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We estimate the long-distance contribution to the width difference of the Bs- �Bs system, based mainly on

two-body Dð�Þ
s �Dð�Þ

s modes and three-body Dð�Þ
s �Dð�Þ �Kð�Þ modes (and their CP conjugates). Some higher c�s

resonances are also considered. The contribution to ��s=�s by two-body modes is ð10:2� 3:0Þ%, slightly

smaller than the short-distance result of ð13:3� 3:2Þ%. The contribution to ��s=�s by D�
s0ð2317Þ,

Ds1ð2460Þ, and Ds1ð2536Þ resonances is negligible. For the three-body Dð�Þ
s �Dð�Þ �Kð�Þ modes, we adopt

the factorization formalism and model the form factors with off-shell Dð�Þ
s poles, theDsJð2700Þ resonance,

and nonresonant contributions. These three-body modes can arise through current-produced or transition

diagrams, but only SU(3)-related Dð�Þ
u;d

�Dð�Þ �K modes from the current diagram have been measured so far.

The pole model results for D�
u;d

�Dð�Þ �K agree well with the data, while Du;d
�Dð�Þ �K rates agree with the data

only within a factor of 2 to 3. All measured Dð�Þ
u;d

�Dð�Þ �K rates can be reproduced by including nonresonant

contributions. The total ��s=�s obtained is ð16:7� 8:5Þ%, which agrees with the short-distance result

within uncertainties. For illustration, we also demonstrate the effect of DsJð2700Þ in modes with Dð�ÞK�.
In all scenarios, the total ��s=�s remain consistent with the short-distance result. Our results indicate that

(a) the operator product expansion in the short-distance picture is a valid assumption, (b) approximating

the Bs ! Dð�Þ
s �Dð�Þ

s decays to saturate ��s has a large correction, (c) the effect of three-body modes cannot

be neglected, and (d) in addition to the Ds and D
�
s poles, the DsJð2700Þ resonance also plays an important

role in three-body modes. Future experiments are necessary to improve the estimation of ��s from the

long-distance point of view.
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I. INTRODUCTION AND MOTIVATION

One of the most exciting discoveries in particle physics
last year was the anomalous like-sign dimuon charge
asymmetry Ab

sl reported by the D0 Collaboration [1].

The updated result is Ab
sl ¼ ð�0:787� 0:172ðstatÞ �

0:093ðsystÞÞ%, based on 9:0 fb�1 data [2]. This result
is 3:9� larger than the standard model (SM) prediction
of ð�0:024� 0:003Þ% [3]. This asymmetry comprises the

wrong-sign asymmetries ad;ssl for Bd;s mesons [2,4],

Ab
sl ¼ ð0:594� 0:022Þadsl þ ð0:406� 0:022Þassl: (1)

From direct measurements by B factories [4], adsl ¼
�ð0:05� 0:56Þ% does not deviate from the SM prediction
[3]. Imposing these two experimental values into Eq. (1),
one finds a large assl. The very recent update used the

muon-impact parameter to directly extract [2]

adsl ¼ �ð0:12� 0:52Þ%; assl ¼ �ð1:81� 1:06Þ%:

(2)

The result of assl is much larger than the SM prediction of

ð1:9� 0:3Þ � 10�5 [3]. The current world average of assl,
obtained before the very recent update [2], is [4]

assl ¼ �0:0115� 0:0061; (3)

which is still much larger than the SM prediction. This
anomalous result has drawn intense theoretical attention,
including model-independent analyses [5–9], and explan-
ations from specific new-physics models [10–17].
The wrong-sign asymmetry assl can be derived from

mixing parameters [1]

assl ¼
��s

�ms

tan�s ¼ 2j�12;sj
�ms

sin�s; (4)

where the ��s and �ms are the width difference and mass
difference of the Bs- �Bs system, �s is the CP-violating
phase, and �12;s is the absorptive off-diagonal element of

the mixing matrix (see Sec. II A for more detail). Note that
assl is bounded by 2j�12;sj=�ms. The short-distance calcu-

lation in the SM predicts [3],

��s;SM ¼ ð0:087� 0:021Þ ps�1;

��s;SM=�s;SM ¼ ð13:3� 3:2Þ%;

�ms;SM ¼ ð17:3� 2:6Þ ps�1;

�s;SM ¼ ð0:22� � 0:06�Þ:

(5)

Note that �s is very small in the SM, so 2j�12;sj ffi j��sj.
If one inserts Eq. (5) into Eq. (4), one gets the small value
of assl mentioned before. These mixing parameters can be
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measured independently. In particular, �ms has already
been well-measured. The current world average is [4]

�ms ¼ ð17:78� 0:12Þ ps�1; (6)

which is consistent with the SM prediction. Using the
experimental �ms and assl, Eq. (4) shows that �12;s has to

be enhanced by at least 3 times the SM prediction. In fact,
one of us has already pointed this out [18] in 2007, based
on the earlier result of D0, which has almost the same
central value as Ref. [1] but with larger uncertainty. Recent
studies [5,6] also indicate this problem. On the other hand,
��s and�s can also be measured in several ways, although
the precision is not as good as �ms. One method to extract
these values is to study the Bs ! J=c� decay. D0 [19]
reported

��s ¼ þ0:15� 0:06ðstatÞ � 0:01ðsystÞ ps�1;

�s ¼ �0:76þ0:38
�0:36ðstatÞ � 0:02ðsystÞ;

(7)

using 6:1 fb�1 of data. The consistency of data between
mixing parameters (�ms, ��s, and �s) and assl has been
observed [4,5]. Using almost the same amount of data,
CDF [20] assumes �s ¼ 0 and reported

��s ¼ þ0:075� 0:035ðstatÞ � 0:01ðsystÞ ps�1: (8)

This central value drops to half the D0 result, even below
the SM prediction. But the two results still agree with each
other because the uncertainties so far are still large. The
consistency hints that new physics may play a role in Bs- �Bs

mixing. New physics can easily enter the dispersive M12;s

and the phase�s. On the other hand, �12;s is absorptive and

thus hardly affected by new physics at the high energy
scale. As very many properties of B mesons have been
studied and found to agree with SM predictions, new
physics has to be rather exotic to change �12;s while not

affecting other known properties appreciably.
The absorptive nature of �12;s also makes the theoretical

calculation challenging. It is helpful to revisit the calcula-
tion of �12;s in the SM. One either approximates ��s by

operator product expansion (OPE) in the short-distance
picture, or estimates ��s from several modes which are
believed to be important. The SM prediction [3] mentioned
previously adopts the short-distance scheme. On the other
hand, Aleksan et al. [21] estimated ��s from exclusive

two-body decays, mainly, Dð�Þ
s �Dð�Þ

s modes through color-
allowed diagrams, as depicted in Fig. 1. Their result is close
to the current SM prediction. They further pointed out that

��s induced byD
ð�Þ
s �Dð�Þ

s modes approaches the result of the
parton model when the limits ðmb � 2mcÞ ! 0, mc ! 1
and the large Nc limit are simultaneously imposed. (For
a detail discussion, see Ref. [22].) How well such an ap-
proximation holds in nature remains to be checked. For
example, as Ref. [3] and one of us [18] have already pointed
out, a 100% long-distance correction is possible. The large

assl therefore motivates one to investigate the long-distance

effect. In this paper, we perform a detail estimation of
��s from hadronic modes, which includes the two-body

modes Dð�;��Þ
s �Dð�;��Þ

s , Dð�;��Þ �DsJð2700Þ, and the three-body

Dð�Þ �Dð�Þ �Kð�Þ modes.1

We give the first estimation of the contribution to ��s

by three-body Dð�Þ
s �Dð�Þ �Kð�Þ modes (and their CP conju-

gates). We use the factorization approach, which seems
to work well in color-allowed charmful three-body decays
[23], in our calculations. As shown in Fig. 2, these modes
can be produced by the diagram in Fig. 1, but with an extra
q �q pair produced either in the current or in the spectator
part, which we denote as current-produced (J ) or transi-

tion (T ) modes. The number of Dð�Þ
s �Dð�Þ �K channels is 4

times larger thanDð�Þ
s �Dð�Þ

s modes, with a factor of 2 coming
from extra q �q, which can be u �u or d �d, and another two
from the choice of q �q in either current or transition pro-
cesses. With this enhancement in number of modes, and if
the branching fractions of these modes are not very small

compared with the Dð�Þ
s �Dð�Þ

s modes, it is natural to expect
that ��s may receive nonnegligible contributions from

three-body Dð�Þ
s �Dð�Þ �Kð�Þ modes. So far, the available mea-

surements on these three-body modes are limited to

FIG. 1. The diagrams of Bs and �Bs decay to Dð�Þ
s �Dð�Þ

s modes.

FIG. 2. The current and transition diagrams. Left:
�Bs ! Dð�Þ

s �Dð�Þ �Kð�Þ, the current-produced diagram. Right:

Bs ! Dð�Þ
s �Dð�Þ �Kð�Þ, the transition diagram.

1Throughout this work, we use D��
s to denote D�

s0ð2317Þ,
Ds1ð2460Þ, or Ds1ð2536Þ.
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current-produced modes with �K in �Bu;d systems only

[24–28]. These modes are related to the corresponding
modes in the �Bs system under SU(3) symmetry. We need
to reproduce existing three-body data before we make
predictions for the �Bs modes.

Let us briefly survey the experimental situation regard-
ing the SU(3)-related three-body modes. There is no mea-
surement of either transition modes or modes with �K�.
Despite a 2:2� discrepancy on the branching fraction of
B� ! D0 �D0K� decay between measurements [26,28], the

branching fractions of current-produced �Bu;d ! Dð�Þ
u;d

�Dð�Þ �K
modes are around 10�2 to 10�3, 1 order of magnitude
smaller compared to two-body modes. So far, c �s reso-
nances �Ds1ð2536Þ and �DsJð2700Þ have been observed in

the decays �Bu;d ! Dð�Þ
u;d

�Dð�Þ �K [25–27]. For the Ds1ð2536Þ
resonance, its contribution to the branching fractions
of three-body decays is on the order of 10�4, which is
small compared with the total branching fraction. On the
other hand, Belle observed that �DsJð2700Þ contributes
to about half of the total branching fraction of
B� ! D0 �D0K�. Note that DsJð2700Þ has a fairly broad
width (� 0:1 GeV). These measurements suggest that
Ds1ð2536Þ could be treated in a two-body picture while it
is more appropriate to consider DsJð2700Þ in three-body
decays. Furthermore, the contribution of �DsJð2700Þ
in B� ! D0 �D0K� decay is BðB� ! D0 �DsJð2700ÞÞ �
Bð �DsJð2700Þ ! �D �KÞ ¼ ð0:113þ0:026

�0:040Þ%, which is about

half the total branching fraction ð0:222� 0:033Þ% [26].
Consequently, the contribution of �DsJð2700Þ in three-body
modes and in ��s should be investigated.

This paper is organized as follows. In Sec. II, we de-
scribe our formalism and briefly review the newly discov-
ered DsJð2700Þ resonance that has a nonnegligible
contribution to three-body modes. The results of two-
body modes are discussed in Sec. III A. For three-body
modes, we examine the factorization formalism and cal-
culate ��s in Sec. III B. Another scenario and the effect of
four-body modes are discussed in Sec. IV, followed by the
concluding section. Numerical inputs and some calcula-
tional details are collected in three Appendixes.

II. FORMALISM

A. Formula for ��

The time evolution of a Bs meson can be described by
the following formula,

i
d

dt

jBi
j �Bi

� �
¼

�
M� i

�

2

� jBi
j �Bi

� �
; (9)

in which we adopt the phase convention of jBi and j �Bi to
be CPjBi ¼ �j �Bi.2 The � term in Eq. (9) is the absorptive
part, which can be calculated by summing all on-shell
intermediate states,

�ij ¼ 1

2MB

X
f

Z
d�A�

Bi!fð�ÞABj!fð�Þ; (10)

where � is over phase space variables.3

We define the width difference ��s as the difference
between light and heavy eigenstates, �L � �H. Assuming
CP conservation, which is a good approximation for SM in
the Bs- �Bs system, the eigenstates of Bs meson are CP even
and odd states. From the short-distance calculation of SM,
the light and heavy eigenstates correspond to CP even and
odd states, respectively. Thus, the ��s can be related to
�ij by

�� � �L � �H ¼ �2�12

¼ �2� 1

2MB

X
f

Z
d�A�

B!fð�ÞA �B!fð�Þ; (11)

in which we have used �21 ¼ ��
12 from CPT symmetry, and

�12 ¼ ��
12 ¼ Reð�12Þ from CP symmetry. The fact that �12

is real under CP symmetry can be seen from

�12 ¼ 1

2MB

X
f

Z
d�A�

B!fð�ÞA �B!fð�Þ

¼ 1

2MB

X
f

1

2

Z
d�ðA�

B!fð�ÞA �B!fð�Þ

þA�
B! �f

ð�ÞA �B! �fð�ÞÞ

¼ 1

2MB

X
f

Re

�Z
d�A�

B!fð�ÞA �B!fð�Þ
�
: (12)

The amplitude product A�
B!fð�ÞA �B!fð�Þ is complex

conjugate to the amplitude product of conjugate intermedi-
ate state A�

B! �f
ð�ÞA �B! �fð�Þ by CP symmetry. �12 sums

up all the intermediate states and turns out to be real. For
convenience, we define the width difference of each ex-
clusive decay as ��f, and its corresponding complex term

in �12 to be

��f � �2� Re½�12;f	; (13)

where �12;f is defined as

�12;f � 1

2MB

Z
d�A�

B!fð�ÞA �B!fð�Þ: (14)

Although �12;f is complex by looking at one mode, the

imaginary part is cancelled by its CP conjugate mode, and
thus the total �12 turns out to be real. Once AB!fð�Þ and
A �B!fð�Þ are known, one can readily calculate the corre-

sponding ��f and branching fractions. In the next section,

we will apply the factorization formalism to obtain these
amplitudes.

2Our phase convention differs from that in Ref. [1].

3For n-particle mode, the phase space measure is d� ¼Q
n
j¼1

dp3
j

2Ej
� ð2�Þ4�4ðPn

j¼1 pj � pBÞ.
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Before we move to model-dependent calculation, it is
useful to extract some general limits of the magnitude of
��f from Eq. (13). For an intermediate state jfi, the

magnitude of ��f induced by this state is bounded by����������f

�

��������¼ 1

�

 jRe½2�12;f	j (15a)

� 1

�

 j2�12;fj (15b)

� 2

�

 1

2MB

Z
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jA �B!fð�Þj2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAB!fð�Þj2

q
(15c)

� 2�
ffiffiffiffiffiffiffiffiffiffiffiffi
B �B!f

q
�

ffiffiffiffiffiffiffiffiffiffiffiffi
BB!f

q
: (15d)

There are three inequalities in this formula. The first in-
equality reflects that ��f is only proportional to the real

part of �12;f. The second inequality is obtained by the

fact that the phase of the amplitude product
A�

B!fð�ÞA �B!fð�Þ may be different over the phase

space, which would reduce the overall j�12;fj. The last

inequality accounts for the ‘‘mismatch’’ effect between
jAB!fð�Þj and jA �B!fð�Þj. Even when the branching

fractions of �B ! f and B ! f are the same, the induced
�� could be quite small if the decay probabilities of the
two modes are highly mismatched in phase space. Note
that the latter two limits are experimental observables. If
the branching fractions of �B ! f and B ! f are measured,
one could find the maximal magnitude of the correspond-
ing �12;f. The bound can be refined by the second inequal-

ity if the Dalitz plots of the two modes are available. But
the ��f, which is proportional to the real part �12;f, could

be any value in the range of �2j�12;fj to þj2�12;fj.

