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We consider new-physics (NP) contributions to the decay t ! b �bc. We parametrize the NP couplings

by an effective Lagrangian consisting of 10 Lorentz structures. We show that the presence of NP can be

detected through the measurement of the partial width. A partial identification of the NP can be achieved

through the measurements of a forward-backward-like asymmetry, a top-quark-spin-dependent asym-

metry, the partial-rate asymmetry, and a triple-product asymmetry. These observables, which vanish in

the standard model, can all take values in the 10%–20% range in the presence of NP. Since jVtbVcbj ’
jVtsVcsj, most of our results also hold, with small changes, for t ! s �sc.
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I. INTRODUCTION

On the whole, measurements of observables in the B
system agree with the standard model (SM). However,
some cracks have started to appear. There are now several
quantities whose measured values differ from the predic-
tions of the SM. Although these disagreements are not
statistically significant—they are typically at the level of
�2�—they are intriguing since there are a number of
different B decays and effects involved, and they all
appear in b ! s transitions. Because of this, there have
been numerous papers examining new-physics (NP)
flavor-changing neutral-current (FCNC) contributions to
the various b ! s processes. These analyses have been
performed in the context of specific NP models, or model-
independently.

In general, such NP can also contribute to FCNC pro-
cesses involving the top-quark. This has been looked at,
though much less so than in B decays. However, given that
the LHCwill produce a large number of top quarks and will
be able to measure flavor-changing t decays, it is important
to explore the possibility of NP contributions to FCNCs in
the top sector. In the past, analyses have focused on rare top
decays such as t ! cV (V ¼ g, �, Z) and t ! ch [1,2].
Other top decays where NP effects have been examined
include t ! b�þ� [2–9] and t ! Wþdk [10].

In this paper we examine the decay t ! b �bc. In the
SM, this decay occurs at tree level, via t ! bW ! b �bc.
On the other hand, because it involves the small element

Vcb ( ’ 0:04) of the Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing matrix, the amplitude for this process is also
rather small, and is therefore quite sensitive to NP. For
example, there could be NP contributions to this decay in
models with a charged Higgs boson [2], or via t !
X0c ! b �bc, where X0 corresponds to some neutral parti-
cle (such as a Z0 or a non-SM Higgs boson). Such
processes could interfere with the SM process, leading
to observable consequences, even if the intermediate NP
particle were heavier than the top quark. Rather than
restricting our attention to any one particular model,
we examine NP contributions to t ! b �bc model-
independently (i.e., using an effective Lagrangian).
Our model-independent treatment of t ! b �bc takes into

account the effects of the 10 possible four-Fermi operators.
These operators contribute to both CP-conserving and
CP-violating observables. For the CP-even observables,
we consider the CP-averaged partial width, a forward-
backward-like asymmetry, and an asymmetry that depends
on the spin of the top quark. For the CP-odd observables,
we note that the decay t ! b �bc is dominated by one
amplitude in the SM; i.e., there is only one weak phase
involved. As such, all CP-violating asymmetries are very
suppressed in the SM, so the observation of a nonzero
asymmetry would be a smoking-gun signal of NP. In this
paper, we discuss two types of CP-odd asymmetries: the
partial-rate asymmetry (PRA) and a triple-product asym-
metry (TPA).
PRAs require a strong phase in order to be nonzero.

Strong phases can arise due to gluon exchange, but it is
expected that such phases will be small since the energies
involved are so large. Another source of a strong phase is
the width of the W. In our calculation, we ignore QCD-
based strong phases and assume that the required strong
phase is due entirely to the width of theW. This means that
only SM-NP interference can lead to a PRA. On the other
hand, in contrast with PRAs, TPAs do not require a strong
phase in order to be nonzero. Thus, NP-NP interference
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terms can give rise to TPAs. As we will see, TPAs gen-
erated by SM-NP interference tend to be small, but NP-NP
TPAs can be large. These are particularly interesting.

We show that the measurement of the partial width by
itself can reveal the presence of NP. However, if the NP
exists, we will want to know its identity, i.e., which of the
10 operators is responsible, and the partial width measure-
ment does not give us this information. In order to do this,
it is necessary to measure the other quantities mentioned
above. Since the various observables depend differently on
the operators, the knowledge of their sizes will give us an
idea of which NP operators are present. This will allow us
in turn to deduce which model(s) might be responsible for
the observed effects.

Although we confine our attention to t ! b �bc in this
work, we note that most of our results are easily trans-
ferable to t ! s�sc by the replacement ðb; �bÞ ! ðs; �sÞ in
Feynman diagrams and expressions. Since jVtbVcbj ’
jVtsVcsj, the branching ratio for t ! s�sc is similar to that
for t ! b �bc, and the two processes would a priori have
similar sensitivities to NP effects. One difference between
t ! b �bc and t ! s�sc is that the ‘‘CPT’’ correction to the
PRA would be significant for t ! s�sc, whereas it is min-
iscule for t ! b �bc (see the discussion in Sec. IVA and
Appendix B).

The remainder of this paper is organized as follows. In
Sec. II we write down the SM contribution to t ! b �bc,
and also parametrize NP contributions to this decay in
terms of an effective Lagrangian containing ten terms.
In Sec. III (CP-even observables) we compute the
CP-averaged partial width for the decay under considera-
tion, as well as a forward-backward-like asymmetry and
an asymmetry based on the spin of the top quark. The
latter two asymmetries are both constructed in such a way
that they are zero within the context of the SM. We close
this section with a brief numerical study, noting that the
CP-even asymmetries could reasonably be of order 10’s
of percent. Section IV contains our analysis of two
CP-odd observables—the partial-rate asymmetry and the
triple-product asymmetry. Section V concludes with a
discussion of our results. Appendixes A, B, and C contain
some technical details. In particular, Appendix B contains
a discussion of results related to the CPT theorem,
namely, which vertex-type corrections must be considered
in the calculation of PRAs in order not to violate CPT.

II. STANDARD MODEL AND
NEW-PHYSICS CONTRIBUTIONS

In this section we parametrize the NP contributions to
t ! b �bc in terms of an effective Lagrangian. We then write
down expressions for the SM and NP amplitudes. These
expressions are used in following sections to determine
various CP-even and CP-odd observables.

Figure 1(a) shows the Feynman diagram for the SM
contribution to t ! b �bc. The resulting amplitude is given by

MW ¼ �2
ffiffiffi
2

p
GFm

2
WVcbVtbð �ub��PLutÞð �uc��PLvbÞ

� ½�g��GTðq2Þ�; (1)

where V is the CKM matrix. We work in the standard
representation of the CKM matrix, in which Vcb and
Vtb are both real. Note that color indices have been
suppressed. The expression in square parentheses is
proportional to the W propagator, with q ¼ pt � pb ¼
p �b þ pc, GTðq2Þ ¼ ½q2 � m2

W þ i�Tðq2Þ��1, and

�Tðq2Þ ’ q2�W=mW , where �W ’ 3GFm
3
W=ð2

ffiffiffi
2

p
�Þ.

