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Nonleptonic two-body decays of charmed mesons
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Nonleptonic decays of charmed mesons into two pseudoscalar mesons or one pseudoscalar meson and
one vector meson are studied on the basis of a generalized factorization method considering the resonance
effects in the pole model for the annihilation contributions. Large strong phases between different
topological diagrams are considered in this work, simply taking the phase in the coefficients a;. We
find that the annihilation-type contributions calculated in the pole model are large in both of the PP and
PV modes, which make our numerical results agree with the experimental data better than those previous

calculations.
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L. INTRODUCTION

Nonleptonic decays of charmed mesons are very inter-
esting as they can provide useful information on flavor
mixing, CP violation, and strong interactions [1]. They
may also shed light on any new physics signal through
D° — D° mixing and rare decays [2-7]. The CLEO-c and
two B factories experiments have given many new results
on this subject and more are expected soon from the BES-
IIT experiment. Besides, theoretical studies have been in
progress for decades.

With the heavy quark effective theory, many QCD-
inspired approaches, such as the QCD factorization ap-
proach [8], the perturbative QCD approach [9], and the
soft-collinear effective theory [10], successfully describe
the hadronic B decays. However, this is not the case for
the D meson decays. These approaches do not work well
here, due to the mass of charm quark, of order 1.5 GeV,
which is not heavy enough for a sensible heavy quark
expansion, neither light enough to apply the chiral
perturbation theory.

After decades of studies, the factorization approach is
still one of the effective ways to deal with the two-body
charmed meson decays [11]. However, it is well known
that some difficulties exist in the naive factorization ap-
proach: the Wilson coefficients a; (u) and a,(u) of effec-
tive operators are renormalization scale and ys-scheme
dependent; and the color-suppressed processes are not
calculated well due to the smallness of a,, etc. In order
to solve these problems, the so-called generalized factori-
zation approach was proposed [12]. The Wilson coeffi-
cients a,(u) and a,(u) are not from direct calculation
any more but are effective coefficients to accommodate
the important nonfactorizable corrections [13]. In these
naive or generalized factorization approaches, there is al-
most no strong phase. But large strong phases have been
found from D decay experiments. A corresponding large
relative strong phase between the factorization coefficients
a, and a, has been discussed in [14,15].
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Unsatisfied by the shortcomings of the factorization
approach, the model-independent diagrammatic approach,
with various topological amplitudes extracted from the
data, is recently applied to two-body hadronic D decays
[16-19]. They use SU(3) symmetry in their analysis to
avoid model calculations. All the parameters are fitted
from experiments to give a better agreement with the
experimental data but with less predictive power. More
precise predictions are limited in this approach due to the
uncontrolled SU(3) breaking effect [15]. These analyses
also show that large annihilation-type contributions are
needed to explain the data, which cannot be calculated in
the naive or generalized factorization approaches. The kind
of pure annihilation type D meson decays also needs to be
systematically analyzed [20].

In another aspect, the hadronic picture description of
nonleptonic weak decays has a longer history, because of
their nonperturbative feature. Based on the idea of vector
dominance, which is discussed on strange particle decays
[21], the pole-dominance model of two-body nonleptonic
decays is proposed [22]. Beyond the vector dominance
pole, this model also involves scalar, pseudoscalar, and
axial-vector poles. For simplicity, only the lowest-lying
poles are considered. This model has already been applied
to charmed meson and bottom meson decays [22,23],
where it is approved that this model is more or less equiva-
lent to the factorization approach in the first order
approximation.

In this work, we will use the generalized factorization
approach but with a relative strong phase between the
Wilson coefficients a; and a, to accommodate the nonfac-
torizable contributions. For the uncalculable annihilation-
type contributions, we use the pole model. In this case,
we can really calculate most of the important contribu-
tions in the hadronic D decays, which are demonstrated
in the model-independent diagrammatic analysis [19].

The outline of this paper is as follows. In Sec. II, we
give the formulas of this work, showing the generalized
factorization approach and the pole-dominance model. In
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Sec. III, our results are given and compared to the experi-
mental data and those of the diagrammatic approach and
the calculations considering the final-state interaction of
nearby resonances effects. Summary and conclusions are
followed.

II. FORMALISM

A. The factorization approach

First we begin with the weak effective Hamiltonian H
for the AC = 1 transition [24]:

G
H F
eff — \/-2'
where Vg 1s the corresponding Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements, C,, are the Wilson
coefficients. The current-current operators O, , are

Vekm(C10y + C,0,) + Hee,, ()

Oy =i,y,(1 = ¥5)q25 - G3py*(1 — ¥s)cq,
0 =iy, (1 = ¥5)qaa - G3py*(1 — ¥s)cg,

where a, 8 are color indices, and g, 3 are d or s quarks.
The color-favored emission diagram corresponding to
D — PP decays, with P representing a pseudoscalar me-
son, is shown in Fig. 1(a). Under the factorization hypothe-
sis, the transition matrix element of hadronic two-body
charmed meson decays is factorized into two parts [11]:

2)

G i}
(P Py| H oID) = T;VCKMal<P2|u')’M(1 = ¥5)4210)

X (Pi1g;y*(1 — ys)c|D). 3)

Similarly, the contribution of the color-suppressed diagram
shown in Fig. 1(b) is given as

(P Py| H D) = \/ZVCKMa2<P 11g37,.(1 = v5)q2(0)

X (P,liay*(1 — ys)c|D), 4
where
P,
D Py )
(a) (b)
V(P)
D P(V) D P(V)
(c) (d)
FIG. 1. Emission-type diagrams in the factorization approach.