B. Factorization formalism

The relevant effective Hamiltonian for the b ! c tran-
sition is

H eff ¼ GFffiffiffi
2

p VcbV
�
cs½c1ð�ÞOc

1ð�Þ þ c2ð�ÞOc
2ð�Þ	; (16)

where cið�Þ are the Wilson coefficients, and Vcb and Vcs

are the Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments. The four-quark operators Oi are products of
two V � A currents, i.e., Oc

1 ¼ ð �cbÞV�Að �scÞV�A and Oc
2 ¼ð �sbÞV�Að �ccÞV�A.

With the factorization ansatz, the amplitudes for two-

body �Bs ! Dð�Þ
s

�Dð�Þ
s decays are given by

Að �Bs ! Dð�Þ
s

�Dð�Þ
s Þ ¼ GFffiffiffi

2
p VcbV

�
csa1hDð�Þ

s jð �cbÞV�Aj �Bsi

� h �Dð�Þ
s jð �scÞV�Aj0i; (17)

where the effective coefficients are expressed as a1 ¼
c1 þ c2=3 if naı̈ve factorization is used. Note that Dð�Þ

s

could be the usual Dð�Þ
s and/or a higher Ds resonance such

as D�
s0ð2317Þ, Ds1ð2460Þ, Ds1ð2536Þ, and DsJð2700Þ. The

factorized amplitudes consist of the products of two com-

mon matrix elements: the current-produced Dð�Þ
s and the

�Bs-to-D
ð�Þ
s transition. They are parametrized by the stan-

dard way [29]. The matrix elements of current-produced

Dð�Þ
s are

hDsðpÞjðV � AÞ�j0i ¼ ifDs
p�;

hD�
sðp; �ÞjðV � AÞ�j0i ¼ mD�

s
fD�

s
"��ðp; �Þ:

(18)

The transition matrix elements for Dð�Þ
s are

hDsðpDÞjðV�AÞ�j �BsðpBÞi

¼
�
ðpBþpDÞ��m2

B�m2
D

q2
q�

�
F

�BsDs

1 ðq2Þ

þm2
B�m2

D

q2
q�F

�BsDs

0 ðq2Þ;

hD�
sðpD� ;�ÞjðV�AÞ�j �BsðpBÞi

¼���	�"
��p	

Bp
�
D� 
2F

�BsD�
s

3 ðq2Þ
mBþmD�

� i

�
"���"� 
q

q2
q�

�
ðmBþmD� ÞF �BsD�

s

1 ðq2Þ

þ i

�
ðpBþpD� Þ��

m2
B�m2

D�

q2
q�

�
ð"� 
qÞF

�BsD�
s

2 ðq2Þ
mBþmD�

� i
"� 
q
q2

q�2mD�F
�BsD�

s

0 ðq2Þ; (19)

where ���	� is the totally antisymmetric symbol with

�0123 ¼ 1. For convenience, our notations of decay con-
stants and form factors of D��

s are different from the usual
notations. The conversion can be found in Appendix A.

The amplitudes of three-body modes Dð�Þ �Dð�Þ �Kð�Þ de-
cayed from �B and B are given by

AJ ð �Bs !Dð�Þ
s �Dð�Þ �Kð�ÞÞ

¼GFffiffiffi
2

p VcbV
�
csa1hDð�Þ

s jð �cbÞV�Aj �Bsi 
 h �Dð�Þ �Kð�Þjð�scÞV�Aj0i;

AT ðBs !Dð�Þ
s �Dð�Þ �Kð�ÞÞ

¼GFffiffiffi
2

p VcbV
�
csa1h �Dð�Þ �Kð�Þjð �cbÞV�AjBsi 
 hDð�Þ

s jð�scÞV�Aj0i;

(20)

where AJ and AT denote the amplitudes of current and

transition diagrams, respectively. Unlike the Dð�Þ
s

�Dð�Þ
s

modes in which only standard form factors appear, these
amplitudes involve the timelike form factors and transition
form factors of two pseudoscalars ( �D �K ) or vectors
( �D� �K�), or a pseudoscalar with a vector ( �D� �K or �D �K�).

CHUN-KHIANG CHUA, WEI-SHU HOU, AND CHIA-HSIEN SHEN PHYSICAL REVIEW D 84, 074037 (2011)

074037-4



The parametrization of timelike form factors is similar

to the spacelike counterparts, such as hDð�Þ
s jV � Aj �Bsi. The

timelike form factors of two pseudoscalars (PP) states are
given by

hPaðpaÞPbðpbÞjðV � AÞ�j0i

¼
�
ðpa � pbÞ� �m2

a �m2
b

q2
q�

�
FPP
1 ðq2Þ

þm2
a �m2

b

q2
q�F

PP
0 ðq2Þ; (21)

where q� ¼ p
�
a þ p

�
b is the momentum of the current. For

the states with one vector and pseudoscalar (VP), the
parametrization of timelike form factors is

hVðpV; "VÞPðpPÞjðV � AÞ�j0i

¼ ����	�"
��
V p

	
Pp

�
V 
 2V

VPðq2Þ
mV þmP

� i

�
"�V� � "�V 
 q

q2
q�

�
ðmV þmPÞAVP

1 ðq2Þ

� i

�
ðpV � pPÞ� �m2

V �m2
P

q2
q�

�
ð"�V 
 qÞ AVP

2 ðq2Þ
mV þmP

� i
"�V 
 q
q2

q�2mVA
VP
0 ðq2Þ: (22)

The timelike form factors of two-vector (VV) states can be
parameterized analogously,

hVaðpa;"aÞVbðpb;"bÞjðV�AÞ�j0i ¼ i�
�	�"
�

b "��a p

	
ap�

b q�
VVV
0 ðq2Þ

ðmaþmbÞ2
þ i���	�"

��
a p

	
ap�

b ð"�b 
qÞ
VVV
1 ðq2Þ

ðmaþmbÞ2

þ i���	�"
��
b p

	
ap�

b ð"�a 
qÞ
VVV
2 ðq2Þ

ðmaþmbÞ2
þ
�
"�a��"�aq

q2
q�

�
ð"�b 
qÞAVV

11 ðq2Þ

þ
�
"�b��"�b 
q

q2
q�

�
ð"�a 
qÞAVV

12 ðq2Þþ
�
ðpa�pbÞ��m2

a�m2
b

q2
q�

�
ð"�a 
"�bÞAVV

2 ðq2Þ

þ ð"�a 
qÞð"�b 
qÞ
q�

q2
AVV
01 ðq2Þþ ð"�a 
"�bÞ

q�

q2
ðmaþmbÞ2AVV

02 ðq2Þ: (23)

The transition form factors are more complicated. The cases of Bs to PP transition form factors were formulated in a
general way in Ref. [30], which can be rewritten as

hPaðpaÞPbðpbÞjðV � AÞ�j �BsðpBÞi ¼ ���	�p
�
Bq

	ðpa � pbÞ� V
�BsPP

m3
Bs

þ i

�
ðpB þ qÞ� �m2

Bs
� q2

q02
q0�

�
A

�BsPP
1

mBs

þ i

�
ðpa � pbÞ� �m2

a �m2
b

q2
q�

�
A

�BsPP
2

mBs

þ i
m2

a �m2
b

q2
q�

A
�BsPP
0

mBs

; (24)

where q� ¼ p
�
a þ p

�
b is the total momentum of PP, and q0� ¼ p

�
B � q� is the momentum of the external current. In this

form, the terms with A1 and A2 are zeros when contracted with q
0 and q. For the transition form factors of �Bs to VP and VV,

since they are more complicated and there is so far no data, we only write down the form factors obtained from the pole
model rather than the general forms. For VP, we have

hVðpV;"VÞPðpPÞjðV�AÞ�j �BsðpBÞi ¼ i�
�	�

�
�g�
 þq0�q0


q02

�
"��V p

	
Pp

�
V

V
�BsVP
2

m2
Bs

þ i�
�	�q
0
"��V p

	
Pp

�
V

�
ðpB þqÞ�

�m2
Bs
�q2

q02
q0�

�
V

�BsVP
1

m4
Bs

þ i�
�	�q
0
"��V p

	
Pp

�
V

q0�

q02
V

�BsVP
0

m2
Bs

þ �
����abcdðg�
g�aÞq0�q�"�bV pc
Pp

d
V

A
�BsVP
3

m4
Bs

þ
�
ðpB þ qÞ� �m2

Bs
�q2

q02
q0�

�
ð"�V 
qÞ

A
�BsVP
1

m2
Bs

þm2
Bs
�q2

q02
q0�ð"�V 
qÞ

A
�BsVP
0

m2
Bs

; (25)

and for �Bs to VV, we parametrize as
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hVaðpa; "aÞVbðpbÞjðV � AÞ�j �BsðpBÞi

¼ ���	�p
�
ap

	
bq

0�ð"�a 
 "�bÞ
V

�BsVV
3

m3
Bs

þ ���	�"
��
a q0	q�ð"�b 
 qÞ

V
�BsVV
2

m3
Bs

þ ���	�"
��
b q0	q�ð"�a 
 qÞV

�BsVV
1

m3
Bs

þ �
�	�"
�

b "��a p	

ap�
b

�
ðpB þ qÞ� �m2

Bs
� q2

q02
q0�

�
V

�BsVV
01

m3
Bs

þ �
�	�"
�

b "��a p	

ap�
b

m2
Bs
� q2

q02
q0�

V
�BsVV
00

m3
Bs

þ ið"�a 
 "�bÞ
�
ðpa � pbÞ� �m2

a �m2
b

q02
q0�

�
A

�BsVV
62

mBs

þ ið"�a 
 "�bÞ
�
ðpB þ qÞ� �m2

Bs
� q2

q02
q0�

�
A

�BsVV
61

mBs

þ ið"�a 
 "�bÞ
q0�
q02

mBs
A

�BsVV
60 þ ið"�b 
 qÞ

�
"�a� � "�aq

q2
q�

�
A

�BsVV
3

mBs

þ ið"�a 
 qÞ
�
"�b� � "�bq

q2
q�

�
A

�BsVV
4

mBs

þ ið"�a 
 q0Þð"�b 
 qÞ
�
ðpB þ qÞ� �m2

Bs
� q2

q02
q0�

�
A

�BsVV
21

m3
Bs

þ ið"�a 
 q0Þð"�b 
 qÞ
q0�
q02

A
�BsVV
20

mBs

þ ið"�a 
 qÞð"�b 
 q0Þ
�
ðpB þ qÞ� �m2

Bs
� q2

q02
q0�

�
A

�BsVV
11

m3
Bs

þ ið"�a 
 qÞð"�b 
 q0Þ
�
q0�
q02

�
A

�BsVV
10

mBs

þ ið"�a 
 qÞð"�b 
 qÞ
�
ðpB þ qÞ� �m2

Bs
� q2

q02
q0�

�
A

�BsVV
01

m3
Bs

þ ið"�a 
 qÞð"�b 
 qÞ
q0�
q02

A
�BsVV
00

mBs

: (26)

Under CP conservation, all these form factors can be related to the form factors of their CP conjugates. These
transformations are provided in Appendix A.

C. Pole model

Since the branching fractions ofDð�Þ
s �Dð�Þ

s are large, it is natural to expect a sizable contribution from off-shellDð�Þ
s poles.

In addition, experiments have observed DsJð2700Þ in the three-body decays, as we have described in the introduction

[25,26]. DsJð2700Þ can decay to on-shell Dð�ÞK, but only goes off shell to Dð�ÞK� because of kinematics. As shown in
Fig. 3, we consider pole exchanges, including Ds, D

�
s , and DsJð2700Þ, in three-body decays. Note that the Ds pole goes

only to D�K rather than to DK.

In the following calculation, we use off-shellDð�Þ
s poles andDsJð2700Þ to model theDð�ÞKð�Þ form factors. The effective

Lagrangian taken from Refs. [31–33] is applied to describe the interaction between Dð�Þ
q mesons and light pseudoscalar or

vector mesons. The pole contribution to Dð�ÞKð�Þ form factors can be calculated by

hDð�ÞKð�ÞjðV � AÞ�j0ipole ¼ i

q2 �m2
int þ imint�int

� hDð�ÞKð�ÞjiLeff jDintihDintjðV � AÞ�j0i

þ i

q2 �m2
int� þ imint��int�

�
�g
� þ q
q�

m2
int�

�

� @2

@"�
int@"
�
int

ðhDð�ÞKð�ÞjiLeffjD�
intihD�

intjðV � AÞ�j0iÞ;

hDð�ÞKð�ÞjðV � AÞ�j �Bipole ¼ i

q2 �m2
int þ imint�int

� hDð�ÞKð�ÞjiLeff jDintihDintjðV � AÞ�j �Bi

þ i

q2 �m2
int� þ imint��int�

�
�
�g
� þ q
q�

m2
int�

�

� @2

@"�
int@"
�
int

ðhDð�ÞKð�ÞjiLeffjD�
intihD�

intjðV � AÞ�j �BiÞ; (27)

where the Dð�Þ
int is the intermediate particle with mass mintð�Þ and width �intð�Þ. We adopt the Breit-Wigner form of the

propagator and replace "�
int"
�
int with ð�g
� þ q
q�=m2

int�Þ to account for the off-shell effect. The explicit forms of the
matrix elements hDð�ÞKð�ÞjiLeffjDð�Þ

int i in the above equations can be found in Ref. [33]. A full list of pole contributions to
form factors is listed in Appendix B.
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D. DsJð2700Þ resonance
The relevant properties and parameters ofDsJð2700Þ are

summarized in this section. The mass and width of this
resonance are [34]

mDsJð2700Þ ¼ 2709þ9
�6 MeV;

�DsJð2700Þ ¼ 125� 30 MeV:
(28)

Note that the width has a large uncertainty (�25%). The
ratio of branching fractions of this resonance to DK and
D�K is also measured [35],

rðD�KÞ � BðDsJð2700Þþ ! D�KÞ
BðDsJð2700Þþ ! DKÞ

¼ 0:91� 0:13stat � 0:12syst; (29)

where Dð�ÞK is the average of Dð�ÞKS and Dð�ÞKþ modes.
On the other hand, the contribution of DsJð2700Þ in
the decay Bþ ! �D0D0Kþ, denoted as BðBþ!
�D0DsJð2700ÞÞ�BðDsJð2700Þ!D0KþÞ, is extracted [26],

BðBþ ! �D0DsJð2700ÞÞ �BðDsJð2700Þ ! DKÞ
¼ ð11:3þ2:6

�4:0Þ � 10�4; (30)

which constitutes about half the total branching fraction of
this measurement. Note that this quantity has a large
uncertainty, similar to the measurement of width. The
quantum number of DsJð2700Þ is determined to be
JP ¼ 1� from the helicity angle distribution, which limits
this resonance to be either an s-wave or a d-wave meson
(or a mixed state between them). The interpretation of
DsJð2700Þ as a radial excitation of D�

s (n2Sþ1LJ ¼ 23S1)
is proposed, which can explain its mass [36], partial width
[37], and contribution to Bþ ! �D0D0Kþ decay [38]. In
some strong decay models, a mixed state 23S1 � 13D1

describes the partial width better [39]. As the theoretical
predictions of mass and partial width are highly model-
dependent, the identification is still not clear yet. We
assume DsJð2700Þ as a 23S1 state in this study.

