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Baryon to meson transition distribution amplitudes (TDAs) extend the concept of generalized parton
distributions. Baryon to meson TDAs appear as building blocks in the collinear factorized description of
amplitudes for a class of hard exclusive reactions, prominent examples of which being hard exclusive
meson electroproduction off a nucleon in the backward region and baryon-antibaryon annihilation into a
meson and a lepton pair. We study the general properties of these objects following the underlying
symmetries of QCD. In particular, the Lorentz symmetry results in the polynomiality property of the
Mellin moments in longitudinal momentum fractions. We present a detailed account of the isotopic and
permutation symmetry properties of nucleon to pion (7wN) TDAs. This restricts the number of independent
leading twist 7N TDAs to eight functions, providing description of all isotopic channels. Using chiral
symmetry and the crossing relation between 7N TDAs and 7N generalized distribution amplitudes, we
establish soft pion theorems for wN TDAs, which determine the magnitude of 7N TDAs. Finally, we
build a simple resonance exchange model for #N TDAs considering N and A(1232) exchange

contributions into the isospin—% and isospin-% 7N TDA:s.
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I. INTRODUCING zwN TDAS

Hadronic matrix elements of nonlocal light-cone opera-
tors are the conventional nonperturbative objects which
arise in the description of hard exclusive electroproduction
reactions within the collinear factorization approach.
Factorization theorems for hard exclusive backward meson
electroproduction argued in [1,2] and baryon-antibaryon
annihilation into a pion and a high energy dilepton pair [3]
lead to the introduction of baryon to meson transition
distribution amplitudes (TDAs), non diagonal matrix ele-
ments of light-cone three-quark operators

0 ﬁf}(zl, 2,23) = 8010203W21a(zl)\P?B(ZZ)\P?Y(ZS)L?:O

ey

between a baryon and a meson states. In (1) «, 3, y stand for
quark flavor indices; p, 7 and y denote the Dirac indices and
c13 are indices of the color group. Throughout this paper
we adopt the light-cone gauge A* = 0, so that the gauge
link is equal to unity and we do not show it explicitly in the
definition of the operator (1).

In accordance with the usual logic of the collinear
factorization approach, baryon to meson TDAs have well
established renormalization group behavior. The evolution
properties of the three-quark nonlocal operator (1) on the
light-cone [4-7] were extensively studied in the literature
(see e.g. [8,9]) for the case of matrix elements between a
baryon and the vacuum known as baryon distribution am-
plitudes (DAs). The definition of baryon to meson TDAs
involves the same light-cone operator. Consequently, its
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evolution also determines the factorization scale depen-
dence of TDAs [10].

Because of the nonperturbative nature of TDAs the
initial conditions for evolution require modeling at low
factorization scale. In particular, nucleon to pion (7N)
TDAs at low scale were recently studied within a light-
front quark model [11]. From the physics point of view wN
TDAs may be seen as an essential object to probe the pion
cloud content of the nucleon [12].

In [10,13,14] a factorized framework was introduced to
describe the electroproduction process

¥*(¢) + N(py) — 7(p,) + N(p,) (2)

in the generalized Bjorken limit (Q? = —g>—large;
0%/(2p, - q—fixed) in the so-called backward region
lul = |(p, — p1)*| < Q%interms of 7N TDAs. It is worth
emphasizing that such kinematical regime essentially differs
from the more conventional limit —¢t= —(p, — p;)* << Q% in
which the factorization theorem for hard exclusive electro-
production of pion off a nucleon [15] applies for (2). In this
later case the description of (2) involves standard nucleon
generalized parton distributions (GPDs).

We introduce the standard Mandelstam variables for the
reaction (2):

s=(p1+9? u=(p,—p)* t=(pa—p)* 3

Therefore, the t-channel of (2) corresponds to an exchange
with quantum numbers of a meson while in the u-channel an
intermediate state with baryon quantum numbers is involved.

Throughout this paper we adopt a reference frame in
which the three-momenta ¢ and p; have only a third
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component. We define the light-cone vectors p and
n such that 2p - n =1 and introduce standard kinema-
tical quantities: average momentum P = 3(p; + p,),
momentum transfer A = p_— p; and its transverse
component Ay. The skewness parameter & is defined
with respect to the wu-channel momentum transfer in

3 dA

4(P-n)3f[]‘[2
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the usual way & = — 2AP'Z . The detailed description of
kinematics of (2) in the backward regime is presented
in [14].

The definition of the leading twist-3 77N TDA involved
in the description of the reaction (2) in the backward

regime can be symbolically written as

] XM P () O%BY (A, Aan, Asn)IN,(p1)

PTX

= 3()(1 + X2 + X3 — 2§)Z(fa aBySpT,XHi?;{V)(x15 X2, X3, é:r Az) (4)

The spin-flavor (s.f.) sum in (4) stands over all relevant
independent flavor structures (fa)L and the Dirac struc-
tures s, ,. The detailed account of the Dirac and flavor
structure occurring in (4) is given in Secs. II and I'V.
Nucleon to pion TDAs are conceptually much related to
pion-nucleon generalized distribution amplitudes (GDAs)
[16,17] which are defined through the cross-conjugated
matrix element of the same three-quark operator (I).

Indeed, a similar correspondance was established between
pion GPD and 27 GDA [18,19].

Therefore, it is natural to simultaneously consider the
cross-conjugated (p’, < —p,., ¢’ < —q) reaction:

m(pz) + N(py) — v*(q) + N(p»). (5)

The formal definition of 7N GDA that arises in the de-
scription of (5) reads

2 dA; .
AP [[TT5L e Zar 01058 (i, Ao AmIN (), (1)

j=1
s.f.

where we introduce P’ = p, + p,,T for the total momentum
of N state and A’ = p; — p’.. The variable { = &~
characterizes the distribution of the plus momenta of the
N system. We choose the Dirac structures in (6) s/,, | as
being given by crossing of 5, in (4). 7N TDA and GDA
are interrelated by a crossing transformation

P — —A; A’ 2P (7)

and analytic continuation in the appropriate kinematical
variables:

1 ,

20+ 11— yie i

& 2¢

The physical domain in (A2, &)-plane for both the direct

channel (2) and cross-conjugated (5) reactions is deter-

mined by the requirement that the transverse momentum
transfer Ay = — P/ should be spacelike:

A3 = %(Az _ zg[lﬁfg - 1"12]) =0 9

Here M and m stand for nucleon and pion masses,
respectively.

On the left panel of Fig. | we show physical domains for
the reactions (2) and (5) for physical pion mass. One may

P?— A% i={1,2,3}. (8

=00y Ty +y;— I)Z(fa e lpT)(q)(qTN)(yl y2. y3. £, P?), (6)

distinguish two regimes: the direct channel regime with its
threshold at A> = (M — m)? and the cross-channel one
with its threshold at A> = (M + m)?. The upper (lower)
branch of the curve bordering the physical domain in the
direct channel regime tends to £ =1 (£ = —1) when
A? — —oo. Note that the physical domain of the direct
channel of (2) includes both negative and positive values of
AZ2. Moreover, in the chiral limit (m = 0) the two thresh-
olds stick together (see the right panel of Fig. 1). We
exploit this fact later in Sec. V in order to work out the
normalization for 7N TDAs.

It is interesting to compare Fig. 1 to that in the case of
equal masses of particles in |in) and {out| states. On Fig. 2
we show the physical domains in (A2, &) plane for pion
GPD and 27 GDA occurring in the description of y*7m —
yar and y*y — 7 (here A refers to the momentum trans-
fer between initial and final pions in y*7 — y7 and the
usual definition of ¢ is assumed). In particular, the physical
domains for pion GPD and 27 GDA are symmetric under
the reflection of £. The difference between Fig. 1 and 2 has
purely kinematical origin and is not related to the nature of
QCD operator in the matrix element in question.

The basic issue of the approach based on wN TDAs
is that, contrary to the GPD case, #N TDAs lack an
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FIG. 1 (color online).
panel) and in the chiral limit m = O (right panel).
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Physical domains (bounded by the condition A2 =< 0) in (A2, ¢) plane for 7N TDAs for the case m # 0 (left
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FIG. 2 (color online).
limit m = 0 (right panel).

intelligible forward limit ¢ — 0. However, the opposite
limit ¢ — 1 turns out to be very illuminating. For simplic-
ity, let us consider the pion to be massless. The point
& =1, A> = M? (corresponding to both the direct and
cross-channel threshold) belongs both to the physical re-
gions for 7N GDAs and TDAs. Moreover, it is for this very
point that the soft pion theorem [20] applies for 7N GDAs.
As argued in [16,17], this allows to constrain 77N GDAs at
the threshold in terms of the nucleon DA. In the chiral limit
the soft pion theorem for GDAs also constrains 7N TDAs
exactly as the soft pion theorem [18] for 277 GDA in the
chiral limit links the isovector pion GPD at ¢ = 1, A2=0
to the pion DA. Thus, in the chiral limit the soft pion
theorem provides us with the desired reference point for
7N TDAs. This valuable information may be used as input
for realistic modeling of wN TDAs based on the spectral
representation in terms of quadruple distributions [21]. In
[22] we will argue that a possible approach consists in
evolving from the ¢ = 1 limit for #N TDAs through a
procedure analogous to the one used for GPDs; in this latter
case one employs the forward limit £ = 0 to constrain
GPDs through the successful Radyushkin’s factorized
Ansatz [23].

