
Matrix elements of the electromagnetic operator between kaon and pion states

I. Baum,1 V. Lubicz,2,3 G. Martinelli,4 L. Orifici,2 and S. Simula3
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We compute the matrix elements of the electromagnetic operator �sF���
��d between kaon and pion

states, using lattice QCD with maximally twisted-mass fermions and two flavors of dynamical quarks

(Nf ¼ 2). The operator is renormalized nonperturbatively in the RI’/MOM scheme and our simulations

cover pion masses as light as 270 MeVand three values of the lattice spacing from ’ 0:07 up to ’ 0:1 fm.

At the physical point our result for the corresponding tensor form factor at zero-momentum transfer is

fK�
T ð0Þ ¼ 0:417ð14statÞð5systÞ, where the systematic error does not include the effect of quenching the

strange and charm quarks. Our result differs significantly from the old quenched result fK�
T ð0Þ ¼ 0:78ð6Þ

obtained by the SPQcdR Collaboration with pion masses above 500 MeV. We investigate the source of this

difference and conclude that it is mainly related to the chiral extrapolation. We also study the tensor

charge of the pion and obtain the value f��T ð0Þ ¼ 0:195ð8statÞð6systÞ in good agreement with, but more

accurate than the result f��T ð0Þ ¼ 0:216ð34Þ obtained by the QCDSF Collaboration using higher pion

masses.
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I. INTRODUCTION

Accurate measurements of hadron weak decays can
constrain the parameters of the standard model and can
place bounds on new physics models. In particular, the rare
decays of the kaon are ideally suited to search for new,
possibly large CP-violating effects in the light-quark sec-
tor (see Ref. [1]).

In this work we present a lattice study of the matrix
elements of the electromagnetic (EM) operator between
kaon and pion states, which may be relevant in the
CP-violating part of theK ! �‘þ‘� semileptonic decays.
The study has been performed using the gauge configura-
tions generated [2] by the European Twisted Mass
Collaboration (ETMC) with Nf ¼ 2 maximally twisted-

mass fermions [3,4] and preliminary results have been
presented already in Ref. [5].

The EM operator involved in the weak s ! d transition
is given by �sF���

��d, where F�� is the EM field tensor.

Therefore its matrix elements between kaon and pion states
involve the ones of the weak tensor current, which can be
written in terms of a single form factor, fK�

T ðq2Þ, as

h�0j�s���djK0i ¼ ðp�
�p�

K � p�
�p

�
KÞ

ffiffiffi
2

p
fK�
T ðq2Þ

MK þM�

; (1)

where q ¼ ðpK � p�Þ is the 4-momentum transfer and the
factor ðMK þM�Þ�1 is conventionally inserted in order to
make the tensor form factor dimensionless.

Our simulations cover pion masses as light as 270 MeV
and three values of the lattice spacing from ’ 0:07 up to
’ 0:1 fm. At the physical point our result for the K ! �
tensor form factor at zero-momentum transfer is

fK�
T ð0Þ ¼ 0:417ð14statÞð5systÞ ¼ 0:417ð15Þ: (2)

where the systematic error does not include any estimate of
the effect of quenching the strange and charm quarks. Our
finding differs significantly from the old quenched result
fK�
T ð0Þ ¼ 0:78ð6Þ obtained in Ref. [6] by the SPQcdR

Collaboration with pion masses above �500 MeV. The
reason is mainly due to the nonanalytic behavior of the
tensor form factor fK�

T ð0Þ in terms of the quark masses
introduced by the factor ðMK þM�Þ�1 in the parameteri-
zation (1). Such a behavior was not taken into account in
Ref. [6] (see later on).
In the case of the degenerate � ! � transition, using

the predictions of the chiral perturbation theory (ChPT)
carried out in Ref. [7], we obtain for the tensor form
factor f��T ð0Þ, known as the tensor charge of the pion, the
following value

f��T ð0Þ ¼ 0:195ð8statÞð6systÞ ¼ 0:195ð10Þ; (3)

which improves the result f��T ð0Þ ¼ 0:216ð34Þ obtained
by the QCDSF Collaboration [8] with simulations at
higher pion masses.

