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The transversity generalized parton distributions (tGPDs) of the pion, involving matrix elements of the

tensor bilocal quark current, are analyzed in chiral quark models. We apply the nonlocal chiral models

involving a momentum-dependent quark mass, as well as the local Nambu–Jona-Lasinio with the Pauli-

Villars regularization to calculate the pion tGPDs, as well as related quantities following from restrained

kinematics, evaluation of moments, or taking the Fourier-Bessel transforms to the impact-parameter

space. The obtained distributions satisfy the formal requirements, such as proper support and polyno-

miality, following from Lorentz covariance. We carry out the leading-order QCD evolution from the low

quark-model scale to higher lattice scales, applying the method of Kivel and Mankiewicz. We evaluate

several lowest-order generalized transversity form factors, accessible from the recent lattice QCD

calculations. These form factors, after evolution, agree properly with the lattice data, in support of the

fact that the spontaneously broken chiral symmetry is the key element also in the evaluation of the

transversity observables.
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I. INTRODUCTION

The underlying spin- 12 partonic structure of hadrons

became first manifest in the analysis of the deep inelastic
scattering [1]. Actually, further understanding of the par-
tonic spin distributions can be gained by the study of the
transversity distributions [2]. From this viewpoint, gener-
alized parton distributions (GPDs) [3–5] (for extensive
reviews see, e.g., [6–8] and references therein) encode a
detailed information on the parton structure of hadrons
when analyzed at short distances. In the impact-parameter
space, the GPDs can be viewed as partonic probabilities in
the infinite-momentum frame distributed along the longi-
tudinal momentum fraction (Bjorken-x) and the transverse
space directions [9,10]. It should be noted that both GPDs
as well as their partonic interpretation depend strongly on
the renormalization scale and it is not obvious a priori
what, if any, is the reference scale, which might have some
universal value and significance. From a dynamical point
of view, the choice of such a scale is crucial, as the high-
energy modes are integrated out in favor of an effective and
yet unknown nonperturbative low-energy dynamics. The
renormalization group deals with the intertwining of scales
in principle, although in practice it can be explored only at
the lowest orders of the perturbation theory in the running
strong coupling constant. In addition, GPDs depend also on

the factorization scheme corresponding to the physical
process used to extract the partonic distributions at high
energies.
From a purely theoretical point of view, the great diffi-

culty to determine the GPDs from first principles in QCD is
related to their genuine Minkowski-space nature, suggest-
ing application of the light-cone kinematics and nonper-
turbatively motivated approaches, such as the transverse
lattice [11], which so far has produced encouraging but
scarce results. More recently, however, the lowest
Bjorken-x moments of the kinematically intricate GPDs,
the so-called generalized form factors (GFFs), have be-
come directly accessible to Euclidean lattices in QCD at
sufficiently short-distance resolution scales (see, e.g.,
[12,13]). This is due to the fact that GFFs for spacelike
momenta can be written as matrix elements of local op-
erators which can be directly extracted from the asymp-
totics of the Euclidean correlation functions. As a further
simplification, the scale dependence of GFFs in the space-
like region undergoes a triangular-matrix multiplicative
renormalization, which can be easily implemented (see,
e.g., [14]). A well-known feature of the QCD evolution is
the loss of resolution at higher energies, a property trig-
gered by the existence of the asymptotic ultraviolet fixed
point, which enhances similarity at increasingly high
Q2-values.
In this paper, we analyze the quark transversity gener-

alized parton distribution of the pion (tGPD), related to the
matrix elements of the bilocal tensor current operator
�qðxÞ���qð0Þ (see Sec. II and Refs. [15,16] for precise
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definitions). The transversity distribution, also termed the
maximal helicity GPD, as it involves aligned parton-
helicity operators, provides insight into the nontrivial
spin structure of the hadron. For the spin-0 hadrons,
tGPDs arise due to a nonzero orbital angular momentum
between the initial and final state, and thus offer a unique
opportunity to learn about the spin structure without the
many complications of the hadronic spin degrees of free-
dom, as is the case of the nucleon. Because of their inherent
complexity, tGPDs are the least investigated among the
hadronic GPDs. In this regard, the study of the spin struc-
ture of the pion is particularly appealing and challenging,
although at present it is unclear how it can be reliably
extracted from the high-energy experiments.

The recent lattice determination of the first two
X-moments of the pion tGPD, denoted as transversity
generalized form factors (tGFFs) [17], provides first im-
portant and nontrivial information on this issue. The cal-
culation was carried out at a lattice spacing of a� 0:1 fm
and a pion mass m� � 600 MeV. For such a small lattice

spacing, the matching to the perturbative MS scheme
becomes feasible and corresponds to the scale � ’
2 GeV. This lattice calculation has triggered some related
studies focusing either on perturbative aspects of the
high-Q2 dependence of the transversity form factors [18],
or nonperturbative issues studied within chiral quark mod-
els [19,20].

In this work, we analyze the tGPD and the tGFFs of the
pion for several chiral quark models, extending the results
presented previously [19] and providing further details.
While this unavoidably makes the paper a bit technical,
we hope that many of the details provided here show how a
proper implementation of the chiral symmetry, relativity,
and normalization can be achieved in a nonperturbative
model calculation. This is particularly interesting for the
case of nonlocal models, where the mass function depends
on the momentum. Although such models are expected to
feature chiral quark dynamics more realistically, many
complications arise due to the timelike kinematics implied
by the very definition of the GPDs. We recall that we are
effectively carrying out the one-loop calculations, where
some variables are integrated out and some may be left
unintegrated. Thus, special attention must be paid to the
treatment of the integrals, particularly to keep the Poincaré
invariance explicitly at any step of the calculation, such
that all results are mutually consistent.

Via sum rules, the (generalized) form factors are related
to the GPDs [6–8,21–26]. Experimentally, the GPDs of the
pion constitute rather elusive quantities which appear in
rare exclusive processes, such as the deeply virtual
Compton scattering or the hard electroproduction of
mesons.

Chiral quark models have proved to correctly describe
numerous features related to the vector GPD of pion. The
parton distribution functions have been evaluated in the

Nambu–Jona-Lasinio (NJL) model in Refs. [27–29]. The
extension to diagonal GPDs in the impact-parameter space
was carried out in [30]. Other analyses of the pionic GPDs
and PDFs were performed in nonlocal chiral quark models
[31–39], in the NJL model [32,40–43], and in the light-
front constituent quark models [44,45]. The parton distri-
bution amplitudes, related to the GPD via a low-energy
theorem [46], were evaluated in [47–54]. The gravitational
form factors were computed in [55]. Finally, the pion-
photon transition distribution amplitudes [56–59] were
obtained in Refs. [60–64].
Besides the phenomenological motivation, it is useful to

review shortly what aspects of the present investigation
suggest the use of chiral quark models within the present
context (see, e.g., [54]). Firstly, the pion, treated as a
composite q �q state, becomes a Goldstone boson of the
spontaneously broken chiral symmetry. This of course
requires the correct implementation of the chiral Ward-
Takahashi identities—a rather nontrivial point, since this
condition is not automatically fulfilled in loop calculations.
At the quark level, this feature is compatible with the
large-Nc scaling relations. Within such a scheme, the
pion loop corrections are 1=Nc-suppressed but chiral-log
enhanced at small pion masses. However, the leading-Nc