GDA

Physical domains in (A2, £) plane for pion GPD and 27 GDA for the case m # 0 (left panel) and in the chiral

It is worth to mention that the simpler case of 7wy TDAs
has already been discussed in details [24—28]. These TDAs
share many features with 7N TDAs, and are also subject to
chiral symmetry constraints. Since the operator in this case
is the same as in usual GPDs, polynomiality properties and
isospin relations are straightforwardly extended from one
case to the other.

In this paper, we analyze the constraints on 7N TDAs
imposed by the symmetries of QCD. First, we argue that
the underlying Lorentz symmetry results in the polyno-
miality conditions which restrict the skewness parameter
dependence of TDAs in a way similar to the well known
GPD case. Second, we analyze in details the isospin de-
composition of 77N TDAs and establish the consequences
of the isotopic and permutation symmetries. Third, we
exploit the chiral symmetry of QCD to calculate 7N
GDAs and TDAs in the soft pion limit. Finally, we show
how a model based on nucleon and A(1232) exchanges
satisfies the revealed polynomiality and isospin constrains.
The paper is organized as follows:

(1) In Sec. IT we introduce the new parametrization for

mN TDAs and show that, within this parametriza-
tion, mN TDAs satisfy the polynomiality conditions.
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(i1) In Sec. III we consider the isospin structure of the
three-quark operator and describe the general iso-
spin parametrization of the leading twist baryon
DAs. Next, we consider the consequences of iso-
topic and permutation symmetries of baryon DAs.
We rederive the familiar isospin identities for the
leading twist baryon DAs.

(@iii) In Sec. IV we apply the isospin formalism to the
case of 7N TDAs and GDAs and derive the set of
symmetry relations for 7N TDAs and GDAs.

(iv) In Sec. V we derive the soft pion theorem for 7N
GDAs and discuss its consequences for N TDAs.

(v) Section VI contains the calculation of u-channel
nucleon and A(1232) exchange contributions into
N TDAs.

(vi) Our conclusions are presented in Sec. VII.

Let us stress that the main goal of the present paper is to
provide the basic formalism for a consistent modelling of
TDAs. The phenomenological applications of this formal-
ism will be addressed in forthcoming publications.
Measuring pion electroproduction at large angle is a chal-
lenging experimental problem. Some preliminary data are
already available from J-Lab [29] and more data are

4.T<7T(p77)|éprx()‘ln’ /\Zny ASn)lN(pl»
I
faM

= 6()(1 + X + X3 — 25)1
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expected from J-Lab at 12 GeV. A detailed proposal for
measuring the reaction pp — y* 7N exists in the PANDA
Physics program [30].

II. POLYNOMIALITY PROPERTY OF zwN TDAS

In this section our goal is to show that, analogously to
GPDs, nucleon to meson TDAs satisfy the polynomiality
property, i.e. their Mellin moments in longitudinal momen-
tum fractions x; are polynomials of variable & of definite
power. For definiteness we are going to consider the case of
nucleon to pion TDAs. In this section we omit flavor
indices in the operator O pry (1) since flavor symmetry is
irrelevant for the present problem.

It turns out necessary to change the parametrization of
7N TDA earlier proposed in Refs. [14,21]. The important
drawback of our initial parametrization is that it involves
the set of the Dirac structures which leads to spoiling
of the polynomiality property of TDAs by the kinematical
factors 1J1r_§

In order to get rid of these kinematical singularities
we suggest the following parametrization of the leading
twist-3 7N TDAs'":

[V]ﬂ-N(xlr X2, X3, f’ Az)(ﬁc)pT(PU)X + A?N(xlr X2, X3, gr Az)(p‘ysc)pﬂ'(’ysp(]))(

+ T7V(xy, X9, x3, & A?)(0p, C) ,,(Y* PU) , + VIV (x1, x5, X3, €, Az)(ﬁc)pT(AU)X
+ AgN(xly X2, X3, f, Az)(ﬁysc)m(?’SAU)X + TgN(xlr X2, X3, ‘f: Az)(O-P,U,C)pT(’yMAU)X

1 . 1 A
+ MT;-N(XI’ X2, X3, fr Az)(O-PAC)pT(PU)X + MTZTN(XII X2, X3, fv Az)(a-PAC)pT(AU))(]’

where ‘F stands for the Fourier transform

F =Fuxgx)(..) = (P-n) '[[nfj]e[z:iﬂx”k(})'”)(. R

(10)

3 dA;

11
I57 an

[ 1s the pion weak decay constant and fy is a constant with the dimension of energy squared; U is the usual Dirac spinor

and C is the charge conjugation matrix.

The price for avoiding the kinematical singularities in the invariant amplitudes in (10) is that apart from the leading
twist contribution we have to keep some admixture of subleading twist (see Appendix C). The relationship between
the parametrization involving pure twist-3 invariant amplitudes employed in Refs. [14,21] and that of Eq. (10) is given by

Eq. (C11).

We introduce the following notations for the leading twist Dirac structures occurring in (10):

WT™)pr = (PO),,(PU);
(UgN)pT,X = (ﬁc)pT(AU)Xv

1 N
(th X M(O-PAC)pT(PU)X;

@)y = (PY°0) (Y’ PU)
@q") pry = (PY°0),,(¥’AU),;

(™) pry = (0,0, (Y#PU) 5
(7)o = (05, C) o (y*AU) 5

1 ~
(IZ{N pTX M(O-PAC)/)T(AU)X‘

(12)

"Throughout the text we employ Dirac’s ““hat” notation for the convolution of a 4-vector with the Dirac matrices: & = y wat. The
following conventions are adopted: o*” = 1[y#, y*]; o'’ = v wO"”, where v, is an arbitrary 4-vector.

2
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We also employ the shortened notation for the whole set of
twist-3 Dirac structures:

(SWN)pT,X = {(vflzv pPT.X’ (t1234 p'r,\/} (13)
and for the corresponding invariant amplitudes

HTV = {viN, ATY, 7Y, ). (14)

pT.X? (al,

Each invariant amplitude V72, ATY, T7Y;, of (10)
is a function of the longitudinal momentum fractions x;

(A-n)
3P and the

(i ={1,2,3}), skewness parameter & = —
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momentum transfer squared A%. The support properties
of wN TDAs in the longitudinal momentum fractions x;
were established in [21].

Now we are going to demonstrate that the 7N TDAs
defined in (10) satisfy the polynomiality property. Our
demonstration generally repeats the usual way of arguing
for the case of GPDs (see e.g. [31]).

The (n,, ny, n3)-th (n; + ny + ny; = N) Mellin moments
of TDAs in x4, x,, x5 lead to derivative operations acting on
three-quark fields:

3
dA] N
4(P - pymtmatmts [ dPxx! ey f [l'[—k]e'Zizl"“k“""><w(P+ A/2)[0,:(A1n, Ayn, A3n)IN(P — A /2))

2
k=1
ifN 1+& 1+¢
= (P-p)yntrtn 2L (SWN) - f a’x[ dx
fﬁMg ) e e e

1+¢&

dxax| ' x52 x5 8 (o) + Xy + x5 — 2E)HTN (x1, X9, x3, €, A?)

=4(=1)yn (P + A /2GS, O)][(d )W, O)][(id )W (0)]IN(P— A/2)). (15)

Hence, the Mellin moments of nucleon to meson TDAs are expressed through the form factors of the local twist-3

operators:
n Vnyo AL Ay .2
Oyl s (0) = [iDM

where D* = §*
(16) we omit color indices.
Introducing the shortened notation

(Am)i(Pry =i = Am1

iDrw D" ..

iD"= W JiD" ...iD" W, ], (16)

- %”A“‘ Al is the covariant derivative (A’ stand here for the Gell-Mann matrices). Note that in (15) and

AMiphist  pHn (17)

we write down the following parametrization for the 7N matrix element of the local operator (16):

/-L] :unl Ve V,,2 /\]

K7|Opry RO

~ M

s i=0 j=0 k=0

Sy [Z( wN)pTX Zl ZZ 23 Afj(zl 7y, "z)(Az)(A,u)i(P,u)nlﬂ(AV)j(Pu)nzﬁ(A)\)i(PA)ng71‘

B0 (U @) + (R0, BU),CRG (A2 + B0, (7 PU) Y ()

+ (Aysc)m(ysﬁU)Xcgzinll,nz,na)(Az) + (JAMC)pT(y PU) CTl(nl Mo, iu)(Az)

+(@3,0yA0), R AN vy ayearys | 18)

where the sum in the first term is over all independent Dirac structures (12); A‘("‘ "1 (A2) and C,‘\/,‘;f‘f l'Z‘T"Z('”‘"z"”)(Az)

denote the appropriate invariant form factors.