The effective Lagrangian in Refs. [31–33] can still be
applied to describe the interaction between DsJð2700Þ and
light mesons [37]. We work out the relevant matrix
elements,

hDðp2ÞKðp3ÞjiLeffjDsJð2700Þðp1; "1Þi
¼ �i~gDsJDK"1 
 p3;

hD�ðp2; "2ÞKðp3ÞjiLeffjDsJð2700Þðp1; "1Þi
¼ �i~gDsJD

�K���
�"
�
1 "

��
2 p


3p
�
1 ;

(31)

where the strong coupling constants are given by Ref. [37],

~gDsJDK ¼ 2
~g

f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mDsJ

mD
p

; ~gDsJD
�K ¼ 2

~g

f�

ffiffiffiffiffiffiffiffiffiffi
mD�

mDsJ

s
;

(32)

with f� ¼ 132 MeV. Once the coupling constants and
form factors are extracted, one can insert Eq. (31) into
Eq. (27) to obtain the contribution to form factors from the
DsJð2700Þ resonance.
From these matrix elements, Ref. [37] predicted the ratio

of branching fractions

rðD�KÞ ¼ 0:91� 0:04: (33)

This ratio agrees with Eq. (29) very well. The ratios of the
branching fractions of the six main decay modes are given
in Table I. The mixing angle between  and 0 is taken
from Ref. [40].

Assuming DsJð2700Þ decays only to Dð�ÞK and Dð�Þð0Þ,
~g2 is proportional to the total width. Thus, we have

~g ¼ 0:28� 0:03; (34)

where the uncertainty comes from the uncertainty of the
total width. Note that this value is slightly larger than the
one in Ref. [37] as the world average of width [Eq. (28)]
became larger.
Taking the measured mass, width, and

BðB ! �Dð�ÞDsJð2700ÞÞ �BðDsJð2700Þ ! DKÞ (see
Sec. III B for details) as input, the DsJð2710Þ decay con-
stant is extracted as

fDsJð2700Þ ¼ 240� 31 MeV: (35)

The decay constant can be compared to the previous esti-
mations 243� 41 MeV in Ref. [37] and 295� 13 MeV in
Ref. [38]. Note that it is compatible with the decay con-

stants of Dð�Þ
s , for which we use 260� 13 MeV in a later

calculation.
The �Bs ! DsJð2700Þ transition form factors can be

obtained by using a covariant light-front quark model
[33]. For the 2S wave function,4 its Gaussian width can
be fixed by the decay constant derived from Eq. (30). It is

FIG. 3. Pole diagram of �Bs-Bs mixing. Left: the current-
produced diagram. Right: the transition diagram.

4In the quark model with a simple harmonic-like potential, the
wave function for a state with the quantum numbers ðn; l; mÞ is
given by fnlð ~p2=�2ÞYlmðp̂Þ expð� ~p2=2�Þ with f10ðxÞ ¼ 1 and

f20ðxÞ ¼
ffiffi
3
2

q
ð�1þ 2

3 xÞ. We fit the Gaussian width � to the decay

constant.
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then straightforward to obtain various �Bs ! DsJ form
factors:

V
�BsDsJð2700Þðq2Þ ¼ 0:25� 0:03

1� 0:03q2=m2
Bs
þ 0:38q4=m4

Bs

;

A
�BsDsJð2700Þ
0 ðq2Þ ¼ 0:24� 0:02

1þ 1:16q2=m2
Bs
þ 2:16q4=m4

Bs

;

A
�BsDsJð2700Þ
1 ðq2Þ ¼ 0:17� 0:02

1þ 0:66q2=m2
Bs
þ 0:54q4=m4

Bs

;

A
�BsDsJð2700Þ
2 ðq2Þ ¼ 0:007� 0:001

1þ 4:84q2=m2
Bs
þ 5:08q4=m4

Bs

:

(36)

These transition form factors are small compared to the

Dð�Þ
s (collected in Appendix A), because of the poor over-

lap between wave functions of ground state B mesons and
the radial excited DsJð2700Þ.

E. Nonresonance contribution

In general, there will be both resonant and nonresonant
(NR) contributions to form factors. According to previous

study of �B ! Dð�ÞK�K0 decays [23], it is necessary to add
the NR contribution to form factors to explain the experi-
mental observations. Therefore, we should include the NR

effect in this work. To produce the Dð�ÞKð�Þ pairs, at least
one gluon must be emitted to produce q �q pairs. The QCD
counting rule [23] provides an ansatz for the asymptotic
behavior of the nonresonant form factors, which is

Fðq2ÞNR ! xF
q2

�
ln

�
q2

�2

���1
; (37)

where q2 is the invariant mass of Dð�ÞKð�Þ and � ¼
0:5 GeV is the QCD scale.

Together with the pole contribution provided in
Appendix B, the complete form factors are modeled by
the pole and NR contribution,

Fðq2Þ ¼ Fðq2Þjpole þ xF
q2

�
ln

�
q2

�2

���1
; (38)

where the asymptotic form of NR contribution is adopted
for simplicity. As more data is available in the future, one
could replace this simple form with a more sophisticated
one to fit the data, as in Ref. [23].

III. RESULTS

A. Two-body Dð�Þ
s

�Dð�Þ
s decays and the width

difference: An update

We first update the branching fractions of two-body
�Bs ! Dð�Þ

s �Dð�Þ
s decays, which contribute to ��s. The nec-

essary parameters are given in Appendix C. Our results are
listed in Table II, where experimental results and previous
theoretical results from Ref. [21] are listed for comparison.
Since SU(3)-related modes in Bu;d systems are usually

more precisely known than those in the Bs system, we
also list them in parentheses for comparison. For example,
data for Bð �Bu ! Du

�DsÞ, which is approximately the same
asBð �Bs ! Ds

�DsÞ under the SU(3) limit, is listed in paren-
theses. Note that two uncertainties are given in our results:
The first uncertainty is obtained by varying decay constants
and form factors by 5%, while the second comes from the
estimated 10% uncertainty in a1.

The branching fractions of Dð�Þ
s �Dð�Þ

s modes are all of
percent level. In general, our result is smaller than the
result in Ref. [21]. These branching fractions can be com-
pared with experimental data in both Bs and B� systems.
One can see that our results agree with experimental results

within uncertainties. The direct measurement of �Bs !
Dð�Þ

s �Dð�Þ
s exclusive decays was recently reported by Belle

[41].5 While the observed branching fraction of the Ds
�Ds

mode ð1:0� 0:4Þ% is close to our result, other modes
are more aligned with the calculation in Ref. [21]. But
the world average of the inclusive branching fraction

Bð �Bs ! Dð�Þ
s �Dð�Þ

s Þ [4,34] and the rates of SU(3)-related
modes are closer to our results.

The total ��f=�s induced by Dð�Þ
s �Dð�Þ

s modes is

10:2� 2:2� 2:1%. This value is smaller than the previous
long-distance calculation [21] also shown in this table.
In addition, the total ��f=�s does not reach the short-

distance central value in Eq. (5). One also observes that

��sðDð�Þ
s �Dð�Þ

s Þ=�s is approximately 2 times the total

branching fractions. The relation j��sðfÞ=�sj �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð �Bs ! fÞBðBs ! fÞp

, which corresponds to the max-
ima in Eq. (15d), saturates only when the mode(s) f is (are)
purely CP even, such as the Ds

�Ds mode. The nearly

maximal ��f reflects that Dð�Þ
s are very efficient in medi-

ating the width difference.
Several new c�s resonances are found in B decays. They

may also contribute to ��s. We calculate the contribution
from the two-body modes with D�

s0ð2317Þ, Ds1ð2460Þ, and
Ds1ð2536Þ. Results are shown in Table III. There are 21
additional modes when these higher D��

s resonances are
included. Note that not all modes are shown explicitly in

TABLE I. The ratio r of the branching fractions of six main
decay modes of the DsJð2700Þþ resonance.

Mode(f) D0Kþ Dþ �K0 D�0Kþ D�þ �K0 Ds D�
s

rðfÞ 1.02 0.98 0.93 0.89 0.17 0.04

5Note that this measurement does not tag the flavor of the Bs

meson. Although there should be a corresponding correction to
the order of ��s=�s [22], it is smaller than the theoretical errors
and omitted from Table II.
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the Table. Since CP is conserved in this work,
Bð �Bs ! fÞ ¼ BðBs ! �fÞ and ��f ¼ �� �f. For modes

which are not CP eigenstates, the contributions from their
CP conjugates are also known and should be added to
��s=�s. The total branching fraction of these additional

modes is comparable to the sum of BðDð�Þ
s �Dð�Þ

s Þ. However,
the corresponding contribution to the width difference

turns out to be tiny. After considering all of these
two-body modes, the total ��f=�s only increases slightly

from 10:2� 2:2� 2:1% to 10:4� 2:5� 2:2%. There are
two reasons for such a tiny contribution. First, the signs of
��f are fluctuating among these modes, leading to can-

cellations in the total sum. In addition, the mismatch effect
is serious. For instance, the �Bs ! D�

s
�Ds1ð2460Þmode has a

TABLE II. The branching fractions of �Bs ! Dð�Þ
s �Dð�Þ

s decays and their contribution to the width difference. The results can be
compared with data in Refs. [4,34,41]. The data for the B� system in Ref. [34], which are related to Bs under SU(3) symmetry, are
shown in parentheses (see text for details). The theoretical result of Ref. [21] is also presented for comparison.

Mode(f) Bð �Bs;ðuÞ ! fÞ (%) Bð �Bs ! fÞ (%) Bð �Bs ! fÞ (%) ��f=�s (%) ��f=�s (%)

Data This work Ref. [21] This work Ref. [21]

Ds
�Ds 1:04� 0:35a

(1:00� 0:17)a
1:4� 0:3� 0:3 1.6 2:7� 0:6� 0:6 3.1

D�
s
�Ds þDs

�D�
s 2:75� 1:08b

(1:58� 0:33)a
1:8� 0:4� 0:4 2.2 3:6� 0:8� 0:8 4.4

D�
s
�D�
s 3:08� 1:49b

(1:71� 0:24)a
2:3� 0:5� 0:5 3.6 3:8� 0:8� 0:8 6.9

Dð�Þ
s �Dð�Þ

s 4:9� 1:4c

6:9� 2:3b

4:0� 1:5a

(4:29� 0:74)a

5:5� 1:2� 1:1 7.4 10:2� 2:2� 2:1 14.4

aData taken from Ref. [34].
bData taken from Ref. [41].
cData taken from Ref. [4].

TABLE III. The branching fractions and width difference of �Bs and �Bs decays to two-body Dð�;��Þ
s �D��

s , where D��
s is D�

s0ð2317Þ,
Ds1ð2460Þ, or Ds1ð2536Þ. We show data of SU(3)-related modes in the �Bu system [34] in parentheses for comparison.

Mode(f) Bð �Bs ! fÞ (%) BðBs ! fÞ (%) ��f=�s (%)

Ds
�D�
s0ð2317Þ 0:10� 0:02� 0:02

(0:073þ0:022
�0:017)

a
0:15� 0:03� 0:03 �0:24� 0:05� 0:05

D�
s
�D�
s0ð2317Þ 0:05� 0:01� 0:01

(0:09� 0:07)a
0:12� 0:03� 0:03 �0:15� 0:03� 0:03

Ds
�Ds1ð2460Þ 0:24� 0:05� 0:05

(0:31þ0:10
�0:09)

0:04� 0:01� 0:01 �0:18� 0:04� 0:04

D�
s
�Ds1ð2460Þ 0:81� 0:17� 0:17

(1:20� 0:30)
0:06� 0:01� 0:01 þ0:16� 0:03� 0:03

Ds
�Ds1ð2536Þ 0:02� 0:01� 0:01

(0:022� 0:007b
0:38� 0:08� 0:08 þ0:19� 0:04� 0:04

D�
s
�Ds1ð2536Þ 0:09� 0:02� 0:02

(0:055� 0:0016)b
0:38� 0:08� 0:08 þ0:34� 0:07� 0:07

D�
s0ð2317Þ �Ds1ð2460Þ 0:024� 0:005� 0:005 0:002� 0:001� 0:001 þ0:013� 0:003� 0:003

D�
s0ð2317Þ �Ds1ð2536Þ 0:002� 0:001� 0:001 0:017� 0:004� 0:004 �0:012� 0:003� 0:003

Ds1ð2460Þ �Ds1ð2536Þ 0:001� 0:001� 0:001 0:077� 0:017� 0:016 þ0:000� 0:000� 0:000
D�

s0ð2317Þ �D�
s0ð2317Þ 0:009� 0:002� 0:002 þ0:018� 0:004� 0:004

Ds1ð2460Þ �Ds1ð2460Þ 0:014� 0:003� 0:003 �0:010� 0:002� 0:002
Ds1ð2536Þ �Ds1ð2536Þ 0:007� 0:002� 0:001 þ0:008� 0:002� 0:002

Total 2:57� 0:55� 0:54 0:24� 0:27� 0:05c

aBðB� ! Dð�Þ0 �Ds0ð2317ÞÞ �Bð �Ds0ð2317Þ ! �Ds�
�Þ.

bBðB� ! Dð�Þ0 �Ds1ð2536ÞÞ �Bð �Ds1ð2536Þ ! �D�K�Þ.
cThe contribution from CP-conjugate modes �f is included.
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nonnegligible branching fraction of 0.81%, but the branch-
ing fraction of Bs ! D�

s
�Ds1ð2460Þ is only 0.06%. In fact,

the smallness of contributions in the heavy-quark limit
from p-wave resonances was expected [21], and it is con-
firmed in a realistic calculation given here.