[Note: throughout this paper we neglect the leptons’ and
light quarks’ masses. However, if this is not done, the W
propagator is modified to

i

��
�g�� þ q�q�

q2

�
GTðq2Þ þ q�q�

q2
GLðq2Þ

�
; (2)

where GL ¼ ½m2
W þ i�Lðq2Þ��1. �Tðq2Þ and �Lðq2Þ are

related to the transverse and longitudinal widths of the W
[6], and they both depend on the quark masses. There has
been considerable discussion in the literature regarding the
correct form of the W propagator. (See, for example,
Refs. [5–7,11–15].) The above expression has been derived
by performing a Dyson summation of the absorptive parts
of the W self-energy diagrams in unitary gauge, with
quarks and leptons in the loops. Some of the disagreement
in the literature has focused on the form ofGL (see the brief
discussion in Ref. [9], for example). Still, when all light
masses are neglected, none of the observables in the
present work depend on GL. There seems to be broader
agreement on the form for GT in the literature, although
many authors drop the q2 dependence in �T . Finally, we
should note that the pinch technique may be used to
reorganize perturbative calculations—even those involving
resonances—in such a way that results are explicitly
gauge-invariant (see, for example, Ref. [15]). Rigorous

FIG. 1. Feynman diagrams for t ! b �bc. Diagram (a) shows
the SM contribution. Diagram (b) shows the NP contributions in
the effective theory. The NP contributions are assumed to have
the same color structure as that of the SM. See Appendix C for
comments regarding the more general case.
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application of the pinch technique to the problem at hand is
beyond the scope of this work.]

We parametrize new-physics effects via an effective
Lagrangian Leff ¼ LV

eff þLS
eff þLT

eff , where

LV
eff ¼

g02

M2
fRV

LL
�b�	PLt �c�

	PLbþRV
LR

�b�	PLt �c�
	PRb

þRV
RL

�b�	PRt �c�
	PLbþRV

RR
�b�	PRt �c�

	PRbg
þ H:c:; (3)

LS
eff ¼

g02

M2
fRS

LL
�bPLt �cPLbþRS

LR
�bPLt �cPRb

þRS
RL

�bPRt �cPLbþRS
RR

�bPRt �cPRbg þ H:c:; (4)

LT
eff ¼

g02

M2
fCT �b�	�t �c�

	�bþ iCTE �b�	�t �c���b�
	���g

þ H:c: (5)

In the above expressions, g0 is assumed to be of order g,M
is the NP mass scale, and the R and C couplings may
include weak (CP-violating) phases. For the Levi-Civita
tensor, we adopt the convention �0123 ¼ þ1. The NP con-
tributions to t ! b �bc are illustrated in Fig. 1(b). Color
indices are not shown in the above expressions, but are
assumed to contract in the same manner as those of the SM
(i.e., �bwith t and �cwith b). In FCNCmodels—those with a
flavor-changing neutral particle such as a Z0 or a scalar—
the color indices would contract in the opposite manner
(i.e., �c with t and �b with b). It is straightforward to
incorporate color-mismatched terms into the effective
Lagrangian. This topic is discussed further in Appendix C.

It is useful to define

XV
LL �

�
g0

g

�
2
�
mW

M

�
2 RV

LL

VtbVcb

¼
ffiffiffi
2

p
8GF

g02

M2

RV
LL

VtbVcb

; (6)

and similarly for the other R and C couplings. In terms of
the ‘‘X’’ parameters, we have the following expression for
the NP contribution to t ! b �bc,

M NP ¼ 4
ffiffiffi
2

p
GFVcbVtbfXV

LL �ub�	PLut �uc�
	PLvb þ . . .g:

(7)

To get a sense of the possible order of magnitude of the X
couplings, note that, if g0 � 2g and M� 500 GeV, then
XV
LL � 2:5�RV

LL. Thus, XV
LL could reasonably be as-

sumed to be of order unity. In other words, the SM and
NP contributions to t ! b �bc can very well be about the
same size. When computing the effect of NP on a particular
observable, it is therefore important to include both the
SM-NP interference and NP2 pieces.

At present, there are no direct constraints on the X
couplings. The precision measurements of Vcb place an
indirect constraint via the loop diagram shown in Fig. 2. It
is known that some care must be taken when attempting to

incorporate terms from an effective Lagrangian into loop
calculations [16]. Incorporating the diagram shown in
Fig. 2, we find the following expression for the effective
Lagrangian for b ! c‘ ��,

LSMþNP
eff ’ �2

ffiffiffi
2

p
GFVcb½ð1þ 
VLLÞ �cL�	bL

þ 
VLR �cR�	bR� �‘L�	�L þ H:c:; (8)

in which we have dropped corrections of order Oðmb=mtÞ.
Using the Feynman rules for the various vertices, and
employing dimensional arguments, we estimate


VLLðRÞ �
GFm

2
t

2
ffiffiffi
2

p
�2

ðVtbÞ2XV
LLðRÞ: (9)

Since semileptonic b ! c transitions are used to determine
Vcb, the experimental value of Vcb can be used to bound
XV
LL and XV

LR. Let us first consider the X
V
LL term in Eq. (8),

ignoring the XV
LR term. The XV

LL term has exactly the same
structure as the SM term. Its effect is thus simply to multi-
ply any inclusive or exclusive b ! c‘ ��width by a factor of
½1þ 2Reð
VLLÞ þ j
VLLj2�. The current experimental value
of Vcb is Vcb ¼ ð40:6� 1:3Þ � 10�3 [17], implying a 6.4%
uncertainty on V2

cb. If we assume that the XV
LL contribution

to b ! c‘ �� is hiding in the experimental uncertainty of
V2
cb, we find the bound,

Re ðXV
LLÞ & 2:6; (10)

in which we have neglected the quadratic contribution of

VLL, since it is small. Since XV

LR is associated with the
right-handed quark current in Eq. (8), its effect is process-
dependent. For example, for B ! D‘ ��, the hadronic ma-
trix element is only sensitive to the vector part of the
hadronic current, so left-handed and right-handed cou-
plings both have the same effect, and they can be ab-
sorbed in with the SM current [18]. For other modes, such
as B ! D�‘ ��, the right-handed and left-handed currents
must be treated differently [18]. Since our expression in
Eq. (9) is somewhat of an approximation in any case, we
assume the same upper bound for XV

LR as for XV
LL, i.e.,

Re ðXV
LRÞ & 2:6: (11)

FIG. 2. Loop-level contribution of the NP operators to
b ! c‘ ��. This contribution affects the measurement of Vcb.
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The NP operators considered in this work could contrib-
ute, via loops, to other observables as well. As an example,
consider the decay B ! cKS, which proceeds at tree-level
in the SM. In the present context, the NP operators con-
tribute to this decay via a diagram similar to Fig. 2, but
with ��‘ replaced by �cs in the final state. The resulting
effective Lagrangian would be very similar to Eq. (8),
which could lead to effects in the measurement of
sinð2�Þ [19]. We do not consider such effects further here.