We introduce the compact notation for the Mellin moments of TDAs:

: o 14
(x5 HTN) = f dx, / dx, /1+§ dx38(x; + xy + x3 — 28X X2 xF HT™V (xy, X, X3, & A). (19)

—1+¢ —1+é

Now from (18) we establish the following relations for (1, ny, n3)-th (n; + ny + nj

= N) Mellin moments of TDAs:
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(XXX Vy 0, Ay, Tho) =
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n, 1y N3

z< DYQEN 33 3 O a1 ()

i=0 j=0 k=

_ (2§)N+1 CE/E{A1,2,T1,2}(Vl1'ﬂz,n3)(Az),

(T 1) = Z( DYooy Y Z Bis rnnAl ) (A2),

Thus, we conclude that the wN TDAs defined in (10)
indeed satisfy the polynomiality property. For n; + n, +

= N the highest power of ¢ occurring in (n}, 1, n3)-th
Melhn moment of {VTY, ATY, T7%'}is N + 1 while for 77}
it is N. Consequently, the TDAs {V]’TéV JATY, T} include
an analogue of the D-term contribution [19] Wthh gener-
ates the highest possible power of £. Note that, exactly as
in the case of GPDs, the spectral representation [21] cannot
produces the highest possible power of £ in the Mellin
moments. Therefore, the complete parametrization of
7N TDAs requires adding a separate D-term contribu-
tion to the spectral representation or a singular modifica-
tion of corresponding spectral densities in the spirit of
Ref. [32].

II1. ISOSPIN PARAMETRIZATION FOR LEADING
TWIST BARYON DISTRIBUTION AMPLITUDES

A. Notes on the operator in question

Below we review the group-theoretical properties of the
three-quark operator (1) under the SU(2) isospin symmetry
group. Throughout the rest of the paper we adopt the
following conventions:

(i) Letters from the beginning of the Greek alphabet are
reserved for the SU(2) isospin indices a, B, v, t,
k=1,2.

(i1)) We have to distinguish between upper (contravar-
iant) and lower (covariant) SU(2) isospin indices.
We introduce the totally antisymmetric tensor &,z
for lowering indices and &*# for rising indices
(812 812 = 1) \If“saﬁ = \PB, \Ifas“ﬁ = \P’B
and 6% = —&j = 5.

(i) Letters from the middle of the Greek alphabet A, u,

v denote the Lorentz indices.
(iv) Letters from the second half of the Greek alphabet
p, 7, x are reserved for the Dirac indices.

(v) Letters from the beginning of the Latin alphabet
a, b, c... are reserved for indices of the adjoint
representation of the SU(2) isospin group.

(vi) Letters ¢y, ¢y, c3 stand for SU(3) color indices.

To simplify our formulas we will often skip the color and
the Dirac indices when they are irrelevant for the discus-
sion. We will also often employ the shortened notation for
the arguments of the operator (1): 0% oy (21,22, 73) =

08P(1,2,3).

no on, n3
(20)
i=0 j=0 k=

The operator (1) transforms according to the

2®2@2=40202 21

representation of the isospin SU(2). To ﬁnd out the opera-
tors transforming according to the isospin-3 3 and i 1sosp1n— 5
representations we single out the totally symmetric and
totally antisymmetric parts of (1):

O @By = OlaBY] + HlaBrr 4 50‘B7 (22)
The totally symmetric part
OBV = LBy + YAy apy + Yy s
+ WAPYPe + Py PApe + Py gaph)  (23)

obviously transforms according to isospin-% representa-
tion. The totally antisymmetric part

OleBYl = HY* WAy — YApapy — Pagyyh

+ WAPYPe — PryBpe + Prpeps)  (24)

is zero in SU(2). The explicit expression for the remaining

part 0?7 reads:

0 “BY = LW whYY — WA Pe — Yrpeyh). (25)
One can represent 0”7 as a sum of three operators which
are antisymmetric in pairs of indices [«, 8], [, y] and

(B, v]:

OBy = OA[laﬁ]v 4 O[Zaﬁy] + O‘g[ﬁv]. (26)
The explicit expressions for the operators OA'I[,"Q],é read
OBl = 1oWwawpYY + Wawr s — 2WBPayy

— VAP YW — Yryayh 4 Py phypa),
OePY) = LoWa WYY + YagrWh 1 yhpayy

— VAP P — Yryeyh — 2urphye);
O = 1w wAYY — YV Ih + WAy

— WAPYYE — UYpeph + Yy ghye) (27)

Contracting operators (27) with the appropriate € tensor we
get a spinor transforming according to the fundamental
representation of SU(2). Note that only two operators in
(27) are independent due to the relation
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AlaBlo Alad A d)|
£apO PP — 6, 05" + 65 O =0, (28)

Thus, in complete accordance with (21), the tensor decom-

position of the three-quark operator (1) involves two copies
. . . . 1

of operators transforming according to the isospin- 5 rep-

resentations of the isospin group.

B. Case of nucleon DA

In this subsection we suggest convenient notations for
the leading twist nucleon distribution amplitude. We in-
troduce the isospin parametrization for the leading twist
nucleon DA and rederive the familiar results [33,34] for the
symmetry properties of the nucleon DA. This technique is
applied in the next subsection to the analysis of the more
involved cases of isospin structure and symmetry proper-
ties of A(1232) DA and wN TDAs and GDAs.

The leading twist nucleon DA [34] is defined through the
matrix element of the three-quark operator OA;',‘E)Z (1,2,3)
between a nucleon state and the vacuum. Being guided by
the principle of invariance under SU(2) isospin we can put
down the following isospin decomposition for the matrix
element in question:

4010487 (1,2, 3)IN,(px))

pPTX
= e PSIMY, (1,2,3) + e8P MY, (1,2,3)
+ 8578?M§VPTX(1, 2,3). (29)

The three isospin invariant amplitudes are not independent
due to the identity

eBSY + ePrse — gavsh — (30)

It is worth emphasizing that the fact we have only two
independent invariant isospin amplitudes meets with the
consequences of the Wigner-Eckart theorem [35] for the
matrix element of the three-quark operator O. Indeed, as
we checked in Sec. IIT A, the tensor decomposition of the
operator O involves two independent copies of operators
transforming according to the isospin-% representations of
the isospin group. However, it should be properly taken
into account that the nucleon DA also possesses specific
properties under group of permutations of three-quark
fields occurring in the operator 0.

To address this issue we introduce the following nota-
tions for the combinations of the isotopic amplitudes de-
fined in (29) which, as it is demonstrated below, are
symmetric under permutation of the appropriate quark
fields in the operator OAngy (z1, 22, 73):

— N{12

MQIPTX(Zl, 22, Z3) + MévaX(Zl, 22, Z3) = Mpi)( }(Z1, 22, Z3);
— N{13

Mllvpf)((zl’ 22,23) — Mgvpr/\/(zl’ 2,73) = Mpi,y }(Zp 22, 23);

— N{23
—MY,, (21,22, 23) = MY, (21,25, 23) = MY (21, 25, 23).

3D
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Note that these combinations satisfy the identity
Mﬁ’g{z}(z], 22, Z3) + M%{-/l\}}(zl, 22, Z3)
+ MY (21, 22, 23) = 0. (32)

In fact this is nothing but the familiar isospin identity for
nucleon DA. Indeed, one may check that

4010444 (21, 22, 23)IN , (px))
= —4010%" (2, 25, 23)IN, (py))y = ML (21, 22, 23);
4010424 (21, 22, 23)IN , (p))
= —4010%4 (2), 25, 23)IN, (py)) = M2 (21, 22, 23):
4<O|OAZ¢;{(Z1, 22, 23)IN ,(pn))
= —40104%4(zy, 2, 23)IN,,(py)) = Mz, 22, 23)
(33)

and recover the usual form of the isospin identity from (32).
Note that the neutron DA differs from that of the proton
only by the overall sign, as it is well known.

To derive further symmetry properties of the nucleon
DA under permutation of their arguments we employ the
fact that quarks field operators in (1) anticommute. This
allows in addition to (32) to establish the following rela-
tions for the isospin amplitudes:

MYB2(1,2,3) = M2 (2, 1,3);
M, 2,3) = MY 3,2, 1);
M1, 2,3) = My(1, 3, 2); (34)
M3, 2,3) = MMI2(2,3, 1)
My (1,2, 3) = MBEP (1, 3, 2);

For example, the last identity in (34) is the consequence of
the relations

Olee, e, Vo (TP )T B)IN,(py))
= —(0l&g, 0,0, V5 (WY B) WP Q)IN,(py))
= (Olec, e, Vo " (MPZB)TPPQ)IN,(py)). (35)

The first three identities in (34) justify our definitions (31)
while the two last ones further constrain isospin invariant
amplitudes.

