
�N transition distribution amplitudes: Their symmetries and constraints
from chiral dynamics

B. Pire,1 K. Semenov-Tian-Shansky,1,2 and L. Szymanowski3
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Baryon to meson transition distribution amplitudes (TDAs) extend the concept of generalized parton

distributions. Baryon to meson TDAs appear as building blocks in the collinear factorized description of

amplitudes for a class of hard exclusive reactions, prominent examples of which being hard exclusive

meson electroproduction off a nucleon in the backward region and baryon-antibaryon annihilation into a

meson and a lepton pair. We study the general properties of these objects following the underlying

symmetries of QCD. In particular, the Lorentz symmetry results in the polynomiality property of the

Mellin moments in longitudinal momentum fractions. We present a detailed account of the isotopic and

permutation symmetry properties of nucleon to pion (�N) TDAs. This restricts the number of independent

leading twist �N TDAs to eight functions, providing description of all isotopic channels. Using chiral

symmetry and the crossing relation between �N TDAs and �N generalized distribution amplitudes, we

establish soft pion theorems for �N TDAs, which determine the magnitude of �N TDAs. Finally, we

build a simple resonance exchange model for �N TDAs considering N and �ð1232Þ exchange

contributions into the isospin- 12 and isospin- 32 �N TDAs.
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I. INTRODUCING �N TDAS

Hadronic matrix elements of nonlocal light-cone opera-
tors are the conventional nonperturbative objects which
arise in the description of hard exclusive electroproduction
reactions within the collinear factorization approach.
Factorization theorems for hard exclusive backward meson
electroproduction argued in [1,2] and baryon-antibaryon
annihilation into a pion and a high energy dilepton pair [3]
lead to the introduction of baryon to meson transition
distribution amplitudes (TDAs), non diagonal matrix ele-
ments of light-cone three-quark operators

Ô
���
��� ðz1; z2; z3Þ ¼ "c1c2c3�

c1�
� ðz1Þ�c2�

� ðz2Þ�c3�
� ðz3Þjz2i¼0

(1)

between a baryon and ameson states. In (1)�,�,� stand for
quark flavor indices;�, � and� denote theDirac indices and
c1;2;3 are indices of the color group. Throughout this paper
we adopt the light-cone gauge Aþ ¼ 0, so that the gauge
link is equal to unity and we do not show it explicitly in the
definition of the operator (1).

In accordance with the usual logic of the collinear
factorization approach, baryon to meson TDAs have well
established renormalization group behavior. The evolution
properties of the three-quark nonlocal operator (1) on the
light-cone [4–7] were extensively studied in the literature
(see e.g. [8,9]) for the case of matrix elements between a
baryon and the vacuum known as baryon distribution am-
plitudes (DAs). The definition of baryon to meson TDAs
involves the same light-cone operator. Consequently, its

evolution also determines the factorization scale depen-
dence of TDAs [10].
Because of the nonperturbative nature of TDAs the

initial conditions for evolution require modeling at low
factorization scale. In particular, nucleon to pion (�N)
TDAs at low scale were recently studied within a light-
front quark model [11]. From the physics point of view�N
TDAs may be seen as an essential object to probe the pion
cloud content of the nucleon [12].
In [10,13,14] a factorized framework was introduced to

describe the electroproduction process

��ðqÞ þ Nðp1Þ ! �ðp�Þ þ Nðp2Þ (2)

in the generalized Bjorken limit (Q2 ¼ �q2—large;
Q2=ð2p1 � qÞ—fixed) in the so-called backward region
juj � jðp� � p1Þ2j � Q2 in terms of�N TDAs. It is worth
emphasizing that such kinematical regime essentially differs
from themore conventional limit�t��ðp2�p1Þ2�Q2 in
which the factorization theorem for hard exclusive electro-
production of pion off a nucleon [15] applies for (2). In this
later case the description of (2) involves standard nucleon
generalized parton distributions (GPDs).
We introduce the standard Mandelstam variables for the

reaction (2):

s¼ðp1þqÞ2; u¼ðp��p1Þ2; t¼ðp2�p1Þ2: (3)

Therefore, the t-channel of (2) corresponds to an exchange
with quantum numbers of a meson while in the u-channel an
intermediate statewith baryon quantumnumbers is involved.

Throughout this paper we adopt a reference frame in

which the three-momenta ~q and ~p1 have only a third
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component. We define the light-cone vectors p and

n such that 2p � n ¼ 1 and introduce standard kinema-

tical quantities: average momentum P ¼ 1
2 ðp1 þ p�Þ,

momentum transfer � ¼ p� � p1 and its transverse

component �T . The skewness parameter � is defined

with respect to the u-channel momentum transfer in

the usual way � ¼ � ��n
2P�n . The detailed description of

kinematics of (2) in the backward regime is presented

in [14].
The definition of the leading twist-3 �N TDA involved

in the description of the reaction (2) in the backward
regime can be symbolically written as

4ðP � nÞ3
Z �Y3

j¼1

d	j

2�

�
ei
P

3

k¼1
xk	kðP�nÞh�aðp�ÞjÔ���

��� ð	1n; 	2n; 	3nÞjN
ðp1Þi

¼ �ðx1 þ x2 þ x3 � 2�ÞX
s:f:

ðfaÞ���
 s��;�H
ð�NÞ
s:f: ðx1; x2; x3; �;�2Þ: (4)

The spin-flavor (s:f:) sum in (4) stands over all relevant
independent flavor structures ðfaÞ���
 and the Dirac struc-
tures s��;�. The detailed account of the Dirac and flavor
structure occurring in (4) is given in Secs. II and IV.