Although we do not perform any model calculations in
this work, it is worthwhile to consider which types of
models could give rise to the various NP operators. The
terms in Eqs. (3) and (4) arise in models that contain new
charged vector or scalar bosons. For example, extensions
of the SM containing gauge bosons with left- and right-
handed charged-current couplings (such as the left-right
model) would contribute terms such as those appearing in
LV

eff—including the RV
LR and RV

RL terms if there were

some amount of mixing between the left- and right-handed
gauge bosons. Models containing charged scalars (such as
the charged Higgs bosons that appear in many extensions
of the SM) could give rise to the terms in the expression for
LS

eff . Alternatively, there are many FCNC models contain-

ing a heavy neutral NP particle (such as a Z0 or a neutral
Higgs boson) with flavor-changing t-c couplings. Here
Fierz rearrangements of the eight operator combinations
ð�	PL;RÞ½�	PL;R� and ðPL;RÞ½PL;R� (in the notation em-

ployed in Ref. [20]) lead to all ten of the operator combi-
nations in Eqs. (3)–(5). In this case there would be
mismatched color indices between the NP and SM dia-
grams. Appendix C explains how to deal with this
situation.

In the following sections we compute various observ-
ables associated with the decays t ! b �bc and �t ! �bb �c.
We take as our starting point the expressions for the SM
and NP amplitudes in Eqs. (1) and (7), respectively.

III. CP-EVEN OBSERVABLES

We begin by considering three CP-even observables
associated with the decays in question. The first is the
CP-averaged partial width, normalized to the SM result;
the second is a forward-backward-like asymmetry; and the
third is a CP-even asymmetry that employs the spin of
the top quark. In Secs. III A, III B, and III C we work out
expressions for the various observables. Section III D con-
tains a numerical analysis and discussion of the results.

A. CP-averaged partial width

We first consider the partial width for t ! b �bc. The
expression for the differential partial width, including the
various NP terms from the effective Lagrangian, may be
found in Eq. (A1) in Appendix A. Performing the inte-
grations over �2 ¼ ðpt � pcÞ2 ¼ ðp �b þ pbÞ2 and q2, we
find

�ðt ! b �bcÞ ’ �SMðt ! b �bcÞ
�
1þ 4�W

mW

½�0:04� ReðXV�
LLÞ

þ ImðXV�
LLÞ� þ

3GFm
2
tffiffiffi

2
p

�2ð1� 
2WÞ2ð1þ 2
2WÞ
h
jXV

LLj2

þ jXV
LRj2 þ jXV

RLj2 þ jXV
RRj2 þ

1

4
ðjXS

LLj2 þ jXS
LRj2

þ jXS
RLj2 þ jXS

RRj2Þ þ 24jXTj2 þ 96jXTEj2
i�
; (12)

where 
W � mW=mt and

�SMðt ! b �bcÞ ’ GFm
3
t

24
ffiffiffi
2

p
�
ðVtbVcbÞ2ð1� 
2WÞ2ð1þ 2
2WÞ:

(13)

In calculating the expressions in Eqs. (12) and (13), we
have used the narrow-width approximation, in which
jGTðq2Þj2 is replaced by a � function in q2, appropriately
normalized. [One exception is the term proportional to
ReðXV�

LLÞ in Eq. (12), which was computed numerically.]
[Note that the term proportional to ImðXV�

LLÞ in Eq. (12),
which is involved in the partial-rate asymmetry discussed
below, is not quite complete. In its present form, it would
lead to a violation of CPT. To avoid running into problems
with the CPT theorem, certain vertex-type corrections
need to be included in the calculation when computing
partial-rate asymmetries. We discuss these extra terms in
Appendix B.]
The partial width for the CP-conjugate decay may be

obtained from Eq. (12) by complex conjugating all weak
phases.1 This has the effect of changing the sign of the
ImðXV�

LLÞ term, while leaving the other terms unchanged.
Adding the widths for t ! b �bc and �t ! �bb �c, and dividing
by twice the SM result, yields

R � �þ ��

2�SM

’ 1þ 0:0845� ½�0:05� ReðXV�
LLÞ þ jXV

LLj2 þ jXV
LRj2

þ jXV
RLj2 þ jXV

RRj2 þ
1

4
ðjXS

LLj2 þ jXS
LRj2 þ jXS

RLj2

þ jXS
RRj2Þ þ 24jXTj2 þ 96jXTEj2�; (14)

in which we have inserted the known values for the various
physical constants, and used the expression for �W noted
below Eq. (1). Note that, in practice, the term proportional
to ReðXV�

LLÞ is always small compared to the other terms.
Above, we noted that the X’s could well be Oð1Þ. Thus,

from Eq. (14), we see that the CP-averaged partial width
could be used as a tool to search for NP. In particular, an
experimental value forR that is different from unity would
give clear evidence for NP. [Depending on the size of the

1Note that the ‘‘i’’ multiplying XTE in the NP amplitude does
not get complex conjugated when computing the amplitude for
the CP-conjugate process.
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NP signal, it may be important to include corrections to
Eq. (13) [21].]

On the other hand, all 10 NP operators contribute to R
in similar ways. Thus, even if the measurement of R
reveals the presence of NP, it does not give us any clue
as to the type of NP. For this reason, it is important to look
for signs of NP in other quantities. This is most easily done
using observables that are strictly zero within the context of
the SM. Such observables would typically depend upon
differing combinations of NP parameters, so that the ob-
servation of NP effects using several different observables
would yield insight into the precise nature of the NP. In the
following, we construct several asymmetries that are zero
within the context of the SM and discuss their potential
usefulness as tools for searching for NP.

Note that the ratioR, defined above, will also appear in
the denominators of all asymmetries considered below.
Since R is primarily a sum of positive quantities, and
since it will always appear in the denominators of the
asymmetries, it will always tend to decrease the values of
the asymmetries compared to the analogous expressions
employing the approximation R � 1.

B. Forward-backward-like asymmetry

A tool that has historically been useful to experimental-
ists is the forward-backward (FB) asymmetry. The differ-
ential width for t ! b �bc may be written in terms of
q2 ¼ ðpt � pbÞ2 ¼ ðp �b þ pcÞ2 and cos
, where 
 is the
angle between the momentum of the top quark and that of
the charm quark in the �b-c rest frame. The FB asymmetry
makes use of the following asymmetric integration over
cos
,

�FB ¼
Z m2

t

0

�Z 1

0

d�

dq2d cos

d cos


�
Z 0

�1

d�

dq2d cos

d cos


�
dq2: (15)

We choose instead to work with the kinematical variables
q2 and �2, noting that

cos
 ¼ m2
t � 2�2 � q2

q2 �m2
t

: (16)

Using Eq. (16), we may rewrite Eq. (15) as follows,

�FB ¼
Z m2

t

0

�Z m2
t�q2

ðm2
t�q2Þ=2

d�

dq2d�2
d�2

�
Z ðm2

t�q2Þ=2

0

d�

dq2d�2
d�2

�
dq2: (17)