PHYSICAL REVIEW D 84, 074019 (2011)

) = Cal) + R .
) = C1(u) +

correspond to the color-favored tree diagram (7") and the
color-suppressed diagram (C), respectively, in the naive
factorization, with the number of colors N, = 3. They
are assumed to be universal and process-independent in
the native factorization approach. The current matrix ele-
ments in Egs. (3) and (4) are evaluated in terms of tran-
sition form factors and decay constants. For D — PP
decays, the form factor is defined as follows:

(P()1G3y,(1 — y5)clD(p))
2 _ 2
= [(p +h), — %QM]F?_'P(QZ)
2 _ 2
+ I Py FD=P(g), ©6)

where ¢ = p — k, and F; are the corresponding transition
form factors. The decay constants fp of pseudoscalar
mesons are defined as

PDIg17,.(1 = v5)q210) = if pq,,. @)

In terms of decay constant and transition form factors,
the decay amplitude of Figs. 1(a) and 1(b) are then

(P Pyl H | D)y

Gr 2\ pD—Pi(, 0
_l\/iVCKMalsz(mD mp )Fg ' (mp,),  (8)

(P Py| H oD

.Gp D—P,
= lﬁvcmvlazfp1 (mp —mp )Fy *(mp). (9

The diagrams for D — PV decays, with V denoting a
vector meson, are shown in Figs. 1(c) and 1(d). If the out-
emitted particle is a pseudoscalar meson, the matrix
element of Fig. 1(c) is

G
(PVIH D) = T;VCKMCZI<P|’/_VYM(1 — ¥5)4,|0)
X (VIgzy*(1 — ys)c|D). (10)

The D — V transition form factors are usually defined as
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V()13 . (1 = y5)clD(p))
2

= ————————€
mD+mV

(. _€°¢q -
- l<8u - qu,)(mD + my)APV(q?)

£ pPkV(g?)

nrpo

*

e — m2 e q

+il(p+k), ——L v ) AD=V (g2
(0 + 0, =g, ) g
Dmy(e*q)

—liqu L g,A= (g?) (11)

where " is the polarization vector of the vector meson,
and A; and V are corresponding transition form factors.
Utilizing the form factor definitions we get the result for
Eq. (10):

(PV|H D) = _VCKMalmeVAD V(m3)2(g* - pp).

V2
12)

If a vector meson is out emitted, the matrix element of
Fig. 1(c) is

(PV|H D) = \/EVCKMCIKVWY“(] — ¥5)4,10)

X (Plgsy*(1 = ys)c|D)

G .
- VCKMa1fvva?ﬁP(m%/)2(8 : PD),

2
(13)

where the decay constants fy, of vector mesons are
defined as

V(@G yu(l - fvmyen(q).  (14)

For the color-suppressed diagram, Fig. 1(d), we have
similar formulas as Egs. (12) and (13), but with the Wilson
coefficient changed from a; to a,.

As mentioned in the Introduction, the Wilson coeffi-
cients a; and a, are renormalization-scale dependent in
the naive factorization approach and it fails to describe the
color-suppressed processes with too small a, = —0.1. So
the generalized factorization method is proposed to include
the nonfactorizable contributions [13],

¥5)q210) =

o = Cylp) + €, m)(— + mm)

C

g =€) + G5+ el

c

(15)

where the terms y; characterize the nonfactorizable cor-
rections involving vertex corrections, hard spectator inter-
actions, final-state interactions, resonance effects, etc.
These y;(u) will compensate the scale and scheme depen-
dence of the Wilson coefficients, so that a;’s are physical
now. Without confusion, we will drop the superscript “‘eff”
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in the effective Wilson coefficients for convenience in the
following discussions. In the large-N, approach, the 1/N,
terms are discarded [25], equally with a universal non-
factorizable term y, = y, = —1/N,, hence,

a;~Cy(m,)=1.274, a,~C,(m.)=—0.529. (16)

This implies a null relative strong phase between the two
kinds of contributions. However, the experimental data tell
us that there should be a large strong phase between a; and
a,. On the other hand, the existence of relative phases is
reasonable for the importance of inelastic final-state inter-
actions of the D meson decays, in which the on-shell
intermediate states contribute imaginary parts. Therefore,
we consider a relative phase between the coefficients a;
and a, in this work, so that

ap = |(11|, a) = |az|€i5, (17)

where we set a; real for convenience.

B. Pole-dominance model

The annihilation-type diagrams are neglected as an ap-
proximation in the factorization model. However, consid-
erable contributions come from the weak annihilation
diagrams in the D decays, which can be demonstrated by
the difference of lifetime between D° and D*. Hence, we
will calculate them in a single pole-dominance model. For
simplicity, only the lowest-lying poles are considered in
the single-pole model. Taking D° — 77" K*~ as an ex-
ample, the annihilation-type diagram in the pole model is
shown in Fig. 2(a). D° goes into K° via the weak interac-
tion in Eq. (1) shown in terms of quark lines in Fig. 2(b),
and then decays into 77" K*~ through the strong interac-
tion. Angular momentum should be conserved at the weak
vertex and all conservation laws be preserved at the strong
vertex. So it is a pseudoscalar meson as a resonant state for
D — PV decays. The weak matrix element is evaluated in
the vacuum insertion approximation [23],

_ G
<K0|g-[eff|D0> - \/gvjy udaEV<K0|s’y,u(1 - 75)d|0>

X {0liy*(1 — ys5)c|D°)
Gr
= ViV, ab’ m3, 18
NG a9t fxfpmp (18)

where the subscript E of the Wilson coefficient aLV de-

notes a W-exchange diagram for D — PV, otherwise a%"

]
S

» ] H K+ §

(a) (0)

FIG. 2. Annihilation diagrams in the pole model.
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corresponds to W-annihilation contributions. In fact, the
effective Wilson coefficients of the W-annihilation dia-
grams and W-exchange diagrams have the same form as
a; and a, in Eq. (15), that is,

ag = Cy(u) + Cz(,U«)<NL + XE(M)),
‘ (19)

ay, = Cy(u) + Cl(,U«)<NL + )(A(M)),

c

where x4 g) represents the nonfactorizable contributions in
the annihilation (exchange) process. Since the nonfactor-
izable contributions in these kinds of diagrams are large
and with relatively different strong phases, we use different
symbols to avoid confusing in our approach for these
collective effective Wilson coefficients as ay and a,, re-
spectively. Strong phases relative to the emission diagrams
are considered in the Wilson coefficients. The effective
strong coupling constant of K° to 7*K*~ is defined
through the Lagrangian

L ypp = igyppV*(P3,P), (20)

where gypp is dimensionless. Inserting the propagator of
the intermediate K° meson, the decay amplitude is
Ko oy _ GF s PV
<7T K | efle > - ﬁ VcsvudaE foDgK*Kw
2
m *
X ﬁz(s " Pp)- (21)
D K

Similarly, in D — PP decays, it is a scalar meson as a
resonant state. The effective strong coupling constant is
described by

L spp = —8sppmsSPP, (22)
where myg is the mass of the scalar meson. Besides, the
scalar meson decay constant of the vector current is
defined as

