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The properties of the thermal Abelian monopoles are studied in the deconfinement phase of the SUð2Þ
gluodynamics. To remove effects of Gribov copies, the simulated annealing algorithm is applied to fix the

maximally Abelian gauge. To study the monopole profile, we complete the first computations of excess of

the nonabelian action density as a function of the distance from the center of the thermal Abelian

monopole. We have found that, starting from distances of around two lattice spacings, the chromoelectric

and chromomagnetic action densities created by the monopole are equal to each other, from which we

conclude that the monopole is a dyon. Furthermore, we find that the chromoelectric and chromomagnetic

fields decrease exponentially with increasing distance. These findings were confirmed for different

temperatures in the range T=Tc 2 ð1:5; 4:8Þ.
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One of the hypotheses which has been put forward in the
recent past is that the quark-gluon plasma properties might
be dominated by a magnetic component [1–3]. The mono-
poles or center vortices might be responsible for unexpected
properties of the hadron matter at T > Tc: on one hand, it is
well known from lattice results that the equation of state is
close to that of an ideal gas; on the other hand, the very low
viscosity to entropy ratio tells that it is an ideal liquid.

In Ref. [2], such magnetic component has been related to
thermal Abelian monopoles evaporating from the magnetic
condensate that is believed to induce color confinement at
low temperatures. Moreover, it has been proposed to detect
such thermal monopoles in finite temperature lattice QCD
simulations by identifying them with monopole currents
having a nontrivial wrapping in the Euclidean temporal
direction [2,4,5].

The way one can study the monopoles’ properties on the
lattice is via an Abelian projection after fixing the maxi-
mally Abelian gauge (MAG) [6–8]. This gauge, as well as
the properties of the monopole clusters, has been inves-
tigated in numerous papers both at zero and nonzero tem-
peratures (see for extensive list of references, e.g., [9]). The
evidence was found that the nonperturbative properties of
the gluodynamics—such as confinement, deconfining tran-
sition, chiral symmetry breaking, etc.—are closely related
to the Abelian monopoles defined in the MAG. This was
called a monopole dominance.

First numerical investigations of the wrapping monopole
trajectories were performed long ago in Refs. [4,5]. A more
systematic study of the thermal monopoles in SUð2Þ Yang-
Mills theory at high temperature has been performed in
Refs. [10–12]. In particular, it was found in [10] that the
density of monopoles is independent of the lattice spacing,
as it should be for a physical quantity.

In paper [11], very interesting properties of the thermal
Abelian monopoles were found. The authors measured the
excess of chromoelectric and chromomagnetic action den-
sity on the surface of the lattice (hyper-)cubes with mono-
poles inside. The dependence of the excess on the distance
from the monopole center was determined through the
variation of the lattice spacing a (similar investigation at
T ¼ 0was made in [13]). As a result, it was found that with
good accuracy the chromomagnetic and chromoelectric
action densities created by the monopole have the follow-
ing behavior: H2ðrÞ; E2ðrÞ ¼ aH;E=r

4. The coefficients aH
and aE turned out to be equal to each other with a very
good accuracy; from what the authors concluded, that
monopole is a dyon. It is worth noting that there were other
works in the past where dyonic properties of the mono-
poles were observed [14–16].
The studies of dyons in the deconfinement phase of the

Yang-Mills theory have been undertaken both on the lattice
and in the continuum. A semiclassical approach to con-
finement based on dyons developed in a series of papers
[17,18] provides an appealing explanation of all main
features associated with confinement and confinement-
deconfinement transition. In the lattice studies of SUð2Þ
theory, it has been found [16,19,20] that calorons, which
appear below transition, are dissociated into dyon pairs
above transition. Another observation made for the decon-
finement phase was that these pairs consist of light and
heavy dyons, and light dyons are much more frequent and,
thus, should be responsible for area law of the spatial
Wilson loops [21].
The drawback of the study undertaken in [11] is that all

results were obtained at the ultraviolet cutoff scale and
were thus subjected to both lattice discretization errors and
ultraviolet divergences. In view of the importance of the

PHYSICAL REVIEW D 84, 074502 (2011)

1550-7998=2011=84(7)=074502(4) 074502-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.074502


findings of [11], in this paper we are going to study the
chromoelectric and chromomagnetic fields created by the
monopole and check whether the observed behavior is
correct or is just a lattice artifact, i.e., artifact of the
ultraviolet cutoff. To accomplish this check, we will mea-
sure the chromoelectric and chromomagnetic fields at vari-
ous distances from the monopole center.