We choose to express all invariant isospin amplitudes
through MM'2, This allows to write down the following
invariant isospin parametrization for the nucleon DA:

4010%8(1,2,3)IN,(py)) = e*B 87 MY (1,3,2)

+ev 8P M2 (1,2,3). (36)
The next step is to consider the effect of the relations

(32) and (34) for the nucleon DA. To the leading twist
accuracy we neglect mass effects (py — p, where p is
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lightlike) and employ the standard parametrization for the

invariant amplitude symmetric under the exchange of the

two first quark field operators:

MPT)( (Zl’ 22, Z3) fN[Vp (Zl’ 22, Z3)vpr X+AP(Z1, 22, Z3)a;1\)]T,X
+ Tp(zl’ 22, Z3)tp7',)(]’ (37)

where {vV, a",
tures:

"}, are the conventional Dirac struc-

(PYC)p-(U(p)) s
=(0,,0),,(y*y’ U(p)), (38)

The symmetry relations (B3) for the Dirac structures (38)
under the interchange of the two first Dirac indices together
with (34) lead to the familiar symmetry properties:

VP(1,2,3) = VP(2,1,3);  TP(1,2,3) =T"(21,3);
AP(1,2,3) = —AP(2, 1,3). (39)

U]/YT,)( = (ﬁc)pr(ys U(p)))(, apTX

PTX

Next, using symmetry relations (34) and isospin identity
(32) together with the Fierz transformation (B4) for the
Dirac structures (38), one may establish the well known
relation for twist-3 nucleon DAs [7,33,34]:
27T7(1,2,3) = (VP — AP)(1,3,2) + (VP — AP)(2,3, 1).
(40)
This reflects the fact that at leading twist there is only one
independent nucleon DA, usually denoted as ¢™:
N = VP — AP, 41)

The DAs V7, AP and T? are expressed through this latter
function according to

2Vr(1,2,3) = ¢N(1,2,3) + ¢V (2,1, 3);
2A7(1,2,3) = —¢N(1,2,3) + ¢V (2, 1,3); (42)
277(1,2,3) = ¢N(1,3,2) + ¢V (2,3, 1).

C. Case of A(1232) DA

In this subsection we introduce the invariant isospin
notations for the leading twist DA of A(1232) resonance
[36]. With respect to SU(2) isospin group A resonance
state represents a spin tensor with one covariant spinor
index and one vector index:

IalAbL> = {igabcaKL + %(U(J)Kbabc}lACK>’ (43)
It is natural to choose the isospin conventions for A reso-
nance so that the isospin classification of A states coincide
with that for isospin-3 7N states (A22).

With respect to the Lorentz group A resonance field
is described with the help of the Rarita-Schwinger
spin-tensor UL (pa, sp). As usual, UH(py,sp) =
(‘U*(pa, sa))Tyo. For pX = M3 spin-tensor U satisfies
the following auxiliary conditions:

PHYSICAL REVIEW D 84, 074014 (2011)

(Pa — M) U (pa, sa)l 2=z = 0;

U (pas s)) Up(pas sa)limay = —2Ma;

Y* U, (pa, SA)U@:M@ = phU,(pa SA)|,,2A:M,2A
= 0. (44)

Being guided by the invariance under the isospin group
we may write the following tensor decomposition for the
matrix element of the three-quark operator between A
resonance state and vacuum:

4<0|O{pc:_[)3(y}(zly 22 Z3)|AaL(pA)> - (fa){aﬁy} Mpﬂr)((l’ 2, 3)
(45)

Here (f,){A7} stands for the only tensor totally symmetric
in «, B, y one can construct out of the existing structures:

(f.)7,
— ((0.)8

+ (0,)Be78% + (07,)1%487 + (0,)Le%86%)

p—

788 + (0,)8e%57]

e%B87 + (0,)%e

O\

1
3 (0,)§e?P8Y + (0,)3%7 87 + (0,)56°78%);

8B — (Ua)gs&“.

since (o,)%e (46)

One may check that the convolutions of the invariant tensor
(f)1@P7t with the isospin projecting operators (A26) re-
spect the following properties:

P25 ()P = (£)P

P2k (fp) Y = 0. (47)

We employ the following parametrization for the lead-
ing twist invariant amplitude M ﬁT +(1,2,3):

1 /2

\/_
PTX

f3/2
% 05, 42(1,2,3),

(1,2,3) = {v5, ,VA(1,2,3)

PTX
AA(1,2,3) + 15, TA(1,2,3)}
(48)

where {v2, a®, 14, goA}pT , are the usual Dirac structures

pT,\/ (Y,J,C)prluﬁf,
apT,X = (’yllL’YSC)pT(’YS,u/L)X;
tgr)( (UMVC)pT(yMUV)X; (49)

1
€0$r,,\/ = (O-p,yc)p‘r(pluuy - EMAYMUV)
X

and the constants /\1/ 2 f3/ 2 are defined in Ref. [36]. The
factor — 715 in (48) ensures matching with the parametri-

zation of [36] for the uuu DA of |A*T) [c.f. Eq. (50)]. The
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DAs VA, A%, T2 and ¢~ in (48) thus coincide with those
of Refs. [9,36].

The isospin identities for the invariant amplitude
Mﬁw(zl, 75, z3) are derived analogously to how this was
done for the nucleon case in the previous subsection.
Consider

4<Olsclczc3 uZI (Zl )MEI"Z (ZZ)M/C\/3 (Z3)|A++>

= —V2M3,,(1,2,3). (50)

The invariance under permutations of three u-quark fields
in (50) leads to the complete symmetry of the invariant
matrix element under simultaneous permutations of the
arguments and of the Dirac indices:

M5, (1,2,3)=M35,.(1,3,2) =M5, (2,1,3) = M2, ,(2,3,1)
=M%, ,(3,2,1)=M4,,(3,1,2). (51)

Employing (51) together with the well-known symmetry
relations (B6) for the Dirac structures (49) and the twist-3
Fierz transformations (B7) one establishes the familiar
relations [36] for the invariant functions V2, A%, T2 and
¢"52  defined in (48). Introducing the notation
d212(1,2,3) = VA(1,2,3) — A%(1,2,3) these relations
can be written as

Aa N);
4<7Ta|0p7§)2,(zly 22, Z3)|N:,> = (_fa){aﬂy}bM(pTX)g/z

+ 870, My

PHYSICAL REVIEW D 84, 074014 (2011)
2VA(1,2,3) = ¢212(1,2,3) + ¢p212(2, 1, 3);

244(1,2,3) = —¢*2(1,2,3) + ¢12(2, 1, 3); (52)
T2(1,2,3) = ¢412(2,3,1);
together with the consistency condition
$212(1,2,3) = $412(3,2,1). (53)

Meanwhile, ¢*+2(1, 2, 3) turns out to be totally symmetric.

IV. ISOSPIN PARAMETRIZATION
FOR N TDA AND GDA

Let us consider now the matrix element of three-quark
operator Oﬁf} (21, 20, 23) between 7N states both in TDA
and GDA regimes. From the point of view of the isospin
symmetry the two regimes can be analyzed on the same
footing since the pion field 7, transforms according to the
adjoint representation of the isospin group. So below we
present the isospin decomposition of #N TDA. The ex-
pression for 7N GDA is exactly the same.

Isospin decomposition for 7N TDA should involve both
the isospin—% and isospin-% parts. Thus, analogously to the
cases of A and nucleon DAs, we can write the following
isospin decomposition:

(7N) 2

(1,2,3) + &*8(a,)" M, pry(1,2,3)
a (77N)
pry(1,2,3) + ePY(0 ) My, (1,2,3)

— (fa){aﬁy}LM(pZ])\(/)3/2(l, 2, 3) + Saﬁ(o.a)'be;T)\(/)l/z{B}(l, 2, 3)

+ 8 (0,)B MV () 0 3),

(54)

where (f,)*F7} is the symmetric tensor defined in (46). To put down the last equality in (54) we employed the

identity

Sﬁy(a-a)ab = _8aﬁ(0-a)yb + Say(o-d)ﬁb

(35)

to eliminate the third structure corresponding to the isospin—% representation. Analogously to (31) we introduce the

notations
M;ﬂ'N)l/szX(ly 2’ 3) + M:(;rN)l/szX
MYTN)I/Z pTX(l, 2’ 3) _ Mg'n'N)l/Z P
(7N) (mN)
_Mlﬂ' ]/ZPTX(I, 2, 3) _ M27T I/ZPTX

Our present goal is to establish the isospin and
permutation symmetry identities for 7N TDA invariant
isotopic amplitudes. We will show that isotopic and per-
mutation symmetry reduces the number of independent
7N TDAs from 16 functions [8 both for the isospin—%
and isospin—% parts as in Eq. (10)] to just 8 independent
functions.