SPN72Y w110y = fsp,. (23)

Therefore, the corresponding matrix element is

(PP|H |D) = _i& VCKMaA(aE)foDgSPPm~
7 =
(24)

As a convenience of reference, the various decay for-
mulas of individual decay modes are collected in the
Appendix. Note that some of the intermediate resonances
are unstable particles which have large width and there-
fore contribute large relative phases. These phases are
absorbed in the effective Wilson coefficients a, and ap
for convenience.
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III. NUMERICAL ANALYSIS

A. Input parameters

In order to calculate the emission-type diagrams in the
factorization approach, we need to know the transition
form factors and meson decay constants. The decay con-
stants of 77, K, D, and D, are taken from the particle data
group (PDG) [26], others are from [27], all of which are
summarized in Table I. There exist many models to
parametrize the transition form factors and their ¢ de-
pendence [28—46]. In this work we shall use the dipole
model [28]:

F(0)
F(g%) = . —, 25
) (1_011,”% +a2m‘£ ) @

pole pole

where my. is the mass of the pole. The corresponding
. ¢ 0]

poles are D* for Fé?f‘D" DK D for F(’;fD.\-n , D for
ADP Do and D, for AY K'Di¢ The transition form
factors and «; parameters of D to 7 and K are taken
from the recent CLEO-¢ measurement [29], D — 7, are
from [30], and others from [28], all of which are shown in
Table II.

For the final states involving i or 7/, it is convenient to
consider the flavor mixing of 7, and 7, with a mixing

angle ¢,
( n ) (c?s¢> — sin¢g )( up ) 26)
n sing  cos¢ s

where 7, and 7, are defined by

1 _
N, = —z(m't + dd), N, = 53. (27)

5

A recent experimental measurement from the KLOE col-

laboration gives the mixing angle ¢ = (40.4 = 0.6)° [47].

The decay constants of i or i’ are defined by
Olay,ysuln(p)) = ifsp,.
Oldy,ysdIm(p)) = ifip,.
Olsy,yssln(p) = if5pu
©lay,ysuln'(p) = ifypp
Oldy,ysdln'(p)) = if P

<0|§7,u753|77/(p)> = if;/p,u.’

(28)

where
TABLE I. Meson decay constants (MeV). Those of 7, K, D,

and D, are from PDG [26], others are from [27].

fa fx fo ke  fo o fp  Ip
130 156 216 220 187 215 207 258
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TABLE II. The D meson transition form factors and dipole
model parameters a1 ,. The parameter a; = a, + 1if only «a; is
shown in the table. The form factors and «; parameters of D to 7
and K are from [29], D — m, from [30], and others from [28].

F(I))‘n' F{)n’ F(I))K F]DK FlDSK FlDS s
F() 0.67 0.67 0.74 0.74 072  0.78
@, 0.21 0.24 0.30 0.33 020 0.23
A()Dp Ag(u AODI( AODSK* A(L))Sd’
F(0) 0.66 0.66 0.76 0.67 0.73
a, 0.36 0.36 0.17 0.20 0.10
FODs—>K FODs—'m(M,,) FODs*n.;(M,,/) Ff)—*nq F(I))_.m
F() 0.72 0.78 0.78 0.69 0.69
@ 0.41 0.33 0.21 1.03 0.39
a, 0.70 0.38 0.76 0.29 0.01

1 1
fo=fa=plfh Sy =ly =gl @)

With the ansatz in [48], we have

In = fqcosd, fy = —fssing,
fy =Ffosing, fy = ficosg.

It is assumed that f, ; obtained from the 7, , components
of the wave functions are independent of the meson in-
volved. We use that f, = (1.07 £0.02)f, and f, =
(1.34 = 0.06) f,, from [48].

The form factors of D — n, in Table II denote that of
D — m,; 43- ot D — VIE(W_‘ + dd), hence,

(30)

FDs—n1 = — pDs—n; sing,

3D

1
FP=1 = — FP="% cos¢p,
V2

1
e . . ! _
Fb—n =—2FD 4 sing, FPs=n" = FDPs=7s cosp.

(32)

In order to calculate the annihilation-type diagrams in
the pole model, we have to know the effective strong
coupling constants between the intermediate state and
two final states. Some of them are obtained directly from
experiments. Some others are related to the known ones
using SU(3) symmetry. Although the intermediate states
are a little off shell, in the pole model they are used as
on-shell resonant states. So these on-shell strong couplings
are used to calculate the annihilation diagrams in an
approximation.

There are many scalar mesons discovered by the experi-
ments. The existence of the lightest scalar nonet with the
mass smaller than or close to 1 GeV has been a problem for
many years [26]. It is still controversial that they are
primarily the four-quark bound states or two-quark scalar
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states. In this work, we use K;(1430), a(1450), f,(1370),
and f,(1500) as intermediate mesons in the pole model for
D — PP decays. The decay constant of K is calculated in
several methods, such as the finite-energy sum rule [49],
the generalized Nambu-Jona-Lasinio model [50], and so
on. We shall use the results in [49],

fr; = (42 £2) MeV. (33)

For all other scalar mesons, we take the same value of
decay constants as K in the flavor SU(3) limit for
simplification.

The corresponding effective strong coupling constant
between K; and the final states of K7 is evaluated by
8k:kw = 2.7 from the decay of K;(1430)° — 7~ K*.
Other couplings of ggpp are of the same value in the
SU(3) limit. For D — PV decays, the intermediate states
are pseudoscalar mesons with relatively large decay con-
stants shown in Table I. The corresponding effective
strong coupling constants are g,,, = 4.2 obtained from
pt—oata® or p'—>wtm, gk, =46 from
K*(892)° — 7K, and ggxx = 4.5 from ¢ — KTK~.
For decays involving n or n’, we assume that g, = 4.2,
gs = 4.6, and g, = 4.5, where g, couple to the states
with only u or d quarks, g, to two of the states with s
quark, and g, to all the three mesons with s quark, so that
some effects of SU(3) breaking are considered.

B.D — PP
For D — PP decays, the decay rate is

P_1ap, (34)

I'(D— PP) =
( ) 8mm3,

where p is the momentum of either meson in the

final frame, p =

N3 = Omp, + mp )2 mdy = (mp, — mp,)?)/2mp.