The sizable branching fraction Bð �B !
Dð�Þ �DsJð2700ÞÞ �Bð �DsJð2700Þ ! �D �KÞ indicates that the
�DsJð2700Þ resonance may be important for ��s. Since
�DsJð2700Þ has a broad width, it is expected to interfere

with the continuum of �Bs ! Ds
�Dð�Þ �K produced by �Dð�Þ

s

poles (see Fig. 3 and the next subsection). For complete-
ness, it is better to calculate the contribution of �DsJð2700Þ
to��s in three-body modes, including the on-shell and off-
shell parts. However, the two-body calculation is simple
and straightforward. It is, therefore, helpful to see the

contribution of �Dð�;��Þ
s DsJð2700Þ to ��s first.

Using the parameters calculated in Eq. (36), the contri-
butions from two-body modes including �DsJð2700Þ are
shown in Table IV. Several things ought to be noted:
(a) The branching fractions of modes with current-
produced �DsJð2700Þ (the Bð �Bs ! fÞ column of

Table IV) are comparable to those of the Dð�Þ
s �Dð�Þ

s modes.
The two-body decays with �DsJð2700Þ seem to be sup-
pressed seriously by phase space at first glance.
Nevertheless, this may not be true since the factorized
amplitude hD�

s jðV � AÞ�j0i [see Eq. (18)] for the

current-produced meson is enhanced by mass, and the
decay constant of �DsJð2700Þ is unsuppressed. (b) For
the mode �Bs ! D�

s
�DsJð2700Þ, there are several enhance-

ment and suppression factors, when replacing D�
s with

DsJð2700Þ. First, its amplitude is dominated by s-wave
and is free from additional momentum suppression. In
addition, it is enhanced through the above-mentioned fac-
torized amplitude and suppressed by phase space. The
branching fraction of �Bs ! D�

s
�DsJð2700Þ turns out to

decrease �10% compared with �Bs ! D�
s
�D�
s . On the con-

trary, the decay �Bs ! Ds
�DsJð2700Þ is p-wave. Its ampli-

tude and thus branching fraction drop more than 50%
when compared to �Bs ! Ds

�D�
s . The two different trends

lead to a large ratio Bð �Bs ! D�
s
�DsJð2700ÞÞ=

Bð �Bs ! Ds
�DsJð2700ÞÞ � 5. (c) The branching fractions

of modes in which �DsJð2700Þ contains the spectator quark
[the BðBs ! fÞ column] are very small. The branching

fractions are suppressed not only by phase space, but also
by the small transition form factors shown in Eq. (36).

The ��s from Dð�Þ
s �DsJð2700Þ is 1:9� 0:7� 0:4%. As

the upper bound in Eq. (15d) implies, the ��s=�s of
�DsJð2700Þ is limited by the imbalance between the modes
in which �DsJð2700Þ is produced via current or with spec-
tator. Nevertheless, the contribution from DsJð2700Þ is
larger than those from D��

s and should not be neglected.
We remark that, as we shall see in the three-body case, the

transition amplitudes from Dð�Þ
s poles can interfere con-

structively with the current-produced DsJ pole and over-
come the above-mentioned suppression, leading to sizable
contribution to ��s.

B. Three-body Dð�Þ
s

�Dð�Þ �Kð�Þ decays and contributions
to the width difference

We now turn to the three-body case. We shall first
compare our results with the measured branching fractions
in the Bu;d system, starting from the pole model and

including the NR effect, if necessary. After demonstrating
that our calculation is consistent with data, we proceed to
calculate the width difference in the Bs system.

1. Current-produced branching fractions
in Bu;d systems

Only current-produced modes with �K have been mea-
sured in �Bu;d systems. There is no measurement for the rest

of the modes, including current-produced �K�, and all the
transition modes. A summary of current data and our
results is presented in Table V. We separate the results of
BABAR and Belle for comparison. Note that, in �Bu;d sys-

tems, some Dð�Þ �Dð�Þ �Kð�Þ modes contain both color-allowed
and color-suppressed diagrams, where the latter is ex-
pected to be subleading and is neglected in this work. We
have labeled these modes in the notes of the table and also
add an approximation sign in front of our results. Note also
that, in the calculation of ��s in �Bs systems, color-

suppressed diagrams appear only in modes with ð0Þ and
do not affect Dð�Þ

s �Dð�Þ �Kð�Þ modes.
According to whether they are D or D�, there are four

types of Dð�Þ �Dð�ÞK modes, which are classified into four
categories as shown in Table V. Modes in each category

TABLE IV. The branching fractions and width difference of two-body �Bs and Bs decays to Dð�;��Þ
s �DsJð2700Þ, where D��

s stands for
D�

s0ð2317Þ, Ds1ð2460Þ, or Ds1ð2536Þ.
Mode(f) Bð �Bs ! fÞ (%) BðBs ! fÞ (%) ��f=�s (%)

Ds
�DsJð2700Þ 0:44� 0:18� 0:09 0:02� 0:01� 0:01 0:21� 0:08� 0:04

D�
s
�DsJð2700Þ 2:0� 0:8� 0:4 0:08� 0:03� 0:02 0:73� 0:27� 0:15

Dð�Þ
s �DsJð2700Þ 2:5� 1:0� 0:5 0:11� 0:03� 0:02 1:9� 0:7� 0:4a

D��
s

�DsJð2700Þ 0:14� 0:08� 0:03 0:02� 0:07� 0:01 0:08� 0:03� 0:02a

aThe contribution from CP-conjugate modes �f is included.
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TABLE V. Comparison between experimental results from the BABAR and Belle collaborations and our results in Scenarios I (I0) and II. See text for detailed definitions.

Measurement BABAR data (%) Belle data (%) Our results (%) Remarks

Scenario I Scenario II

(Scenario I0)
Pole model with DsJ Pole model þ NR

(without DsJ)

Category 1: Current-produced �D �K with �B ! D transition

Bð �Bu ! Du
�DsJð2700Þ�Þ �Bð �DsJð2700Þ� ! �D0K�Þ 
 
 
 0:113þ0:026

�0:040
b 0:12� 0:08� 0:03 0:12� 0:08� 0:03 Input for Scenario I

(0)

Bð �Bu ! Du
�D0K�Þ 0:131� 0:014a 0:222� 0:033b �0:23 �0:11 Color-suppressed diagram neglected

ð�0:07Þ
Bð �Bd ! Dd

�D0K�Þ 0:107� 0:011a 
 
 
 0:22� 0:14� 0:05 0:10þ0:23
�0:02 � 0:02 Input for Scenario II

(0:06� 0:03� 0:01)
Bð �Bd ! Dd

�DsJð2700Þ�Þ �Bð �DsJð2700Þ� ! �D0K�Þ 
 
 
 
 
 
 0:11� 0:07� 0:02 0:11� 0:07� 0:02
(0)

Category 2: Current-produced �D �K with �B ! D� transition

Bð �Bd ! D�
d
�D0K�Þ 0:247� 0:021a 
 
 
 0:67� 0:45� 0:14 0:32þ0:75

�0:13 � 0:07 Input for Scenario II

(0:07� 0:03� 0:01)
Bð �Bd ! D�

d
�DsJð2700Þ�Þ �Bð �DsJð2700Þ� ! �D0K�Þ 
 
 
 
 
 
 0:50� 0:33� 0:11 0:50� 0:33� 0:11

(0)

Category 3: Current-produced �D� �K with �B ! D transition

Bð �Bd ! Dd
�D�0K�Þ 0:346� 0:041a 
 
 
 0:35� 0:21� 0:07 0:35� 0:21� 0:07d

(0:20� 0:10� 0:04)
Bð �Bd ! Dd

�DsJð2700Þ�Þ �Bð �DsJð2700Þ� ! �D�0K�Þ 
 
 
 
 
 
 0:11� 0:07� 0:02 0:11� 0:07� 0:02d

(0)

Category 4: Current-produced �D� �K with �B ! D� transition

Bð �Bd ! D�
d
�D�0K�Þ 1:060� 0:092a 
 
 
 0:94� 0:62� 0:20 0:94� 0:62� 0:20 d

(0:15� 0:08� 0:03)
Bð �Bd ! D�

d
�DsJð2700Þ�Þ �Bð �DsJð2700Þ� ! D�0K�Þ 
 
 
 
 
 
 0:52� 0:33� 0:11 0:52� 0:33� 0:11d

(0)

Bð �Bd ! D�
d
�D�þ �K0Þ 0:826� 0:080a 
 
 
 �0:91 �0:91d Color-suppressed diagram neglected

(� 0:15)
Bð �Bd ! D�

d
�D�þK0

SÞ 0:44� 0:08c 0:34� 0:08c �0:46 �0:46d Color-suppressed diagram neglected

(� 0:07)

aData taken from Ref. [28].
bData taken from Ref. [26].
cData taken from Ref. [25].
dIn Scenario II, the results of modes in Categories 3 and 4 are the same as for Scenario I.
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have similar branching fractions because of SU(2) symme-
try. The measured branching fractions increase from
Category 1 (�0:1%) to Category 4 (�1%). One can find
tension in measurements of �Bu ! Du

�D0K�. A large
�DsJð2700Þ contribution has been observed in �Bu !
Du

�D0K� by Belle only [26], but in 2:2� disagreement
with BABAR [28]. The tension in data becomes more
severe if one compares the �DsJð2700Þ contribution to the
total branching fraction of �Bu ! Du

�D0K�. In the case of
Belle, the contribution from �DsJð2700Þ is about half the
total branching fraction. However, it is approximately
equal to the total branching fraction for BABAR. As we
show, the inconsistency makes it difficult to explain all data
with a simple pole model.

The results of our calculation in different scenarios
are compared with experiments in Table V. In Scenario I,

Dð�Þ
s and DsJ poles are used, while in Scenario I0, only

Dð�Þ
s poles are considered, with results shown in parenthe-

ses for comparison. In Scenario II, NR contributions
in �D �K timelike form factors are included to demonstrate
that the inconsistency with experiments in Scenario I
can be resolved. Note that no NR contribution is introduced
for modes in Categories 3 and 4, as the pole model results
(Scenario I) already agree with the data. Furthermore,
as there are no measurements on transition modes and
modes with �K�, no NR contribution is applied to these
modes. The two uncertainties of our results are obtained by
the same method as in two-body case, but with additional
uncertainties from strong couplings included in the first
errors.

Despite the disagreement between data, we first attempt
to explain all measurements only with a pole model
(Scenario I). The corresponding diagrams can be found
in the left portion of Fig. 3 with the appropriate spectator
quark. In the calculation, we first fix the decay constant
of DsJð2700Þ from the contribution of �DsJð2700Þ in the
�Bu ! Du

�D0K� decay. The value of this decay constant
was shown in Eq. (36), and the value agrees with those
obtained in other studies (see Sec. II D). The total branch-
ing fraction of �Bu ! Du

�D0K� is consistent with Belle’s
measurement, and inevitably less consistent with the
BABAR result and the SU(2)-related mode �Bd !
Dd

�D0K�. Unfortunately, there is no measurement on the
�Bd ! Dd

�D0K� rate from Belle yet. For Category 2, the
total branching fraction �Bd ! D�

d
�D0K� is about 2.5 times

larger than the BABAR result, as in Category 1. Again,
there is no measurement from Belle. More data analysis is
called for. Nevertheless, it is interesting to see that our
predicted results on branching fractions in Categories 3 and
4 agree well with data.

To explain the total branching fractions in Scenario I, we
must start from the �DsJð2700Þ contribution, which has
on-shell as well as off-shell parts. Roughly speaking, the
�DsJð2700Þ contribution can be understood by using the
narrow width approximation. The contribution in

Category 1 (2) is almost the same as in Category 3 (4).
This is expected since the two categories are different from
each other only in �DsJð2700Þ ! �D� �K, �D �K parts, which
have nearly the same branching fractions [see Eq. (33)].
The contribution in Category 2 is about 5 times larger than
in Category 1, where the �B ! D� transition is replaced with
�B ! D. This factor already appeared in the two-body

branching fractions of �Bs ! Dð�Þ
s �DsJ modes shown in

Table IV. However, a closer look reveals that the precise
DsJð2700Þ contribution should be obtained by integrating
the full three-body phase space, as thewidth ofDsJð2700Þ is
of the order of 0.1 GeV, which is not narrow enough
compared with the three-body phase space. (For instance,
in the decay of �Bs ! D�

s
�DsJð2700Þ with �DsJð2700Þ !

�D� �K, the invariant mass of �D� �K ranges roughly from
2.5 GeV to 3.3 GeV. The Breit-Wigner function for
DsJð2700Þ, with a peak at 2.7 GeV, cannot be approximated
as a delta function since its peak is less than 2 times the

width above the lower limit of the invariant mass of �Dð�Þ �K.)
The numerical results usually show a 10% overestimation
by narrow width approximation. In addition, the �DsJð2700Þ
contribution in �Bd ! D�

d
�D�0K� is slightly greater than

�Bd ! D�
d
�D0K�, whereas the ratio in Eq. (33) is the other

way around. This is due to the contribution from the off-
shell part. The off-shell contribution in the high-momentum
region favors �DsJð2700Þ ! �D� �K over �DsJð2700Þ ! �D �K ,
as one can see from the strong interaction matrix elements
in Eq. (31). The former coupling is quadratic in momentum,
while the latter is only linear. The numerical results show
that the off-shell effect is about 10%. This correction also
echoes our assertion that the contribution of DsJð2700Þ
should be treated in a three-body picture.

The effect of off-shell �Dð�Þ
s poles can be read from

Scenario I0 shown in parentheses in Table V. For the first
two categories, only the �D�

s pole contributes, while for the
latter two categories, containing the current-generated
�D� �K, the �Ds pole starts to contribute as well. This explains
why modes in Categories 3 and 4 have larger branching
fractions in Scenario I0. It is interesting to note that all
branching fractions in Scenario I0 are deficient in explain-
ing experimental results. The DsJð2700Þ resonance pro-
vides an important source for the nonnegligible three-
body branching fractions of current-produced modes.
Comparing with Scenario I, one finds the interference

between DsJð2700Þ and Dð�Þ
s poles is not negligible. For

example, in the �B0 ! D�þ �D�0K� decay rate (see Category

4 in Table V), the �Dð�Þ
s and �DsJ contributions are �0:15%

and �0:52%, respectively, while the total predicted rate is
�0:94%, which implies a fairly effective constructive in-
terference between these poles. If the DsJ width were
narrow, we would expect the interference effect to be
negligible and it would be enough to consider a real
DsJð2700Þ in two-body final states.
After the above discussion, one can now understand the

total branching fractions in Scenario I by combining
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contributions of three different poles (see the left portion of

Fig. 3). The contribution of �DsJð2700Þ dominates over �Dð�Þ
s .

To first order, Category 2 (D� �D �K ) and Category 4
(D� �D� �K) have the same branching fractions from
�DsJð2700Þ and are larger than Category 1 (D �D �K ) and

Category 3 (D �D� �K). �Dð�Þ
s poles further split the two cate-

gories that have almost the same �DsJð2700Þ contribution.
Consequently, modes in Category 4 (D� �D� �K) have larger
total branching fractions than those in Category 2 (D� �D �K ),
and similarly for Category 3 (D �D� �K) and 1 (D �D �K ). The
three different poles form the hierarchy of total branching
fractions of the four categories in Scenario I.