contributions present a much milder pion-mass depen-
dence, a favorable situation for the unphysically large
pion masses used on the lattice [17]. Moreover, relativity
for the GPDs is properly implemented through the so-
called polynomiality conditions, and, more specifically,
by the explicit use of the double distributions (DDs).
Finally, the scale at which a quark model calculation is
carried out can only be identified after a correct separation
of the momentum fraction carried by the quark degrees of
freedom. As mentioned already, the partonic properties
depend on the renormalization scale, and according to
phenomenology [65,66] as well as independent lattice
calculations [67], the (valence) quarks carry about 40%
of the total momentum at the scale � ¼ 2 GeV. In effec-
tive quark models, where the quarks carry 100% of the
total momentum, the perturbative scale is unexpectedly
and rather uncomfortably low. However, the assumption
has been tested to higher orders and confronted by compar-
ing to a variety of high-energy data or lattice calculations.
In the present calculation of the transversity form factors,
we find again agreement with the data after the QCD
evolution scheme is implemented, starting from a low
quark-model scale.
GPDs in general, and tGPDs in particular, are subjected

to a set of conditions a priori imposed by symmetries
and/or completeness, namely, the chiral symmetry, relativ-
ity, positivity, and finiteness of sum rules. Within the
framework of low-energy chiral quark models, where there
is an inherent cutoff marking the low-energy regime, these
conditions are actually not easy to fulfill on purely mathe-
matical grounds. Indeed, one-loop integrals are four
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dimensional, whereas GPDs leave two integration varia-
bles unintegrated and hence some consistency is required.
However, once this difficulty is mastered, which is the case
of our approach, there is a trend to independence to details
of the model. This independence is largely enhanced after
the QCD evolution, since differences are washed out at
increasingly higher energy scales. The feature is also ob-
served in the study of transversity, as to make differences
between various chiral quark models rather small.

We apply the local NJL model with the Pauli-Villars
regularization, as well as two variants of the nonlocal chiral
quark models inspired by the nontrivial structure of the
QCD vacuum [68,69]. These models provide the results at
the quark-model scale. After the necessary (multiplicative)
QCD evolution [43], our model results are in a quite
remarkable agreement with the lattice data for tGFFs.
Lower values of the constituent quark mass, �250 MeV,
are preferred.

The outline of the paper is as follows: In Sec. II, we give
the general definitions of the pion tGPD and tGFFs. Then
we derive these quantities in the nonlocal chiral quark
models from the triangle diagram in Sec. III. By using
the extremely convenient �-representation, we obtain the
corresponding expressions for the tGFFs in the momen-
tum- and impact-parameter spaces, the tGPDs for the iso-
singlet and isovector channels, and also, in special forward
and symmetric kinematics, the distribution of the trans-
versity size of the pion. The analysis is carried out explic-
itly for specific nonlocal models in Sec. IV. For numerical
estimates of these quantities, we use two variants of the
chiral nonlocal models and the local NJL model. In Sec. V,
we present the QCD evolution of the above quantities in
general, as well as show its consequences for the studied
models. Numerical results for the transversity distribution
functions after evolution are shown in Sec. VI. Finally, in
Sec. VII we draw our main conclusions.

II. BASIC DEFINITIONS OF THE TRANSVERSITY
FORM FACTORS AND GENERALIZED

PARTON DISTRIBUTION

In this section, we provide the basic definitions as well
as the kinematics of the transversity observables analyzed
in the present work.

The pion u-quark tGFFs, B�;u
TniðtÞ, parametrize the matrix

element

h�þðp0ÞjO���1����n�1
T j�þðpÞi

¼TAS
P�q�

m�

Xn�1
i¼0;
even

q�1 . . .q�iP�iþ1 . . .P�n�1B�;u
TniðtÞ; (1)

where the local tensor quark operator is

O���1����n�1
T

¼ T A
ð��Þ

S
ð�1����N�1Þ

�uð0Þi���iD
$�1 � � � iD$�n�1

uð0Þ; (2)

with D
$� ¼ @

$� � igA� being the QCD covariant deriva-

tive, and @
$� ¼ 1

2 ð@
!� � @

 �Þ. In Eq. (1), p0 and p are the

initial and final pion momenta, while P ¼ 1
2 ðp0 þ pÞ,

q ¼ p0 � p, and t ¼ �q2. The symbol TAS denotes
symmetrization (S) in �, �1; . . . ; �n�1, followed by anti-
symmetrization (A) in �, �, with the additional prescrip-
tion that the traces in all index pairs are subtracted (T ).
The factor 1=m� is introduced by convention in order to
have dimensionless form factors [17]. Also, as in [17], we
use the positively charged pion and the up-quark density
for definiteness.
The above definition, which projects on twist-2 opera-

tors, can be implemented in a simple and manifestly co-
variant way (see, e.g., [18]) by a contraction with two
constant auxiliary four-vectors, a and b, satisfying a2 ¼
ðabÞ ¼ 0 and b2 � 0. The tGFFs are then defined via

M�;u
Tn ð�;tÞ
¼
�
�þðp0Þ

�������� �uð0Þi���a�b�ðiD
$

aÞn�1uð0Þ
���������þðpÞ

�

¼ðaPÞn�1 ½ðapÞðbp
0Þ�

m�

Xn�1
i¼0;
even

ð2�ÞiB�;u
TniðtÞ; (3)

where the skewness parameter is defined as1

� ¼ � ðaqÞ
2ðaPÞ ; (4)

� 2 ½0; 1�, and ðaqÞ, etc., denote the scalar products of
four-vectors. In Eq. (3), ½. . .� denotes the antisymmetriza-
tion in a and b.
The tGFFs defined in (3) refer to the u-quarks; those for

the d-quarks follow from the isospin symmetry and read

B�;d
TniðtÞ ¼ ð�1ÞnB�;u

TniðtÞ: (5)

The definition of the corresponding tGPD is [6]

h�þðp0Þ j �uð�aÞi���a�b�uðaÞ j �þðpÞi

¼ ½ðapÞðbp
0Þ�

m�

Z 1

�1
dXe�iXðPaÞE�;u

T ðX; �; tÞ; (6)

where we do not display explicitly the gauge link factor.
The tGFFs can be written as the Mellin moments of tGPD
of the pion as

Z 1

�1
dXXn�1E�;u

T ðX; �; tÞ ¼
Xn�1
i¼0;
even

ð2�ÞiB�;u
TniðtÞ: (7)

1Throughout this work we use the so-called symmetric
notation.
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III. CHIRAL QUARK MODELS

In this section, we review the generic one-loop features
of chiral quark models, where the quark self-energy as well
as the interaction vertices are assumed to have a fairly
general momentum dependence to be specified later on.
We derive general expressions for the tGPD at the one-
quark-loop level, applicable to both nonlocal and local
models. We also display formal properties of tGPD in
our approach.

A. Nonlocal chiral quark models

In the quark-model calculation in the large-Nc limit,
the matrix element (3) is given by the triangle diagram
shown in Fig. 1.2 To calculate this diagram, we explore the
manifestly covariant method based on the effective ap-
proach to nonperturbative QCD dynamics. All expressions
will be computed in the Euclidean space, appropriate for
the process under consideration and, in general, for the
treatment of nonperturbative physics. The nonperturbative
quark propagator, dressed by the interaction with the QCD
vacuum, is assumed to have the form

SðkÞ ¼ k̂þmðk2Þ
Dðk2Þ : (8)

The main requirement imposed on the quark propagator is
that at large quark virtualities one recovers the perturbative
limit,

SðkÞ !k2!1 k̂

k2
: (9)

It is also assumed that the dynamical quark mass, mðk2Þ, is
a function rapidly dropping with the quark virtuality k2.
It is normalized at zero as

mð0Þ ¼ Mq; Dð0Þ ¼ M2
q: (10)

We also need the quark-pion vertex3

�a
�ðk; qÞ ¼ i

f�
�5	

aFðk2þ; k2�Þ; (11)

where k� ¼ k� q=2. The nonlocal vertex Fðk2þ; k2�Þ is a
symmetric function of its arguments, normalized to
Fðk2; k2Þ ¼ mðk2Þ. In the present study, the nonlocal model
calculations are performed in the strict chiral limit, which
means that mðk2 ! 1Þ ¼ 0.