As is done in the naive factorization model, the Wilson
coefficients a;’s are universal and process independent,
except with a relative strong phase for different topological
diagrams. Because of the important nonperturbative effect
of QCD in the charm system, a; and a, should deviate a lot
from the naive factorization approach. In order to give the
most suitable results, we input the following values by
hand, which also used the hint from the fit of diagrammatic
approach:

state in the center-of-mass

a, = 1.25 + 0.10,

a, = (0.85 = 0.10)¢/153+10°
a, = (0.90 = 0.10)¢ (100%10°
ap = (2.4 = 0.1)e63+10°

(35)

where a, is the coefficient of the color-favored emission
tree diagrams, a, for the color-suppressed emission
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TABLE III. Branching ratios for Cabibbo-favored decays of D — PP(%). The predicted
branching ratios with both annihilation- and emission-type contributions (all) and with only
emission-type contributions (emission) are given together with the experimental data [51], the
recent results from the diagrammatic approach [19], and the calculations considering the final-

PHYSICAL REVIEW D 84, 074019 (2011)

state interaction (FSI) effects of nearby resonances [52] as comparison.

Modes Br(FSI)  Br(diagrammatic)  Br(emission) Br(all) Br(exp)
Dt — 77K° 2.51 3.08 £0.36 3.1 20 3.1 20 3.074 = 0.096
DO — 7K~ 4.03 391 £0.17 5.8+0.7 39+ 1.0 3.891 =0.077
D% — 79K0 1.35 2.36 = 0.08 2.1£0.6 2.4+0.7 2.38 = 0.09
DY — K% 0.80 0.98 = 0.05 0.9*0.2 0.8 0.2 0.96 = 0.06
D% — KOq' 1.51 1.91 = 0.09 0.3%0.2 1.9+£0.3 1.90 = 0.11
D — K*K° 4.79 2.97 £0.32 5.1+09 3.0+ 09 2.98 = 0.08
Di —atn 1.33 1.82 £0.32 3.8+04 1.9 +0.5 1.84 £0.15
Di — oty 5.89 3.82 £0.36 29*+0.6 4.6 £ 0.6 3.95 +0.34
Di — 7t ad 0 0 0 <0.06

diagrams, a, for the W-annihilation diagrams, and ag for
the W-exchange diagrams. Large relative strong phases
are considered in the a;, due to unneglected inelastic final-
state interactions in the D decays. These values of a; and
a, are not far away from the large N, limit, except that we
use quite large strong phases, which are required by the
experimental data. As is discussed in the diagrammatic
approach [19], the W-annihilation contributions with
helicity-suppressed effect are much smaller than those of
the W-exchange diagrams. Therefore we use a much
larger coefficient of a than the W-annihilation coefficient
a,. Besides, we ignore the disconnected hairpin diagrams,
SE and SA, as discussed in [19].

The predicted branching ratios with annihilation-type
contributions (all) and without annihilation-type contribu-
tions (emission) together with experimental measurements

of charmed mesons decay into two pseudoscalar mesons
are listed in Tables III, TV, and V, for the Cabibbo-favored
decays, the singly Cabibbo-suppressed decays, and the
doubly Cabibbo-suppressed decays, respectively. There
are many sources of theoretical uncertainties in the calcu-
lations. Since the decay constants of pseudoscalar and
vector mesons are taken from experiments with very small
errors, our numerical results are not very sensitive to the
variations of meson decay constants. The branching ratios
are truly sensitive to the coefficients of a; and a,, espe-
cially to their relative strong phases. Since the systematic
errors from theoretical models are usually difficult to esti-
mate, we show uncertainties at the tables only from the
parameters a; in Eq. (35). For comparison we also show the
recent results from the diagrammatic approach [19] and
those considering final-state interaction effects of nearby

TABLE IV. Same as Table. III except for singly Cabibbo-suppressed decays of D —

PP(X1073).

Modes Br(FSI) Br(diagrammatic) Br(emission) Br(all) Br(exp)
Dt — ozt 1.7 0.88 = 0.10 1.0 0.5 1L.0X05 1.18 £0.07
Dt — KTK° 8.6 5.46 = 0.53 1.3+ 1.6 8.4+ 1.6 6.12 = 0.22
D" — 7ty 3.6 1.48 = 0.26 31+ 1.0 1.6 = 1.0 3.54 = 0.21
Dt — gty 7.9 3.70 = 0.37 3.7+0.7 55=*0.8 4.68 = 0.29
DO — 7t~ 1.59 2.24 +0.10 3.0£04 22 +0.5 1.45 = 0.05
DO — 7070 1.16 1.35 = 0.05 0.7*=0.2 0.8 £0.2 0.81 = 0.05
D’ — K"K~ 4.56 1.92 = 0.08 4.4+ 0.5 3.0*=0.8 4.07 £0.10
D" — K°K° 0.93 0 0 03+0.1 0.64*0.08
D’ — 709 0.58 0.75 = 0.02 0.7 =02 1.1 =03 0.68 = 0.07
DY — 70y 1.7 0.74 = 0.02 0.6 =0.1 0.6 £0.2 0.91 £0.13
D% — nn 1.0 1.44 = 0.08 1.3+0.4 1.3+0.4 1.67 = 0.18
D — nn' 22 1.19 = 0.07 0.04 = 0.04 1.1 =01 1.05 = 0.26
D — mOK* 1.6 0.86 = 0.09 0.9+0.2 0.5+0.2 0.62 = 0.23
D — 7t KO 4.3 2.73 +0.26 4.1+0.5 2.8 0.6 2.52 +0.27
D —K*™n 2.7 0.78 + 0.09 0.8 =0.5 0.8 +0.5 1.76 = 0.36
D{ — K*'n' 52 1.07 = 0.17 0.7=*=0.3 1.4+0.4 1.8 £0.5
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TABLE V. Same as Table. III except for doubly Cabibbo-suppressed decays of D —

PP(X1074).