(1,2,3) = MV 2, 3);

(1,2,3) = MV 1312, 3);

(56)

(1,2,3) = MNP, 2, 3).

|
in-1
A. Isospin-; case

One may check that the isospin-% invariant amplitudes
satisfy the set of identities analogous to the isospin invari-
ant amplitudes for nucleon DA. The isospin identity reads

MV 0 3) 4 N 3

+ M EN (1 2,3) =0, (57)
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The permutation symmetry results in the set of identities analogous to (34):
M 0,23 = w3 2,3 = e, 2 )
(WN)1/2{23} (WN)|/2{23} (TfN)|/2{13}

MUV 0 3y = MR 30y T 0, 3) = MY 3, 2);
MUV 2 3) = TP 3 ), (58)

For M;,T,\(/)'/ 2{12}(1, 2, 3) we introduce the parametrization (10) and define 8 leading twist isospin—% 7N TDAs:

TN 12 . TN TN TN
M 0,23 = i ff 23001, AT L2300+ 1,236
T
N TN TN
+ VR, 2, 3)wiY),. L+ ATV (1,2, 3)(agN) ., + TV, 2,368,
1 7TN)1/n 1 TN
+ Mrg he(1,2,3)() MTi (1,2, 3)(ZZ’N)M,X]- (59)

One may check that the permutation symmetry relations (58) result in the familiar symmetry properties of the isospin—%
7N TDAs:

vt (1,2,3) =i 2, 1,3); T (L,23) =T 092, 1,3); AT (1,2,3) = -4 (2,1,3). (60)

We introduce two independent isospin—% 7N TDAs:

M1, 2,3) = VT (1,2,3) - AT (1, 2, 3). 61)

Employing the Fierz transformations (B9) and (B10), one establishes the consequences of the isospin symmetry relation
(57):
TMA(1,2,3) + T4, 2 (1,3,2) + T4, 2(2,3,1) = 0 (62)

and

217" (1,2,3) = 65 (1,3,2) + 1723, 1) + 281(6 AT (1,2,3) + 28 (6 AT (1,2,3);

(63)
2T (1,2,3) = ¢ (1,2,3) + 6102, 1,3); 24072(1,2,3) = =172 (1,2,3) + 6012 (2,1,3),

where g, ,(& A?), hy (£, A?) are defined in (B10). We conclude that the parametrization of the isospin-1 77N TDAs/GDAs

2
require 4 independent functions: ‘1’17,72 "2 and T3ZN "2 The latter should satisfy the symmetry relations (62).

i3
B. Isospin-3 case

The consequences of the isotopic and permutation symmetries for the isospin—% invariant amplitude M(™)s2 are
analogous to that for A(1232) DA (51). It turns out to be completely symmetric under simultaneous permutations of
the arguments and the Dirac indices:

MR (1,2,3) = M (1,3,2) = My (2,1,3) = M (2,3,1) = M (3,2, 1) = M (3,1,2). (64)

Again, in accordance with (10), we introduce the following parametrization for the leading twist isospin-% N TDAs:

MUY (1,2,3) = i ff . [VE”N)”Z(L 2,307y + AT L2 3@ e+ T (L 2,37V
w
+ V1,2, 3) ), + ATV (1,2, 3)(@N) 0+ TSV, 2, 3)(6Y),0
1 N 1 TN
o T2 3 T2 3,y ] (65)

Analogously to the isospin—% case, employing the Fierz identities of Appendix B, one may check that the permutation

symmetry relations (64) result in the following symmetry properties of the isospin—% 7N TDAs:
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V(wN)3/2(1 2,3) = V(ﬂ'N)s/z(z 1,3): TiZN)m(L 2,3) =

while T;Z 52 s totally symmetric.
Introducing two independent i 1sosp1n—— 7N TDAs:

(WN)s/z(l 2,3) =

15" 2,3);

ViV (1,2,3) + AT (1,2, 3),

PHYSICAL REVIEW D 84, 074014 (2011)

AD(1,23) =472 13), (66)

(67)

. . . . . . . 3
and employing further consequences of permutation and isotopic symmetry relations (64) one may express isospin-3 TDAs

as
(WN)2/2 (1 2 3)

2V(77N)3/2(1’ 2,3) = (7TN)1/>(1 2,3) — ¢(77'N)1/2 2,1,3);

where g1,(& A?), hy,(& A?) are defined in (B11). The
consistency condition for (68) may be established from
(64):

B\ (1,2,3) = ¢\77(3,2, 1), (69)

Thus, we conclude that the parametrization of the
isospin—— 7N TDAs/GDAs involves 4 independent func-

N)3 )2

tions: T3 4 (completely symmetric under permutation of

their variables) and 92”1 W2

1 < 3 cf. Eq. (69)].

[symmetric under permutation

V. CHIRAL CONSTRAINTS FOR 7N TDAS

In this section we rederive for 7N GDAs the soft pion
theorem [20] proposed in [16] to be valid at a scale Q% >
A%CD /m. Our technique of handling isospin developed in
Sec. Il and I'V permits to distinguish between the isospin—%
and isospin-% mN GDAs. This allows to fully take into
account the consequences of the isotopic and permutation
symmetries for 7N GDAs. Using crossing between 7N
GDAs and 7N TDAs discussed in Sec. I we simulta-
neously argue that the soft pion theorem for 7N GDAs
constrains 7N TDAs in the chiral limit (m — 0). The
problem of validity of analytic continuation in A” existing
for m # 0 has the same status as that for the case of pion
GPDs vs 27 GDAs [18] (see also discussion in [37]).
Assuming smallness of nonanalytic corrections to the
relevant matrix element in the narrow domain in (A2, &)

0By
nTY

aBy

40|0%By

(Zl’ 22, Z3)|7TaNL> =

2f77

+ (O'a)y(s 7§(W<0| ngv?

{(O-a)aaypn<0|0

2f77{
+ (0B 58087 y3, MO

+ (0,)7 s8P85 y3

(z1, 22, 23)IN,) + (07)P 573,(010

(o4 )aasﬁﬁ‘syypnMiﬁ?}

298 MAEI(1,2,3) + (07,)7 5£*0 8P y3

B\ (1,3,2) + 2g10(& ANTTVV(1,2,3) + 20y (& ADTV2(1,2,3);

(68)
7N)3 /2 7TN)3/» 7N)3/»
247 (1,2,3) = 7 (1,2,3) - 61577 (2 1,3),
|
plane defined by the inequalities
M- M+
(M —m)> < A2 < (M + m)>; Meg<ZTM (70
M+m M—-—m

(see left panel of Fig. 1) one may argue that the soft pion
limit provides us with the reference point for realistic
modeling of 7N TDAs.

Let us consider the matrix element of the three-quark

operator OAfff);/ (21, 22, z3) in the regime of 7N GDA:
01052 (21, 22, 2|7 (—= P )N (p1))- (71)

According to the partial conservation of axial current
hypothesis (see e.g. [38]), a soft pion theorem [20] is valid
for the matrix element (71):

<O|OpTX (Zl; 22, Z’i)lﬂ- N >

_f_77<0|[Q5’

0587 (21, 22, )N, (72)
The commutator of the chiral charge operator Q¢ with the

quark field operators is given by
[0, Wa] =

where o, are the Pauli matrices.

Computing the commutator of the chiral charge with the
operator O in (72) with the help of the chain rule
[A, BCD] = [A, BICD + B[A, C]D + BC[A, D] we get:

2(0- )5 77]7' (73)

ady

pn)((zl) 22, Z3)|NL>

(z1, 22, Z3)|NL>}

(1,2,3) + (0,)%5% 85, MU (1,2, 3)

(1,2,3) + (0,)P 582782 y3, MbLF (1, 2, 3)

MpYa.2.3)

YoM (74)

In the last equality we used the general isospin parametrization (36) for the nucleon DA.
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Our present goal is to single out the contributions coming from (74) into the invariant isospin amplitudes

g;[)\(/)g/z(l 2,3), MEJZ])\(])'/Z{IZ}(L 2,3) and M(pzl)\(])'/z{w}(l, 2, 3) in the isospin decomposition for 7N TDA/GDA (54).

Using the parametrization (37) for Mﬁilf}(l, 2, 3), the isospin decomposition (29) and symmetry relations (34) for the

nucleon DA together with the Fierz identities from Appendix B one may check that

MUY (2, 20, 23) = 5 fw{ MY (21, 20, 23) = VMO (21, 20 23) + VMY (21, 20, 23) — V2, MBS (21, 2, 7))
= ’J{:f{ Vaa¥prn)5 Lgn(1,2,3) + dy(2 1,3) + dy(3.2,1) + ¢y(3, 1,2)]
- (Vinaﬁr,n)i[—szv(l, 2,3) + on(2,1,3) = dn(3,2, 1) + x5, 1, 2)]
~ Ot 5 L0n(1,3.2) + dy(2.3.11) 75)

where ¢ is the leading twist nucleon DA (41). The invariant amplitude (75) satisfies the isospin- % symmetry relations (64).
This provides an additional cross-check.

(mN)1 {12} 2}
My 2y, 20, 23) = —2f 3{ Y MZ':\]/ﬂ{')( (21,22, 23) + 373, Mgv{yx}(Zh 2,23) — 7’ngng (z1, 22, 23)
13 13
— 293 My (21, 20, 23) + 293, MO (24, 22, 23)}

- { (Ysyv m)lz[ dn(1,2.3) = (2 1,3) — Hby(3, 1.2) + (3.2, 1)]

- (7?\/7] Apr, 17) [¢N(1 2, 3) ¢N(2’ 1, 3) - 4(¢N(3’ 1, 2) - ¢N(3’ 2, 1))]

— Ot 1pldn(1.3.2) + 623,01} a6
Analogously,
MLZQI)I/Z{B}(Zl» 2,23) = ﬁ { nr)( (21, 2, 23) 37X,,Mgi£,3}(zl, 2,23) — ymMp,,X (Zl, 22, 23)
— 2y, 17\7]%2}(21122, 73) + ZYiWMgiiyz}(zl,zz, )} (77)

Again one may check that M(™)12112) p(7N)i2{13} (76) and (77) computed from the sofi pion theorem satisfy the isospin-1
and permutation symmetry relations (57) and (58).
In particular for p7° GDA we get

7N), 2 7N)3 l
40lu, (1)u,(2)d,(3)| pn®) = Mw““”(l,z,s)+—M£,f;>/2<1 2,3) = Jf’v{ (Y3 pv ,mn vr(l,2,3)