B. Calculation of the triangle diagram

Within the described approach, the triangle diagram for
the matrix element (3) yields

MTnð�; tÞ ¼ Nc

4�2f2�

Z d4k

�2
Fðk2þ; k2�ÞFðk23; k2�Þ

� 1

4
TrfSðkþÞ�5Sðk�Þ�5Sðk3Þ���g

�
�
kþ þ k3

2
; a

�
n�1

a�b�; (12)

where kþ ¼ k is the initial momentum of the struck quark,
k3 ¼ kþ þ q is its final momentum, k� ¼ kþ � p is the
momentum of the spectator quark (cf. Fig. 1), and the
covariant average momentum ðkþ þ k3Þ=2 corresponds to
the derivative in the definition (3).
After taking the trace, one has

MTnð�; tÞ ¼ Nc

4�2f2�

Z d4k

�2

Fðk2þ; k2�ÞFðk23; k2�Þ
Dðk2þÞDðk2�ÞDðk23Þ

� fmðk2þÞ½ðk�aÞðk3bÞ� �mðk2�Þ½ðkþaÞðk3bÞ�
þmðk23Þ½ðkþaÞðk�bÞ�g

�
kþ þ k3

2
; a

�
n�1

; (13)

where the antisymmetrization in a and b is implied.
Considering the crossed channel, it is easy to get the
relation�

f. . .g
�
kþ þ k3

2
; a

�
n�1�

d�channel

! ð�1Þn
�
f. . .g

�
kþ þ k3

2
; a

�
n�1�

u�channel
; (14)

in agreement with (5).
For the further analysis, it is very convenient to trans-

form the integral in (13) into the �-representation (see
[71,72]), which is one of the basic methods for the study
of hard processes in perturbative QCD [73], as well as in
nonperturbative quark models [33]. The technical advan-
tage of this method is the explicit maintenance of the
Lorentz covariance.
Let us define for any function F of virtuality k2, decay-

ing at large virtuality as 1=k2 or faster, its � representation
(Laplace transform)

FIG. 1. (Color online) The leading-Nc one-quark-loop triangle
diagram contribution to the leading twist tGPD of the pion.

2We should emphasize at this point that the tensor matrix
element (3) cannot be induced by tadpole-type diagrams. This is
evident, because these diagrams depend only on one external
vector q from which it is impossible to construct the antisym-
metric combination involving the matrix element (3). In this
aspect, the results obtained in [20] cannot be correct.

3In this work, we use the dominant (in the spontaneous
symmetry-breaking mechanism) structures for the quark propa-
gator and the quark-pion vertex. More general structures are used
in the Schwinger-Dyson approach [70].
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Fðk2Þ ¼
Z 1
0

d�e��k2fð�Þ (15)

where Fðk2Þ is the image of the original function fð�Þ. We
will use the shorthand Fðk2Þ � fð�Þ. Let us introduce the
following notation: [74,75]

Fðk2þ; k2�ÞFðk23; k2�Þ
Dðk2þÞDðk2�ÞDðk23Þ

mðk2þÞ �Gm;0;0ð�;�; �Þ;

Fðk2þ; k2�ÞFðk23; k2�Þ
Dðk2þÞDðk2�ÞDðk23Þ

mðk2�Þ �G0;m;0ð�;�; �Þ;

Fðk2þ; k2�ÞFðk23; k2�Þ
Dðk2þÞDðk2�ÞDðk23Þ

mðk23Þ �G0;0;mð�;�; �Þ;

(16)

where the triple � representation (i.e., in parameters �, �,
and �) is applied (see Fig. 1). With this notation, the
momentum integral in Eq. (13) is transformed into the
�-representation expression for the matrix element,

MTnð�; tÞ ¼ ðaPÞn�1½ðapÞðbp0Þ� Nc

4�2f2�

�
Z dð���Þ

�3
e�ð1=�Þð��t��ð�þ�Þm2

�Þ

�
�
�þ ð�� �Þ�

�

�
n�1½�Gm;0;0ð�;�; �Þ

þ �G0;m;0ð�;�; �Þ þ �G0;0;mð�;�; �Þ�; (17)

where � ¼ �þ �þ � and

Z
dð���Þ . . . ¼

Z 1
0

d�
Z 1
0

d�
Z 1
0

d� . . . (18)

The only dependence on � in Eq. (17) appears in the
polynomial factor in the third line. It is clear that in the
expansion of this polynomial in powers of � only the even
powers survive, in accordance with Eq. (3), since for the
odd powers of � the integrand is antisymmetric in � and �.
Thus the polynomiality property of Eq. (7), namely, that
the Xn�1 moment of E�

T ðX; �; tÞ is a polynomial in � of the
order not higher than n, is immediately evident within our
approach.

C. Transversity pion form factors in momentum and
impact-parameter spaces

From representation (17), by using the definition of the
tGFFs (3), one gets4

Bu
TniðtÞ ¼

Nc

4�2f2�

ðn� 1Þ!
i!ðn� 1� iÞ!

�
Z dð���Þ

�nþ2 e�ð��=�Þt½2�Gm;0;0ð�;�; �Þ

þ �G0;m;0ð�;�; �Þ��n�1�i
�
�� �

2

�
i
; (19)

where i ¼ 0, 2; . . . � n� 1, and the symmetry properties
under the interchange of � and � has been used. The
transverse (impact parameter) space representation is
obtained, by definition, after a 2D Fourier-Bessel trans-
formation,

Fðb2?Þ ¼
Z d2q?
ð2�Þ2 e

�iðb?q?ÞFðt ¼ �q2?Þ: (20)

We then get for even i the expression

Bu
Tniðb2?Þ ¼

Nc

16�3f2�

ðn� 1Þ!
i!ðn� 1� iÞ!

�
Z dð���Þ

���nþ1 e
�ð�=��Þðb2?=4Þ½2�Gm;0;0ð�;�; �Þ

þ �G0;m;0ð�;�; �Þ��n�1�i
�
�� �

2

�
i
: (21)

D. Pion transversity generalized parton distribution

Through the use of the definition of the tGPD in Eq. (7),
we arrive at the formula

E�
T ðX; �; tÞ ¼

Nc

4�2f2�

�
Z dð���Þ

�3
e�ð��=�Þt½�Gm;0;0ð�;�; �Þ

þ �G0;m;0ð�;�; �Þ þ �G0;0;mð�;�; �Þ�

� 


�
X � �þ ð�� �Þ�

�

�
;

� 1<X ¼ �þ ð�� �Þ�
�

< 1: (22)

Let us integrate over the � parameter, corresponding to the
quark spectator. From the 
 function, we resolve � as

� ¼ ðX þ �Þ�þ ðX � �Þ�
1� X

(23)

and apply the positivity conditions for�,�, and �. At fixed
� 2 ½0; 1� and X 2 ½�1; 1�, one has three distinct regions:

I: � < X < 1; where X þ � > 0; X � � > 0;

II: � � < X < �; where Xþ � > 0; X � � < 0;

III: � 1<X <��; where Xþ � < 0; X � � < 0:
4In the following, we will explore the strict chiral limit of

m� ¼ 0.
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In region I, � is positive without any limitations. In region III, all coefficients in Eq. (23) are negative, hence the support
of the integrand has zero measure and the integral in Eq. (22) equals zero. In the central region II, the coefficient of � in

Eq. (23) is positive and the coefficient of � is negative, thus one has the limitation �> � ��X
�þX . Finally, the total result

may be combined as

E�
T ðX; �; tÞ ¼ �ðXþ �Þ Nc

4�2f2�

Z 1
0

d�
Z 1
maxf0;���X

�þXg
d�e�ð��=�Þt

�Gm;0;0ð�;�; �Þ þ �G0;m;0ð�;�; �Þ þ �G0;0;mð�;�; �Þ
�2ð1� XÞ ;

(24)

where�ðxÞ is the step function, � is given by Eq. (23), and
� ¼ ½�þ �þ �ð�� �Þ�=ð1� XÞ.