II. K ! � RESULTS

We have performed the calculations of the relevant 2-
point and 3-point correlation functions using the ETMC
gauge configurations with Nf ¼ 2 dynamical twisted-mass

quarks generated [2] at three values of the lattice coupling
�, namely, the ensembles A2 � A4 at � ¼ 3:8 (a ¼
0:098ð4Þ fm), B1 � B7 at � ¼ 3:9 (a ¼ 0:085ð3Þ fm),
and C1 � C3 at � ¼ 4:05 (a ¼ 0:067ð2Þ fm). The pion
mass M� ranges between ’ 270 MeV and ’ 600 MeV
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and the size L of our lattices guarantees thatM�L is larger
than �3:3. For each value of the pion mass and of the
lattice spacing we have used several values of the (bare)
strange quark mass ms to allow for a smooth, local inter-
polation of our results to the physical value of ms (see
Ref. [9]). The calculation of the 2- and 3-point correlation
functions has been carried out using all-to-all quark propa-
gators evaluated with the one-end-trick stochastic proce-
dure and adopting nonperiodic boundary conditions which
make arbitrarily small momenta accessible. All the neces-
sary formulae can be easily inferred from Ref. [10], where
the degenerate case of the vector pion form factor is
illustrated in details. For each pion mass the statistical
errors are evaluated with the jackknife procedure.

The tensor current was renormalized nonperturba-
tively in the RI’/MOM scheme in Ref. [11], including
Oða2g2Þ corrections evaluated at one-loop in lattice
perturbation theory [12]. The numerical values used in
our analyses for the tensor renormalization constant are

ZTðMS; 2 GeVÞ ¼ 0:733ð9Þ, 0.743(5), 0.777(6) for � ¼
3:8, 3.9, 4.05, respectively.

At each pion and kaon masses we determine the tensor
form factor fK�

T ðq2Þ for several values of q2 < q2max ¼
ðMK �M�Þ2 in order to interpolate at q2 ¼ 0.1 Note that,
because of the vanishing of the Lorentz structure in Eq. (1),
it is not possible to determine fK�T ðq2Þ at q2 ¼ q2max. We
take advantage of the nonperiodic boundary conditions to
reach values of q2 quite close to q2 ¼ 0. The momentum
dependence of fK�

T ðq2Þ can be nicely fitted either by a pole
behavior

fK�
T ðq2Þ ¼ fK�

T ð0Þ=ð1� sK�T q2Þ (4)

or by a quadratic fit in q2

fK�
T ðq2Þ ¼ fK�

T ð0Þ � ð1þ sK�T q2 þ cK�
T q4Þ: (5)

The good quality of both fits is illustrated in Fig. 1, where
the results obtained at two different lattice volumes are
also compared. It can clearly be seen that (i) finite size
effects are well below the statistical precision of our
lattice points; (ii) the results for fK�

T ð0Þ and (to a less
extent) for the slope sK�

T , obtained using the pole domi-
nance (1), differ only slightly from those corresponding to
the quadratic fit (2) in q2.

The values obtained for fK�
T ð0Þ and sK�T depend on both

pion and kaon masses. The dependence on the latter is
shown in Fig. 2 for fK�

T ð0Þ at M� ’ 450 MeV and it
appears to be quite smooth. Thus an interpolation at the
physical strange quark mass can be easily performed using
quadratic splines. This is obtained by fixing the combina-
tion (2M2

K �M2
�) at its physical value, obtaining at each

pion mass a reference kaon mass, Mref
K , given by

2½Mref
K �2 �M2

� ¼ 2½Mphys
K �2 � ½Mphys

� �2 (6)

with Mphys
� ¼ 135:0 MeV and Mphys

K ¼ 494:4 MeV.
The results for fK�

T ð0Þ and sK�
T , interpolated at the

reference kaon mass Mref
K , are collected in Table I and

shown in Figs. 3 and 4, respectively, for the three lattice
spacings of our simulations. It can clearly be seen that
discretization effects are subdominant.
In Ref. [6] the first lattice calculation of the EM operator

matrix element between kaon and pion states was carried
out in the quenched approximation and for pion masses
above �500 MeV. There the chiral extrapolation was
performed adopting a simple linear fit of fK�

T ð0Þ in terms

FIG. 1 (color online). The tensor form factor fK�T ðq2Þ obtained
at M�310 MeV and MK ’ 550 MeV versus q2 in physical units.
The dots and the squares (shifted for better clarity) correspond to
the gauge ensembles B1 and B7, respectively, which differs only
for the lattice size. The solid and dashed lines are the results of
the fits based on Eqs. (1) and (2), respectively.