Let us first consider the SM contribution to the FB
asymmetry. The SM-only contribution to the width is
such that

d�SM

dq2d�2 / jGTðq2Þj2ðq2 þ �2Þðm2
t � q2 � �2Þ (18)

[see Eq. (A1) in Appendix A]. Using the integration
prescription in Eq. (17), and assuming the narrow-width
approximation, we find

ASM
FB ¼ �SM

FB þ ��SM
FB

�SM þ ��SM

¼ �SM
FB

�SM

’ � 3
2W
2ð1þ 2
2WÞ

’ �0:228:

(19)

Thus, we see that the SM contribution to the FB asym-
metry is nonzero.
As noted above, in order to use a particular asymmetry

as a discriminator of NP, it is useful if the asymmetry is
zero when no NP contribution is present. The regular FB
asymmetry does not satisfy this requirement, as is evi-
denced by Eq. (19). It turns out, however, that if we
modify the �2 integration prescription somewhat, the
SM contribution can be made to disappear. That is, in-
stead of breaking up the integral over �2 at the point
�2
FB ¼ ðm2

t � q2Þ=2, as is done in Eq. (17), we move the
boundary to the value ��2,

� ��2 �
Z m2

t

0

�Z m2
t�q2

��2

d�

dq2d�2
d�2 �

Z ��2

0

d�

dq2d�2
d�2

�
dq2;

(20)

in which ��2 is chosen such that [see Eq. (18)]

Z ��2

0
ðq2 þ �2Þðm2

t � q2 � �2Þd�2

¼
Z m2

t�q2

��2
ðq2 þ �2Þðm2

t � q2 � �2Þd�2: (21)

5000 10 000 15 000 20 000 25 000 30 000
q2 GeV2

5000

10 000

15 000

20 000

25 000

30 000

2 GeV2

2

FB
2

FIG. 3. Phase space for t ! b �bc. The gray vertical bar shows
the location of the W resonance at q2 ¼ m2

W . The shaded and

clear regions (separated by the curve denoted ‘‘ ��2’’) are used in
the construction of the FB-like asymmetry A ��2 . The line indi-

cated by ‘‘�2
FB’’ shows the boundary used in the usual definition

of the FB asymmetry.
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Then, by construction,

�SM
��2 ¼

Z m2
t

0

�Z m2
t�q2

��2

d�SM

dq2d�2
d�2 �

Z ��2

0

d�SM

dq2d�2
d�2

�
dq2

¼ 0: (22)

The new boundary, ��2, is q2-dependent and can be solved
for numerically.2 Figure 3 shows the phase space avail-
able for t ! b �bc and also indicates the two boundary
choices described above. The vertical band indicates the
location of the W resonance for the SM contribution.

Equation (A1) in Appendix A gives the expression for
d�=dq2d�2. The �2 dependence of the SM piece is
given by ðq2 þ �2Þðm2

t � q2 � �2Þ; the SM-NP cross
terms and the jXV

LLj2 and jXV
RRj2 terms have this same

�2 dependence. Since the integration prescription de-
scribed above is engineered to eliminate the SM term
when integrating over �2, these latter terms also disap-
pear upon integration over �2 in this manner. Performing
the integration numerically for the other terms yields the
following,

� ��2 ’ 3G2
Fm

5
t ðVtbVcbÞ2
16�3

½0:155ðjXV
LRj2 þ jXV

RLj2Þ þ 0:0208ðjXS
LLj2 þ jXS

RRj2 þ jXS
LRj2 þ jXS

RLj2Þ
þ 0:310Re½XTðXS�

LL þ XS�
RRÞ � 2XTEðXS�

LL � XS�
RRÞ� þ 1:81ðjXTj2 þ 4jXTEj2Þ�: (23)

The above expression is CP-even; i.e., the analogous expression for �t ! �bb �c is the same. Finally, we form an FB-like
asymmetry as follows,

A ��2 ¼ � ��2 þ �� ��2

�þ ��
’ 1

R
½0:0393ðjXV

LRj2 þ jXV
RLj2Þ þ 0:005 28ðjXS

LLj2 þ jXS
RRj2 þ jXS

LRj2 þ jXS
RLj2Þ

þ 0:0786Re½XTðXS�
LL þ XS�

RRÞ � 2XTEðXS�
LL � XS�

RRÞ� þ 0:460ðjXTj2 þ 4jXTEj2Þ�: (24)

By construction, this asymmetry is only nonzero if NP
contributions are present. Section III D contains a discus-
sion of the range of sizes that are possible for the FB-like
asymmetry. At this point we note only that asymmetries of
order tens of percent are possible.

C. CP-even spin asymmetry

The final CP-even observable that we consider depends
on the spin of the top quark [22]. We construct this asym-
metry in such a way that it will be zero in the SM and
potentially nonzero in the context of NP. Equation (A2) in
Appendix A contains the expression for the absolute value
squared of the total amplitude, keeping only those terms
that contain the top-quark spin four-vector. The term pro-
portional to jGTj2 in that expression is the SM contribution.
The next term [proportional to ReðGTX

V�
LLÞ] arises from the

interference of the SM contribution with one of the NP
terms. The remaining terms are purely NP in origin.
Inspection of Eq. (A2) reveals that the SM term is propor-
tional to p �b 	 st. (This is related to the fact that, in the SM,
the spin of the top is in the direction of the momentum of
the �b in the top’s rest frame [23].) Working in the top rest
frame, we define

~s k;� ¼ � 1

sin
 �bc

ðn̂c � n̂ �b cos
 �bcÞ; (25)

where n̂ �bðcÞ ¼ ~p �bðcÞ=j ~p �bðcÞj and where 
 �bc is the angle

(assumed to be between 0 and �) between the three-
momentum of the �b and that of the c, in the top’s rest
frame. The cosine and sine of this angle are given, respec-
tively, by

cos
 �bc ¼
m2

t ð�2 � q2Þ � �2ð�2 þ q2Þ
ðm2

t � �2Þð�2 þ q2Þ ;

sin
 �bc ¼
2mt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2q2ðm2

t � q2 � �2Þp
ðm2

t � �2Þð�2 þ q2Þ :

(26)

The vectors ~sk;� are in the decay plane and are perpen-

dicular to ~p �b by construction. Setting s
	
t;� ¼ ð0; ~sk;�Þ, we

then have p �b 	 st;� ¼ 0. Thus, the SM contribution to the

amplitude squared disappears for these orientations of the
top quark’s spin. We can thus construct an asymmetry
based on this spin configuration that will be zero within
the SM, making it potentially a sensitive probe for NP. We
first define

�k � 1

2
½�ð ~sk;þÞ � �ð~sk;�Þ�; (27)

where the factor of ‘‘1=2’’ is to account for the average over
the top quark’s spins. Using Eqs. (A2), (25), and (26), and
incorporating the integration over phase space, we obtain

2The equation for ��2 is cubic and can also be solved analyti-
cally, although the resulting expressions for the roots of the
equation are not particularly enlightening.
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�k ¼ G2
Fm