Modes Br(diagrammatic) Br(emission) Br(all) Br(exp)
Dt — 7tKO 1.98 £0.22 2.8 0.5 1.7 0.5

Dt — 7K™ 1.59 £ 0.15 3.0+04 22+04 1.72 £0.19
DT —K'n 0.98 £ 0.04 1.3+0.2 1.2+0.2 1.08 = 0.17%
DT — K7/ 091 =0.17 0.4 =01 1.0 x0.1 1.76 = 0.22°
D® — 79K° 0.67 = 0.02 0.5*=02 0.6 0.2

DY — 7 K" 1.12 = 0.05 23+0.3 1.6 0.4 1.48 £ 0.07
DY — K% 0.28 £0.02 0.23 = 0.05 0.22 = 0.05

D? — KOy’ 0.55 = 0.03 0.08 = 0.06 0.5+0.1

Dy - K*K° 0.38 = 0.04 0.7 + 0.4 0.7 + 0.4

“Data from [53].
"Data from [53].

resonances [52]. It is clear that our results with large
annihilation-type contributions agree with experiments
much better than that of Ref. [52]. For the Cabibbo-favored
channels, which are the input data for y? fit in the dia-
grammatic approach, we have comparable results with the
diagrammatic approach [19]. For other channels, we have
better agreement with experiments than the diagrammatic
approach. The reason is mostly due to the SU(3) breaking
effects, which had been fully neglected in the diagram-
matic approach.

The branching ratio of the pure annihilation process
D} — 7 7Y is vanished in our pole model. The resonant
state that annihilates to 7" 70 is a scalar meson (0™ 1),
whose isospin could be 0, 1, or 2. However, isospin-0
would be ruled out because of charged final states, and
isospin-2 is forbidden for the leading order AC = | weak
decay. For the case of isospin-1, its G parity would be odd,
which conflicts to a system of two pions whose G parity is
even. Therefore, no resonant states can be produced and
then annihilate to 77 7°. In another word, no annihilation
diagrams contribute to D — 77 7% and D* — 7 7%, In
fact, this kind of contribution is forbidden from the isospin
symmetry of 7" and 7 as identical particles. Simply, two
pions cannot form an s-wave isospin 1 state, because of the
Bose-Einstein statics.

The pure annihilation process D° — K°K°, with non-
zero experimental data, also demonstrates the important
annihilation-type contributions. There are two kinds of
contributions to this mode with dd and s5 produced from
weak vertex, respectively. In the flavor SU(3) limit, the rate
vanishes due to the cancellation of CKM matrix elements,
as predicted in the diagrammatic approach. Therefore, the
effect of the SU(3) breaking is the dominant contribution
here. In our pole model, we use f,(1370) and f,(1500) as
two different poles with the dd and s5 components, re-
spectively, to describe the corresponding SU(3) breaking
effect. We also refer to the argument of the long distance
resonance effect in [19,54], the 7-channel final-state inter-
action in [55], the nonfactorizable chiral loop contributions

in [56], and the SU(3) breaking effect in the effective
Wilson coefficients in [15] for this channel.

Large branching ratios with %’ in the final states are both
measured and predicted, which are larger than those with 7
in most cases, such as D° decays into K°n, K%/ and D}
into 7" n, 7" 7/, although the phase spaces with n’ are
smaller than those with 7. For 7, the contributions from
the components of dd and s§ are destructive due to the
minus sign in the mixing matrix of Eq. (26) and the positive
mixing angle;' while they are constructive for 7’. Besides,
large W-exchange contributions dominate most 7’ modes,
especially for D — n%’ and D° — K°%’, which demon-
strates large annihilation-type contributions directly again.
We also refer to this issue with K;;(1430) as a resonance in
the spacelike form factors in the factorization approach in
[57], some effects of the inelastic final-state interactions
in [58], the final-state phases of the amplitudes in [16], and
the two-gluon anomaly effects in [59].

C. D — PV decays
The decay rate of D — PV decays is

(D — PV) =

P_Siap (36)

87myp o

by summing over all the polarization states of the vector
mesons.

We assume that the coefficients a; are universal and
process independent for D — PV, but they are different
from those of D — PP as discussed in [14,19]. Their
absolute values are larger than those of D — PP because
the soft final-state interactions make more effects on
D — PV decays. In our calculations, they are used as

'The theoretical and phenomenological estimates for mixing
angle ¢ is 42.2° and (39.3 = 1.0)°, respectively [48].
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Branching ratios for Cabibbo-favored decays of D — PV(%). The predicted rates

with only emission-type contributions (emission) and with both annihilation- and emission-type
contributions (all) are shown in the table, compared with the experimental data [26], the fitted
results from the diagrammatic approach [19] in which only the (A, A1) solution is quoted, and
the results considering final-state interaction (FSI) effects of nearby resonances [52].

Modes Br(FSI) Br(diagrammatic) Br(emission) Br(all) Br(exp)

D' — K p* 11.19 10.8 £ 2.2 122 £ 1.8 8.8 22 10.8 £ 0.7

D° — K%p0 0.88 1.54 + 1.15 0.7 0.5 1.7+0.7 1.32%012

DY — 70K 3.49 2.82 +0.34 23*0.7 29*1.0 2.82 £0.35

D’ — 7 K*™ 469 5.91 = 0.70 3.8+0.7 3.1+ 1.0 5.687088

DY — nK*0 0.51 0.96 = 0.32 0.7%0.2 0.7x0.2 0.96 = 0.30

DY — y'K*0 0.005 0.012 = 0.003 0.003 = 0.001 0.016 = 0.005 <0.11

D’ — K¢ 2.16 2.26 = 1.38 0.6 £0.5 25*0.7 222 +0.12

DY — K% 0.90 0.868 = 0.139 0 0.8 =02 0.868 = 0.060

Dt — 7t K0 0.64 1.83 = 0.49 1.4+1.3 1.4+13 1.56 £0.18

DY — K%+ 11.77 9.2 £6.7 15.1 £3.8 15.1 =3.8 9.4x20

D — KTK* 3.86 5619 42 *1.7 3.90 £0.23

D{ — K'K** 3.37 1.7 £0.7 1.0 £0.6 54*+1.2

D{ — qp* 9.49 8.3+ 13 83+ 13 8908 [60]

D — n'p* 2.61 3.0£05 3.0+05 122 2.0

Di — 7t 2.89 4.38 £0.35 43*0.6 43 *0.6 45=*04

Di — 7t p° 0.080 0 04 =x04 0.02 = 0.012

Df — 7'p* 0.080 0 0.4 +04

D} — 7w 0.0 0 0 0.23 + 0.06
alV =132 *0.10, these tables. It is easy to see that our results with the
4l = (0.75 + 0, 10)ei160=107 Znnlhlla'tlon—type COHtI‘lbu'tIOIlS agree w1th the. experlmental

(37) ata. This means that the single-pole contribution dominates

alV = (0.12 £ 0.10)e’345*107,
abV = (0.62 £ 0.10)’238=10",

Similarly to the PP modes, large relative strong phases
due to inelastic final-state interactions are considered in
the a;. Again, the contributions from W-annihilation
diagrams are smaller than the W-exchange ones.
Besides, the relative strong phase between a!V and afV
is in accordance with the results from the diagrammatic
approach [14,19].