In this paper, we study the SUð2Þ lattice gauge theory
with the standard Wilson action

S ¼ �
X

x

X

�>�

�
1� 1

2
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y
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y
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where � ¼ 4=g20 and g0 is a bare coupling constant. The

link variables Ux� 2 SUð2Þ transform under gauge trans-

formations gx as follows:

Ux� �g Ug
x� ¼ gyxUx�gxþ�; gx 2 SUð2Þ: (1)

Our calculations were performed on the asymmetric latti-
ces with lattice volume V ¼ LtL

3
s , where Lt;s is the number

of sites in the time (space) direction. The temperature T is
given by

T ¼ 1

aLt

; (2)

where a is the lattice spacing.
The MAG is fixed by finding an extremum of the gauge

functional

FUðgÞ ¼ 1

4V
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gy
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with respect to gauge transformations gx. We apply the
simulated annealing algorithm, which proved to be very
efficient for this gauge [22], as well as for other gauges
such as center gauges [23] and Landau gauge [24]. To
further decrease the Gribov copy effects, we generated
10 Gribov copies for every configuration. For each copy
gauge fixing procedure started from a randomly selected
gauge copy of the original Monte Carlo configuration.

In Table I, we provide the information about the gauge
field ensembles used in our study.

The chromomagnetic action density at a site x is defined
as

SMðxÞ ¼ 1

12

X

Ps3x

�
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2
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�
: (4)

The sum is taken over all spatial plaquettes Ps that
contain the lattice site x. In the continuum limit, this
expression is proportional to �TrðG2

23 þG2
13 þG2

12Þ ¼
TrðH2

1 þH2
2 þH2

3Þ. So, this expression can be taken as

a measure of the chromomagnetic action TrðH2Þ at the
site x.
Analogously, for the chromoelectric action density at a

site x, we take

SEðxÞ ¼ 1

12
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�
: (5)

Here, the sum is taken over all timelike plaquettes Pt

that contain the site x. In the continuum limit, this
expression is proportional to �TrðG2

01 þG2
02 þG2

03Þ ¼
TrðE2

1 þ E2
2 þ E2

3Þ and, thus, it can be taken as a measure

of the chromoelectric action TrðE2Þ. Note that our defini-
tions for SM;EðxÞ differ from those used in Ref. [11].

Although definitions of [11] were natural for the surface
of a cube with a monopole, our definitions are more suit-
able for measurements at some distance from such cube.
Since we are studying the fields created by a mono-

pole, we should subtract the vacuum fluctuations of the
chromomagnetic and chromoelectric actions from the
Eqs. (4) and (5). We define the excess of the action
density as

h�SM;EðdÞi ¼ hSM;EðxÞi � hSM;Ei; (6)

where h. . .i means ensemble average, d is the distance
from a monopole, and bar means averaging over all
wrapped monopoles and all sites x at the distance d
from monopole centers.
The monopole currents and their wrapping numbers are

defined in a standard way (see, e.g., [10]). Moving along
wrapped monopole clusters on a dual lattice, we detect all
three-dimensional cubes in all time slices on the original
lattice that contain monopoles corresponding to the j4
component of the magnetic current. Having detected all
such three-dimensional cubes, we do the measurements of
the chromomagnetic and chromoelectric action densities
h�SM;EðdÞi at various distances from a given monopole,

and then we take the average over all thermal monopoles
found on the lattice.
Now, let us consider a three-dimensional cube with the

monopole belonging to a wrapped cluster. Below, it will be
assumed that the monopole is located in the center of this
cube, and we take the center as a coordinate origin.
Actually, one cannot assert that the monopole is exactly
located at the center of the cube. However, since we take an
average over all monopoles, this approximation can be
considered a good one. We have measured the action
densities h�SM;EðdÞi at various distances d from the centers

of the cubes with a monopole. The distance was defined as

TABLE I. Values of �, lattice sizes, temperatures, number of
measurements, and number of gauge copies used throughout this
paper. To fix the scale, we take

ffiffiffiffi
�

p ¼ 440 MeV.

� a [fm] Lt Ls T=Tc Nmeas

2.43 0.108 4 32 1.5 1000

2.5115 0.081 4 28 2.0 400

2.635 0.054 4 36 3.0 500

2.80 0.034 4 48 4.8 400
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a length of the vector ~d ¼ fn1 � 1=2; n2 � 1=2; n3 � 1=2g
from the coordinate origin to lattice site x under consid-
eration. We present results of measurements for
~d ¼ 1