5
t ðVtbVcbÞ2
70�2

fðjXV
LRj2 � jXV

RLj2Þ �
1

4
ðjXS

LLj2 � jXS
RRj2 þ jXS

LRj2 � jXS
RLj2Þ þ 2Re½XTðXS�

LL � XS�
RRÞ

� 2XTEðXS�
LL þ XS�

RRÞ� � 96Re½XTX
�
TE�g: (28)

Finally, summing over the process and the CP-conjugate process, we obtain

Ak ¼ �k þ ��k
�þ ��

’ 0:0607

R
fðjXV

LRj2 � jXV
RLj2Þ �

1

4
ðjXS

LLj2 � jXS
RRj2 þ jXS

LRj2 � jXS
RLj2Þ þ 2Re½XTðXS�

LL � XS�
RRÞ

� 2XTEðXS�
LL þ XS�

RRÞ� � 96Re½XTX
�
TE�g; (29)

where we have used the fact that 12
ffiffiffi
2

p
GFm

2
t =½35�ð1�


2WÞ2ð1þ 2
2WÞ� ’ 0:0607. A discussion of numerical val-
ues obtainable for the CP-even single-spin asymmetry
follows in the next subsection.

D. Discussion of CP-even observables

In this section we have described three observables that
are even under CP and that could be used to detect the
presence of NP in the decays t ! b �bc and �t ! �bb �c.
Should NP be discovered, detailed analysis of such ob-
servables could allow experimentalists to map out the
nature of the NP.

The first observable considered in this section was a
ratio, R, which was defined to be proportional to the
CP-averaged partial width. Of the observables considered
in this work,R would probably be the simplest to measure
experimentally. Decisive experimental deviation from the
SM value R ¼ 1 would be evidence for NP.

On the other hand, R cannot be used to distinguish the
different NP operators. To do this requires the use of other
quantities. It is useful to employ observables that give
a null signal within the context of the SM. For such
observables, a significant departure from zero would be a
‘‘smoking-gun’’ signal for new physics. In addition, since
they depend differently on the various NP operators, the
observation of nonzero values for these observables would
help in identifying the type of NP.

The usual forward-backward asymmetry for t ! b �bc is
expected to be nonzero within the context of the SM. It is
possible, however, to alter the kinematical weighting that is
used in defining the FB asymmetry in such a way that the
resulting ‘‘FB-like’’ asymmetry is zero within the context
of the SM. Equation (24) defines the FB-like asymmetry
A ��2 in terms of an asymmetric integration over the kine-

matical variable �2. The integration is engineered in such a
way that the SM contribution disappears kinematically. In
Eq. (29) we formed aCP-even asymmetry using the spin of
the top quark. This asymmetry was also defined in such a
way that it was zero within the context of the SM. A
nonzero experimental signal for either of these asymme-
tries would indicate the presence of NP.
Table I contains some representative values for the

CP-even asymmetries A ��2 and Ak, along with the corre-

sponding value for the ratio R in each case. The entries in
the table are ordered from smallerR values in the top rows
to larger ones in the bottom rows. As is evident from the
table, whenR is close to unity (meaning that it may not be
a very clear discriminator of NP), it is still possible to have
CP-even asymmetries that are on the order of several
percent. For larger R values, the asymmetries A ��2 and

Ak can reach into the 10’s of percent. Note, however, that

there are some NP scenarios in which Ak suffers cancella-
tions or is zero, even if the NP parameters themselves are
nonzero. For example, if jXV

LRj ¼ jXV
RLj, the contributions

from these two parameters cancel in Ak.

TABLE I. Some representative values for the FB-like asymmetry A ��2 and the CP-even spin
asymmetry Ak. The value for R is also included for each case.

XV
LR XV

RL XS
LL XS

LR XS
RL XS

RR XT XTE R A ��2 Ak
1.5 1.2 7.4% 11%

2.5 2.5 1.3 5.2% 15%

1 �1 0.5 0.125 1.7 6.9% �14%
1 �1 0.5 �0:125 1.7 12% 29%

�2:5 2.5 0.25 1.8 21% 0%

0.5 �0:25 2.0 11% 36%

2.5 2.5 2.1 24% 0%

1 3.0 15% 0%

2.5 2.5 1 3.3 28% 0%
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The CP-even observables are displayed in another man-
ner in Fig. 4, which shows scatter plots of A ��2 versus R
and Ak versus R. The points in this plot were obtained by

generating real random numbers for eight of the ten NP
parameters over various ranges. (XV

LL and XV
RR were ex-

cluded, since they do not contribute to the numerator of
either asymmetry.) Asymmetries were only plotted if
R 
 3. Again, it is evident that CP-even asymmetries
of order a few 10’s of percent are possible.

IV. CP-ODD OBSERVABLES

In addition to the CP-even observables considered in the
previous section, it is also possible to construct CP-odd
observables related to the decay t ! b �bc. In this section
we consider two such observables. The first is the partial-
rate asymmetry, which compares the partial width for the
process to that of the CP-conjugate process. The second is
a triple-product asymmetry, which is formed using the spin
of the top-quark and the three-momenta of two of the final-
state quarks. To be nonzero, both of these asymmetries
require the presence of at least two contributing amplitudes
with a nontrivial relative weak phase. Let us first consider
the partial-rate asymmetry.

A. Partial-rate asymmetry

The SM amplitude for t ! b �bc is dominated by a single
contribution. As such, the partial-rate asymmetry vanishes.
In the presence of NP, the PRA can be nonzero if there is a
NP contribution to the decay with a relative weak phase. As
can be seen in Eq. (12), there is one important NP piece of
this type—XV

LL. The contribution to the PRA then comes
from the interference of the SM W-exchange amplitude
with the XV

LL term. What we see in this subsection is that
the PRA can actually be of order several percent if the
Lorentz structure of the NP is ðV � AÞ � ðV � AÞ.

We have noted above that a nonzero PRA requires the
interference of at least two amplitudes having a nonzero
relative weak phase. Another requirement is that these
amplitudes have a nonzero relative strong phase. Strong
phases can come from the exchange of gluons, but they
can also emerge from the imaginary parts of loop dia-
grams that do not involve gluons. In particular, if an

exchanged particle in the process has a resonance, there
is a strong phase associated with the width of that parti-
cle. Strong phases originating from particles’ widths have
been used to generate PRAs in many different systems,
including t ! b �bc [2,24], t ! b�þ� [2,4–7,9], and vari-
ous supersymmetric decays [25–27]. In the present cal-
culation, the width of the W provides the required strong
phase. This means that the PRA can only arise from
SM-NP interference, since NP-NP interference terms do
not have a relative strong phase.
Using the expression in Eq. (12), and recalling that the

analogous expression for the CP-conjugate process in-
volves the complex conjugation of the weak phases, we
immediately find the following expression for the partial-
rate asymmetry,

ACP ¼ �� ��

�þ ��
’ 1

R
4�W

mW

ImðXV�
LLÞ ’

0:102

R
� ImðXV�

LLÞ:
(30)