— ) 5AT(1,2,3) = (1Y) 77,2, 3)}
401w, (Du,(2)d, B)na*) = —40ld,,(1)d,(2)u, 3| pm=) = 2Mypy 11,2, 3) — ? M (1,2,3)
=?—:{—w;n o) f[ Sy(1.2.3) = (2 1.3) — Ady(3. 1,2) + dy(3.2, 1)]
(an pT, 7]) 2\/—[¢N(1 2 3) ¢N(2’ 1) 3) - 2(¢N(3’ 1’ 2) - ¢N(3) 2, 1))]
~ Flathen) 55 \/-[dnv(l 3.2) + byl2.3, 1)]} (78)

So we recover the result of [16].
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Now we can establish the consequences of the soft
pion theorem (72) for wN TDAs. Applying crossing
to the matrix element (71) is trivial up to the problem of
appropriate analytic continuation in A%. The contributions

|

PHYSICAL REVIEW D 84, 074014 (2011)

to wN TDAs occurring in the parametrization (10)
can be established with the help of the relations
between the Dirac structures (12) and those of (75) and
(76):

1 1 1 1
7?(17”2]%77 = M((UI”N)M,X - E(UZWN)M,X); yinagﬂn = M((alﬂv)m,x - E(azﬂN)pT,){);
1 1
‘Y)(ntg’r n= M((tl N)pT,,\/ - E(tZ N)pr,)(>' (79)

One may check that in the chiral limit this results in the following contributions to the independent isospin—% and

isospin-3 77N TDAs (61) and (67) regular at A> = M>:
¢(l7rN)1/2(x1’x2’ X3, f =1, A2 = MZ)';}’"

(mN)
¢ g 1/2(x1’ X2, X3, é‘:

pion

d)(lﬂN)yz(Xl,Xz, X3, f = 1 AZ =M )lso[l =

pion

(mN
b5 )3/2(x1,x2,x3,§ =1,A% = M?)|wrn = — =

pion

The singular at A> = M? contribution from the u-channel
nucleon exchange pole is considered in the next Section.

VI. u-CHANNEL N AND A EXCHANGE
CONTRIBUTION INTO zwN TDAS

In this section, by employing the results of Secs. III and
IV, we construct a simple resonance exchange model for
the 1sosp1n—l and 1sosp1n—— mN TDAs. It represents a
consistent model for 7N TDAs in the Efremov-
Radyushkin-Brodsky-Lepage (ERBL)-like region and sat-
isfies the appropriate symmetry relations established in
Sec. IV as well as the polynomiality conditions of Sec. II.
It turns out, in particular, that the nucleon exchange results
in a pure D-term contribution supplementary to the spec-
tral representation of [21]. Let us also mention that the
nucleon pole contribution may become dominant in the
near to threshold kinematics of the reaction (2), where
A? — M? is small enough.

A. Nucleon exchange contribution

The effective Hamiltonian for 7NN interaction can be
written as (see e.g. [39]):

H ei(mNN) = ig muyNo(07))* gysNP . (1)

Az =M )l:ofl = -

¢N<_ * x_s) +1¢N(ﬁ,x_z,x_1);

27272 6 2 2 2
;(WW“”“f LA? = M)

X1 X3 X3 N X1 (80)
(#G33) G 33)
; (17N)3/2(x1: X x5, §=1LA2 =M )|};00f:1

After the reduction the matrix element in question reads:

(T (pIOSBY(Ayn, Ayn, Asn)IN(py, 1))
= D (01058Y (Ain, don, A3n)IN (—A, s,))

lngNUg( A N )

X (o, )r, L

= U(p1 s1) (82)

7N TDAs are computed form the matrix element (82) with
the help of the Fourier transform (11).

Let us first consider isospin structure of (82). Employing
the isospin decomposition of the nucleon DA (36) one may
check that (82) contributes only into the invariant ampli-

tudes ME;ZI)\(I)]/Z{IZ} nd MEJZ[A\//)I/Z{B}

The inverse Fourier transform allowing to express the
matrix element in the second line of (82) through the

nucleon DA Mf;’i}f}(yl, V2, y3) reads:
F A=A -n)(...)

- fd3y5(1 Vi~ y3)€i(p"1)zgzz:‘“vk/\"(~ )
(83)

Calculation of the Fourier transform (11) of (82) gives:

47F (xy, x5, XB)%[j:_l()lk(_A : n))[Mfﬁ}f}(yl,yz, y3)ll

I 3
=(p- ”)3f0 dydy,dy;6(1 =y, =y, — ys)[n
k=1

(25)2

1
777_ fd)\ el)”‘(xk 28y0(p: n)]Mg'T{'}(z (yl) Y2, y3)

3
Sxy +xp +x3 — 2§)|:l_l 000 =x, = 2§):|Mgi}v2}<_ X2 x_3> (84)
k=1

262828
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Thus, we obtain the following result for the contribution of the matrix element (82) into wN TDA:

(7N) {12}
MPZ)( 2 (-xl’x2) x3) -

W

X1 X2 X3
yAp(ZL 72 23 )
4 (25’25’25)(
lgﬂ'NNUQ( A Sp)

A2 —

(7 U(plvsl))g

AySC)pTU(—A,s )y -l-T"(ﬂ el ﬁ)(

X1 X2 X3

8(x, + 3y + 33— 2f)[1‘[e<o<xk szf)]fNZ{ /(33252 ) A, (U A5,

2£2£°2¢

2§ 2§ 2§ )p-r('}’”YSU(_A, Sp)),\/}

(85)

Now it is straightforward to trace the contribution of the nucleon exchange matrix element into the particular invariant
functions occurring in the parametrization of 7N TDA. For this issue, employing formulas given in the Appendix C, one
has to express the Dirac structures in (85) in terms of standard ones. For example, let us consider the first term in (85). To

the leading twist accuracy
Z(_Ac)pr(ys U(_A’ sp))/\/((-_,(_A’ Sp))g(ys U(pl’ sl))g

Sp

= 2§(pc)pr((AU(pl’ S]))X + M(U(pl’ Sl)),\/

Finally, one establishes the expressions for the contribution of the nucleon exchange into the isospin—% 7N TDAs

{Vi, Ay, T V2 (xy, X, x3) = Oggpy (X1, X, X3)(g771v1v)

{Va, Ay, T} ™22 (x, Xy, x3) = Opgpy (X1, Xa, x3)(ngN)

where we introduced the notation

3
OprpL (X1, X2, X3) = l_[ 00 = x; = 2¢).
k=1

(88)

Notice that (87) is a pure D- term contribution. It is non-
zero only in the ERBL-like region and its (n, ny, n3)-th
(n; + ny + n3 = N) Mellin moments give rise to mono-
mials of & of the maximal allowed power N + 1.

B. A(1232) exchange contribution

The effective Hamiltonian for AN interaction reads
(see e.g. [40]):

H 5(7NA) = g naN P2, R 0%, + hee., (89)

where PG/? denotes the 1sosp1n—f projecting operator
(A26). g,na 1s a dimensional coupling constant. As usual,
the A resonance is described with the help of the Rarita-
Schwinger spin-tensor ‘U5 which satisfies the auxiliary
conditions (44).

After the reduction the matrix element in question reads:
<7Ta(p77)|égf,\’/y()‘l n, )\zn, AS”)INL(pI» sl)>

= Z<0|0“ﬁ7(aln, Ao, 3n)| Ay (= A, s )PV,

pTX
« ngA'Ug( A N,
AZ

For the matrix element involving A we employ the
parametrization (45) with Mprx given by (48). As a

(iP,)(U(py, 51))g- (90)

= 2§(PC)pT((PU(p1, Sl))){ + g(PC)pT((AU(pI’ Sl)))(- (86)
Mf X X3
<2§>2 v (5 55 0)
(87)
Mf Xy X3

et (25)2{V A T”}(E 2€ E)

|
consequence of the identity (47) A exchange populates
only the isospin-3 7N TDAs.

