.504
http://dx.doi.org/10.1103/PhysRevD.46.3607
http://dx.doi.org/10.1103/PhysRevD.46.5655
http://dx.doi.org/10.1103/PhysRevD.46.5655
http://dx.doi.org/10.1103/PhysRevLett.69.21
http://dx.doi.org/10.1103/PhysRevLett.69.21
http://dx.doi.org/10.1103/PhysRevD.69.014507
http://dx.doi.org/10.1016/S0370-2693(97)00355-9
http://dx.doi.org/10.1016/j.physletb.2008.10.039
http://dx.doi.org/10.1016/j.physletb.2008.10.039
http://dx.doi.org/10.1103/PhysRevD.82.074503
http://dx.doi.org/10.1103/PhysRevD.82.074503
http://arXiv.org/abs/1012.5971
http://dx.doi.org/10.1103/PhysRevD.79.076010
http://dx.doi.org/10.1103/PhysRevD.79.076010
http://dx.doi.org/10.1103/PhysRevLett.100.171607
http://dx.doi.org/10.1103/PhysRevLett.100.171607
http://dx.doi.org/10.1103/PhysRevLett.102.149902
http://arXiv.org/abs/0812.0413
http://arXiv.org/abs/0910.3216
http://arXiv.org/abs/1011.1511
http://dx.doi.org/10.1016/j.physletb.2009.10.040
http://arXiv.org/abs/0911.2463
http://arXiv.org/abs/1104.3124
http://arXiv.org/abs/0910.4218
http://dx.doi.org/10.1103/PhysRevLett.106.231601
http://dx.doi.org/10.1103/PhysRevLett.106.231601
http://dx.doi.org/10.1103/PhysRevD.82.014506
http://dx.doi.org/10.1016/j.physletb.2010.12.050
http://arXiv.org/abs/1011.0373
http://dx.doi.org/10.1103/PhysRevD.76.034504
http://dx.doi.org/10.1103/PhysRevD.76.034504
http://dx.doi.org/10.1088/1126-6708/2008/11/009
http://dx.doi.org/10.1088/1126-6708/2008/11/009
http://arXiv.org/abs/0910.4387
http://dx.doi.org/10.1103/PhysRevD.81.094503
http://dx.doi.org/10.1103/PhysRevD.81.094503
http://dx.doi.org/10.1103/PhysRevD.80.074507
http://dx.doi.org/10.1103/PhysRevD.81.014505
http://dx.doi.org/10.1088/1126-6708/2009/05/025
http://dx.doi.org/10.1103/PhysRevD.80.094504
http://dx.doi.org/10.1103/PhysRevD.80.094504
http://dx.doi.org/10.1103/PhysRevD.83.074507
http://dx.doi.org/10.1103/PhysRevD.83.074507
http://dx.doi.org/10.1103/PhysRevD.78.031502
http://dx.doi.org/10.1103/PhysRevD.78.031502
http://dx.doi.org/10.1103/PhysRevD.79.034501
http://dx.doi.org/10.1103/PhysRevD.79.034501
http://dx.doi.org/10.1103/PhysRevD.80.114507
http://dx.doi.org/10.1103/PhysRevD.82.054503
http://dx.doi.org/10.1103/PhysRevD.82.054503
http://dx.doi.org/10.1103/PhysRevD.81.114507
http://dx.doi.org/10.1103/PhysRevD.81.114507


[54] D. K. Sinclair and J. B. Kogut, Proc. Sci., LAT2010 (2010)
071 [arXiv:1008.2468].

[55] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. Schroeder,
Proc. Sci., LAT2008 (2008) 058 [arXiv:0809.4888].

[56] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C.
Schroeder, arXiv:1103.5998.

[57] F. Karsch and M. Lutgemeier, Nucl. Phys. B 550, 449
(1999).

[58] J. Engels, S. Holtmann, and T. Schulze, Nucl. Phys. B 724,
357 (2005).

[59] O. Machtey and B. Svetitsky, Phys. Rev. D 81, 014501
(2010).

[60] S. R. Sharpe, Proc. Sci., LAT2006 (2006) 022 [arXiv:hep-
lat/0610094].

[61] M.A. Clark and A.D. Kennedy, Phys. Rev. D 75, 011502
(2007).

[62] K.M. Bitar et al., Phys. Rev. D 42, 3794 (1990).
[63] S. A. Gottlieb, J. Kuti, D. Toussaint, A. D. Kennedy, S.

Meyer, B. J. Pendleton, and R. L. Sugar, Phys. Rev. Lett.
55, 1958 (1985).

[64] N. H. Christ and A. E. Terrano, Phys. Rev. Lett. 56, 111
(1986).

[65] T. Celik, J. Engels, and H. Satz, Z. Phys. C 22, 301 (1984);
Nucl. Phys. B 252, 181 (1985).

[66] A. D. Kennedy, J. Kuti, S. Meyer, and B. J. Pendleton,
Phys. Rev. Lett. 54, 87 (1985).

[67] F. R. Brown, N. H. Christ, Y. F. Deng, M. S. Gao, and T. J.
Woch, Phys. Rev. Lett. 61, 2058 (1988).

J. B. KOGUT AND D.K. SINCLAIR PHYSICAL REVIEW D 84, 074504 (2011)

074504-10

http://arXiv.org/abs/1008.2468
http://arXiv.org/abs/0809.4888
http://arXiv.org/abs/1103.5998
http://dx.doi.org/10.1016/S0550-3213(99)00129-7
http://dx.doi.org/10.1016/S0550-3213(99)00129-7
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.029
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.029
http://dx.doi.org/10.1103/PhysRevD.81.014501
http://dx.doi.org/10.1103/PhysRevD.81.014501
http://arXiv.org/abs/hep-lat/0610094
http://arXiv.org/abs/hep-lat/0610094
http://dx.doi.org/10.1103/PhysRevD.75.011502
http://dx.doi.org/10.1103/PhysRevD.75.011502
http://dx.doi.org/10.1103/PhysRevD.42.3794
http://dx.doi.org/10.1103/PhysRevLett.55.1958
http://dx.doi.org/10.1103/PhysRevLett.55.1958
http://dx.doi.org/10.1103/PhysRevLett.56.111
http://dx.doi.org/10.1103/PhysRevLett.56.111
http://dx.doi.org/10.1007/BF01575796
http://dx.doi.org/10.1016/0550-3213(85)90434-1
http://dx.doi.org/10.1103/PhysRevLett.54.87
http://dx.doi.org/10.1103/PhysRevLett.61.2058