Nucleon to pion TDAs are conceptually much related to
pion-nucleon generalized distribution amplitudes (GDAs)
[16,17] which are defined through the cross-conjugated
matrix element of the same three-quark operator (1).

Indeed, a similar correspondance was established between
pion GPD and 2� GDA [18,19].
Therefore, it is natural to simultaneously consider the

cross-conjugated (p0
� $ �p�, q

0 $ �q) reaction:

�ðp0
�Þ þ Nðp1Þ ! ��ðq0Þ þ Nðp2Þ: (5)

The formal definition of �N GDA that arises in the de-
scription of (5) reads

4ðP0 � nÞ3
Z �Y3

j¼1

d	j

2�

�
ei
P

3
k¼1

yk	kðP0�nÞh0jÔ���
��� ð	1n; 	2n; 	3nÞjN
ðp1Þ�aðp0

�Þi

¼ �ðy1 þ y2 þ y3 � 1ÞX
s:f:

ðfaÞ���
 s0��;��
ð�NÞ
s:f: ðy1; y2; y3; �; P02Þ; (6)

where we introduce P0 ¼ p1 þ p0
� for the total momentum

of �N state and �0 ¼ p1 � p0
�. The variable � ¼ p1�n

P0�n
characterizes the distribution of the plus momenta of the
�N system. We choose the Dirac structures in (6) s0��;� as
being given by crossing of s��;� in (4). �N TDA and GDA
are interrelated by a crossing transformation

P0 $ ��; �0 $ 2P (7)

and analytic continuation in the appropriate kinematical
variables:

P02$�2; 2�þ1$ 1

�
; yi$ xi

2�
; i¼f1;2;3g: (8)

The physical domain in ð�2; �Þ-plane for both the direct
channel (2) and cross-conjugated (5) reactions is deter-
mined by the requirement that the transverse momentum
transfer �T ¼ �P0

T should be spacelike:

�2
T ¼ 1� �

1þ �

�
�2 � 2�

�
M2

1þ �
� m2

1� �

��
� 0: (9)

Here M and m stand for nucleon and pion masses,
respectively.

On the left panel of Fig. 1 we show physical domains for
the reactions (2) and (5) for physical pion mass. One may

distinguish two regimes: the direct channel regime with its
threshold at �2 ¼ ðM�mÞ2 and the cross-channel one
with its threshold at �2 ¼ ðMþmÞ2. The upper (lower)
branch of the curve bordering the physical domain in the
direct channel regime tends to � ¼ 1 (� ¼ �1) when
�2 ! �1. Note that the physical domain of the direct
channel of (2) includes both negative and positive values of
�2. Moreover, in the chiral limit (m ¼ 0) the two thresh-
olds stick together (see the right panel of Fig. 1). We
exploit this fact later in Sec. V in order to work out the
normalization for �N TDAs.
It is interesting to compare Fig. 1 to that in the case of

equal masses of particles in jini and houtj states. On Fig. 2
we show the physical domains in ð�2; �Þ plane for pion
GPD and 2� GDA occurring in the description of ��� !
�� and ��� ! �� (here � refers to the momentum trans-
fer between initial and final pions in ��� ! �� and the
usual definition of � is assumed). In particular, the physical
domains for pion GPD and 2� GDA are symmetric under
the reflection of �. The difference between Fig. 1 and 2 has
purely kinematical origin and is not related to the nature of
QCD operator in the matrix element in question.
The basic issue of the approach based on �N TDAs

is that, contrary to the GPD case, �N TDAs lack an
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intelligible forward limit � ! 0. However, the opposite
limit � ! 1 turns out to be very illuminating. For simplic-
ity, let us consider the pion to be massless. The point
� ¼ 1, �2 ¼ M2 (corresponding to both the direct and
cross-channel threshold) belongs both to the physical re-
gions for�N GDAs and TDAs. Moreover, it is for this very
point that the soft pion theorem [20] applies for �N GDAs.
As argued in [16,17], this allows to constrain �N GDAs at
the threshold in terms of the nucleon DA. In the chiral limit
the soft pion theorem for GDAs also constrains �N TDAs
exactly as the soft pion theorem [18] for 2� GDA in the
chiral limit links the isovector pion GPD at � ¼ 1, �2 ¼ 0
to the pion DA. Thus, in the chiral limit the soft pion
theorem provides us with the desired reference point for
�N TDAs. This valuable information may be used as input
for realistic modeling of �N TDAs based on the spectral
representation in terms of quadruple distributions [21]. In
[22] we will argue that a possible approach consists in
evolving from the � ¼ 1 limit for �N TDAs through a
procedure analogous to the one used for GPDs; in this latter
case one employs the forward limit � ¼ 0 to constrain
GPDs through the successful Radyushkin’s factorized
Ansatz [23].