FIG. 2 (color online). Results for fK�
T ð0Þ versus M2

K at M� ’
450 MeV, obtained assuming the pole dominance (1) for de-
scribing the q2 dependence of our data. The square corresponds
to the value of fK�T ð0Þ obtained by local interpolation based on
quadratic splines (dotted line) at the reference kaon mass
Mref

K 580 MeV from Eq. (3).

1We remind that the tensor form factor fK�
T ðq2Þ computed in

this work is OðaÞ-improved thanks to the use of maximally
twisted Wilson quarks [4].
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of the squared kaon and pion masses, obtaining at the
physical point the result fK�T ð0Þ ¼ 0:78ð6Þ.

In the degenerate caseMK ¼ M� the chiral expansion of
the tensor current has been studied in Ref. [7]. The main
finding is that the form factor f��T ð0Þ vanishes like M� for

M� ! 0, so that the ratio f��T ð0Þ=M� tends to a nonvan-

ishing value in the chiral limit. The same argument is
expected to hold as well in the case of the K ! � tran-
sition: the form factor fK�T ð0Þ must vanish in the SU(3)

chiral limit in such a way that the ratio fK�
T ð0Þ=ðMK þM�Þ

remains finite as ðMK;M�Þ ! 0.
Therefore we perform the chiral extrapolation of our

lattice data using the Ansatz

fK�T ð0Þ¼ðMref
K þM�ÞA½1þBM2

� logðM2
�ÞþCM2

�þDM4
��;
(7)

where A, B, C and D are low-energy constants, depending
on the strange quark mass, which are kept as free parame-
ters in our fits. The results of the fit (4) assuming either
B ¼ 0 (no chiral log) or D ¼ 0 are shown in Fig. 3 by the
solid and dashed lines, respectively. It can be seen that
the effects of the chiral log cannot be appreciated with
our data.
At the physical point, after averaging the results ob-

tained with and without the chiral log in the fitting function
(4) and assuming for the momentum dependence either the
pole (1) or the quadratic (2) functional forms, we get

fK�
T ð0Þ ¼ 0:417ð14statÞ ðETMCÞ; (8)

where the error is statistical only.
Had we neglected the factor (Mref

K þM�) in Eq. (4) the
result at the physical point would change only marginally:
fK�
T ð0Þ ¼ 0:446ð19statÞ. On the contrary, in the case of the

quenched data of Ref. [6], which were determined at pion
masses above �500 MeV, the inclusion of the factor
(MK þM�) in the chiral extrapolation changes signifi-
cantly the result at the physical point by many standard
deviations, namely, from fK�T ð0Þ ¼ 0:78ð6Þ to

fK�
T ð0Þ ¼ 0:48ð4Þ ðSPQcdRÞ: (9)

These findings indicate that the effect of the quenched
approximation does not exceed 15%, provided the correct
mass factor is included in the chiral extrapolation.
In the case of the slope sK�

T no mass factor should be
considered in the chiral extrapolation of the lattice data
shown in Fig. 4. After averaging the results obtained as-
suming for the momentum dependence either the pole (1)

TABLE I. Results for fK�
T ð0Þ, obtained at the three lattice

spacings of our simulations [2], using the pole (1) or quadratic
(2) fits and interpolated at the reference kaon mass (3) for each
simulated pion mass.