As was noted above, the PRA requires the existence of a
nonzero relative strong phase between interfering ampli-
tudes. In this example, the strong phase is provided by the
width of the W, which is the reason that the PRA is
proportional to �W . Examination of Eq. (30) reveals that
the best-case scenario for the PRA occurs when XV

LL is
purely imaginary, or nearly so, and all other NP coeffi-
cients are zero. In this case, R ’ 1þ 0:0845jXV

LLj2, and
we find that the PRA is maximized when jXV

LLj ’ 3:44. The
maximum possible PRA, obtained in this manner, is ap-
proximately 18%.
As is well-known [28,29], the CPT theorem requires

that we actually be a bit more careful when computing
PRAs. In particular, invariance underCPT requires that the
total width of the top be equal to that of the antitop. Our
result in Eq. (30) shows that, under certain circumstances,
the partial width for t ! b �bc is not equal to the partial
width for �t ! �bb �c. This necessarily implies that there must
be compensating partial-rate asymmetries in other top/anti-
top decay modes such that the total top width is still equal
to the total antitop width. In order to respect CPT in this
way, it turns out that we need to include another class of
diagrams, shown in Fig. 5. These diagrams contribute to

1 2 3
0

0.1

0.2

0.3

A 2

1 2 3

0.6

0.3

0

0.3

0.6

A

FIG. 4. Scatter plots of the CP-even asymmetries A ��2 and Ak for various combinations of the NP parameters.
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various top decay modes, inducing partial-rate asymme-
tries in these modes in such a way that the total top width
is equal to the total antitop width. In the special case
t ! b �bc, the effect is such that ‘‘�W’’ in the numerator
of Eq. (30) gets replaced by ‘‘�W � �ðW ! �bcÞ’’
[24,30,31], which is to say that the strong phase due to
the rescattering process W ! �bc ! W does not contrib-
ute to the PRA. Since �ðW ! �bcÞ is very small, we may
safely neglect its effect. It is worthwhile to explore this
point a bit further, however, and we do so in Appendix B.
Specifically, we verify that the diagrams in Fig. 5 inter-
fere with their SM counterparts in such a way that the
CPT theorem is respected, and we also comment on the
PRAs that result in other decay modes due to the NP
effective operators for t ! b �bc.

B. Triple-product asymmetry

Mathematically, TPAs in t ! b �bc are related to terms of
the form ~vi 	 ð ~vj � ~vkÞ in the absolute value squared of the
amplitude, where each of the ~vi could represent a momen-
tum or spin. Working in the rest frame of the top quark,
there are only two independent three-momenta. Thus, in
order to obtain a nonzero TPA, we need to include one or
more spins in ~vi 	 ð ~vj � ~vkÞ. Since the light final-state

quarks hadronize, it is difficult to gain useful information
from their spins. The situation is different for the top quark,
however, since it decays too quickly to hadronize. In this
case, we can construct asymmetries based on ~s 	 ð ~p1 � ~p2Þ,
where ~s is the top quark’s spin and ~p1 and ~p2 are two of
the final-state momenta [32]. In the context of the cal-
culation, these terms arise from expressions such as

�����p
�
t s

�
t p

�
�b
p�
c .

Now, the PRA considered above contained a factor of
�W � 2 GeV in the numerator. The presence of this factor

was due to the requirement that there be a relative strong
phase between diagrams contributing to the PRA. On the
other hand, TPAs do not require a strong phase and are thus
not suppressed by a factor of �W . This means that TPAs
could in principle be much larger than the PRA considered
above. As we shall see, there are in fact certain NP opera-
tors that can produce a large TPA.
Because TPAs are CP-odd quantities, they require a

nonzero relative weak phase between interfering diagrams,
just as the PRA did. But because no strong phase is
necessary, TPAs can in principle arise both from SM-NP
and NP-NP interference. (Because of the strong phase
requirement, the PRA could only arise from SM-NP inter-
ference.) What we find, however, is that the only TPA that
survives is one due to NP-NP interference.
All triple-product terms in the absolute value squared of

the amplitude may be written in terms of �����p
�
t s

�
t p

�
�b
p�
c .

Keeping only such terms, we find the following expression
in the rest frame of the top quark,

1

3

X
colors

X
b; �b;cspins

jMj2jTP

¼ 1536G2
Fm

2
t ðVtbVcbÞ2 ~s 	 ð ~p �b � ~pcÞ Im½XTðXS�

LL þXS�
RRÞ

� 2XTEðXS�
LL �XS�

RRÞ�; (31)

in which ~s denotes the top’s spin [see also Eq. (A2)]. In
computing the above expression, we have summed over
quark colors and over the final-state quarks’ spins, and
have divided by 3 for the average over the top quark’s
colors. Setting

~s?;� ¼ � ~p �b � ~pc

j ~p �b � ~pcj ; (32)

we define

�TP � 1

2
½�ð~s?;þÞ � �ð~s?;�Þ�; (33)

where the factor of ‘‘1=2’’ is to account for the average
over the top quark’s spins. Using the result in Eq. (31) and
incorporating the integration over phase space, we obtain

FIG. 5. Vertex correction-type diagrams involving the effective
operators shown in Fig. 1(b). These diagrams contribute to the
cancellations required by the CPT theorem. The dashed line
indicates that only the absorptive parts of the diagrams are
computed.

TABLE II. Some representative values for the triple-product
asymmetry. The second to last column also shows R for each
case.

XS
LL XS

RR XT XTE R ATP
CP

�1:5i �1:5i 0.5 0 1.6 23%

2:5i �2:5i 0 0.4 2.6 38%

�2:5i �2:5i 1 0 3.3 37%
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�TP ¼ 2G2
Fm

5
t ðVtbVcbÞ2
35�2

Im½XTðXS�
LL þ XS�

RRÞ
� 2XTEðXS�

LL � XS�
RRÞ�; (34)

in which we have used the fact that

j ~p �b � ~pcj ¼ 1

2mt

½q2�2ðm2
t � q2 � �2Þ�1=2: (35)

Finally, we define the TPA as

ATP
CP � �TP � ��TP

�þ ��
; (36)

so that

ATP
CP ’ 1

R
48

ffiffiffi
2

p
GFm

2
t

35�

� Im½XTðXS�
LL þ XS�

RRÞ � 2XTEðXS�
LL � XS�

RRÞ�
ð1� 
2WÞ2ð1þ 2
2WÞ

’ 0:243

R
Im½XTðXS�

LL þ XS�
RRÞ � 2XTEðXS�

LL � XS�
RRÞ�:

(37)

Table II contains some numerical results following from
the above expression, showing that the TPAs can indeed be
large—of order 10’s of percent—if the NP coefficients are
assumed not to be suppressed. Figure 6 shows a scatter plot
of ATP

CP versus R. The points in this plot were obtained by

generating combinations of purely real and purely imagi-
nary random numbers for XS

LL, X
S
RR, XT , and XTE over

various ranges. Once again, asymmetries were only plotted
if R 
 3. It is evident from the plot that relatively large
TPAs are possible.