Now we consider the situation in which both the mea-
surements of BABAR and the contribution of DsJð2700Þ
measured by Belle are confirmed in the future. We dem-
onstrate that it is possible to reproduce almost all measure-
ments by using Scenario II: a pole model with NR
contribution in timelike form factors of �D �K , in addition.
Note that the first two categories share the same current-
produced �D �K , while �D� �K form factors appear only in
Categories 3 and 4. Since modes in the last two categories
already agree with data in Scenario I, using pole model
only, no NR contribution is introduced in �D� �K form fac-
tors. The branching fractions of modes in the first two
categories can be tuned by two complex NR parameters
in the timelike form factors of �D �K . These two parameters
are fixed by fitting to the observed branching fractions of
�Bd ! Dd

�D0K� and �Bd ! D�
d
�D0K� (denoted in the notes

in Table V). The best fit gives xDK
F0

¼ ð�75þ 52iÞ GeV2

and xDK
F1

¼ ð16þ 2iÞ GeV2, where xDK
F0

and xDK
F1

corre-

spond to the NR contribution in �D �K timelike form factors
F0 and F1, respectively [see Eq. (38)]. Usually the two
complex (four real) NR parameters cannot be fully deter-
mined from two constraints. In this case, however, there is
a localized and huge DsJð2700Þ resonance contribution in
the �Bd ! D�

d
�D0K� mode. The NR contribution, which is

smooth in phase space, has to cancel the DsJð2700Þ con-
tribution while maintaining the form factors in other parts
of phase space. In other words, the phases of the NR
parameters are constrained by the complex resonance,
while the magnitudes, which control NR parts in the off-
resonance region, are limited by data. The branching frac-
tions of the fit are shown in Table V, where 100% uncer-
tainties in x’s are included in the first errors. In this
scenario, all experimental results, except for the explicit
disagreement in �Bu ! Du

�D0K� between data, can be ex-
plained within uncertainty when NR is included. In par-
ticular, the �Bd ! D�

d
�D0K� rate is now reduced by a factor

of 2 and consistent with data within errors.

2. Branching fractions in the Bs system and the
width difference

After checking the validity of our calculations by com-
paring them to existing data on rates, we move to our main

purpose: estimating ��s. The relevant diagram is shown in
Fig. 3. In Table VI, we show our results in Scenarios I (I0).
Recall that bounds on ��s are related to rates [see
Eq. (15d)]. The branching fractions of current-produced
modes and transition modes are also shown, and can be
read fromBJ ð �Bs ! fÞ andBT ðBs ! fÞ, respectively. For
simplicity, only modes with �Kð�Þ are shown; the results of
modes with Kð�Þ can be derived from their CP conjugates.
As noted before, since CP is conserved in this work,
Bð �Bs ! fÞ ¼ BðBs ! �fÞ and ��f ¼ �� �f. The total

��f=�s contains the modes in the table and their CP

conjugates, so it is twice the sum of the listed ��f=�s in

the table.
Before discussing ��s, we first look at the branching

fractions of these modes. Current-produced modes in �Bs

decays are SU(3)-related to modes considered previously.
Their rates are similar. For example, �Bs ! D�

s
�D�K modes

have the largest rates (�0:88%) as the �Bu;d ! D�
u;d

�D�K
modes. However, the transition modes are new. Their rates
are subpercent or smaller. Note that, while current-
produced modes with �K are dominated by DsJð2700Þ,
transition modes do not change significantly when
�DsJð2700Þ is included. For instance, without �DsJ, the
branching fraction of current-produced mode �Bs !
D�

s
�D0K� drops from 0.64% to 0.07%. In contrast, it drops

only from 0.09% to 0.06% for the branching fraction of
transition mode Bs ! D�

s
�D0K�. The distinct behavior is

not surprising because the Bs ! D�
s
�DsJð2700Þ rate (before

�DsJ ! �D0K�) is relatively suppressed compared to the
Bs ! D�

s
�D�
s ones (before �D�

s ! �D0K�) (see Sec. III A).
As we will see later, the different roles played by these
poles will be useful for enhancing ��s through
interferences.
As the branching fractions of transition modes are not

tiny, one would expect a nonnegligible ��s. The ��f=�s

of three-body modes range from 0.07% to 0.65%, as shown
in Table VI. The last two modes with �K have the largest
��f, as their rates are largest. In this scenario, the total

��s=�s is

��s=�sðDð�;��Þ
s �Dð�;��Þ

s Þ ¼ ð10:4� 2:5� 2:2Þ%;

��s=�sðDð�Þ
s �Dð�Þ �Kþ �Dð�Þ

s Dð�ÞKÞ ¼ ð5:9� 3:6� 1:2Þ%;

��s=�sðDð�Þ
s �Dð�Þ �K� þ �Dð�Þ

s Dð�ÞK�Þ ¼ ð1:9� 0:9� 0:4Þ%;

��s=�s ¼ ð18:2� 7:0� 3:8Þ%:

(39)

Clearly, the ��s of three-body modes is comparable to
two-body modes. The ��s of three-body modes is com-
posed mainly of modes with K. It shows that the approxi-

mation in whichDð�Þ
s �Dð�Þ

s modes saturate��s is dubious. In
addition, Eq. (39) agrees with the short-distance calcula-
tion in Eq. (5) within uncertainties. There is no evidence of
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TABLE VI. The branching fractions (BJ ;T ) and width difference (��f) of the three-body Dð�Þ
s �Dð�Þ �Kð�Þ modes in the scenario with only pole contribution. BJ and BT denote

the current-produced decay ( �Bs ! f) and the transitional decay (Bs ! f), respectively. DsJð2700Þ is not included in modes with �K� in this scenario. The results with only Dð�Þ
s

poles are shown in parentheses.

Scenario I (I0)
Pole Contribution Only

Modes with �K Modes with �K�
Mode(f) BJ ð �Bs ! fÞ ð%Þ BT ðBs ! fÞ ð%Þ ��f=�s ð%Þ Mode(f) BJ ð �Bs ! fÞ ð%Þ BT ðBs ! fÞ ð%Þ ��f=�s ð%Þ
Ds

�D0K� 0:19� 0:12� 0:04
(0:06� 0:03� 0:01)

0:04� 0:02� 0:01
(0:03� 0:02� 0:01)

0:17� 0:10� 0:03
(0:09� 0:04� 0:02)

Ds
�D0K�� (0:07� 0:03� 0:01) (0:03� 0:01� 0:01) (0:08� 0:04� 0:02)

DsD
� �K0 0:19� 0:12� 0:04

(0:05� 0:03� 0:01)
0:04� 0:02� 0:01
(0:03� 0:02� 0:01)

0:16� 0:09� 0:03
(0:08� 0:04� 0:02)

DsD
� �K�0 (0:06� 0:03� 0:01) (0:03� 0:01� 0:01) (0:08� 0:04� 0:02)

D�
s
�D0K� 0:64� 0:43� 0:13

(0:07� 0:03� 0:01)
0:09� 0:05� 0:02
(0:06� 0:03� 0:01)

0:38� 0:23� 0:08
(0:12� 0:05� 0:03)

D�
s
�D0K�� (0:04� 0:02� 0:01) (0:03� 0:02� 0:01) (0:07� 0:03� 0:01)

D�
sD

� �K0 0:62� 0:42� 0:13
(0:07� 0:03� 0:01)

0:09� 0:05� 0:02
(0:06� 0:03� 0:01)

0:37� 0:22� 0:08
(0:11� 0:05� 0:02)

D�
sD

� �K�0 (0:04� 0:02� 0:01) (0:03� 0:02� 0:01) (0:07� 0:03� 0:02)

Ds
�D�0K� 0:30� 0:18� 0:06

(0:17� 0:08� 0:04)
0:09� 0:05� 0:02
(0:08� 0:04� 0:02)

0:31� 0:21� 0:06
(0:23� 0:11� 0:05)

Ds
�D�0K�� (0:18� 0:08� 0:04) (0:08� 0:04� 0:02) (0:24� 0:12� 0:05)

DsD
�� �K0 0:29� 0:18� 0:06

(0:17� 0:08� 0:04)
0:09� 0:04� 0:02
(0:08� 0:04� 0:02)

0:30� 0:20� 0:06
(0:22� 0:11� 0:05)

DsD
�� �K�0 (0:17� 0:08� 0:04) (0:08� 0:04� 0:02) (0:24� 0:11� 0:05)

D�
s
�D�0K� 0:89� 0:59� 0:18

(0:14� 0:07� 0:03)
0:17� 0:09� 0:03
(0:11� 0:05� 0:02)

0:65� 0:39� 0:14
(0:23� 0:11� 0:05)

D�
s
�D�0K�� (0:05� 0:02� 0:01) (0:04� 0:02� 0:01) (0:08� 0:04� 0:02)

D�
sD

�� �K0 0:86� 0:57� 0:18
(0:14� 0:06� 0:03)

0:16� 0:09� 0:03
(0:10� 0:05� 0:02)

0:64� 0:38� 0:13
(0:22� 0:10� 0:05)

D�
sD

�� �K�0 (0:05� 0:02� 0:01) (0:03� 0:02� 0:01) (0:08� 0:04� 0:02)

Total 5:9� 3:6� 1:2a

(2:6� 1:2� 0:5)a
Total (1:9� 0:9� 0:4)a

aThe contribution from CP conjugate modes is included.
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violation of the short-distance result and the underlying
OPE assumption.

The interference between �DsJð2700Þ and �Dð�Þ
s can be

studied by comparing Scenario I with Scenario I0 and the
result of �DsJð2700Þ. The full treatment of modes with �K in

Scenario I, where �DsJð2700Þ and �Dð�Þ
s are taken into con-

sideration simultaneously, gives ��s=�s ’ 5:9%. On the

other hand, one can treat �DsJð2700Þ and �Dð�Þ
s separately and

sum their ��s=�s. The contribution of �Dð�Þ
s only

(Scenario I0) can be read from Table VI. For �DsJð2700Þ,
its contribution can be estimated from the two-body
calculation (see Sec. III A) with the narrow width approxi-
mation. We further check that it decreases from the two-
body result of 1.9% to 1.7%, when the full three-body
calculation is imposed. In the case that �DsJð2700Þ and
�Dð�Þ
s are summed separately, the total ��s=�s of modes

with �K is only 2:6%þ 1:7% ¼ 4:3%, smaller than the
5.9% in Scenario 1. The difference, which is about the
size of the �DsJ contribution alone, shows that there is

considerable interference between �DsJð2700Þ and �Dð�Þ
s

poles. Such interference can be understood as follows. As

depicted in Fig. 3, the �Dð�Þ �Kð�Þ pairs emitted by the current-
produced �DsJð2700Þ pole interfere with the same states

from the transited �Dð�Þ
s poles in the transition side of the

diagram. Unlike the highly suppressed Bs ! �DsJ transi-

tions (see Table IV), the Bs ! �Dð�Þ
s transitions are sizable

(see Table II), leading to enhanced �Bs � Bs mixing and
��s. In short, ��s receives the interference contributions
from the current-produced �DsJð2700Þ pole (from �Bs de-

cays) and the transited �Dð�Þ
s poles (from Bs decays), which

bypass the mismatch of current-produced and transited �DsJ

in two-body modes. In total, diagrams containing �DsJ poles

contribute more than those with �Dð�Þ
s poles only.

One can bound the width difference in Table VI by
Eq. (15d). For example, the ��f=�s is bounded to be

0.77% and 0.08% for D�
s
�D�0K� and D�

s
�D�0K�� modes,

respectively. Comparing to ��f, we see that the bounds in

modes with �K are higher within 20%, while they constrain
��f very well for modes with �K�. The accuracy of ��f

estimation in modes with �K� has to do with the virtual �Dð�Þ
s

poles. The pole contribution of �Dð�Þ
s is almost real and so

are the resulting amplitudes. As a result, the suppression
from the inequality of Eq. (15b) is tiny for modes with �K�.
This demonstrates that the virtual �Dð�Þ

s poles are very
efficient for mediating the width difference. On the con-
trary, the on-shell �DsJð2700Þ, which plays an important
role in modes with �K, generates complex amplitudes and
result in the suppression of ��f in these modes.

The results of Scenario II are shown in Table VII.
Only the first four modes with �K are different from
Scenario I. Note that all transition modes and modes with
�K� are still the same as in Scenario I, since there is no
measurement at all to call for other contribution beyond the

pole model. One can read from the table that the��f of the

first four modes (modes with NR) drop by 50% to 70%.
The decrease is caused by the reduction of the branching
fractions in current-produced modes. Moreover, the actual
��f moves away from the upper bound in Eq. (15d) when

the complex NR contributions are included. In this sce-
nario, the total ��s=�s is

��s=�sðDð�;��Þ
s �Dð�;��Þ

s Þ ¼ ð10:4� 2:5� 2:2Þ%;

��s=�sðDð�Þ
s �Dð�Þ �Kþ �Dð�Þ

s Dð�ÞKÞ ¼ ð4:5� 4:4� 0:9Þ%;

��s=�sðDð�Þ
s �Dð�Þ �K� þ �Dð�Þ

s Dð�ÞK�Þ ¼ ð1:9� 0:9� 0:4Þ%;

��s=�s ¼ ð16:7� 7:8� 3:5Þ%:

(40)

Despite the drop of ��f in modes with NR, the total ��s

remains similar to Scenario I because these modes are not
dominant in ��s. Most features are similar to the previous
case. The effect of three-body modes is still nonnegligible.
It is interesting to see that the central value is more con-
sistent with the short-distance calculation. The conclusion
remains the same as in Scenario I.

IV. DISCUSSION

We have seen that �DsJð2700Þ is important in modes with
�K. One expects �DsJð2700Þ to be nonnegligible in modes
with �K� as well. Even though �DsJð2700Þ is not heavy

enough to decay to on-shell �Dð�Þ �K�, its width is wide and

its mass is close to the invariant mass threshold of �Dð�Þ �K�.
Unfortunately, there is no information about the coupling

constants of the effective Lagrangian for �DsJð2700Þ !
�Dð�Þ �K�. Unlike the on-shell �DsJð2700Þ ! �Dð�Þ �K decay,

we cannot extract the coupling constant of �DsJð2700Þ !
�Dð�Þ �K� directly from data. Thus, for illustration, we set the
coupling constants in analogy to the coupling constants of
�D� to �Dð�Þ �Kð�Þ vertices

~gDsJD
ð�ÞK� � ~gDsJD

ð�ÞK

�
gD�Dð�ÞK�

gD�Dð�ÞK

�
� 0:5� ~gDsJD

ð�ÞK: (41)

Table VIII shows the result in this analogy, which we call
Scenario III. The results of modes with �K remain the same
as in Scenario II.
Comparing with the results in previous scenarios,

all branching fractions and ��f increase. As before, the

effect of �DsJð2700Þ is stronger in current-produced modes
than in transition modes. In particular, current-produced
modes in Categories 2 (D�

s
�D �K�) and 4 (D�

s
�D� �K�) are very

sensitive to the appearance of �DsJð2700Þ. Their branching
fractions rise at least 4 times. This large effect of current-
produced DsJð2700Þ in Categories 2 and 4 is similar to
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TABLE VIII. The branching fractions (BJ ;T ) and width difference (��f) of the three-body D
ð�Þ
s �Dð�Þ �Kð�Þ modes in Scenario III, where DsJð2700Þ is included in all modes. The

notation is the same as in Table VI.