Ensemble

(�, L=a) M� (MeV) Mref
K (MeV)

fK�T ð0Þ
(pole)

fK�
T ð0Þ

(quadratic)

A2ð3:8; 24Þ 422 569 0.631(14) 0.622(14)

A3ð3:8; 24Þ 491 569 0.693(17) 0.674(17)

A4ð3:8; 24Þ 598 644 0.796(18) 0.783(18)

B1ð3:9; 24Þ 319 534 0.544(13) 0.539(12)

B2ð3:9; 24Þ 393 559 0.586(15) 0.578(16)

B3ð3:9; 24Þ 453 581 0.657(19) 0.650(19)

B4ð3:9; 24Þ 490 596 0.681(11) 0.671(11)

B5ð3:9; 24Þ 600 645 0.751(19) 0.736(17)

B6ð3:9; 32Þ 272 522 0.537(16) 0.529(16)

B7ð3:9; 32Þ 311 533 0.542(17) 0.538(16)

C1ð4:05; 32Þ 302 530 0.545(18) 0.539(19)

C2ð4:05; 32Þ 417 568 0.648(17) 0.649(16)

C3ð4:05; 32Þ 486 594 0.702(18) 0.687(17)

FIG. 3 (color online). Results for fK�T ð0Þ versus M2
� at MK ¼

Mref
K in physical units, assuming the pole dominance (1) for

describing the q2 dependence of our data. The dots, squares and
triangles are our results for the three lattice spacings of the
ETMC simulations, specified in the inset. The solid and dashed
lines correspond to the fit based on Eq. (4) with B ¼ 0 and
D ¼ 0, respectively.

FIG. 4 (color online). The same as in Fig. 3, but for the slope
sK�T of the tensor form factor at q2 ¼ 0, obtained assuming the
pole dominance (1) for describing the q2 dependence of our data.
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or the quadratic (2) functional forms, we get at the physical
point the value

sK�
T ¼ 1:10ð8statÞ GeV�2 ðETMCÞ; (10)

which is consistent with the quenched result sK�
T ¼

1:11ð5Þ GeV�2 from Ref. [6].
We now present our estimates of the systematic effects.
Momentum dependence. We have fitted the q2 depen-

dence of our data using either the pole (1) or the quadratic
(2) fits (see Fig. 1). We have found a systematic error due to
these different choices equal to 0.002 for fK�

T ð0Þ and
0:09 GeV�2 for sK�T .

Finite size: The comparison between the simulations
corresponding to the gauge ensembles B1 and B7 (see
Table I and Fig. 1), which differs only for the lattice size,
indicates a very small volume effect of the order of 0.4% on
fK�
T ð0Þ and of 4% on sK�

T at M� � 310 MeV. We quote
therefore a systematic error due to finite size effects equal
to 0.002 for fK�

T ð0Þ and 0:05 GeV�2 for sK�
T .

Discretization: The results obtained using only the data
at a single lattice spacing a� 0:085 fm, where the number
of simulated pion masses ensures the most reliable chiral
extrapolation, are fK�

T ð0Þ ¼ 0:420ð10statÞ and sK�
T ¼

1:12ð6statÞ. We estimate therefore a systematic error due
to discretization effects equal to 0.003 for fK�

T ð0Þ and
0:02 GeV�2 for sK�T .

Chiral extrapolation: As shown in Figs. 3 and 4, the
difference in the extrapolations to the physical point in-
cluding or excluding a chiral log in the fitting function (4)
is quite small, being equal to 0.002 for fK�

T ð0Þ and
0:02 GeV�2 for sK�

T . We take these numbers as our esti-
mates of the uncertainty due to the chiral extrapolation.

Adding all the systematic errors in quadrature, our final
results are

fK�T ð0Þ ¼ 0:417ð14statÞð5systÞ ¼ 0:417ð15Þ; (11)

sK�
T ¼ 1:10ð8statÞð11systÞ GeV�2 ¼ 1:10ð14Þ GeV�2;

(12)

where the systematic errors do not include any estimate of
the effect of quenching the strange and charm quarks.