The isovector and isosinglet tGPDs of the pion are
obtained as the symmetric and antisymmetric combina-
tions,

E�;I¼1
T ðX; �;Q2Þ � E�;S

T ðX; �;Q2Þ
¼ E�

T ðX; �;Q2Þ þ E�
T ð�X; �;Q2Þ;

E�;I¼0
T ðX; �;Q2Þ � E�;A

T ðX; �;Q2Þ
¼ E�

T ðX; �;Q2Þ � E�
T ð�X; �;Q2Þ:

(25)

The support of E�;I¼0;1
T is �1 � X � 1. The significance

of the isospin combinations comes from the fact that they
evolve autonomously with the renormalization scale, see
Sec. V.

E. Special kinematics: � ¼ 0 and � ¼ X cases

Some special kinematics is evident. For the case � ¼ 0
(tPDF), we have

E�
T ðX; � ¼ 0; tÞ

¼ �ðXÞ Nc

4�2f2�

Z 1
0

dð��Þe�ð��=�Þt

� 2�Gm;0;0ð�;�; �Þ þ �G0;m;0ð�;�; �Þ
�2ð1� XÞ ;

(26)

where � ¼ ð�þ �Þ X
1�X and � ¼ ð�þ �Þ 1

1�X . Note that

in general the first term in the numerator dominates in the
small X region, while the second one is more important in
the region of large X.
For the border case, � ¼ X, we find

E�
T ðX; � ¼ X; tÞ ¼ �ðXÞ Nc

4�2f2�

Z 1
0

dð��Þe�ð��=�Þt �Gm;0;0ð�;�; �Þ þ �G0;m;0ð�;�; �Þ þ �G0;0;mð�;�; �Þ
�2ð1� XÞ ; (27)

with � ¼ 2� X
1�X and � ¼ ½�þ �þ Xð�� �Þ� 1

1�X .

F. Double distribution

Some symmetry properties of the GPDs are more trans-
parent when they are constructed from the DDs [3,5,76].
Actually, the relativistic invariance exhibited by the
polynomiality conditions is manifestly built-in in this ap-
proach (see, e.g., Ref. [77]). To pass to double distribu-
tions, we first make the substitution (see, e.g., [76])
� ¼ x1L, � ¼ x2L, � ¼ x3L in Eq. (22) and obtain

E�
T ðX; �; tÞ ¼

Nc

4�2f2�

Z 1
0

dL
Z 1

0
dx1dx2dx3e

�x1x3t

� 
ð1� x1 � x2 � x3Þ
� 
ðx� x2 � ðx3 � x1Þ�Þ
� ½x1Gm;0;0ðx1L; x2L; x3LÞ
þ x2G0;m;0ðx1L; x2L; x3LÞ
þ x3G0;0;mðx1L; x2L; x3LÞ�: (28)

To recover the DD representation we further make the
replacement x2 ¼ b, x3 � x1 ¼ a and arrive at

E�
T ðX; �; tÞ ¼

Z 1

0
db

Z 1�b

�1þb
da
ðX � b� a�Þf�T ða; b; tÞ;

(29)

with the DD identified as

f�T ða; b; tÞ ¼
Nc

4�2f2�

Z 1
0

dLe�x1x3t

� ½x1Gm;0;0ðx1L; bL; x3LÞ
þ bG0;m;0ðx1L; bL; x3LÞ
þ x3G0;0;mðx1L; bL; x3LÞ�: (30)

Here, x1 ¼ 1
2 ð1� b� aÞ and x3 ¼ 1

2 ð1� bþ aÞ. In the

above expressions, the parameter b is non-negative. The
b � 0 part of the DD comes from the crossed diagram.
Sometimes it is also convenient to separate the so-called

D-term, defined as

Dðb; tÞ ¼
Z 1�b

�1þb
daf�T ða; b; tÞ: (31)
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G. The b? space and the transverse pion size

Let us now consider tGPD in the transverse coordinate space, b?. By using the 2D Fourier-Bessel transform of Eq. (20),
one easily gets

E�
T ðX; �; b2?Þ ¼ �ðX þ �Þ Nc

16�3f2�

Z 1
0

d�
Z 1
maxf0;�ð��X=�þXÞg

d�e�ð�=��Þðb2?=4Þ

� �Gm;0;0ð�;�; �Þ þ �G0;m;0ð�;�; �Þ þ �G0;0;mð�;�; �Þ
���ð1� XÞ ; (32)

where the value of the parameter� is given by Eq. (23) and
� ¼ ½�þ �þ �ð�� �Þ� 1

1�X .
In the zero longitudinal momentum-transfer limit,

�! 0, one obtains the so-called 3D transverse parton
distribution

f�T ðX; b?Þ ¼ E�
T ðX; �! 0; b2?Þ: (33)

Following [78], one can also introduce the normalized
quark probability density in the transverse plane,

��
T ðX; b?Þ ¼

f�T ðX; b?Þ
f�T ðXÞ

; (34)

where

f�T ðXÞ � E�
T ðX; � ¼ 0; t ¼ 0Þ; (35)

as defined in (26). The partons with the longitudinal mo-
mentum fraction X occupy within the hadron a disc of the
average transverse radius squared given by

b2?ðXÞ ¼
Z

d2b?b2?f
�
T ðX; b?Þ: (36)

In chiral quark models, the triangle diagram yields

b2?ðXÞ ¼
Nc

�2f2�
ð1� XÞ2

Z
dð��Þ ��

ð�þ �Þ3
� ½2�Gm;0;0ð�;�; �Þ þ �G0;m;0ð�;�; �Þ�; (37)

where � ¼ ð�þ �Þ X
1�X . The C-odd transverse size of the

hadron, determined by the slope of the tGFF at low mo-
mentum transfer, can be obtained by integrating b2?ðXÞ
over the momentum fraction

b2? ¼ 2
Z 1

0
dXb2?ðXÞ: (38)

According to Gribov [79], one can interpret the normal-
ized quark density (34) as an evolution of the probability
density for a stochastic motion of a particle in the trans-
verse plane. The role of the evolution time is played by the
rapidity variable, � ¼ lnð1=XÞ. For the stochastic process,
one can introduce the mean squared distance of the particle
as follows: [78]:

d2?ðXÞ ¼
Z

d2b?b2?�ðX; b?Þ ¼
b2?ðXÞ
fðXÞ : (39)

By using a model with short-range interactions, Gribov
predicted that [79]

d2?ð�Þ ¼ D�; (40)

where D is a constant, while in [78] the result is

d2?ð�Þ �
1

ð4�f�Þ2
eð1�!Þ�: (41)

Here, ! 	 0:5 is the slope of the forward quark distribu-
tion at small X, i.e., qðXÞ � 1=X!. Note that Eq. (41) is
OðN�1c Þ, since f� ¼ Oð ffiffiffiffiffiffi

Nc

p Þ. Actually, the ‘‘chiral infla-
tion’’ discussed in Ref. [78] is a pion-loop effect, which is
1=Nc-suppressed, but at the same time it is chirally en-
hanced as logðm2

�Þ for m� ! 0, compared to the leading
one-quark-loop contribution. In the real world withNc ¼ 3
and m� ¼ 140 MeV, the relative chiral contributions
to the rms radius of the pion are about 20% [80]. 5 Of
course, the additional inclusion of pion-loops in our model
would automatically reproduce this universal inflating
phenomenon.