Our prediction of branching ratios of the Cabibbo-
favored, the singly Cabibbo-suppressed, and the doubly
Cabibbo-suppressed D — PV decays are shown in
Tables VI, VII, and VIII, respectively. The results in the
third column (emission) in each of these tables are the
predictions of rates with only the emission-type processes;
while the results in the fourth column (all) also include the
annihilation-type contributions. It is obvious that the
annihilation-type contributions are of the same order as
the emission-type diagrams, since the intermediate states
here in the pole model are pseudoscalar mesons with rela-
tively larger decay constants than those scalar mesons of the
D — PP case. Again, for theoretical uncertainty estimation,
we use only those from the parameters @; shown in Eq. (37),
as illustration. For comparison, we also list the results of the
diagrammatic approach [19] and the experimental date in

the annihilation-type contribution in most D — PV decay
channels. For example, although the D® — K°¢ channel
has no emission-type contribution, with vanishing branch-
ing ratio in the factorization approach, our pole model gives
the right branching ratios agreeing with the experiment.
This also confirms the calculation done in the perturbative
QCD approach [20]. Besides, some of the SU(3) flavor
symmetry breaking effects are considered in this work
since the decay constants, transition form factors, and
effective strong coupling constants are involved.

There is no resonant state contributing to the
W-exchange diagram of D° — 7%p° in the pole model,
because a 7° would violate the C parity, similarly to the
case of D° — n(n’)w, n¢. Besides, the single-pole anni-
hilation diagrams cannot contribute to the D — pn, mw
decays because of G parity violation. The isospin of reso-
nant state for pn or ww is one, so the G parity of the
intermediate state is odd since it is a pseudoscalar meson.
However, the G parity of p and 7 are both even, and that of
7 and o are both odd, so the total G parity of the final
states is even. Therefore, no resonant states are available
for the decays of D mesons into pn and 7w. It is even
worse for the pure annihilation process D" — 7" w, since
its decay rate is predicted to be zero in the single-pole
model, but it is not small in the experiment. This has
already been discussed that this channel may be dominated
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TABLE VII. Same as Table. VI except for singly Cabibbo-suppressed decays of
D — PV(X1073).

Modes Br(FSI) Br(diagrammatic)  Br(emission) Br(all) Br(exp)
D’ — 7 p* 8.2 8.34 = 1.69 7.4+13 102+ 1.5 9.8 +04
D — 7t p~ 6.5 3.92 + 0.46 1.8 0.5 3.5+0.6 497 +0.23
DY — 70p° 1.7 2.96 = 0.98 1.4+ 0.6 1.4 +0.6 3.73 = 0.22
D' — K K*" 45 4.25 +0.86 55+0.8 47+0.8 4.38 +0.21
DY — K*K*™ 28 1.99 + 0.24 2.0+0.3 1.6 0.3 1.56 + 0.12
D’ — KOK*0 099 0.29 +0.22 0 0.16 = 0.05 <0.9
DY — K°K*0  0.99 0.29 + 0.22 0 0.16 = 0.05 <1.8
D’ — 7w 0.08 0.10 = 0.18 0.08 = 0.02 0.08 + 0.02 <0.26
DY — 70¢ 1.1 1.22 +0.08 1.0*03 1.0+0.3 0.76 + 0.05
DY — no 0.57 0.31 +0.10 0.23 + 0.06 023 +0.06  0.14 + 0.05
DY — 75p° 0.24 1.11 + 0.86 0.05 + 0.01 0.05 + 0.01

DY — n/p® 0.10 0.14 + 0.02 0.08 + 0.02 0.08 + 0.02

D' — nw 1.9 3.08 + 1.42 1.2+03 1.2 +0.3 221 +0.23
D' — nw 0.001 0.07 £0.02  0.0001 + 0.0001 0.0001 + 0.0001

Dt — 7t pl 1.7 0.4+ 0.4 0.8 0.7 0.83 +0.15
Dt — 70p* 3.7 53=*1.7 3.5+ 1.6

DY —- K"K 25 51+ 1.1 41=*1.0 3.767030
DT — K°K** 170 14.0 + 2.5 124 +24 32+ 14
Dt — qnpt 0.002 0.4+ 0.4 0.4 +0.4 <7

DT — n'p* 1.3 0.8 +0.1 0.8 0.1 <5

Dt — 7t 5.9 6.21 + 0.43 51+ 1.4 51+ 14 5.44 +0.26
DT - 7tw 0.35 03*03 0.3*0.3 <0.34
D - 7*K* 33 23+0.8 1.5+0.7 2.25 £ 0.39
Dy — 7°K** 029 0.4 +0.2 0.1 *0.1

D —=K*"p® 24 1.6 +0.6 1.0 £ 0.6 2.7+05
D = K%* 195 9.7 +22 75+2.1

D — nK*t 024 1.0+ 04 1.0 + 0.4

D — n'K*" 024 04+02 0.6 +0.2

Di - K'w 0.72 1.1 0.7 1.8 +0.7 <2.4
Df - K'¢ 0.15 03=*03 03+0.3 <0.6

by the final-state rescattering via quark exchange in
[19,54], and by hidden strangeness final-state interactions
in [61]. Besides, the pure annihilation mode D} — 7" p°®
is predicted much larger in the pole model than the experi-
ment data. The contributions from the two diagrams in this
channel are constructive since the minus sign in the nor-
malization of p° is compensated by the asymmetric space
wave function of the two final states which are in the
P-wave state. These two channels make such trouble that
we fail to find a reasonable solution of Ap and Ay, and
predict the PV modes with the W-annihilation contribu-
tions in the diagrammatic approach [19]. Hence, further
discussions are still needed for these two channels.