Bound on the supersymmetric coupling �þ
We want now to use our new determination (8) for the

tensor form factor fK�
T ð0Þ as well as the recent experimen-

tal bound [13] on the branching ratioBðKL ! �0eþe�Þ to
update the bound on the supersymmetric coupling �þ,
related to the splitting of the off-diagonal entries in the
down-type squark mass matrix, already calculated in
Ref. [6] using the quenched estimate fK�

T ð0Þ ¼ 0:78ð6Þ.
The master formula, expressing the CP violating part

of the contribution of the EM operator to the rare decay
KL ! �0eþe�, can be written as (see Ref. [6])

B ðKL ! �0eþe�Þ ¼ 5:3 � 10�4B2
TðIm�þÞ2; (13)

where the numerical coefficient (5:3 � 10�4) is the appro-

priate one for the EM operator renormalized in the MS
scheme at a renormalization scale of 2 GeV and for a
gluino and average squark masses of 500 GeV. In Eq. (10)
the quantity BT is the main hadronic parameter related
to the tensor form factor at zero-momentum transfer
fK�
T ð0Þ by

BT ¼ 2MK

MK þM�

fK�
T ð0Þ

fK�þ ð0Þ � T; (14)

where fK�þ ð0Þ is the vector form factor at zero-
momentum transfer, appearing in the K‘3 semileptonic
decay Kþ ! �0eþ�e, while T is a correction which
takes into account the different q2-dependence of the
vector and the tensor form factors (see Ref. [6] for its
definition). The quantity T can be related to the slopes
sK�þ and sK�

T of the vector and tensor form factors at
q2 ¼ 0 by the following relation

T ¼ 1� 2M2
�ðsK�þ � sK�T ÞR; (15)

where R is a simple kinematical factor depending on
the kaon and pion masses. At the physical point one
has R ¼ 1:855.
In Ref. [14] we investigated the vector and scalar form

factors entering the K‘3 semileptonic decay, obtaining
the results fK�þ ð0Þ ¼ 0:9560ð57statÞð62systÞ and sK�þ ¼
1:30ð13statÞð12systÞ GeV�2. Using the latter values and the

results (8) and (9), the correction factor T turns out to be
quite close to unity, namely T ¼ 0:986ð10statÞð11systÞ, and
for the quantity BT we get

BT ¼ 0:676ð24statÞð12systÞ ¼ 0:676ð27Þ: (16)

Therefore, using in Eq. (10) the experimental upper bound
BðKL ! �0eþe�Þ< 2:8 � 10�10 (95% C.L.) [13] and our
result (13), we obtain the bound

jIm�þj< 1:1 � 10�3 ð90%C:L:Þ: (17)

III. PION TENSOR CHARGE

Following Ref. [7] the chiral expansion of the pion
tensor charge f��T ð0Þ has the form

f��T ð0Þ ¼ M�A
0
�
1þ M2

�

ð4�fÞ2 logðM2
�Þ þ C0M2

� þD0M4
�

�
;

(18)

where f ’ 122 MeV [9] is the pion decay constant in the
SU(2) chiral limit and the presence of the factor M� is
expected to have an important, bending effect on the value
extrapolated to the physical point.
Our results for f��T ð0Þ, obtained at three values of the

lattice spacing and for 270 MeV & M� & 600 MeV, are
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shown in Fig. 5 and compared with the Nf ¼ 2 results of

Ref. [8], having M� * 440 MeV, and with the quenched
calculations of Ref. [6], ranging from M� � 530 MeV up
to M� � 800 MeV. It can be seen that our results have a
much better statistical precision and cover much lighter
pion masses, where the bending effect due to the overall
factor M� is clearly visible.

Applying Eq. (1) with D0 ¼ 0 to our lattice points with
M� & 420 MeV (see the solid line in Fig. 5), we get at the
physical point f��T ð0Þ ¼ 0:195ð8statÞ.

As for the estimates of the systematic effects, we follow
the same procedures described in the previous Section for
the K ! � transition, obtaining an effect equal to 0.004
from fitting the momentum dependence with either a pole
or a quadratic forms, 0.003 from the finite size,2 0.001 from
discretization and 0.003 from the chiral extrapolation.
Adding all the systematic errors in quadrature, our final
result is

f��T ð0Þ ¼ 0:195ð8statÞð6systÞ ¼ 0:195ð10Þ ðETMCÞ
(19)

which improves the QCDSF result [8]

f��T ð0Þ ¼ 0:216ð34Þ ðQCDSFÞ: (20)

Finally, we also apply a simple fit of the form f��T ð0Þ ¼
M�A

0½1þ C0M2
�� to the three quenched data of Ref. [6]