2 fm;m;mg, m ¼ 1, 3, and ~d ¼ 1
2 f1; 1; 3g, 1

2 f1; 3; 3g,
1
2 f1; 1; 5g, 1

2 f1; 3; 5g. For T=Tc ¼ 1:5, additional results

for ~d ¼ 1
2 f1; 5; 5g, 1

2 f1; 1; 7g are presented. For longer dis-

tances, the statistical errors were too large.
In Figs. 1 and 2, results are shown for the h�SMi

and h�SEi as functions of the dimensionless distance
rT ¼ d=4. From these figures, one clearly sees that at
least at large distances both h�SMi and h�SEi decrease
with distance in agreement with exponential falloff
� expð�2Mm;erÞ. The dependence 1=r4 found in [11] is

ruled out. We do not have enough data points to determine
the preexponential function by fitting. Respectively, it is
rather difficult to find the parameters Mm;e with a good

accuracy. In this paper, we just make rough estimation of
these parameters fitting the last 3 data points for h�SMi to
the exponential falloff with constant prefactor. We get the
following results:Mm=T ¼ 3:5ð2Þ, 4.0(4), 4.3(2), 3.7(8) for
the temperatures T=Tc ¼ 1:5, 2.0, 3.0, 4.8, respectively.

Looking at Figs. 1 and 2, one can see that the data lie on
the smooth curves. This means that the data obey rotational
invariance, since the data at different distances were
measured in different directions. Moreover, vectors
~d ¼ 1

2 f3; 3; 3g and ~d ¼ 1
2 f1; 1; 5g have equal length, and

one can check the rotational invariance directly. Indeed,
we find for these two vectors consistent results with devia-
tions within the 2� interval. In all figures, we show aver-

aged data for these vectors ~d.
At large enough distances (beginning from the distance

d ¼ 2:18), the monopole chromomagnetic and chromo-
electric action density seem to be equal to each other. To
demonstrate this important property, we plot the ratio
h�SMi=h�SEi ¼ H2=E2 in Fig. 3. From this figure, we
see that within the error bars at distances rT * 0:5 the
ratio h�SMi=h�SEi is compatible with 1. From this obser-
vation, one can draw a conclusion: at least at large enough
distances, H2ðrÞ ¼ E2ðrÞ. This implies that monopoles
carry both chromoelectric and chromomagnetic charges
and that they are equal. So, monopoles are self-dual dyons.
These statements are the main results of this paper.
To understand the reason for lack of self-duality at small

distances, let us look at Fig. 3. For all temperatures, we
observe similar behavior. At the distance d ¼ 0:87 in
lattice units, the ratio h�SMi=h�SEi � 2 for all tempera-
tures. At the distance d ¼ 1:66, the ratio h�SMi=h�SEi �
1:3. At larger distances, the ratio is compatible with unity.
We believe that deviation of the ratio from one at small
distances can be explained by the discretization effects.
Notice that our definition of the chromomagnetic and
chromoelectric action densities at site x is nonlocal involv-
ing all plaquettes in respective planes that own site x. This
nonlocality is different for two action densities: it is purely
spatial for the chromomagnetic action density and is both
spatial and temporal for the chromoelectric one. Thus, at
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FIG. 1 (color online). h�SMi defined in Eq. (6) as function of
the dimensionless distance rT from the monopole center at the
temperatures T=Tc ¼ 1:5, 2.0, 3.0, 4.8.
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FIG. 3 (color online). The ratio h�SMi=h�SEi ¼ H2=E2 as
function of the distance rT from the monopole center at tem-
peratures T=Tc ¼ 1:5, 2.0, 3.0, 4.8. The data sets at T=Tc ¼ 2:0
and 3.0 are shifted along horizontal axis to improve readability
of the figure.
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FIG. 2 (color online). Same as in Fig. 1 for h�SEi.
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distances of order of one lattice spacing, we evidently
measure the fields taken at different points and different
distances. These arguments should be checked by compu-
tations with smaller lattice spacing, i.e., with Lt > 4. This
will be done in a forthcoming paper. In that paper, we will
also present our data on the density and interactions of the
thermal Abelian monopoles.

It is clear that results and conclusions of Ref. [11], where
h�SMi and h�SEi were measured at the nearest possible
distance to the monopole center, are subjected to the same
discretization effects as discussed above for our data at
small distances. Then, the dependence 1=r4 found in
Ref. [11] seems to be an ultraviolet divergence effect.

Thus, we established that the Abelian thermal mono-
poles carry both chromoelectric and chromomagnetic
charges and that they are equal. So, monopoles are self-
dual dyons. Furthermore, respective action densities are
screened. We believe that these results are important for
understanding QCD in the quark-gluon plasma phase since

many recent theoretical models of this phase include
monopoles as an important ingredient. One example is
the model of Refs. [1,3] based on competition between
magnetic and electric quasiparticles. The model based on
dyons [17] has been already mentioned above. The lattice
study of the caloron model has been undertaken recently in
[25]. We expect that the thermal dyons, the properties of
which have been studied in this paper, are related to dyons
studied on the lattice by different methods [16,19,20].
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