Scenario III

DsJð2700Þ is included in all modes

Modes with �K Modes with �K�
Mode(f) BJ ð �Bs ! fÞ ð%Þ (exp.) BT ðBs ! fÞ ð%Þ ��f=�s ð%Þ (limit) Mode(f) BJ ð �Bs ! fÞ ð%Þ BT ðBs ! fÞ ð%Þ ��f=�s ð%Þ (limit)

Ds
�D0K� 0:09þ0:22

�0:02 � 0:02 0:04� 0:02� 0:01 0:08� 0:15� 0:01 Ds
�D0K�� 0:10� 0:05� 0:02 0:03� 0:02� 0:01 0:11� 0:05� 0:02

DsD
� �K0 0:09þ0:22

�0:02 � 0:02 0:04� 0:02� 0:01 0:07� 0:13� 0:01 DsD
� �K�0 0:09� 0:05� 0:02 0:03� 0:01� 0:01 0:10� 0:05� 0:02

D�
s
�D0K� 0:31þ0:74

�0:13 � 0:13 0:09� 0:05� 0:02 0:11� 0:38� 0:02 D�
s
�D0K�� 0:27� 0:13� 0:06 0:06� 0:03� 0:01 0:23� 0:11� 0:05

D�
sD

� �K0 0:29þ0:71
�0:13 � 0:13 0:09� 0:05� 0:02 0:11� 0:38� 0:02 D�

sD
� �K�0 0:25� 0:12� 0:06 0:05� 0:02� 0:01 0:21� 0:10� 0:04

Ds
�D�0K� 0:30� 0:18� 0:06 0:09� 0:05� 0:02 0:31� 0:21� 0:06 Ds

�D�0K�� 0:28� 0:13� 0:06 0:10� 0:05� 0:02 0:32� 0:16� 0:07
DsD

�� �K0 0:29� 0:18� 0:06 0:09� 0:04� 0:02 0:30� 0:20� 0:06 DsD
�� �K�0 0:27� 0:13� 0:06 0:09� 0:04� 0:02 0:31� 0:15� 0:07

D�
s
�D�0K� 0:89� 0:59� 0:18 0:17� 0:09� 0:03 0:65� 0:39� 0:14 D�

s
�D�0K�� 0:23� 0:11� 0:05 0:05� 0:03� 0:01 0:21� 0:10� 0:04

D�
sD

�� �K0 0:86� 0:57� 0:18 0:16� 0:09� 0:03 0:64� 0:38� 0:13 D�
sD

�� �K�0 0:21� 0:10� 0:04 0:05� 0:03� 0:01 0:20� 0:09� 0:04

Total 4:5� 3:0� 0:9a Total 3:4� 1:6� 0:7a

aThe contribution from CP-conjugate modes is included.

TABLE VII. The branching fractions (BJ ;T ) and width difference (��f) of the three-body Dð�Þ
s �Dð�Þ �Kð�Þ modes in Scenario II where �D �K timelike form factors have NR

contribution. The notation is the same as in Table VI.

Scenario II

Pole contributionþ NR in �D �K timelike form factors

Modes with �K Modes with �K�
Mode(f) BJ ð �Bs ! fÞ ð%Þ BT ðBs ! fÞ ð%Þ ��f=�s ð%Þ Mode(f) BJ ð �Bs ! fÞ ð%Þ BT ðBs ! fÞ ð%Þ ��f=�s ð%Þ
Ds

�D0K� 0:09þ0:22
�0:02 � 0:02 0:04� 0:02� 0:01 0:08� 0:15� 0:01 Ds

�D0K�� (0:07� 0:03� 0:01) (0:03� 0:01� 0:01) (0:08� 0:04� 0:02)

DsD
� �K0 0:09þ0:22

�0:02 � 0:02 0:04� 0:02� 0:01 0:07� 0:13� 0:01 DsD
� �K�0 (0:06� 0:03� 0:01) (0:03� 0:01� 0:01) (0:08� 0:04� 0:02)

D�
s
�D0K� 0:31þ0:74

�0:13 � 0:13 0:09� 0:05� 0:02 0:11� 0:38� 0:02 D�
s
�D0K�� (0:04� 0:02� 0:01) (0:03� 0:02� 0:01) (0:07� 0:03� 0:01)

D�
sD

� �K0 0:29þ0:71
�0:13 � 0:13 0:09� 0:05� 0:02 0:11� 0:38� 0:02 D�

sD
� �K�0 (0:04� 0:02� 0:01) (0:03� 0:02� 0:01) (0:07� 0:03� 0:02)

Ds
�D�0K� 0:30� 0:18� 0:06 0:09� 0:05� 0:02 0:31� 0:21� 0:06 Ds

�D�0K�� (0:18� 0:08� 0:04) (0:08� 0:04� 0:02) (0:24� 0:12� 0:05)
DsD

�� �K0 0:29� 0:18� 0:06 0:09� 0:04� 0:02 0:30� 0:20� 0:06 DsD
�� �K�0 (0:17� 0:08� 0:04) (0:08� 0:04� 0:02) (0:24� 0:11� 0:05)

D�
s
�D�0K� 0:89� 0:59� 0:18 0:17� 0:09� 0:03 0:65� 0:39� 0:14 D�

s
�D�0K�� (0:05� 0:02� 0:01) (0:04� 0:02� 0:01) (0:08� 0:04� 0:02)

D�
sD

�� �K0 0:86� 0:57� 0:18 0:16� 0:09� 0:03 0:64� 0:38� 0:13 D�
sD

�� �K�0 (0:05� 0:02� 0:01) (0:03� 0:02� 0:01) (0:08� 0:04� 0:02)

Total 4:5� 4:4� 0:9a Total (1:9� 0:9� 0:4)a

aThe contribution from CP conjugate modes is included.
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modes with �K. If there is a measurement of modes in these
two categories, it is possible to extract ~gDsJD

ð�ÞK� by fitting

to branching fractions. The ~gDsJD
ð�ÞK� in return could help

the identification of DsJð2700Þ. The current-produced
modes with �K� have branching fractions on the order of
10�3, similar to modes with �K.

The rise of branching fractions in current-produced
modes leads to the increase of ��s. Following the trend
of branching fractions, ��f in Categories 2 and 4 have

significant increases compared with the other two. In this
scenario, the total ��s=�s is

��s=�sðDð�;��Þ
s �Dð�;��Þ

s Þ ¼ ð10:4� 2:5� 2:2Þ%;

��s=�sðDð�Þ
s �Dð�Þ �Kþ �Dð�Þ

s Dð�ÞKÞ ¼ ð4:5� 4:4� 0:9Þ%;

��s=�sðDð�Þ
s �Dð�Þ �K� þ �Dð�Þ

s Dð�ÞK�Þ ¼ ð3:4� 1:6� 0:7Þ%;

��s=�s ¼ ð18:2� 8:5� 3:8Þ%:

(42)

The total ��s induced by modes with �K� almost doubles.
The effect from three-body modes is strengthen by consid-

ering the off-shell decay of �DsJð2700Þ to �Dð�Þ �K�. For total
��s, the central value returns to the one in Scenario I. Total
��s does not alter significantly as the contribution for
modes with �K� is not dominant. The result still agrees
with the short-distance calculation.

The interference in modes with �K� is strong. Similar to
the discussion in Scenario I, if we leave only �DsJð2700Þ
and turn off �Dð�Þ

s poles, the resulting ��f=�s of these

modes is only 0.3%. It is much smaller than the 1.5%
increase found in Scenario III (compared to Scenario II).
Recalling the result in Scenario I, one finds that modes with
�K� allow more constructive interference than modes with
�K. For modes with �K, the interference is restricted by the

on-shell �DsJð2700Þ resonance, which is localized in phase
space. On the contrary, the �DsJð2700Þ resonance becomes
off-shell and hence smooth in phase space for modes with
�K�. It is more coherent to the �Dð�Þ

s pole contributions and
interferes with them better. As in the �K case, the

interference, mediated by the �Dð�Þ �K� pair, is comparable
to the contribution of �DsJð2700Þ itself.
We show that the branching fractions of these modes are

on the order of 10�3 to 10�4. Recall that there is no
corresponding measurement in current-produced modes
with �K� and in all transition modes. For current-produced
modes with �K�, they can be studied in the �Bu;d system in

analogy to modes with �K. These branching fractions
should be measurable with current data collected by the
B factories. On the other hand, �Bu;d systems have different

behaviors in transition modes. Bu;d transit to �Dð�Þ� pairs

instead of to �Dð�Þ �Kð�Þ. The �Dð�Þ� pairs can be produced
either from nearly on-shell �D� or from other on-shell
intermediate resonances. One expects the transition modes
in Bu;d are more enhanced than in Bs. In fact, semileptonic

modes with Bu;d ! �Dð�Þ�u;d transition have been mea-

sured [34]. The branching fractions are around 0.5%,
much larger than the transition modes in this work. For
the purpose of estimating the width difference, ��s can be
bounded by Eq. (15d) when current-produced and transi-
tion modes are measured. Independent of ��s, experimen-
tal studies of these modes will be interesting enough in
their own right.
So far, we fit the decay constant of DsJð2700Þ by its

contribution to �Bu ! Du
�D0K� as measured by Belle. If

future experiments favor the result of BABAR and lower the
contribution of DsJð2700Þ, then the decay constant will be
smaller. In such case, the branching fractions of modes in
Categories 1 and 2 in the pole model become smaller and
may be consistent with experiments without resorting to an

FIG. 4. (a) The first type of four-body diagram. Both the current-produced and the transition parts have a q �q pair. (b) The second type
of four-body diagrams. All q �q pairs lie in current (or in transition for Bs) decays to this mode.
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NR contribution. Nevertheless, the branching fractions of
modes in Categories 3 and 4 will be deficient. Similar to
Scenario 2, one can then add NR contributions in the
timelike form factors of �D� �K to fit the observed branching
fractions. Although there are more NR parameters in �D� �K
form factors, one can extract information in the Dalitz
plots, especially the interference between the continuum
and the DsJð2700Þ resonance. These can be studied after
future measurements are made.

In principle, modes with s�s, such as ð0Þ, !, and ’,
can also contribute to ��s. These modes are difficult to
calculate because they mix current-produced, transition,
and color-suppressed diagrams together. Nonetheless,
we find that the contributions of these modes are small.
The phase space is suppressed and the number of modes is

fewer. We estimate the contribution to ��s by Dð�Þ
s �Dð�Þ

s ð0Þ
modes with color-allowed diagrams only. The effect is less
than 0.7%, which is negligible.

We have shown that the effect of three-body modes
could be sizable. It will be interesting to see if other
high-order modes could have a similar effect on ��s.
Note that the phase space is gradually saturated from
Ds

�D �K mode to D�
s
�D� �K� mode, and the effect of high-

order modes may be limited. Figure 4 shows the diagrams
of possible four-body modes. The first type of diagram (left

diagram in Fig. 4) can produce Dð�Þ �Dð�ÞKð�Þ �Kð�Þ, but the
two K mesons cannot be in excited states simultaneously
because of insufficient phase space. The amplitude of this
diagram can be calculated with the same form factors as in
three-body modes. We roughly estimate the branching
fraction of this type of diagram, which is 2 orders of
magnitude smaller than 3-body modes. Given that the

number of Dð�Þ �Dð�ÞKð�Þ �Kð�Þ modes is 48, only 0.5 times
more than three-body diagrams, the contributions of these
diagrams are still negligible. The second type may involve
pions and could have a larger phase space. We calculate the
dimensionless fraction of phase space area

1

m2
B

A�ðfour-bodyÞ
A�ðthree-bodyÞ< 10�4; (43)

where A� is the phase space area. This ratio strongly
suggests that the effect of four-body modes is negligible.
Even if the branching fractions of current amplitudes are
large, the branching fraction of transition diagrams may
not be as large as in current amplitudes. It should be safe to
estimate ��s up to three-body modes.

V. CONCLUSION

In conclusion, we have estimated the long-distance con-
tribution to ��s of the Bs- �Bs system. First, we revisit the

contributions by two-bodyDð�Þ
s �Dð�Þ

s modes. The��s=�s by
these modes is ð10:2� 2:2� 2:1Þ%, which is a decrease

from the previous result in Ref. [21]. More precise
measurements in the Bs system can help extract more
accurate parameters and improve the theoretical predic-
tion. After includingD�

s0ð2317Þ,Ds1ð2460Þ, andDs1ð2536Þ
resonances, the ��s=�s changes only slightly to
(10:4� 2:5� 2:2Þ%.

For the three-body Dð�Þ
s �Dð�Þ �Kð�Þ modes, factorization

formalism with form factors modeled by �Dð�Þ
s and

�DsJð2700Þ poles and nonresonant (NR) contributions, if
necessary, are used. The branching fractions predicted by
pole models are consistent with experiment in two of the
four categories, while agreement in the remaining modes
with data can be achieved by including NR contribution.
Three-body modes can bypass some difficulties in two-
body modes. In particular, sizable constructive interference

between �DsJ and �Dð�Þ
s poles, which is impossible for two-

body modes, is found.
Our results for ��s in three scenarios are summarized

in Eqs. (39), (40), and (42). Although the three scenarios
have different theoretical assumptions, it is of interest to
note that the resulting ��s values are similar. Thus, we
give the following concluding remarks. First, the total
��s agrees with the short-distance calculation. In other
words, long-distance contributions from b ! c �cs decays
do not enhance ��s (or the real part of �12;s) significantly.

This demonstrates that the short-distance result and the
assumption of OPE are reliable. If the anomalous dimuon
asymmetry with sizable ��s is confirmed in the future,
the enhancement in ��s must have origins from new
physics.
Second, we find that the effect of three-body modes

(�8%) is comparable to two-body modes (�10%). The
assumption that two-body decays saturate ��s receives a
considerable correction. This correction comes from both

DsJð2700Þ and off-shell Dð�Þ
s poles.

We end our conclusion by pointing out some experimen-
tal issues where progress can be made in the near future.
Two-body modes in Bs decays need to be measured with
better precision (see Sec. III A). For three-body modes, up
to now, there has been no measurement of transition
modes, nor of odes with K� in the Bu;d system. Even the

available measurements in current-produced modes withK
contain inconsistencies. In particular, the 2:2� difference
between Belle and BABAR in the B� ! D0 �D0K� mode
has to be resolved. From the tables in Secs. III and IV, we
see that many modes remain to be found or confirmed

experimentally. For example, �Bs ! D�
s
�Dð�Þ �Kð�Þ rates are

predicted at the percent level and may be observed soon.