(see the dotted line in Fig. 5), obtaining at the physical
point the result

f��T ð0Þ ¼ 0:221ð21statÞ ðSPQcdRÞ; (21)

which clearly shows that quenching effects on the pion
tensor charge are subdominant with respect to the present
precision.
Before closing we want to comment briefly on the SUð3Þ

breaking effect on the tensor form factor at zero-
momentum transfer. Our final values obtained for fK�

T ð0Þ
and f��T ð0Þ [i.e., Eqs. (8) and (2)] differ by a factor of� 2.
This huge difference is however mostly due to the factor
ðMK þM�Þ, conventionally inserted in Eq. (1). By intro-
ducing the quantities

FK�
T ð0Þ � fK�

T ð0Þ=ðMK þM�Þ (22)

F��
T ð0Þ � f��T ð0Þ=2M� (23)

one gets from Eqs. (8) and (2) the values

FK�
T ð0Þ ¼ 0:663ð22statÞð8systÞ GeV�1 ¼ 0:663ð24Þ GeV�1

(24)

F��
T ð0Þ � 0:722ð30statÞð22systÞ GeV�1

¼ 0:722ð37Þ GeV�1 (25)

FIG. 5 (color online). Results for the pion tensor charge
f��T ð0Þ versus M2

� in physical units from our simulations at
the three different values of the lattice spacing (open markers),
obtained assuming the pole dominance (1) for describing the q2

dependence of our data, and from Refs. [6] (full triangles) and
[8] (full squares). The dashed line is the result of the fit (1) with
D0 � 0 applied to all ETMC points, while the solid line corre-
sponds to the use of the fitting function (1) with D0 ¼ 0 applied
to the ETMC data with M� & 420 MeV. The dotted line repre-
sents the fit described in the text and applied to the quenched
data of Ref. [6].

TABLE II. Results for f��T ð0Þ, obtained at the three lattice
spacings of our simulations [2], using the pole or quadratic fits
for describing the q2 dependence of our data.

Ensemble

(�, L=a) M� (MeV)

f��T ð0Þ
(pole)

f��T ð0Þ
(quadratic)

A2ð3:8; 24Þ 422 0.568(15) 0.555(13)

A3ð3:8; 24Þ 491 0.643(17) 0.623(16)

A4ð3:8; 24Þ 598 0.780(18) 0.767(17)

B1ð3:9; 24Þ 319 0.448(16) 0.432(14)

B2ð3:9; 24Þ 393 0.500(18) 0.487(18)

B3ð3:9; 24Þ 453 0.586(22) 0.580(20)

B4ð3:9; 24Þ 490 0.661(24) 0.641(22)

B5ð3:9; 24Þ 600 0.736(19) 0.720(18)

B6ð3:9; 32Þ 272 0.384(23) 0.371(20)

B7ð3:9; 32Þ 311 0.431(18) 0.426(15)

C1ð4:05; 32Þ 302 0.420(26) 0.404(23)

C2ð4:05; 32Þ 417 0.569(16) 0.562(15)

C3ð4:05; 32Þ 486 0.654(19) 0.640(17)

2The comparison between the simulations corresponding o the
gauge ensembles B1 and B7, which differs only for the lattice
size, indicates a volume effect of the order of 2� 4% on f��T ð0Þ
[see Table II], which is close to the statistical error. Such an
effect is however mostly due to the volume effect on the pion
mass. Indeed, the finite size effect on the ratio f��T ð0Þ=M�

reduces to ’ 1:5%, which we therefore take as our estimate of
the corresponding systematic error on our final result.
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which yield a ratio FK�
T ð0Þ=F��

T ð0Þ equal to 0.92(6). This
indicates that the SUð3Þ breaking effect on the matrix
element of the EM operator �sF���

��d at zero-momentum

transfer is equal to �8ð6Þ%. This value is of the same sign
and order of magnitude of the SUð3Þ breaking effect on the
corresponding matrix element of the vector current,
namely, on the vector form factor at zero-momentum trans-
fer fK�þ ð0Þ. Indeed, taking into account that f��þ ð0Þ ¼ 1
because of charge conservation and fK�þ ð0Þ ¼ 0:9560ð84Þ

from Ref. [14], the SU(3) breaking effect on the matrix
element of the vector current at zero-momentum transfer is
equal to �4ð1Þ%.
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