IV. MODEL RESULTS

Having derived the general formulas for tGPDs in chiral
quark models from the triangle diagram of Fig. 1, we now
pass to presenting explicit numerical calculations. We start
with the nonlocal models. In the present work, we consider
two variants of the quark-pion vertex of Eq. (11),

FIðk2þ; k2�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðk2þÞmðk2�Þ

q
; (42)

FHTVðk2þ; k2�Þ ¼
1

2
½mðk2þÞ þmðk2�Þ�; (43)

wheremðk2Þ is the momentum-dependent dynamical quark
mass. The form (42) is motivated by the instanton picture
of the QCD vacuum [68] and is labeled ‘‘instanton,’’ while
the form (43), the Holdom-Terning-Verbeek (HTV) vertex,
comes from the nonlocal chiral quark model of Ref. [69].

5Actually, from the relation for the rms radius of the pion
found in ChPT [80], hr2i ¼ ð�l5 � 1Þ=ð16�2f2�Þ, one has the total
low-energy constant �l5 ¼ 13:9� 1:3, most of which is saturated
by the �-meson exchange, �l

�
5 ’ 17, at the leading order in Nc.

Thus, the subleading (1=Nc-suppressed) contribution is esti-
mated to be ��l5 � �l5 � �l

�
5 � logðm2

�=m
2
�Þ � �3.
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Some relevant differences between both prescriptions
regarding the proper implementation of chiral symmetry
are discussed in Ref. [81].

We consider the dynamical quark mass of the form

mðk2Þ ¼ Mqf
2ðk2Þ; (44)

and for simplicity take the profile function fðk2Þ as a
Gaussian,

fðk2Þ ¼ e��k2 (45)

(note that � has the interpretation of the squared inverse
momentum cutoff). The model contains two parameters:
the dynamical quark mass at zero momentum,Mq, and the

nonlocality scale, �. For our numerical estimates we take
one parameter fixed at a physically reasonable value,Mq ’
240 MeV, and then fix � via the pion decay constant
evaluated in the chiral limit, f� ¼ 84 MeV [80]. The ex-
pression for f� in the instanton model is given by the
Diakonov-Petrov formula [68],

fI�¼
�
Nc

4�2

Z 1
0
duu

mðuÞ
D2ðuÞðmðuÞ�um0ðuÞþu2m02ðuÞÞ

�
1=2

;

(46)

while in the HTVmodel one has the Pagels-Stokar formula
[69,82]

fHTV� ¼
�
Nc

4�2

Z 1
0

duu
mðuÞ
D2ðuÞ ðmðuÞ �

1

2
um0ðuÞÞ

�
1=2

:

(47)

The described parameter-fitting procedure yields

�I ¼ 0:7 GeV�2; �HTV ¼ 0:375 GeV�2: (48)

For the instanton model, the integrand in Eq. (17) and
the subsequent formulas can be expressed as follows:

�Gm;0;0ð�;�; �Þ þ �G0;m;0ð�;�; �Þ þ �G0;0;mð�;�; �Þ
!I �d3=2� d1�d

1=2
� þ �d1=2� d2�d

1=2
� þ �d1=2� d1�d

3=2
� ; (49)

while for the HTV model one has

�Gm;0;0ð�;�; �Þ þ �G0;m;0ð�;�; �Þ þ �G0;0;mð�;�; �Þ
!HTV 1

4
f�ðd2�d1�d0� þ d2�d

0
�d

1
� þ d1�d

2
�d

0
� þ d1�d

1
�d

1
�Þ

þ ð�$ �Þ þ �ðd1�d2�d0� þ d0�d
2
�d

1
� þ d0�d

3
�d

0
�

þ d1�d
1
�d

1
�Þ: (50)

Here we have introduced the shorthand notation

m2nðk2Þ
Dðk2Þ � dn�: (51)

For the assumed Gaussian form factor (45), the dn�
function at large �
 � has the following behavior:

1

RðÞM
n
qe
�ð��2n�Þ�ð�� 2n�Þ; (52)

with

RðÞ ¼ 1� 4�m2ðÞ; (53)

where  is the root of the equation

þm2ðÞ ¼ 0: (54)

The functions (52) can also be used as approximants for the
analytic calculations of the quark distributions in the pion.
In the momentum representation, this simplification means
that in the denominators of the integrands we neglect the
momentum dependence of the dynamical quark mass, as
would be the case of the local quark models.

A. The numerical results for nonlocal models

In this subsection, we present the results for the nonlocal
models. These results are obtained from the formulas
presented above with the help of numerical integration.
We start by exploring the t-dependence. In Fig. 2, we

present the pion u-quark tGFFs in the HTV model and in
the instanton model. First of all, the increase of the indices
n or i causes a decrease of the form factor normalization.
We also note a faster falloff with t of the tGFFs for the case
of the instanton model compared to the HTV case. We note
that the tGFFs undergo the QCD evolution, which will be
discussed in detail in Sec. V. The B�;u

n0 form factors, how-

ever, evolve multiplicatively, hence we can read off their
t-dependence from Fig. 2.
At large t, the B�;u

10 form factor in the HTVmodel has the

asymptotic behavior� lnt=t. This follows from the asymp-
totic formula

FIG. 2 (color online). (Color online) The tGFFs B�;u
ni ðtÞ in the

HTV model (solid line) and in the instanton model (dashed line)
for several lowest values of n and i. The sequence in the legend
corresponds to the sequence of the curves, from top to bottom.
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Bu
T10ðt
 ��1Þ ¼HTV 1

t

Nc

16�2f2�

�Z 1
0

du
m3ðuÞ
DðuÞ ln

�
t

u

�

þ 2
Z 1
0

du
m2ðuÞ
DðuÞ

Z 1
0

dv
mðuþ vÞ
Dðuþ vÞ

�
�
1�mðuÞmðuþ vÞ

uþ v

��
: (55)

For the instanton model, the falloff is exponential, since

Bu
T10ðt
��1Þ¼I Nc

4�2f2�

ffiffiffiffi
�
p

M3
q

RðÞ
1

t

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffiffiffi
t
pp

�
�
1�2

ffiffiffiffi


t

s �
e��ð

ffiffiffiffi
t
p �6ÞE1ð�

ffiffiffiffiffi
t
p Þ: (56)

In Fig. 3, we display the tGFFs in the impact-parameter
space. The information is the same as in Fig. 2, as the two
figures are simply linked with a Fourier-Bessel transform.
Nevertheless, the different large-t behavior of the instanton
and HTV models is very vividly seen in the small-bT
behavior in Fig. 3.

Next, we explore the X dependence in the simplest case
of t ¼ 0 and � ¼ 0 (tPDF). In Fig. 4, we present the results
of calculations of the tPDF in the nonlocal models (35). We
notice a more-less triangular shape for both models, with a
depletion near X ¼ 0.

The end point behavior of these functions can be in-
ferred from Eq. (26) by using the approximants (52). The
X ! 1 behavior is governed by the properties of the active
dynamical quark, while the X ! 0 behavior is related to
the spectator quark. For the instanton model the end point
behavior is exponentially suppressed, namely

fITðX ! 1Þ � ð1� XÞ2 exp
�
� 2�

1� X

�
;

fITðX ! 0Þ � exp

�
� 2�

X

�
;

(57)

while for the HVT model one has a powerlike behavior

fHVTT ðX ! 1Þ � ð1� XÞ; fHVTT ðX ! 0Þ � const:

(58)

We remark here that the end point behavior in Eqs. (57) and
(58) is sensitive to the radiative corrections, hence it
evolves with the scale.
A similar behavior is obtained for the transverse size

distribution at t ¼ 0, shown in Fig. 5, namely

b2?IðX ! 1Þ � ð1� XÞ4 exp
�
� 2�

1� X

�
;

b2?IðX ! 0Þ � 1

X
exp

�
� 2�

X

�
;

b2?HVTðX ! 1Þ � ð1� XÞ3;
b2?HVTðX ! 0Þ � const:

(59)

Next, we present our results for the distribution function
of the mean square distance. In Fig. 6, we show d2? as a

function of X, while in Fig. 7 we present the same quantity
as a function of the rapidity variable �. We also compare

FIG. 3 (color online). (Color online) The tGFFs B�;u
ni ðb2TÞ in

the impact parameter space in the HTV model (solid line) and in
the instanton model (dashed line). The sequence in the legend
corresponds to the sequence of the curves, from top to bottom.