To compute the on-shell numerator of graph (90) we
employ the method of contracted projectors [41] (see also
Appendix I of Chapter I of [38]). We introduce the corre-
sponding on-shell spin sum:

3/2 )
H';/LpT(_A)l(—AY:Mi = z upv(_Ar SA)Ué'L(_A’ SA);
SA=73/2

oD

which carries two Dirac indices as well as two Lorentz
indices. The contracted projector is defined as

’.])(3/2)(2 P, _A)E VPT( A)P

where P, 2(pl + pn), and X in principle may be an
arbltrary vector. In order to keep with the u-channel baryon
resonance exchange picture of the y*N — N reaction (2),
3, should be chosen as:

92)

1
2= 5(61 + P2y (93)
We also introduce the components of P, and 3 p trans-
verse with respect to A, denoted as //,, and % , %
_ (P-4) _(3-A)
P.=P,— e Ay 2,=3, e ——A, (9%

2Not to be confused with the contraction with y matrices. We
rather adopt Dirac’s “‘hat” notation for this issue.
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Then the explicit expression for the on-shell contracted projector reads [38]:

e Ul (E P SE P
PR32 espesg = ~5 PP s~ s (el 8 +
o Ep 1
= I gt P8+ ) 3

where P, (...) stands for the derivative of the k-th Legendre polynomial. Note that the argument of the polynomials is the
cosine of the u-channel center-of-mass frame scattering angle at (—A)*> = Mi:

X 1 _ MZ_m2 1
cosf, = (é”ﬁl) — fz)zAz e + O(@) (96)
M-—m 2(M?+m?
a1+ Ut 20
For our purpose we also need the derivative of the contracted projector:
ad 1 A* A\ A R
PO P -8 = {—W T 5(7" = FA>P}(—A  My). 97)

The calculation of contributions of graph (90) into the appropriate invariant form factors is then strai I%htforward and
analogous to that for the case of nucleon exchange. For example to trace the contributions into V1 2 one has to
decompose

O T U85 WA 5P U(p1i5) = 1055 PSP =DU(prsy) — 08)

X

XM

over the basis of the Dirac structures of (65).
After some algebra one may work out the following contributions of (90) into the invariant form factors (65) to the

leading twist-3:
TN TN Xy X
{V( a2 A( )3/2}()61,)62,)63,f,A2)|A(1232): _®ERBL(xl:x2»x3)(2§)2{VA A}(ﬁ é 2_2:)
1/2
8anady Mf
NaZA Ry ,(&,My);

V2(A% - M3)fn

( £A2)] O ( >{—1 TA(X1 T X3) e
X1, %0, X3, &, = — X1, X0, X &) A2 _ a2\ r
1, X2, X3 A(1232) ERBLUL 22BN 02" \2¢'28°2¢ V2(A2 = M3)fy

X1 X2 X3 ngAfZ/z f
¢A<2_§’E’E)—\/§(A2 M) 12(€, MA)}

N)s2
TY; )32 Ry ,(6,My)

"er

gﬂ'NAfZ/zszﬂ
V2(A2 - M3)fy

is a dimensional constant with the dimension

7T 3 - . s
TV (1, 0,3, € A p 1232 = _G)ERBL(X")62’)63)(25)2dJ (iié>

Here /\IA/ % is a dimensional constant with the dimension [GeV]? and fi/ 2

[GeVT]?. In Ref. [36] the following numerical values are quoted:

R34(My). 99)

3
IAV2] = \/;MA|fi/2| = (1.8+03) X107 GeV*:  [£’] = 1.4 X 1072 GeV>. (100)

The functions R, ,, R1,2 are determined by residue at the pole A? = Mi. They read as

(6 = 3)M3 + 2MM A& + 4(M? — m?)é

R(&EMy) =
(& My) N

—4EMP + (4Em* + 6MM — M3 (€ — 3) + dm> My & M M
Ry(& My) = ’” A ML Re(My) == =20 RyMy)=1+25:
_ (MM + M) — m?)é (1-¢&) ) MMy + (m? + M?)é (1-¢)
Ri(&My) = 2 " m o Relemy ===0 M’ZZ MR (101)
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The crucial point is that the A exchange contribution
into 7N TDAs should satisfy symmetry relations for the
isospin—% TDAs established in Sec. IV. Employing the set
of the Fierz identities, one may check that the part of (99)
involving contributions of VA AA TA decouples and
satisfies the symmetry relations (64) as a consequence of
symmetry relations (52) for A DAs.

The situation with the contribution involving ¢*
is more complicated. This turns out to be due to the

(7N) 1
T, 3/2(951,952: x3, &, Az)|A(1232) = _®ERBL(x1’x2’ x3){@TA(— ANE A e

(7N); 1
Tzﬂ m(xpxz, x3 &, A2)|A(1232) = —®ERBL(X1,X2, X3){(2§)2 TA(

X1 Xo X3

AfZL 72 73
(zg)zd’ (25’2-5’25

VII. CONCLUSIONS

We considered general symmetry properties of 77N tran-
sition distribution amplitudes. We showed that the Lorentz
invariance results in the polynomiality property of the
Mellin moments of TDAs in the longitudinal momentum
fractions. Analogously to the GPD case, we revealed the
presence of a D-term contribution for the 7N TDAs V/ ,,
Ay, and T, generating the highest power monomials of
the Mellin moments.

The detailed account of the isospin and permutation
symmetries allowed us to provide a unified description of
all isotopic channels in terms of eight independent 7N
TDAs. The general constraints derived here should be
satisfied by any realistic model of TDAs.

The crossing relation between 7N TDAs and GDAs lead
us to establish a soft pion theorem for the isospin—% and
isospin-3 77N TDAs. This yields normalization conditions
for 7N TDAs.

We also presented a simple resonance exchange model
for 7N TDAs considering nucleon and A(1232) exchanges
in the isospin—% and isospin-% channels, respectively.
Nucleon exchange may be considered as a pure D-term
contribution complementary to the spectral representation
for TDAs in terms of quadruple distributions.

This work opens the way to various consistent models of
baryon to meson TDAs to be confronted with experimental
data.
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APPENDIX A: ISOTOPIC INVARIANCE AND
ISOSPIN CLASSIFICATION OF 7N STATES

Generators of the SU(2) isospin group satisfy the famil-
iar commutation relation:

L I,] = (A1)

When constructing spinor representations of SU(2) one has
to distinguish between the covariant and thev contravariant
representations. We choose to transform N, field according
to the covariant representation and to transform N¢ field
according to the contravariant representation

i ped e

_ 1 _ 1
[Ia’Na]:E(U-a)'BaNB; [IaJNa]: _E(Ua)'BaNaJ (Az)
where o, are the Pauli matrices.

We adopt the following standard convention upon the

nucleon field [42]:

&k M
N = [ By 1y 2 V)
+ e *pe(k, s)U(k, 5)};

&k M . _
W kio ;Z{e’kxbfa(k, S)U(k, S)

+ e~ *kd (k, s)V(k, s)}.

(A3)
No(x) =
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Here spinors U(k, s) and U(k, s) = Ut(k, s)y, describe
a nucleon, respectively, in the initial and final states,
while spinors V(k, s) = VT(k, s)y, and V(k, s) describe
an antinucleon in the initial and final states.

The creation and annihilation operators in (A3) satisfy
the usual anticommutation relations for fermions [42]:

B (p.s). b1 (p', s} = QP LS (p — p)3, 55

(A4)
{dalp.s). dP(p'. s} = QP £0.6%(p — )5, 6.
The “in” nucleon state |N,) is defined according to:
IN\) = IN,(p, $)) = b} (p, )I0);
(AS5)

IN2) = IN,(p, 5)) = bl (p, )I0).
Analogously, the “in” antiparticle state |N) is defined as:
INT) = IN?(p, 5)) = d'(p, 5)I0);

IN?) = IN"(p, 5)) = d"(p, £)10).

In order to check the consistency of our conventions
(A2) and (A3) we should explicitly construct the isospin
and hypercharge operators and make sure that the nucleon
and antinucleon states (AS5) and (A6) have the proper
quantum numbers.

With the help of Noether’s theorem from the free nu-
cleon Lagrangian

i _ _
= E[Nayﬂ(aﬂNa) - (a/LNa)yMNa] - mNaNa (A7)

employing (A2) we construct the explicit expression for
the nucleon isospin operator:

N = [d%:Nl(x)%NB(x):

[Pk M4, (00 B
= W k_ogl:ba(k’ S)Tbﬁ(ky S) dT‘B(k, S)
(7,)5
x B s)].

(A8)
Thus, the isospin operator acts on the incoming nucleon
state according to

1 _ 1 _
1IN =50 alNgh 1V IN)==2(0,)5INP). (A9)

We also introduce the hypercharge operator Y according
to
[Y,N,]=Ng; [Y, N¢] = —N<. (A10)
The explicit expression for the nucleon hypercharge op-
erator reads

PHYSICAL REVIEW D 84, 074014 (2011)

YW = [ &k M > [bk(k, )b (k, s) — d*(k, 5)d,, (k, 5)]

273 k_o
(A1)
It acts on the nucleon states according to
Y&IND =N YVING =~ (A12)

Now we construct the nucleon charge operator employ-
ing the Gell-Mann-Nishijima formula

)
oW =13V + Yz

(A13)
and perform the classification of states (AS5) and (A6) to
check the consistency of our conventions.

The case of pion field is simpler since for the adjoint
representation of SU(2) there is no difference between
covariant and contravariant representation. Indeed, using

[Iar 7Tb] = ieabcﬂ'c = (ta)cb'n'c (A14)

one may check that (¢,),. = —(2,)qp-
We describe pions with the help of real pseudoscalar
field 7,:

&’k

m (e®a} (k) + e ™*a, (k)

Ta(x) = (A15)
and adopt the usual conventions of [42] for the commuta-
tion relations of the corresponding creation/annihilation
operators a; . Pion states are defined as |7,) = a_ |0).