Note that the modes with �Dð�Þ �K� will be useful for extract-
ing theDsJ strong coupling. Although the measurements of
two- and three-body decay rates are useful for refining the
theoretical prediction and to set a bound on ��s, these
modes are of interest in their own right. We hope that
(Super-) B factories and LHCb can complete the measure-
ments of these missing modes.
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Note added.—After the completion of this paper, we
noticed the work of Ref. [42], which points out that
penguin contributions to Bs ! J=c� could somewhat
reduce the need for enhanced ��s. It also reiterates the
point made in the second reference of Ref. [3] that there is
no indication of large or ill-behaved corrections to the
short-distance expansion (or the heavy-quark expansion).

APPENDIX A: SOME CONVERSION
AND TRANSFORMATION OF

FORM FACTORS

Table IX provides the conversion of our notations to the
usual notations of standard form factors.

If CP is conserved, the form factors of the current-
produced particle pair and antiparticle pair can be related.
For the standard form factors, the transformation reads

f �Ds; �D�s; �Ds1 ¼ þfDs;D�s;Ds1;

f �Ds0; �Ds10 ¼ �fDs0;Ds10 ;

FBs �Ds
0;1 ðq2Þ ¼ �F

�BsDs
0;1 ðq2Þ;

FBs �Ds0
0;1 ðq2Þ ¼ þF

�BsDs0
0;1 ðq2Þ;

FBsð �D�s; �Ds1Þ
0;1;2 ðq2Þ ¼ �F

�BsðD�s;Ds1Þ
0;1;2 ðq2Þ;

FBs �Ds10
0;1;2 ðq2Þ ¼ þF

�BsDs10
0;1;2 ðq2Þ;

FBsð �D�s; �Ds1Þ
3 ðq2Þ ¼ þF

�BsðD�s;Ds1Þ
3 ðq2Þ;

FBs �Ds10
3 ðq2Þ ¼ �F

�BsDs10
3 ðq2Þ;

(A1)

where Ds1 and Ds10 are the CP-even and CP-odd states of
the linear combination of Ds1ð2460Þ and Ds1ð2536Þ. The

relations for form factors in Eq. (21) to Eq. (23) are

FPP
0;1 ðq2Þ ¼ �FPP

0;1 ðq2Þ;
VVP;VVðq2Þ ¼ þVVP;VVðq2Þ;
AVP;VVðq2Þ ¼ �AVP;VVðq2Þ:

(A2)

The transformations for transition form factors from
Eq. (24) to Eq. (26) are

V
�BsPP; �BsVP; �BsVV ¼ �VBsPP;BsPP;BsPP;

A
�BsPP; �BsVP; �BsVV ¼ þABsPP;BsVP;BsVV:

(A3)

Compared with Eq. (A2), there is one additional minus
sign coming from the pseudoscalar Bs meson.

APPENDIX B: POLE CONTRIBUTION
TO FORM FACTORS

For simplicity, we list only the contributions from Ds

and D�
s poles. The contributions of DsJð2700Þ have the

same forms as D�
s , but with different mass, width, and

strong coupling constants.
In the timelikeDK transition form factors,D�

s is the only
possible pole. But there is an ambiguity in the matrix
element hDKjiLeffjD�

inti when D� goes to off shell. The

matrix element is given by

hDðpDÞKðpKÞjiLeff jD�
intðpD� ; "D� Þi

¼ "int 

�
1

2
ðpK � pDÞ þ 
q

�
; (B1)

where 
 is undetermined since the associated term
is zero when D�

s is on shell. According to this matrix
element, the pole contribution to the timelike form factor
becomes

FDK
1 ðq2Þ ¼ gD�DPfD�

int
mint�

q2 �m2
int� þ imint��int�

1

2
;

FDK
0 ðq2Þ ¼ gD�DPfD�

int
mint�

q2 �m2
int� þ imint��int�

�
�
q2 �m2

int�
m2

int�

�
q2

m2
D �m2

K


� 1

2

��
; (B2)

where mint� and �int� are the mass and width of the D�
s

pole, respectively. If 
 is nonzero, ADK
0 ðq2Þwill increase as

q2 increases. Such energy dependence is unnatural for
form factors. We hence set 
 as zero. Once 
 is fixed,
we have the following pole contribution to transition form
factors,

TABLE IX. The conversion of the form-factors notation in this
work to the usual notation in the literature.

Ds Ds0 D�
s Ds1ð2460; 2536Þ

fDð�Þs fDs fDs0 fD�s �fDs1

F
�BsDs
1 F

�BsDs
1 �F

�BsDs0
1

F
�BsDs
0 F

�BsDs
0 �F

�BsDs0
0

F
�BsD�s
3 V

�BsD
�s � mBsþmDs1

mBs�mDs1
A

�BsD
�s0

F
�BsD�s
1 A

�BsD
�s

1
mBs�mDs1

mBsþmDs1
V

�BsD
�s0

1

F
�BsD�s
2 A

�BsD
�s

2
mBsþmDs1

mBs�mDs1
V

�BsD
�s0

2

F
�BsD�s
0 A

�BsD
�s

0 V
�BsD

�s0
0
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V
�BsDK

m3
Bs

¼
�

gD�DP

q2 �m2
int� þ imint��int�

�
1

2

2V
�BsD

�

mBs
þmint�

;

A
�BsDK
1

mBs

¼
�

gD�DP

q2 �m2
int� þ imint��int�

�
q02

2ðq02 þ q2 �m2
Bs
Þ
�
q0ðpD � pKÞ �m2

D �m2
K

m2
int�

qq0
�

�
�
mBs

þmint�
q02

A
�BsD

�
1 þ

�
1�m2

Bs
�m2

int�
q02

�
A

�BsD
�

2

mBs
þmint�

� 2mint�
q02

A
�BsD

�
0

�
;

A
�BsDK
2

mBs

¼
�

gD�DP

q2 �m2
int� þ imint��int�

��1

2
ðmBs

þmint�ÞA �BsD
�

1 ;

A
�BsDK
0

mBs

¼
�

gD�DP

q2 �m2
int� þ imint��int�

��
q2

m2
D �m2

K

�
m2

D �m2
K

2m2
int�

ðmBs
þmint�ÞA �BsD

�
1

þ
�
q0ðpD � pKÞ �m2

D �m2
K

m2
int�

qq0
�

A
�BsD

�
2

mBs
þmint�

� 2
A

�BsDK
1

mBs

�
þ A

�BsDK
2

mBs

�
;

(B3)

where q ¼ pD þ pK is the total momentum of transited mesons, and q0 ¼ p �Bs
� q is the momentum of weak current.

Other modes receive contribution from both Ds and D�
s poles. The timelike form factors of D�K are

2VD�Kðq2Þ
mD� þmK

¼
� �gD�D�PfD�

int
mint�

q2 �m2
int� þ imint��int�

�
;

AD�K
1 ðq2Þ ¼ 0;

AD�K
2 ðq2Þ ¼ 0;

2mD�AD�K
0 ðq2Þ ¼

�
gD�DPfDint

q2 �m2
int þ imint�int

�
q2;

(B4)

where mintð�Þ and �intð�Þ are the mass and width of the Dð�Þ
s poles, respectively. The �Bs to D�K transition form factors

induced by Dð�Þ
s poles are given by

V
�BsD

�K
2

m2
Bs

¼
�

gD�D�P

q2 �m2
int� þ imint��int�

�
ðmBs

þmint�ÞA �BsD
�

1 ;

V
�BsD

�K
1

m4
Bs

¼
�

gD�D�P

q2 �m2
int� þ imint��int�

�
A

�BsD
�

2

ðmBs
þmint�Þ ;

V
�BsD

�K
0

m2
Bs

¼
� �gD�D�P

q2 �m2
int� þ imint��int�

�
ð2mint�ÞA �BsD

�
0 � ðq2 �m2

int�Þ
V

�BsD
�K

1

m4
Bs

;

A
�BsD

�K
3

m4
Bs

¼
�

gD�D�P

q2 �m2
int� þ imint��int�

�
2V

�BsD
�

ðmBs
þmint�Þ ;

A
�BsD

�K
1

m2
Bs

¼
� �gD�DP

q2 �m2
int þ imint�int

�
A

�BsD
1 ;

A
�BsD

�K
0

m2
Bs

¼
�m2

Bs
�m2

int

m2
Bs
� q2

�� �gD�DP

q2 �m2
int þ imint�int

�
A

�BsD
0 �

�
q2 �m2

int

m2
Bs
� q2

�
A

�BsD
�K

1

m2
Bs

:

(B5)

The DK� and D�K form factors are parametrized in the same way. The pole parts of the DK� timelike form factors are
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2VDK� ðq2Þ
mD þmK�

¼
� 4fD�DVfD�

int
mint�

q2 �m2
int� þ imint��int�

�
;

ADK�
1 ðq2Þ ¼ 0;

ADK�
2 ðq2Þ ¼ 0;

2mK�ADK�
0 ðq2Þ ¼ �2q2

�
gDDVfDint

q2 �m2
int þ imint�int

�
:

(B6)

And the transition form factors derived from the pole model are written as

V
�BsDK�
2

m2
Bs

¼
� �4fD�DV

q2 �m2
int� þ imint��int�

�
ðmBs

þmint�ÞA �BsD
�

1 ;

V
�BsDK�
1

m4
Bs

¼
� �4fD�DV

q2 �m2
int� þ imint��int�

�
A

�BsD
�

2

ðmBs
þmint�Þ ;

V
�BsDK�
0

m2
Bs

¼
�

4fD�DV

q2 �m2
int� þ imint��int�

�
ð2mint�ÞA �BsD

�
0 � ðq2 �m2

int�Þ
V

�BsDK�
1

m4
Bs

;

A
�BsDK�
3

m4
Bs

¼
� �4fD�DV

q2 �m2
int� þ imint��int�

�
2V

�BsD
�

ðmBs
þmint�Þ ;

A
�BsDK�
1

m2
Bs

¼
�

2gDDV

q2 �m2
int þ imint�int

�
A

�BsD
1 ;

A
�BsDK�
0

m2
Bs

¼
�m2

Bs
�m2

int

m2
Bs
� q2

��
2gDDV

q2 �m2
int þ imint�int

�
A

�BsD
0 �

�
q2 �m2

int

m2
Bs
� q2

�
A

�BsDK�
1

m2
Bs

:

(B7)

Finally, the form factors from Dð�Þ
s poles are

VD�K�
0 ðq2Þ

ðmD� þmK� Þ2 ¼
� �4fD�DVfint
q2 �m2

int þ imint�int

�
;

VD�K�
1 ðq2Þ

ðmD� þmK� Þ2 ¼ 0;

VD�K�
2 ðq2Þ

ðmD� þmK� Þ2 ¼ 0;

AD�K�
11 ðq2Þ ¼

�
2gD�D�Vmint�fint�

q2 �m2
int� þ imint��int�

�
;

AD�K�
12 ðq2Þ ¼

� �4fD�D�Vmint�fint�
q2 �m2

int� þ imint��int�

�
;

AD�K�
2 ðq2Þ ¼

� �2fD�D�Vmint�fint�
q2 �m2

int� þ imint��int�

�
;

AD�K�
01 ðq2Þ ¼

� �2gD�D�Vmint�fint�
q2 �m2

int� þ imint��int�

�
q2

m2
int�

þ
�

4fD�D�Vmint�fint�
q2 �m2

int� þ imint��int�

�
q2

m2
int

þ AD�K�
11 ðq2Þ þ AD�K�

12 ðq2Þ;

AD�K�
02 ðq2Þ ¼

�
4fD�D�Vmint�fint�

q2 �m2
int� þ imint��int�

��
1

2
� q2 �m2

D� þm2
K�

2m2
int�

�
q2

ðmD� þmK� Þ2 þ
�
m2

D� �m2
K�

q2

�
AD�K�
2 ðq2Þ:

(B8)

And the transition form factors are given by the following three equations. The first part is the form factors from the vector
current:
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V
�BsD

�K�
3

m3
Bs

¼
�

4fD�D�V

q2 �m2
int� þ imint��int�

�
2V

�BsD
�

mBs
þmint�

;

V
�BsD

�K�
2

m3
Bs

¼
�

2gD�D�V

q2 �m2
int� þ imint��int�

�
2V

�BsD
�

mBs
þmint�

;

V
�BsD

�K�
1

m3
Bs

¼
�

4fD�D�V

q2 �m2
int� þ imint��int�

��
� 2V

�BsD
�

mBs
þmint�

�
;

V
�BsD

�K�
01

m3
Bs

¼
� �4fD�DV

q2 �m2
int þ imint�int

�
A

�BsD
1 ;

V
�BsD

�K�
00

m3
Bs

¼
� �4fD�DV

q2 �m2
int þ imint�int

�
A

�BsD
0 :

(B9)

The second part originates from axial currents:

A
�BsD

�K�
62

mBs

¼
�

4fD�D�V

q2 �m2
int� þ imint��int�

�
1

2
ðmBs

þmint�ÞA �BsD
�

1 ;

A
�BsD

�K�
61

mBs

¼
�

4fD�D�V

q2 �m2
int� þ imint��int�

��
�
�
�q0pK� þ qq0 
 qpK�

m2
int�

�
A

�BsD
�

2

mBs
þmint�

þ qpK�

2m2
int�

ðmBs
þmint�ÞA �BsD

�
1

�

� 1

2

�
1�m2

D� �m2
K�

q2

�
A

�BsD
�K�

62

mBs

;

mBs
A

�BsD
�K�

60 ¼
�

4fD�D�V

q2 �m2
int� þ imint��int�

��
�q0pK� þ qq0 
 qpK�

m2
int�

��
�ðmBs

þmint�ÞA �BsD
�

1 þ 2mint�A
�BsD

�
0

� ðq02 � ðm2
Bs
�m2

int�ÞÞ
A

�BsD
�

2

mBs
þmint�

�
� ðq02 � ðm2

Bs
� q2ÞÞA

�BsD
�K�

61

mBs

; (B10)

A
�BsD

�K�
3

mBs

¼
� �2gD�D�Vmint�fint�
q2 �m2

int� þ imint��int�

�
ðmBs

þmint�ÞA �BsD
�

1 ;

A
�BsD

�K�
4

mBs

¼
�

4fD�D�V

q2 �m2
int� þ imint��int�

�
ðmBs

þmint�ÞA �BsD
�

1 ;

A
�BsD

�K�
21

m3
Bs

¼
� �2gD�D�Vmint�fint�
q2 �m2

int� þ imint��int�

� �A
�BsD

�
2

mBs
þmint�

;

A
�BsD

�K�
20

mBs

¼
� �2gD�D�Vmint�fint�
q2 �m2

int� þ imint��int�

��
�ðmBs

þmint�ÞA �BsD
�

1

� ðq02 � ðm2
Bs
�m2

int�ÞÞ
A

�BsD
�

2

mBs
þmint�

þ 2mint�A
�BsD

�
0

�
� ðq02 � ðm2

Bs
� q2ÞÞA

�BsD
�K�

21

m3
Bs

; ; (B11)

and

A
�BsD

�K�
11

m3
Bs

¼
�

4fD�D�V

q2 �m2
int� þ imint��int�

� �A
�BsD

�
2

mBs
þmint�

;

A
�BsD

�K�
10

mBs

¼
�

4fD�D�V

q2 �m2
int� þ imint��int�

��
�ðmBs

þmint�ÞA �BsD
�

1 � ðq02 � ðm2
Bs
�m2

int�ÞÞ
A

�BsD
�

2

mBs
þmint�

þ 2mint�A
�BsD

�
0

�

� ðq02 � ðm2
Bs
� q2ÞÞA

�BsD
�K�

11

m3
Bs

; (B12)
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A
�BsD

�K�
01

m3
Bs

¼
� �2gD�D�Vmint�fint�
q2 �m2

int� þ imint��int�
þ 4fD�D�V

q2 �m2
int� þ imint��int�

�� �1

2m2
int�

ðmBs
þmint�ÞA �BsD

�
1 þ qq0

m2
int�

A
�BsD

�
2

mBs
þmint�

�

þ 1

2q2

�
A

�BsD
�K�

3

mBs

þ A
�BsD

�K�
4

mBs

�
;

A
�BsD

�K�
00

mBs

¼
� �2gD�D�Vmint�fint�
q2 �m2

int� þ imint��int�
þ 4fD�D�V

q2 �m2
int� þ imint��int�

�
qq0

m2
int�

�
�
ðmBs

þmint�ÞA �BsD
�

1 þ ðq02 � ðm2
Bs
�m2

int�ÞÞ
A

�BsD
�

2

mBs
þmint�

� 2mint�A
�BsD

�
0

�
� ðq02 � ðm2

Bs
� q2ÞÞA

�BsD
�K�

01

m3
Bs

:

(B13)

APPENDIX C: BASIC DECAY CONSTANTS
AND FORM FACTORS

The values of basic parameters are summarized in this
section. We take Wilson coefficients c1 ¼ 1:081 and c2 ¼
�0:190 with naı̈ve factorization. This corresponds to

a1 ¼ 1:02� 0:10; (C1)

where we estimate a 10% uncertainty. The decay constants
of Du;d and form factors of �Bu;d ! Du;d are given in

Ref. [29].