D¢ — pn' is predicted much smaller than the mode of
D¢ — pm, but the experimental branching ratios of the
former is larger. This is a puzzle that the phase space of the
former mode is much smaller than the latter, so its branch-
ing ratio should be smaller. In fact, the experimental mea-
surement of D§ — p7’ [62] is already too old. It is already
questioned by the PDG [26], since this branching fraction

(12.5 = 2.2)% considerably exceeds the recent inclusive
1’ fraction of (11.7 = 1.8)%.

IV. SUMMARY

We have calculated the branching ratios for the two-
body hadronic decays of charmed mesons into PP and PV
using the generalized factorization approach for the
emission-type diagrams and the pole-dominance model
for the annihilation-type diagrams. Relative strong phases
between different topological diagrams, which are impor-
tant in the charmed decays, are considered in this work.
Most of our predicted branching fractions are in accor-
dance with the experimental data. Besides, compared to the
naive and generalized factorization models ever before, the
results in this work are much better since we have consid-
ered the annihilation-type diagrams and the relative strong
phases between diagrams.

We find that the annihilation-type contributions in the
pole model are large for both PP and PV modes, which is
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TABLE VIII. Same as Table VI except for doubly Cabibbo-suppressed decays of D —
PV(X107%).

Modes Br(diagrammatic) Br(emission) Br(all) Br(exp)
D’ — 7 K** 3.59 £0.72 3.7*0.6 2.7 0.6 3.541180
D% — 70K*0 0.54 =0.18 0.6 0.2 0.8 0.3

D’ — K*p~ 1.45 £ 0.17 1.1 +0.2 0.9+0.3

DY — K%p0 0.91 = 0.51 0.2+0.1 0.5%02

D% — K° 0.58 = 0.40 0.2 +0.1 0.7 +£0.2

D’ — K% 0.06 = 0.05 0 0.20 = 0.06

D% — nK*0 0.33 = 0.08 0.18 = 0.05 0.17 = 0.05

DY — 5/K*0 0.0040 = 0.0006 0.001 £ 0.001 0.004 = 0.001

DY — 7t K*0 3.0+ 1.0 22+09 3.75 £0.75
Dt — 7oK 4.7*0.9 4.0+09

DT — K" p° 1.4 +04 1.0 0.4 2105
Dt — K%+ 09 +04 0.5*04

Dt — K* 1.4 *+0.5 1.8 £0.5

Dt — K"¢ 0 0.2+0.2

Dt — nK** 1.5£0.2 1.4£02

Dt — n'K** 0.013 £ 0.006 0.020 = 0.07

D& — KTK*0 0.20 = 0.05 0.2+02 0.2+0.2

D} — KOK** 1.17 = 0.86 2.3+0.6 2.3+0.6

also indicated by the difference between the lifetime of D*
and D. Comparing with the model-independent diagram-
matic approach, we reproduce their results with our spe-
cific model considering some SU(3) breaking effects.
Furthermore, we get more predictions in many D — PV
decay channels, which are absent in the diagrammatic
approach [19]. Most of the results have a better agreement
with experimental data than previous calculations.
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APPENDIX: INDIVIDUAL FORMULAS FOR
VARIOUS DECAY CHANNELS OF D MESONS

The different contribution formulas for Cabibbo-favored
decays of D — PP are listed as
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Gp m3, m,
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( ) I—= \/z cs ¥ ud aZfK(mD mK) (mK) aAglfoDS mDS _ mgo

2

. . 1 , ) mpm
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2
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2 mp, — Mg,

where fg and g; = 2.7 are, respectively, denoted as the decay constant of scalar mesons and effective strong coupling
constant between the intermediate state and final states in the limit of SU(3) symmetry. Some phases from the propagators
of the intermediate resonances are absorbed in the effective Wilson coefficients a, and ay.

The formulas for singly Cabibbo-suppressed decays of D — PP are shown as
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The formulas for doubly Cabibbo-suppressed decays of D — PP are listed as
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The formulas for Cabibbo-favored decays of D — PV are shown as
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‘A(D+ — T K*O) = \/—GFVchude (a VfWADK*(mZ) +ta VfK*F?w(m%(*))(S* . pD);

JZL(D-'— - KO + \/_GFVcsVudm ( 2VfKA0Dp(mK) + a; prF]DK(m%))(S* ' pD),
_ m?
ADE — KTK0) = V2G, ;‘sVud<a§Vgststmzifsmz + angK*fK*Fsz(mﬁ(*»(s* Py
Dg T
2

_ s « mD *
JZL(D; — K'K™) \/_GF cs ud(aA gsfn'ngi_ + az mK*fKADSK (m%())(s ‘PDS),
DS T

ADE = p™) = —V2G ViV al m, £, FLS™ (m2) sing (6" - pp,),
ADE = 0'p*) = N2GpViV,galVm, [, FS™ (m2) cosd(e* - pp,),

ADS = 7 §) = V2GVEViaal my f A0 (m3)(E” - i),
2
« Mb .

‘A(D;— - 7T+p0) = 2GFVCSVL¢da£ngf7TfDS 2752(8 ’ PDS):

mpg — Mz

m3,

A(D;‘— - 77.0p+) = 2GFV:‘vVuda§ngf7rfDS ﬁ(S* : pDS)r

mpg — Mz

AD{ — 77 w) =0, (AS5)
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where the effective strong coupling constants between the intermediate state and the final states for D — PV are g, = 4.2,
gs = 4.6, and g,, = 4.5. The formulas for singly Cabibbo-suppressed decays of D — PV are shown as

2

ADY — 7tpT) = _GFVchudfﬂ(aE 84/p Dm —V2a}"m ADp(mz))(S " Pp),
A’ — 7 p*) = _GFVLqud<aE gqfﬂ'fD o — " 2 —V2alv pprlDW(mi))(S* " Pp)
AD® = 7p0) = — %v:dv Ja ([ FP7 () + fo AL (m2))(e" - pp),
PO = KK =26V sl mﬁmg,) +af m e FP0R))(e"  po),

— £ fS fs/ * *
AMDY— KTK*™) = \/EGFVCSVM(aEVg”fDm%( 5 _7’ >+ — _7’ 5 ) + alVmge fxAPK (m%))(e* - pp),
mp —my  mp —m,

L £ * f * f‘ fs/
J,Zl(DO — KK O) = \/EGFagvam%)(Vchudgs m2 _77'm2 + Ve Vis8ss ) _7/ ) + ) _7/ ) ( pD)
D m D 7 D p
0 0 0 PV 2 [y fa * I4 f;ﬂ
ﬂ(D — K°K )= \/EGFaE fDmD VL-qudgs 2 2 + Vcsvusgss 2 2 + 2 2 ( pD)
my, — ms mp —my o mp — my,

Gr . .
AD® — 7w) = =LV Vgal  m, (£, FP7(m) — f,AR®(m2))(e" - pp),

\/icd

AD" = 70¢) = GpVisVias m¢f¢>FD”(m5>)(8* " Pp)
JZL(DO - 77¢) GFVcsvusaz m¢f¢ q(m¢) COS¢(8 pD)!