The expression for the pion isospin operator reads:

1 =i f Py (5)(1)pe Do (2):

&’k

= m(ta)bca; (k)dc_ (k)

(Al6)

Pion isospin operator acts on the pion state according to

171m,) = (ta)ep ). (A17)
We may construct the usual charged combinations
. m *im,
|7=) = 4>; |70) = |5). Al8
) 7 ) = lm3) (A18)

Now we perform the isospin classification of pion-
nucleon states. Let us consider the action of the isospin
operator /, on the pion-nucleon state

Llm,Ny = {17 + 17 1™}z, N,)
1
= {isabcé"L + 5(a'a)"tc?bc}l7TCNK). (A19)

The action of the operator of the total isospin /> on the
pion-nucleon state then reads:

11
PlaN = {5 008% — ienalr ) Himn. (420
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This allows to classify the pion-nucleon states with
respects to total isospin /> and its third projection /5 and
compute the Clebsch-Gordan coefficients:
Y e 1 L)a,N,).
a,t

|1, I;) = (A21)

Let us emphasize that the calculation of the Clebsch-
Gordan coefficients is subject of adopting a particular
phase convention. There is much controversy on this point
in the literature (see discussion in [35]). To be consistent
we prefer to fix our own phase convention which turns out
to be different from the so-called Condon-Shortley and
Wigner phase convention adopted, e.g. in the tables in [43].

The calculation within our phase convention gives the
following result for the isospin—% 7N states:

|“>
2’2

7TlN1 +l'772N1>

4\/7|773N>+‘/7|7T1N2+17TzN2>

m Ny —imN (A22)
\/7|77_3N2>+\/7|11 21>
| _ >_ |771N2_Z7TzN2>
22 V2 )
The expansion of the isospin—% N states reads:
11 1 2 | m Ny + im,N
- )
(A23)

1 2 7TlN1_i7T2N1>
S Y2 Y i I BT
\/;|7T3 2) \/;| Nz

The inverse expansion reads

> D, BILI),

hh (A24)
where D, (I, I) = (C,*(1, I3)).

l7.N) =

Note that the last equality in (A24) should be understood as
the equality of the corresponding numerical values (and not
as that of SU(2) spin-tensors).

We also compute the isospin projecting operators:

ZC (I 13)@m(1 I3)|I I§><I I’il

I

Pl %, (A25)

The explicit expressions for the isospin projecting opera-
tors read [40]:

i

2
P3/2bKaL = 5(8ha5KL - Egbac(a-c)KL);

1 (A26)
Pl/szaL = g(ﬁbaBKL + isbac(O-C)Kt)'

PHYSICAL REVIEW D 84, 074014 (2011)
APPENDIX B: FIERZ IDENTITIES

Employing the Fierz identity for y matrices (see e.g.
[44]) one may establish the following useful identity for
arbitrary Dirac structures I', I'":

o), I'v),
1
= e, « groy o),

+ (y°0),,y°T'U), — (¥’ y*O) .,y y*I'U),

1
- E(U#VC)XT(FUWFIU)p}. (B1)

Here U stands for an arbitrary spin-tensor with one Dirac
index and C is the charge conjugation matrix.

1. Nucleon DA

To the leasing twist-3 the parametrization of the nucleon
DA involves the following Dirac structures

X=@0mwwu: e = (py30),n(U)

tprx = (0,0 (¥ ¥ V), (B2)
The Dirac structures (B2) satisfy symmetry relations:
Vhey =UNont pry = ANy 1hr =1, (B3)

With the help of (B1) one may establish the following
set of the Fierz identities valid to the leading twist-3
accuracy:

1
vg’r,,\/ = E(UN —a" - tN)XT,p;
1
apry =5~V +a =), (B4)
pTX - (_ - )Xr,p'

2. A(1232) DA

Leading twist Dirac structures employed in the parame-
trization (48) of A(1232) resonance DA read:

er (YMC)pTUX’
= (’)’,LL'}/SC)pT('}/S u'u)/\/;

B5
ﬁw (7,0 (U, @)
1
@gr,,\/ = (O-ILLVC) (p ur - _MA’)/MUV)
The Dirac structures (B5) satisfy symmetry relations:

UI%TX = Uéﬂ X a/em( = _aépy)(;

A A A A (B6)
tPTX - tTp X’ QDP,-,X - QDTP:X’

The set of the corresponding Fierz identities valid to the
leading twist-3 accuracy reads:
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1 1
A — (_ A_ - A A) .
v v a® +t )
PTX 2 2 Yrp

1 1
abd =<——UA+—aA+tA) ;
2 XT.p

> (B7)

1

1
A — A A . A — A
Tprxy = (Ev + 74 ) > Pprx = Pxrp
X7.p

3. wN TDA

Below we consider the properties of the Dirac structures
(12) occurring in the parametrization of the wN TDA.
First, one may check that the Dirac structures (12) satisfy
symmetry relations:

@) ey = =(af)zp p

(B8)

WTprx = WT)rpps
N _ (47N
(733 pry = AT23 )70,

The set of the corresponding Fierz identities for the
structures s7% is similar to that for the case of the nucleon
DA (B4):

1 1 !
W) prx = E(vflzv)xw ) (@[ )xrp ~ E(ITZ\])“";
1 ! I
(@7 )prx = =5 Wrp + 507D xnp =5 (17240
(T)prx = ~ W) yrp = (@) yrp- (BS)

The result for (tgfﬁlV ) is a bit more involved:

(tng)p'T,X = (thN))(T,p + gl('fr A2)(v’]7TN + a?N + Z{TN))(T,p
+ g(& A)WIY + a7V + 5Y),;

T)prx = W) yrp + (& ATV + aT" + 17,7,

+ ho(§, AT + af™ + 5Y) -, (BIO)
where
o1(6 A = —A%(1 - 6)4;;0712 + Mz)f;
a6 AD) = 26m? + 2M2(§8;/122) + A1 - g); -
hi(E A2) — —A%(1 - 5)2;43('"2 - Mz)f;
ho(é, A2) — 2(m?* + MZEV; A%(1 - g)‘

APPENDIX C: CHOICE OF INDEPENDENT
DIRAC STRUCTURES

Keeping the first-order corrections in the masses and A2
one can establish the following Sudakov decomposition for
the momenta of reaction (2) [14]:

PHYSICAL REVIEW D 84, 074014 (2011)

2

pr=0+&p T+ "
2 _ 2 2
q= —2§(1 + (A% 2M ))p + Q(AZ_MZ) n;
Q 261 + S0
2 _ A2 (C1)
pr= —§)p+%n+AT;
m— A M?
A= -2¢p+ L— ] + Ap.
&p [ 1—¢ 1+ ¢ n T
Because of the Dirac equation
p1U(py1, s1) = MU(py, s1) (C2)

one has two following relations for the large (U" = p i U)
and small (U~ = 71 p U) components of the nucleon Dirac
spinor:

A M
pU(py1, s1) = ——U"(py, 51)

1+ ¢
o)
— ' .
1+ ¢ (1+ &)7? (C3)
R 1+&
al(py, s1) = TU (p1>51)
1+ &)y

1+ &
n= M2 D1 M2 D)
As the consequence of the Dirac equation we establish
the following identities:

N M 1 4
(PU(p1,51)y ZHUWPI’SI)Y "‘E(ATU(PLSO)«/

+(1+§)[M2 m? — A2
oM L1+& 1-¢

]U_(pl»sl)y;

(C4)
AU 50y = =26 755U (p150) + BrU(prs1),

O M2 m— A2

M [1+§ 1—¢

]U-<p1,s1>y.
(CS5)

The last term in (C4) and (C5) is of subleading twist while
the two first terms are of the leading twist. Thus, among the
four structures containing the leading twist contribution
which can be written as

(PU(p1.51)ys AUy 51,y
U(py, s1),; and (ATU(pl’s]))y

only two are independent. In order to keep the traditional
formulation of the polynomiality condition for 7N TDAs
and avoid the appearing of singular we choose

(Co)

1
T+¢&
(ISU(pl,sl))y and (AU(py,s;)), to be the independent
Dirac structures.
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We establish the following useful relations:

4EM? + (m* — M? — A*)(1 + 5))U;.

26(PU), + (AU), = (1 + &)(ALU), + ( m

(C7)

From (C4) we also establish the relation:

MU (pros1)y = (14 Uy 50)), = S GrU(py 1), -

(I+EPT M2 =AY
S| T e sy (©8)
This results in
~ 1 4 )
MU(py, s1), = (PU(py, 51))y — E(AU(pl’ 1)y {Tw1st—4terms}. (C9)

One may also check that

2(P? — M?)
M

A PU(py, 1)y =2(P- D) Ulpy, s1)y — (PAU(p, 51)), (C10)

~on A P? . .
PAUGpy 1), = (PU(p1 1)y =7 BU(p1,50), + {Twistdterms}:

2

A% A2\« ,
= ﬁ(PU(pl, s51)), T (M - m)(AU(pl, 51))y + {Tw1st—4terms}.

The relation of new definition (10) of 7N TDAs to that of [14,21] is given by

! 2¢
VL ALT ™ 1412 = (m{vl,Ah T}™ — W{Vz, Ay, Tz}WN)

il

This work

1
{Va, A} ™ (1401 = ({V@ Ay + E{Vl,Aﬁ”N)

9
This work

T 114211 = T3 Ihis work + ETITNlThiswork (C11)

)

1
T;N|[14,21]:(ETFN'FT%TN"'T:ZTN_2§TZTN) . .
1S Wor

1+ ¢
Taon = (S5 17 + (14 OTT)

This work

These relations can be easily established employing Egs. (C4) and (C5) and the identity y/’“AT =AS + o#A1_ Note the
appearance of ﬁ factors that are of pure kinematical origin and, in particular, lead to violation of polynomiality property
of TDAs.
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