FIG. 4 (color online). (Color online) The tPDF in the HTV
model (solid line) and in the instanton model (dashed line).

FIG. 5 (color online). (Color online) The distribution function
of the transverse size in the HTV model (solid line) and in the
instanton model (dashed line).
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our results to the calculations of Refs. [79] (G) and [78]
(PPV). In the region of large �, corresponding to low X,
various model predictions are different.

Finally, we explore the dependence on � and X of the
pion tGPDs at t ¼ 0. The results are given in Figs. 8 and 9.
We note the symmetry properties following from the defi-
nition (25). We can also see that the curves bend near
X ¼ �.

To summarize the study of this subsection we state that
the results, apart for mathematically different end point
behavior, are qualitatively similar in the two explored
variants of the nonlocal chiral quark models.

B. Nambu–Jona-Lasinio model

We term the usual Nambu–Jona-Lasinio model with
pointlike quark-quark interactions the local NJL model.
All formulas for the local model follow from the nonlocal
expressions given above, with the constant quark mass,

which formally corresponds to taking the limit �! 0. In
addition, a regularization prescription, necessary to make
the divergent integrals finite, is implemented, as discussed
below.
The one-quark-loop action of the NJL model is

�NJL ¼ �iNc Tr logði6@�MU5 �mÞjreg; (60)

where M is the constituent quark mass generated via the
spontaneous breaking of the chiral symmetry,

U5 ¼ expði�5� � �Þ; (61)

with� denoting the pion field, whilem is the current quark
mass. We apply the NJL with the Pauli-Villars regulariza-
tion in the twice-subtracted version of Refs. [54,83,84].
Variants of chiral quark models differ in the way of per-
forming the necessary regularization of the quark loop
diagrams, which may to some extent influence the physical
results.

FIG. 6 (color online). (Color online) The distribution function
of the mean square distance in the HTV model (solid line) and in
the instanton model (dashed line), plotted as a function of X.

FIG. 7 (color online). (Color online) The distribution function
of the mean square distance as function of rapidity � in the HTV
model (solid line), in the instanton model (dashed line), in the
Gribov approach [79] (G) (dot-dashed line), and in the PPV
model [78] (dotted line).

FIG. 8 (color online). (Color online) The pion tGPD for iso-
vector case in the HTV model (solid lines) and in the instanton
model (dashed lines) for several values of �.

FIG. 9 (color online). The pion tGPD for isoscalar case in the
HTV model (solid lines) and in the instanton model (dashed
lines) for several values of �.
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Here, we use the prescription where M2 in the loop
integral is replaced with the combination M2 þ�2, where
in the present context � is the cutoff parameter, and then
the regularized observable is evaluated according to the
formula

O reg ¼ Oð0Þ �Oð�2Þ þ�2dOð�2Þ=d�2: (62)

The premultiplying factor g2� ¼ M2=f2� is not regularized
[54,83,84].

In the local model, it is relatively simple to go beyond
the chiral limit, hence we do not restrict ourselves to the
case m� ¼ 0. Since the lattice data used in this work are
actually for m� ¼ 600 MeV, hence not at all close to the
chiral limit of m ¼ 0, we need to deal with a situation of
moderately large pion masses. The prescription to fix the
model parameters is as follows: the three constants �, M,
and m are traded for the constituent quark mass, M, the
pion decay constant f�, and m�. We assume that � de-
pends on M only, and not on m. Constraining f� ¼
93 MeV (the physical value) and using the given value of
m� leaves us with one free parameter only, M, which is
taken in the 250–300 MeV ball park.

We recall that the optimum value of M used in chiral
quark models depends of particular observable used for
the fitting procedure. The application to the � meson
suggests M above m�=2� 400 MeV, while the soliton

models for the nucleon prefer M� 300–350 MeV [85].
However, significantly lower values follow from other
studies in the pion sector. The charge radius of the pion
in the NJL model with the Pauli-Villars regulator favors
M� 280 MeV [54], however, the pion-loop corrections to
this observable are important. The analysis of the radii of
the pion charge and transition form factors from quark

triangle diagrams yields M ¼ ffiffiffiffiffiffiffiffi
2=3

p
�f� � 240 MeV

[86]. Another restriction on the value of M follows from
the Adler function and the corresponding vacuum polar-
ization contribution to the gyromagnetic factor g� 2 of
the muon. The loop approach (without and with radiative
corrections) [87,88] yields M ¼ 180–200 MeV, the ana-
lytic perturbation model [89] gives 240 MeV, while the
nonlocal chiral quark model [90] suggests 250 MeV. Our
chosen value of �250 MeV falls into this ball park.

In the NJL model, the formulas for the lowest two
transversity form factors are very simple,

B�;u
T10ðtÞ
m�

¼
Z 1

0
d�

Z 1��

0
d�K;

B�;u
T20ðtÞ
m�

¼
Z 1

0
d�

Z 1��

0
d��K;

K ¼ Ncg
2
�M

2�2ðM2 þm2
�ð�� 1Þ�þ t�ð�þ �� 1ÞÞ

��������reg
:

(63)

with g� ¼ M=f�. The variables � and � are the Feynman
parameters.
The result for the tGPD are particularly simple at t ¼ 0

and in the chiral limit, namely, trapezoidal for the sym-
metric (I ¼ 1) combination,

E�;S
T ðX; �; t ¼ 0;�0Þ=N ¼

8<
:
1; 0 � X � �
1�X
1�� ; � � X � 1

; (64)

and triangular for the antisymmetric (I ¼ 0) combination,

E�;A
T ðX; �; t ¼ 0;�0Þ=N ¼

8<
:
X=�; 0 � X � �
1�X
1�� ; � � X � 1

: (65)

Here, N denotes a normalization constant following from
the model.
Other results of the local NJL model, the corresponding

plots, and comparisons to the predictions of the nonlocal
models will be presented in the following parts, together
with the discussion of the QCD evolution.

V. QCD EVOLUTION

We now come to a very important aspect of our analysis.
Before comparing the results to the lattice data, we need to
carry out the QCD evolution, as the tGPD and tGFFs
evolve with the scale. The need for the evolution has
been discussed in detail in [43]. In essence, our approach
consists of 1) evaluation of the appropriate soft matrix
element in the given model at the low quark-model scale,
where the matrix element is matched to the QCD result,
and 2) subsequent evolution to higher scales with appro-
priate perturbative QCD equations.
For instance, the lattice data correspond typically to the

scale of about Q ¼ 2 GeV, as follows from the used value
of the lattice spacing, while the quark-model calculation
corresponds to a much lower scale,

�0 ��QCD: (66)

A detailed discussion of the evolution issue and ways to set
the quark-model scale is presented in Refs. [43,91], where
the scale

�0 ¼ 313 MeV (67)

is advocated. We stress that the inclusion of evolution is
crucial for obtaining the results at experimental or lattice
scales. A nontrivial test is to check that the procedure
reproduces consistently other observables at a given scale,
� (see e.g. Refs. [43,91] for a detailed comparison).