For calculating �Bs ! Dð�Þ
s transition form factors, we

use the same method as in Ref. [29]. The Dð�Þ
s decay

constants are taken to be

fDs
¼ 260� 13 MeV; fD�

s
¼ 260� 13 MeV: (C2)

The decay constant of Ds is consistent with the measured
values in Ref. [34]. The decay constant ofD�

s should be the
same asDs in the heavy-quark limit. Using these two decay
constants as constraints, we calculate the transition form
factor, which is parametrized as

F
�BsD

ð�Þ
s ðq2Þ ¼ Fð0Þ

1� aq2 þ bq4
: (C3)

The three parameters Fð0Þ, a, and b of different form
factors are given in Table X.

[1] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D
82, 032001 (2010); Phys. Rev. Lett. 105, 081801 (2010).

[2] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D, 84,
052007 (2011).

[3] A. Lenz and U. Nierste, J. High Energy Phys. 06 (2007)
072; updates in arXiv:1102.4274.

[4] D. Asner et al. (Heavy Flavor Averaging Group
Collaboration), arXiv:1010.1589; online update at
[http://www.slac.stanford.edu/xorg/hfag].

[5] Z. Ligeti, M. Papucci, G. Perez, and J. Zupan, Phys. Rev.
Lett. 105, 131601 (2010).

[6] N. G. Deshpande, X. G. He, and G. Valencia, Phys. Rev. D
82, 056013 (2010).

[7] C.W. Bauer and N.D. Dunn, Phys. Lett. B 696, 362
(2011).

[8] C.-H. Chen, C.-Q. Geng, and W. Wang, J. High Energy
Phys. 11 (2010) 089.

[9] A. J. Buras, M.V. Carlucci, S. Gori, and G. Isidori, J. High
Energy Phys. 10 (2010) 009.

[10] A. Lenz et al., Phys. Rev. D 83, 036004 (2011).
[11] A. Dighe, A. Kundu, and S. Nandi, Phys. Rev. D 82,

031502 (2010).

TABLE X. The transition form factors for �Bs ! Dð�Þ
s used in this work.

Fð0Þ a b

F
�BsDs

0 0:67� 0:03 0.58 0.06

F
�BsDs

1 0:67� 0:03 1.24 0.46

V
�BsD

�
s 0:77� 0:04 1.42 0.68

A
�BsD

�
s

0 0:65� 0:03 1.37 0.63

A
�BsD

�
s

1 0:62� 0:03 0.77 0.11

A
�BsD

�
s

2 0:59� 0:03 1.27 0.56

LONG-DISTANCE CONTRIBUTION TO ��s . . . PHYSICAL REVIEW D 84, 074037 (2011)

074037-23

http://dx.doi.org/10.1103/PhysRevD.82.032001
http://dx.doi.org/10.1103/PhysRevD.82.032001
http://dx.doi.org/10.1103/PhysRevLett.105.081801
http://dx.doi.org/10.1103/PhysRevD.84.052007
http://dx.doi.org/10.1103/PhysRevD.84.052007
http://dx.doi.org/10.1088/1126-6708/2007/06/072
http://dx.doi.org/10.1088/1126-6708/2007/06/072
http://arXiv.org/abs/1102.4274
http://arXiv.org/abs/1010.1589
http://www.slac.stanford.edu/xorg/hfag
http://dx.doi.org/10.1103/PhysRevLett.105.131601
http://dx.doi.org/10.1103/PhysRevLett.105.131601
http://dx.doi.org/10.1103/PhysRevD.82.056013
http://dx.doi.org/10.1103/PhysRevD.82.056013
http://dx.doi.org/10.1016/j.physletb.2010.12.039
http://dx.doi.org/10.1016/j.physletb.2010.12.039
http://dx.doi.org/10.1007/JHEP11(2010)089
http://dx.doi.org/10.1007/JHEP11(2010)089
http://dx.doi.org/10.1007/JHEP10(2010)009
http://dx.doi.org/10.1007/JHEP10(2010)009
http://dx.doi.org/10.1103/PhysRevD.83.036004
http://dx.doi.org/10.1103/PhysRevD.82.031502
http://dx.doi.org/10.1103/PhysRevD.82.031502


[12] B. A. Dobrescu, P. J. Fox, and A. Martin, Phys. Rev. Lett.
105, 041801 (2010).

[13] J. K. Parry, Phys. Lett. B 694, 363 (2011); P. Ko and J.-h.
Park, Phys. Rev. D 82, 117701 (2010); J. Kubo and A.
Lenz, ibid. 82, 075001 (2010).

[14] Y. Bai and A. E. Nelson, Phys. Rev. D 82, 114027
(2010).

[15] B. Dutta, Y. Mimura, and Y. Santoso, Phys. Rev. D 82,
055017 (2010).

[16] S. Oh and J. Tandean, Phys. Lett. B 697, 41 (2011).
[17] C.-H. Chen and G. Faisel, Phys. Lett. B 696, 487

(2011).
[18] W.-S. Hou and N. Mahajan, Phys. Rev. D 75, 077501

(2007); see also G.W.-S. Hou, in Proceedings of
TOP2010, Bruges, Belgium, arXiv:1007.2288.

[19] D0 Collaboration, D0 Report No. 6098-CONF; the com-
bined result is given by D0 Report No. 6093.

[20] G. Ciurgiu, Proc. Sci., ICHEP2010 (2010) 236; CDF
Collaboration, CDF Report No. 10206.

[21] R. Aleksan, A. Le Yaouanc, L. Oliver, O. Pene, and J. C.
Raynal, Phys. Lett. B 316, 567 (1993).

[22] I. Dunietz, R. Fleischer, and U. Nierste, Phys. Rev. D 63,
114015 (2001).

[23] C.-K. Chua, W.-S. Hou, S.-Y. Shiau, and S.-Y. Tsai, Phys.
Rev. D 67, 034012 (2003); C.-K. Chua, W.-S. Hou, and S.-
Y. Tsai, ibid. 70, 034032 (2004).

[24] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 68,
092001 (2003).

[25] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 74,
091101 (2006); J. Dalseno et al. (Belle Collaboration),
ibid. 76, 072004 (2007).

[26] J. Brodzicka et al. (Belle Collaboration), Phys. Rev. Lett.
100, 092001 (2008).

[27] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 77,
011102 (2008).

[28] P. del Amo Sanchez et al. (BABAR Collaboration), Phys.
Rev. D 83, 032004 (2011).

[29] H.-Y. Cheng, C.-K. Chua, and C.-W. Hwang, Phys. Rev. D
69, 074025 (2004).

[30] C.-L. Lee, M. Lu, and M. B. Wise, Phys. Rev. D 46, 5040
(1992).

[31] T.-M. Yan et al., Phys. Rev. D 46, 1148 (1992); 55, 5851
(E) (1997).

[32] R. Casalbuoni et al., Phys. Rep. 281, 145 (1997).
[33] H.-Y. Cheng, C.-K. Chua, and A. Soni, Phys. Rev. D 71,

014030 (2005).
[34] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,

075021 (2010); and 2011 partial update for the 2012
edition [http://pdg.lbl.gov].

[35] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 80,
092003 (2009).

[36] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985); D.
Ebert, R.N. Faustov, and V.O. Galkin, Eur. Phys. J. C 66,
197 (2010); T. Matsuki, T. Morii, and K. Sudoh, Eur. Phys.
J. A 31, 701 (2007); A.M. Badalian and B. L. G. Bakker,
Phys. Rev. D 84, 034006 (2011).

[37] P. Colangelo, F. De Fazio, S. Nicotri, and M. Rizzi, Phys.
Rev. D 77, 014012 (2008).

[38] G.-L. Wang, J.-M. Zhang, and Z.-H. Wang, Phys. Lett. B
681, 326 (2009).

[39] F. E. Close, C. E. Thomas, O. Lakhina, and E. S. Swanson,
Phys. Lett. B 647, 159 (2007); X.-H. Zhong and Q. Zhao,
Phys. Rev. D 81, 014031 (2010); arXiv:0911.1856; D.-M.
Li, P.-F. Ji, and B. Ma, Eur. Phys. J. C 71, 1582 (2011).

[40] T. Feldmann, P. Kroll, and B. Stech, Phys. Lett. B 449, 339
(1999).

[41] S. Esen et al. (Belle Collaboration), Phys. Rev. Lett. 105,
201802 (2010).

[42] A. J. Lenz, Phys. Rev. D 84, 031501 (2011).

CHUN-KHIANG CHUA, WEI-SHU HOU, AND CHIA-HSIEN SHEN PHYSICAL REVIEW D 84, 074037 (2011)

074037-24

http://dx.doi.org/10.1103/PhysRevLett.105.041801
http://dx.doi.org/10.1103/PhysRevLett.105.041801
http://dx.doi.org/10.1016/j.physletb.2010.10.011
http://dx.doi.org/10.1103/PhysRevD.82.117701
http://dx.doi.org/10.1103/PhysRevD.82.075001
http://dx.doi.org/10.1103/PhysRevD.82.114027
http://dx.doi.org/10.1103/PhysRevD.82.114027
http://dx.doi.org/10.1103/PhysRevD.82.055017
http://dx.doi.org/10.1103/PhysRevD.82.055017
http://dx.doi.org/10.1016/j.physletb.2011.01.030
http://dx.doi.org/10.1016/j.physletb.2011.01.010
http://dx.doi.org/10.1016/j.physletb.2011.01.010
http://dx.doi.org/10.1103/PhysRevD.75.077501
http://dx.doi.org/10.1103/PhysRevD.75.077501
http://arXiv.org/abs/1007.2288
http://dx.doi.org/10.1016/0370-2693(93)91045-O
http://dx.doi.org/10.1103/PhysRevD.63.114015
http://dx.doi.org/10.1103/PhysRevD.63.114015
http://dx.doi.org/10.1103/PhysRevD.67.034012
http://dx.doi.org/10.1103/PhysRevD.67.034012
http://dx.doi.org/10.1103/PhysRevD.70.034032
http://dx.doi.org/10.1103/PhysRevD.68.092001
http://dx.doi.org/10.1103/PhysRevD.68.092001
http://dx.doi.org/10.1103/PhysRevD.74.091101
http://dx.doi.org/10.1103/PhysRevD.74.091101
http://dx.doi.org/10.1103/PhysRevD.76.072004
http://dx.doi.org/10.1103/PhysRevLett.100.092001
http://dx.doi.org/10.1103/PhysRevLett.100.092001
http://dx.doi.org/10.1103/PhysRevD.77.011102
http://dx.doi.org/10.1103/PhysRevD.77.011102
http://dx.doi.org/10.1103/PhysRevD.83.032004
http://dx.doi.org/10.1103/PhysRevD.83.032004
http://dx.doi.org/10.1103/PhysRevD.69.074025
http://dx.doi.org/10.1103/PhysRevD.69.074025
http://dx.doi.org/10.1103/PhysRevD.46.5040
http://dx.doi.org/10.1103/PhysRevD.46.5040
http://dx.doi.org/10.1103/PhysRevD.46.1148
http://dx.doi.org/10.1103/PhysRevD.55.5851
http://dx.doi.org/10.1103/PhysRevD.55.5851
http://dx.doi.org/10.1016/S0370-1573(96)00027-0
http://dx.doi.org/10.1103/PhysRevD.71.014030
http://dx.doi.org/10.1103/PhysRevD.71.014030
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://pdg.lbl.gov
http://dx.doi.org/10.1103/PhysRevD.80.092003
http://dx.doi.org/10.1103/PhysRevD.80.092003
http://dx.doi.org/10.1103/PhysRevD.32.189
http://dx.doi.org/10.1140/epjc/s10052-010-1233-6
http://dx.doi.org/10.1140/epjc/s10052-010-1233-6
http://dx.doi.org/10.1140/epja/i2006-10287-1
http://dx.doi.org/10.1140/epja/i2006-10287-1
http://dx.doi.org/10.1103/PhysRevD.84.034006
http://dx.doi.org/10.1103/PhysRevD.77.014012
http://dx.doi.org/10.1103/PhysRevD.77.014012
http://dx.doi.org/10.1016/j.physletb.2009.10.045
http://dx.doi.org/10.1016/j.physletb.2009.10.045
http://dx.doi.org/10.1016/j.physletb.2007.01.052
http://dx.doi.org/10.1103/PhysRevD.81.014031
http://arXiv.org/abs/0911.1856
http://dx.doi.org/10.1140/epjc/s10052-011-1582-9
http://dx.doi.org/10.1016/S0370-2693(99)00085-4
http://dx.doi.org/10.1016/S0370-2693(99)00085-4
http://dx.doi.org/10.1103/PhysRevLett.105.201802
http://dx.doi.org/10.1103/PhysRevLett.105.201802
http://dx.doi.org/10.1103/PhysRevD.84.031501