V. DISCUSSION AND CONCLUSIONS

In this paper we consider NP contributions to the decay
t ! b �bc. In the SM, this is a tree-level process: t ! bW !
b �bc. However, the SM amplitude involves the small
Cabibbo-Kobayashi-Maskawa element Vcb (’ 0:04), and
is therefore suppressed. As a result, the decay is quite

sensitive to NP. Rather than working within the context
of any one particular extension of the SM, we parametrize
the NP couplings by an effective Lagrangian that includes
the 10 possible four-Fermi operators. We show that the SM
and NP contributions to t ! b �bc can indeed be about the
same size.
We first compute the t ! b �bc partial width in the pres-

ence of NP. The ratio R, defined in Eq. (14), provides a
quantitative measure of the deviation of the partial width
from its SM expectation (R ¼ 1 in the SM). This shows
clearly that this observable is excellent for showing that NP
is present—significant deviations ofR from 1 are possible.
On the other hand, the partial width is not a good

observable to identify the new physics—all 10 NP opera-
tors contribute toR in a similar way. In order to get an idea
of the type of NP present, it is necessary to consider other
quantities. To this end, we construct two CP-conserving
and two CP-violating observables: (i) CP-even—a
forward-backward-like asymmetry [A ��2 , Eq. (24)] and a

top-quark-spin-dependent asymmetry [Ak, Eq. (29)],

(ii) CP-odd—the partial-rate asymmetry [ACP, Eq. (30)]
and a triple-product asymmetry [ATP

CP, Eq. (37)]. In each

case, the observable is formulated in such a way that it is
zero within the context of the SM. The key point is that
these observables depend on differing combinations of the
NP parameters. This gives them different sensitivities to
the various Lorentz structures present in the NP effective
Lagrangian.
The allowed values of these four observables vary

greatly depending on the values of the NP parameters,
but results in the 10%–20% range are possible (see
Tables I and II). If NP is present, it may well produce
measurable values of these observables. Taken together,
the measurements of these quantities will give a good
indication of the type of NP present.
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APPENDIX A: USEFUL EXPRESSIONS
FOR t ! b �bc

This appendix contains two expressions that are used to
compute observables in the main body of the paper. We
take mb ¼ mc ’ 0. The first of these is the expression for
the partial differential decay width for t ! �bbc. Using
Eqs. (1) and (7) and averaging over the top quark’s spins
and colors, we find the following,

1 2 3

0
0.1
0.2
0.3

0.1
0.2
0.3

ACP
TP

FIG. 6. Scatter plot of the CP-odd TP asymmetry ATP
CP for

various combinations of the NP parameters.
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d�

dq2d�2
¼ 3G2

FðVtbVcbÞ2
2ð2�Þ3m3

t

fðq2þ�2Þðm2
t �q2��2Þ½m4

W jGTj2þ 4m2
W ReðGTX

V�
LLÞþ 4ðjXV

LLj2þjXV
RRj2Þ�

þ 4�2ðm2
t ��2ÞðjXV

LRj2þjXV
RLj2Þþq2ðm2

t �q2ÞðjXS
LLj2þjXS

RRj2þjXS
LRj2þjXS

RLj2Þþ 8q2ð�m2
t þq2þ 2�2Þ

�Re½XTðXS�
LLþXS�

RRÞ� 2XTEðXS�
LL�XS�

RRÞ�þ 32½m2
t ðq2þ 4�2Þ� ðq2þ 2�2Þ2�ðjXTj2þ 4jXTEj2Þg; (A1)

in which Vtb and Vcb have been taken to be real. The analogous expression for �t ! �bb �c is obtained by complex conjugating
all of the NP coefficients (XV

LL, etc.), while leaving GT unchanged.
It is also useful to have the expression for the absolute value squared of the amplitude, keeping only the terms that

contain the spin four-vector for the top quark. This expression is used to compute the CP-even single-spin asymmetry in
Sec. III C and the TP asymmetry in Sec. IVB. Keeping only terms containing the spin four-vector of the top quark, we find

1

3

X
colors

X
b; �b;cspins

jMj2jst ¼ 96G2
FmtðVtbVcbÞ2fðm2

t � q2 � �2Þ½�m4
W jGTj2 � 4m2

W ReðGTX
V�
LLÞ

� 4ðjXV
LLj2 � jXV

RRj2Þ�p �b 	 st � 4�2ðjXV
LRj2 � jXV

RLj2Þpc 	 st � q2ðjXS
LLj2 � jXS

RRj2 þ jXS
LRj2

� jXS
RLj2Þpb 	 st þ 8Re½XTðXS�

LL � XS�
RRÞ � 2XTEðXS�

LL þ XS�
RRÞ�½ðm2

t � q2Þp �b 	 st þ �2pb 	 st�
þ 128Re½XTX

�
TE�½ð2m2

t � q2 � 2�2Þp �b 	 st þ ðq2 þ 2�2Þpc 	 st�
� 16 Im½XTðXS�

LL þ XS�
RRÞ � 2XTEðXS�

LL � XS�
RRÞ��ðpt; st; p �b; pcÞg; (A2)

in which st denotes the top’s spin four-vector and
�ðpt; st; p �b; pcÞ � �����p

�
t s

�
t p

�
�b
p�
c . In writing the above

expression, we have used the fact that pt 	 st ¼ 0. We have
also summed over quark colors and over the final-state
quarks’ spins, and have divided by 3 for the average over
the top quark’s colors.

APPENDIX B: CPT AND BEYOND

The CPT theorem requires the total decay width for the
top to be equal to that for the antitop. An apparent violation
of the CPT theorem arises, however, if the NP contribu-
tions in Fig. 1(b) are the only ones that are kept. That this
is the case is straightforward to see, since the diagram
in Fig. 1(b) affects the partial widths for t ! b �bc and
�t ! �bb �c differently [leading to the PRA in Eq. (30)], but
has no effect on the other top or antitop decay modes.
Thus, the top and antitop total widths are not equal if only
such contributions are kept, resulting in an apparent vio-
lation of the CPT theorem. This phenomenon is well-
known (see, for example, Refs. [7,24,28–31]). In this
appendix we show that the inclusion of certain vertex-
type corrections gives rise to compensating differences in
the top and antitop widths. The sum of the differences is
zero, so that the top and antitop widths no longer differ, in
agreement with the CPT theorem.