A. Evolution of tGPD

The leading-order DGLAP-ERBL evolution for tGPD is
given, e.g., in [6]. To carry out this evolution in practical
terms, we use the method given in [92–95], where the basic
objects are the moments in the Gegenbauer polynomials of
index n
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gnð�Þ ¼
Z 1

0
dXE�;S

T ðX; �; t;�ÞG3=2
n ðX=�Þ: (68)

The DGLAP region, X > �, is outside of the orthogonality

range for the polynomials G3=2
n ðX=�Þ. The LO DGLAP-

ERBL evolution amounts to the multiplication

gnð�Þ ¼ Lngnð�0Þ; (69)

Ln ¼
�
�ð�Þ
�ð�0Þ

�
�T
n=ð2�0Þ

: (70)

The anomalous dimensions in the transversity (tensor)
channel are given by

�T
n ¼ 32

3
Hn � 8; (71)

where Hn ¼
P

n
k¼1 1=k. In particular, one has for the two

lowest form factors �T
1 ¼ 8

3 and �T
2 ¼ 8. We use �0 ¼

11
3 Nc � 2

3Nf and the running coupling constant

�ð�Þ ¼ 4�=½�0 logð�2=�2
QCDÞ�; (72)

with �QCD ¼ 226 MeV for Nc ¼ Nf ¼ 3. The inversion

of the evolved moments back into the evolved GPD, ap-
plied in our calculation, is explained in [92–95].
We also recall that in the transversity channel the quark

distributions evolve autonomously, i.e. do not mix with the
gluon distributions, which is the case of the vector and
axial channels. That way no gluon tGPDs are generated by
the QCD evolution, as by construction they vanish in chiral
quark models at the quark-model scale.

B. Evolution of transversity form factors

The LO DGLAP-ERBL evolution of tGFFs, defined as
moments of the GPDs, has been spelled out explicitly in
[14]. The triangular structure which appears from the con-
siderations on the evolution of the tGPDs is, for odd
n ¼ 2kþ 1,

B2kþ1;2l ¼ k�ð2kÞ Xk
m¼0
ð4mþ 3ÞL2mþ1

Xk
j¼k�l

22ðj�kÞð�1Þm�j�ðjþmþ 3
2ÞB0

2jþ1;2ðj�kþlÞ
�ð2jþ 1Þ�ðm� jþ 1Þ�ðk�mþ 1Þ�ðkþmþ 5

2Þ
; (73)

and, for even n ¼ 2kþ 2,

B2kþ2;2l ¼ �ð2kþ 2Þ Xk
m¼0
ð4mþ 5ÞL2mþ2

Xk
j¼k�l

22j�2k�1ð�1Þm�j�ðjþmþ 5
2ÞB0

2ðjþ1Þ;2ðj�kþlÞ
�ð2jþ 2Þ�ðm� jþ 1Þ�ðk�mþ 1Þ�ðkþmþ 7

2Þ
; (74)

where k ¼ 0; 1; 2; . . . and l ¼ 0; 1; . . . ; k. We have intro-
duced a shorthand notation Bni ¼ B�

Tniðt;�Þ and B0
ni ¼

B�
Tniðt;�0Þ. For the lowest moments we have, explicitly,

B10 ¼ L1B
0
10;

B32 ¼ 1

5
ðL1 � L3ÞB0

10 þ L3B
0
32;

B54 ¼ 1

105
ð9L1 � 14L3 þ 5L5ÞB0

10 þ
2

3
ðL3 � L5ÞB0

32

þ L5B
0
54;

. . .

B20 ¼ L2B
0
20;

B42 ¼ 3

7
ðL2 � L4ÞB0

20 þ L4B
0
42;

. . .

B30 ¼ L3B
0
30;

B52 ¼ 2

3
ðL3 � L5ÞB0

30 þ L5B
0
52;

. . .

B40 ¼ L4B
0
40: (75)

In particular, the two lowest tGFFs available from the
lattice data, B�;u

T10 and B�;u
T20, evolve multiplicatively as

follows:

B�;u
Tn0ðt;�Þ ¼ B�;u

Tn0ðt;�0Þ
�
�ð�Þ
�ð�0Þ

�
�T
n=ð2�0Þ

;

which numerically gives

B�;u
T10ðt; 2 GeVÞ ¼ 0:75B�;u

T10ðt;�0Þ;
B�;u
T20ðt; 2 GeVÞ ¼ 0:43B�;u

T20ðt;�0Þ:
(76)

Note a stronger reduction for BT20 compared to BT10 as the
result of the evolution.
In the chiral limit and at t ¼ 0

B�;u
T10ðt ¼ 0;�0Þ=m� ¼ NcM

4�2f2�
; (77)

B�;u
T20ðt ¼ 0;�Þ

B�;u
T10ðt ¼ 0;�Þ ¼

1

3

�
�ð�Þ
�ð�0Þ

�
8=27

: (78)
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VI. NUMERICAL RESULTS AFTER
THE QCD EVOLUTION

In this section, we present our numerical results after the
QCD evolution for the tGPD of the pion, its special cases
� ¼ 0 and � ¼ 1, corresponding to the tPDF and tDA,
respectively, as well as discuss the tGFFs. The latter are
compared to the available lattice data of [17].

A. tGPD

The results of the calculation of the tGPD of the pion at
a sample value of � ¼ 1=3 and at t ¼ 0, together with the
LO DGLAP-ERBL evolution, are given in Figs. 10 and 11.
For the nonlocal case, we take the HTV model (43) and
(50), as the results of the instanton model (42) and (49) are
qualitatively similar. Here, we take for simplicity the chiral
limit,m� ¼ 0. We provide in the figures the symmetric (S)
and asymmetric (A) combinations in the X variable (25).
The solid lines correspond to the calculation at the quark-
model scale, �0. In this case we conventionally normalize
the plotted functions with a constant N in such a way
that

Z 1

0
dXE�;S

T ðX; �; t ¼ 0;�0Þ=N ¼ 1þ �

2
(79)

for all displayed models.
Further, we note the gross qualitative similarity between

the nonlocal HTV model and the local NJL model. The
differences are manifest in the end point behavior. Near
X ¼ 1 the tGPD in nonlocal model is suppressed, as ex-

plained in Sec. IVA. Also, near X ¼ 0 the quantity E�;S
T is

depleted compared to the local case, where no minimum is
present.
The dashed and dotted curves show the results evolved

to the scales 2 GeV and 1 TeV, respectively. After the
evolution, the results of the HTV model and the local
NJL model are qualitatively very similar.

B. tPDF

Next, we explore the special case � ¼ 0, again for t ¼ 0
and m� ¼ 0. In this case tGPD corresponds, by definition,
to tPDF. In Fig. 12, we compare the predictions of the three
considered models at the quark-model scale, �0. We note
different end point behavior, both at X ¼ 1 and at X ¼ 0,
according to the discussion presented in Sec. IVA. Near
X ¼ 1, the instanton model has a stronger suppression in
tPDF than the HTV model. The local model approaches
zero linearly. Again, we note that the QCD evolution
changes the end point behavior.
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FIG. 10 (color online). The DGLAP-ERBL evolution of the
symmetric (S, or I ¼ 1) and antisymmetric (A, or I ¼ 0) parts
of the quark tGPD of the pion in the nonlocal HTV model for
m� ¼ 0, t ¼ 0, � ¼ 1=3, and M ¼ 240 MeV. The solid line
corresponds to the initial condition at the quark-model scale
�0 ¼ 313 MeV, the dashed line shows the result of the evolu-
tion to � ¼ 2 GeV, and the dotted line to � ¼ 1 TeV.
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FIG. 11 (color online). (Color online) Same as Fig. 10 for the
local NJL model.
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C. tDA

Another interesting limiting case is provided with
� ¼ 1. In that case

E�
T ðX; t ¼ 0; � ¼ 1Þ ¼ �TðXÞ; (80)

where ��
T ðXÞ is the tensor distribution amplitude of the

pion, defined as

h0j �dðzÞ����5uð�zÞj�þðqÞi ¼ i

ffiffiffi
2
p
3

NTðp�z� � p�z�Þ

�
Z 1

0
dueið2u�1Þq�z��

T ðuÞ;
(81)

where X ¼ 2u� 1 and NT is the normalization factor
yielding

R
1
0 du�TðuÞ ¼ 1.