1
ﬂ(DO - 77P0) = GFagvmp<[ :dvudffriy + V:svusfs ]ADp(mz) B~ V*qudfp "]q (mZ) COS(b)(S PD);

V2

* * s l *
AD’ — 7/p°) = GFaé’Vmp([V;.qudf‘;/ + Vi Vs /A0 (m2,) = \/EVCd ViafpF ""(mz)sm¢)(8 “ Pp)

* * Y [0 1 * D B
JZL(DO - 770)) = GFagvmw([Vchudf% + Vcrvurfn]A()D (mi,’) +—= COS¢Vchudwa1 nq(m%)))(g ’ pD)’

\/i
A(D’ = n'w) = Gra5¥'m ([V*qudf + VEVi 3 JAGC (m? ) + — \/— sin@ Ve Viaf oF (W%))(s* * Pp).

A(D+ - 7T+p0) = GFvchudmp(za,{:vgqfﬂ'fD m2 _Dm2 — 4 prFDﬂ—(mz) - allavar Dp(’”ﬂ'))( pD)
D T
2

* m T *
AT — 7" = GFVCqudmp(Za/ngqfwamzi_sz — atVf, FP7(mp) — af fonDp(m%r))(S " Pp),
D T
m
AWD* = KK = 3G (ViVuael¥esf oo s

+ V:svusal mK*fKADK (mK))(S pD),
mp

74 * * m2 * *
A(D" — K°K*) = \/EGF(Vchudafl)Vgsfﬂ'fDmZi_DmZ + Vcsvusafvml(*fl(*FIDK(m%(*))(S " Pp)
D T

A(D* — np*) = GFmp(ﬁafmoDP(m%)[ Viafd + VEV, 31+ VEV,galV £ FL ™ (m2) cosd)(e* + pp),

ﬂ(D+ - 77//)+) GFm (\/—agvADp(m /)[V qudfd + V:vvusf‘:?’] + V:d udalvprl " (m2) Sln(ﬁ)(S* : pD)’
ADY — 7 ¢) = 26 ViV sal my f , FPT(m3)(&" - pp),
AD* = 7 w) = GpViyViamo (a5 fo FP7(mg) + ai¥ f-AG® (m3))(e”™ - pp),
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2
s s mp % * *
ﬂ(D;‘— - 7T+K 0) = \/EGF(vcsvusaﬁvgstst ﬁ + Vcdvudafva*fwA([))SK (m%,))(s ! pDS);
Ds K
m?, DKt
ﬂ(D;'— - WOK*+) = GF(V:sVusagngfoDsﬁ - :dvudagva*fons (’/'/l%r))(“":< : st)x
Ds I4
mp DK
AWDE = K*9°) = Gr(V Vit 8o f o,y 2oy = VigViaa £, PPN 02) )(o* - ),
Dy K
2
% mD % M
AD§ = Kp") = V2G| Vi Va8 f i f oy —5—— 5 + VigViaat 'm, £, F7  (m2) )(e* - pp,),
mp, — mK
2

mp . .
m2 _Sm2 (gS cos¢p — \/zgss Sln¢) - \/zafva*fK*Flem smqﬁ]
K

Dy

J,Zl(D; - 77K*+) = GF<V?sVus|:a§VfoDS

2 g AP ()Y Va4 + V:;wa:,])@* o)),
2

mp . D,
m(gs sing + v2g,, cosgp) + V2aVmye fr- FS™ cos¢:|

Dy

AD} — y'K*) = Gp(v:fsvm[aﬁ,’VfoDs

+ \/Eagva*AODSK (m%’)[vjdvudf,‘,[f + V:vvuxfil/])(‘g* ' pDS)r

2
A} — K* ) = V26V, Vo alV sy gp K () + AP (m2) \(&" - pp.)
S FVesVus\ da gsstfDS m2 — m az mqﬁfd) m¢ a m¢fK 0 my * Ppg)
Ds K
m3
ﬂ(D; - K+w) = GF(V:sVusa,{:vgstfDS ﬁ + V:dvudagvmwfwFlDSK(mg)))(g* : pDS)- (A6)
Ds K

The formulas for doubly Cabibbo-suppressed decays of D — PV are shown as

2

— ik * m T *
A’ — 7 K*) = \/EGFVCqus(agvgstfDﬁ + alVmg fx FP (mf(*))(s " Pp)

D K
A(D° — 7°K*) = GrV; Vus(az mg- f g FDﬁ(mK ) — aE Vesfkfp )(8 “ Pp),
D

‘/,ZL(DO - K+p7) = \/_Z—GFV:;[Vust(afvmpAon(m%() - agvgst 2 _ )(8 PD),
D
m2

le(DO - KOPO) = GFV:qust(agvmpAODp(m%() - Cl rfD b 2 )(‘;f|< : pD);

my

* I’}’l2 s
AMD° - K'w) = GFVchust(aéi’VmwA@“’(m?g) —az’g.fp ﬁ)(s " Pp),
D~ Mk

2
A" — K'%) = NAG V7 Vsl gstfDLﬂs“pD),

mD K

ki * D *
A(D° — nK*0) = GV, us(aE fxkfp——"5 (gs cosp — V2g,, sing) + abVmy-fxF m’(mi*)COSd’)(S “Pp)h
mpy =
. . mj . D . .
A’ — n'K*) = GFVchus(agvafDﬁ(gs sing + 2g,, cosp) + abVmy- fi F) "1(m2.) smd))(s' “Pp),
) k

2

AD* — 7K = \/_GFV:qus(aA &fxfp +af mK*fK*FDﬂ(mK*))(S “Pp),

Dmk
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