Let us define the partial width difference for the decay
t ! b �jk as follows,

��ðt ! b �jkÞ � �ðt ! b �jkÞ � �ð�t ! �bj �kÞ; (B1)

in which j and k could refer either to quarks or to leptons.
For the case t ! b �bc, the main contribution to�� is due to
the interference between the SM and NP diagrams indi-
cated in Fig. 1. Another important set of contributions for
the decay t ! b �jk is indicated in Fig. 5. The absorptive

parts of these vertexlike corrections interfere with their
associated SM diagrams in such a way that the conserva-
tion of CPT is manifest. Using the Cutkosky rules to
calculate the absorptive part of the vertexlike corrections,
we find

��ðt ! b �jkÞ ’ 2
ffiffiffi
2

p
GFm

2
WðVcbÞ2

�
ImðXV�

LLÞ�ðt ! bWÞ
� ½� �j �b�kc �BðW ! �jkÞ�: (B2)

Summing over �j and k (including both quark and lepton
final states), we haveX

�j;k

��ðt ! b �jkÞ ¼ 0; (B3)

demonstrating that the CPT theorem is indeed respected
once the absorptive parts of the diagrams in Fig. 5 are
included.
Equation (B2) gives a correction to the PRA for t ! b �bc,

leading to the following modification of Eq. (30),

ACP ’ 0:102� ImðXV�
LLÞ

R
½1�BðW ! �bcÞ�: (B4)

The correction to the original expression is miniscule, since
BðW ! �bcÞ ’ jVcbj2=3 ’ 5:5� 10�4.
An interesting consequence of the CPT theorem is that,

if NP operators give a PRA in a particular decay mode
(such as t ! b �bc, as in our case), then those same NP
operators must also contribute to one or more other decay
modes in such a way that the total width of the top is the
same as that of the antitop. This means that those other
decay modes must also have PRAs (barring other acciden-
tal cancellations). We can use Eq. (B2) to estimate the
PRAs in other decay modes due to the NP operators in
Eqs. (3)–(5). The resulting expression is given by
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ACPðt ! b �jkÞ ’ �
ffiffiffi
2

p
GFm

2
WðVcbÞ2
�

ImðXV�
LLÞ

’ �5:6� 10�5 ImðXV�
LLÞ; �jk � �bc: (B5)

Thus the contributions of these NP operators to PRAs in
other top decay modes are expected to be very small. One
could also consider the complementary question: Are there
NP operators, other than those given in Eqs. (3)–(5), that
could contribute to the PRA in t ! b �bc? The answer to
this question appears to be yes. For example, the effective
operators ð �sO1cÞð �cO2bÞ or ð �dO1uÞð �cO2bÞ could appear in
a diagram similar to that in Fig. 5, but with the usual SM
tbW vertex at the top, and the NP-induced one-loop cor-
rection to theWbc vertex at the bottom. Such operators are
constrained by B decays.

We should note that the NP effective operators in
Eqs. (3)–(5) give rise to other loop-level diagrams that
could contribute to PRAs in top decays. The contribu-
tions in different decay modes would still complement
each other in the sense that the total top and antitop
widths would remain equal. Figure 7 shows an example
of loop-level corrections to t ! f �fc (f ¼ d, s, b) medi-
ated by the NP operators considered in this work. These
diagrams could interfere with their corresponding SM
diagrams to induce PRAs. We do not compute such
contributions here.

APPENDIX C: EFFECT OF INCLUDING
COLOR-MISMATCHED TERMS

The effective Lagrangian incorporating NP effects given
in Eqs. (3)–(5) assumed that the color indices contracted
in the same manner as those of the SM diagram. This
need not be the case, so it is useful to consider the effects
of including color-mismatched terms in the effective
Lagrangian. To this end, let us generalize the NP effective
Lagrangian in Eq. (3) as follows,

LV
eff ¼

g02

M2
fRV

LL
�ba�	PLta �cb�

	PLbb

þRV0
LL

�ba�	PLtb �cb�
	PLba

þRV
LR

�ba�	PLta �cb�
	PRbb

þRV0
LR

�ba�	PLtb �cb�
	PRba þ . . .g þ H:c:; (C1)

and similarly for Eqs. (4) and (5). In this expression, the
subscripts a and b are color indices and the primed
coefficients correspond to the new, color-mismatched
terms. The total amplitude for ta ! bb �bccd (with the
subscripts a, b, c and d representing the colors) could
then be parametrized as

M abcd ¼
X
i

ðRi�ab�cd þ R0
i�ad�bcÞMi; (C2)

in which the sum runs over the SM diagram, plus all NP
contributions. The factors Ri and R0

i are the coefficients
for the color-matched and color-mismatched terms, re-
spectively, and are assumed to contain all of the weak
phases. (The R0 coefficient for the SM term is assumed to
be zero.) For a given value of i, the phases of Ri and R0

i

could be different. The factors Mi contain all the spinors
and � matrices and, in the case of the SM diagram, the W
propagator.
Summing over the quarks’ colors and dividing by 3 for

the average over the top quark’s colors, we find

1

3

X
a;b;c;d

MabcdM�
abcd ¼ 3

X
i

½jRij2 þ jR0
ij2 þ

2

3
ReðRiR

0�
i Þ�jMij2 þ 6

X
j>i

�
Re

�
RiR

�
j þ R0

iR
0�
j þ 1

3
ðRiR

0�
j þ R0

iR
�
j Þ
�

� ReðMiM�
j Þ � Im

�
RiR

�
j þ R0

iR
0�
j þ 1

3
ðRiR

0�
j þ R0

iR
�
j Þ
�
ImðMiM�

j Þ
�
: (C3)

The RiR
�
j terms in the above expression correspond to the ‘‘ color-matched’’ terms that we have taken into account in this

work. The other terms are new.
Equation (C3) can be used to generalize the expressions in this paper, provided the expressions have already been

split cleanly into pieces containing the weak phases (Ri, etc.) and those containing the spinors and any strong phases
(Mi). Expressions containing SM-NP cross terms may safely set RSM ¼ 1 and incorporate the entire amplitude into
the ‘‘MSM’’ part [in Eq. (C2)], since Vtb and Vcb have been taken to be real. As an example, the generalized form for
Eq. (14) would be

R ’ 1þ 0:0845�
�
�0:05� Re

�
XV�
LL þ 1

3
XV0�
LL

�
þ jXV

LLj2 þ jXV0
LLj2 þ

2

3
ReðXV

LLX
V0�
LL Þ þ . . .

�
; (C4)

in which we have used the fact that R0
SM ¼ 0. Similarly, Eq. (37) would become

FIG. 7. A loop-level contribution of the NP operators that
could contribute to PRAs in t ! f �fc, with f ¼ d, s, b.
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ATP
CP ’ 0:243

R
ImfXTðXS�

LL þ XS�
RRÞ � 2XTEðXS�

LL � XS�
RRÞ þ X0

TðXS0�
LL þ XS0�

RR Þ � 2X0
TEðXS0�

LL � XS0�
RR Þ

þ 1

3
½XTðXS0�

LL þ XS0�
RR Þ � 2XTEðXS0�

LL � XS0�
RR Þ þ X0

TðXS�
LL þ XS�

RRÞ � 2X0
TEðXS�

LL � XS�
RRÞ�g; (C5)

and Eq. (30) would become

ACP ’ 0:102

R
� Im

�
XV�
LL þ 1

3
XV0�
LL

�
: (C6)

Finally, an expression such as ‘‘ReðGTX
V�
LLÞ’’ in Eq. (A1), which contains both a strong phase (in GT) and a weak phase

(in XV
LL), first needs to be separated into two pieces using ReðABÞ ¼ ReðAÞReðBÞ � ImðAÞ ImðBÞ.
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