The local NJL model predicts a constant ��
T ðXÞ at the

quark-model scale. Again, as seen from Fig. 13, the

difference between the local and nonlocal models is seen
in the end point behavior, X ��1. In the intermediate
range of X the tDA ��

T ðXÞ is close to a constant also for
the nonlocal models.
In Fig. 14, we show the LO ERBL evolution of the tDA

of the pion in the local NJL model. We note a gradual
approach toward the asymptotic form

��
T;asymðuÞ ¼ 6uð1� uÞ: (82)

For the nonlocal models, the effect of the evolution is
similar.

D. tGFFs

In Fig. 15, we show the LO DGLAP-ERBL evolution of
the tGFFs evaluated in the local NJL model.
By comparing the two panels of Fig. 15, we note that the

evolution of tGFFs is multiplicative, and increasing the
scale leads to quenching of the form factors BTn0. For the
form factors BTni with i � 0 the evolution is more com-
plicated, as can be inferred from Eq. (75). For the nonlocal
models, the effects of the evolution for tGFFs are similar.

E. Chiral quark models vs lattice

The content of this section has already been presented by
us in a greater detail in [19]. For the completeness of the
present work, we repeat the main results.
The presently available full-QCD lattice results [17] are

for B�;u
10 and B�;u

20 and for �t up to 2:5 GeV2, with moder-

ately low, but still away from the physical limit, values of
the pion mass, m� � 600 MeV. The calculation of [17]
uses the same Nf ¼ 2 set of the QCDSF/UKQCD ensem-

bles with improved Wilson fermions and the Wilson gauge
action that were used previously in the analysis of the pion
charge and gravitational form factors [96].
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FIG. 12 (color online). (Color online) Comparison of the tPDF
(E�

T ðX; t ¼ 0; � ¼ 0Þ) in the local model (solid line), instanton

model (dashed line), and the HTV model (dotted line) for
m� ¼ 0, evaluated at the quark-model scale.
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FIG. 13 (color online). (Color online) Comparison of the tDA
(��

T ðXÞ) in the local model (solid line), instanton model (dashed
line), and the HTV model (dotted line) for m� ¼ 0, evaluated at
the quark-model scale.
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FIG. 14 (color online). (Color online) Evolution of the tensor
distribution amplitude, tDA, in the local NJL model. The sub-
sequent curves (from bottom to top at u ¼ 1=2) correspond to
� ¼ �0 ¼ 313 MeV (the constant), � ¼ 500 MeV, � ¼
2 GeV, � ¼ 1000 GeV, and � ¼ 1 (the asymptotic form
6uð1� uÞ.
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We note that for t ¼ 0, both the local and nonlocal
models yield the normalization

B�;u
T10ðt ¼ 0;�0Þ=m�

¼ Nc

2�2f2�

Z 1
0

du
um2ðuÞ

ðuþm2ðuÞÞ3 ðmðuÞ � um0ðuÞÞ;
(83)

B�;u
T20ðt ¼ 0;�0Þ=m�

¼ Nc

2�2f2�

	Z 1
0

du
umðuÞ

ðuþm2ðuÞÞ3 ðm
2ðuÞ

þ 1

2
umðuÞm0ðuÞ þ 1

6
u2m0;2ðuÞÞ

�
Z 1
0

du
u2m2ðuÞ

ðuþm2ðuÞÞ4 ðmðuÞ þ 2m2ðuÞm0ðuÞÞ


;

(84)

where m0ðuÞ ¼ dmðuÞ=du. In the local limit, where
mðk2Þ ! const, one reproduces Eqs. (77) and (78).

The results for B�;u
Tn0ðtÞ, n ¼ 1, 2, are shown in Fig. 16. In

our study, we have assumed that BTn0=m� depends weakly

onm�, similarly to the local model case [19]. Therefore, to
compare to the lattice data for BTn0, we multiply the results
of the calculations obtained in the chiral limit with m� ¼
600 MeV. We have carried out the QCD evolution proce-
dure as described in the previous Sections, from the quark-
model scale up to the lattice scale of 2 GeV. From Fig. 16
we note that the HTV model with the vertex function given
by Eq. (43) (solid lines) and with Mq ¼ 300 MeV works

best, describing accurately the data, while the instanton
model, Eq. (42) (dashed lines), results in form factors
falling-off too steeply. We have found that lower values
of Mq spoil the agreement with the lattice data.

In Fig. 17, we show the results from the local NJL model
evolved to the lattice scale of� ¼ 2 GeV, confronted with
the lattice data scanned from Fig. 1 of [17]. We have used
m� ¼ 600 MeV and selected M ¼ 250 MeV, which opti-
mizes the comparison. As we see, the agreement is
remarkable.
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FIG. 15 (color online). (Color online) The transversity form
factors Bu

niðtÞ, evaluated in the local NJL model at the quark-
model scale �0 (top panel) and evolved to � ¼ 2 GeV (bottom
panel). Solid line—Bu

10ðtÞ, dashed line—Bu
20ðtÞ, dotted line—

Bu
30ðtÞ, dash-dotted line—Bu

32ðtÞ.
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FIG. 16 (color online). (Color online) The transversity form
factors in the HTV model (solid line) and in the instanton model
(dashed line). The data come from [96].
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FIG. 17 (color online). (Color online) The transversity form
factors obtained in the NJL model (lines) forM ¼ 250 MeV and
m� ¼ 600 MeV, evolved to the lattice scale of 2 GeV and
compared to the lattice data from Fig. 1 of [17] (points).
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In Ref. [19], we have also investigated the dependence
of the values of the form factors at t ¼ 0 on the value of
m�, as studied in [17]. We have also noted in [19] that the
results presented in Fig. 17 depend quite sensitively on the
value of the constituent quark mass, M, with higher M
yielding lower values of the transversity form factors.

VII. CONCLUSIONS

In the present paper, we have shown how the spinless
pion acquires a nontrivial spin structure within the frame-
work of chiral quark models. This has been achieved
by computing the transversity distributions, corresponding
to matrix elements of the tensor quark density, within
chiral quark models, where the pion arises as the pseudo-
Goldstone boson of the spontaneously broken chiral sym-
metry. Moreover, we have worked at the leading order in
the 1=Nc expansion, which amounts to carrying out one-
quark-loop calculations, where the implementation of the
symmetry constraints becomes absolutely essential. Chiral
symmetry is respected by implementing the pertinent chi-
ral Ward-Takahashi identities at the quark level. Moreover,
the relativity constraints are fulfilled in terms of the
polynomiality conditions which are manifestly preserved
through the use of the double distributions, or, equivalently,
by working with the �-representations.

We have provided comprehensive results for the tGPDs
of the pion, as well as related quantities following from
restrained kinematics, evaluation of moments, or taking the
Fourier-Bessel transforms to the impact-parameter space.

We have also shown in detail various technical aspects of
our analysis, including the use of the �-representation in
the nonlocal models.
The generated tGPDs are defined at a given low-energy

quark-model scale, and comparison to data or lattice results
corresponds to implementing the suitable QCD evolution.
Actually, while the momentum-transfer or, equivalently,
the impact-parameter dependence of the tGFFs remains
scale independent, their absolute normalization does de-
pend multiplicatively on the renormalization scale.
Remarkably, the absolute predictions for the multiplica-
tively evolved BTn0, for n ¼ 1, 2, agree surprisingly well
with the lattice results, supporting many previous calcula-
tions following the same chiral-quark-model scheme
amended with the subsequent QCD evolution.
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