It is worth to mention that the simpler case of �� TDAs
has already been discussed in details [24–28]. These TDAs
share many features with�N TDAs, and are also subject to
chiral symmetry constraints. Since the operator in this case
is the same as in usual GPDs, polynomiality properties and
isospin relations are straightforwardly extended from one
case to the other.
In this paper, we analyze the constraints on �N TDAs

imposed by the symmetries of QCD. First, we argue that
the underlying Lorentz symmetry results in the polyno-
miality conditions which restrict the skewness parameter
dependence of TDAs in a way similar to the well known
GPD case. Second, we analyze in details the isospin de-
composition of �N TDAs and establish the consequences
of the isotopic and permutation symmetries. Third, we
exploit the chiral symmetry of QCD to calculate �N
GDAs and TDAs in the soft pion limit. Finally, we show
how a model based on nucleon and �ð1232Þ exchanges
satisfies the revealed polynomiality and isospin constrains.
The paper is organized as follows:
(i) In Sec. II we introduce the new parametrization for

�N TDAs and show that, within this parametriza-
tion, �N TDAs satisfy the polynomiality conditions.

GPD

GDA

GDA

4m2
2

1

1

GPD

GDA

GDA

2

1

1

FIG. 2 (color online). Physical domains in ð�2; �Þ plane for pion GPD and 2� GDA for the case m � 0 (left panel) and in the chiral
limit m ¼ 0 (right panel).

TDA

GDA

M m 2 M m 2
2

1

M m
M m

1

M m
M m

TDA

GDA

M 2
2

1

FIG. 1 (color online). Physical domains (bounded by the condition �2
T � 0) in ð�2; �Þ plane for �N TDAs for the case m � 0 (left

panel) and in the chiral limit m ¼ 0 (right panel).
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(ii) In Sec. III we consider the isospin structure of the
three-quark operator and describe the general iso-
spin parametrization of the leading twist baryon
DAs. Next, we consider the consequences of iso-
topic and permutation symmetries of baryon DAs.
We rederive the familiar isospin identities for the
leading twist baryon DAs.

(iii) In Sec. IV we apply the isospin formalism to the
case of �N TDAs and GDAs and derive the set of
symmetry relations for �N TDAs and GDAs.

(iv) In Sec. V we derive the soft pion theorem for �N
GDAs and discuss its consequences for �N TDAs.

(v) Section VI contains the calculation of u-channel
nucleon and �ð1232Þ exchange contributions into
�N TDAs.

(vi) Our conclusions are presented in Sec. VII.
Let us stress that the main goal of the present paper is to

provide the basic formalism for a consistent modelling of
TDAs. The phenomenological applications of this formal-
ism will be addressed in forthcoming publications.
Measuring pion electroproduction at large angle is a chal-
lenging experimental problem. Some preliminary data are
already available from J-Lab [29] and more data are

expected from J-Lab at 12 GeV. A detailed proposal for
measuring the reaction �pp ! ���N exists in the PANDA
Physics program [30].

II. POLYNOMIALITY PROPERTY OF �N TDAS

In this section our goal is to show that, analogously to
GPDs, nucleon to meson TDAs satisfy the polynomiality
property, i.e. their Mellin moments in longitudinal momen-
tum fractions xi are polynomials of variable � of definite
power. For definiteness we are going to consider the case of
nucleon to pion TDAs. In this section we omit flavor

indices in the operator Ô��� (1) since flavor symmetry is

irrelevant for the present problem.
It turns out necessary to change the parametrization of

�N TDA earlier proposed in Refs. [14,21]. The important
drawback of our initial parametrization is that it involves
the set of the Dirac structures which leads to spoiling
of the polynomiality property of TDAs by the kinematical
factors 1

1þ� .

In order to get rid of these kinematical singularities
we suggest the following parametrization of the leading
twist-3 �N TDAs1:

4F h�ðp�ÞjÔ���ð	1n; 	2n; 	3nÞjNðp1Þi
¼ �ðx1 þ x2 þ x3 � 2�Þi fN

f�M
½V�N

1 ðx1; x2; x3; �;�2ÞðP̂CÞ��ðP̂UÞ� þ A�N
1 ðx1; x2; x3; �;�2ÞðP̂�5CÞ��ð�5P̂UÞ�

þ T�N
1 ðx1; x2; x3; �;�2ÞðP�CÞ��ð��P̂UÞ� þ V�N

2 ðx1; x2; x3; �;�2ÞðP̂CÞ��ð�̂UÞ�
þ A�N

2 ðx1; x2; x3; �;�2ÞðP̂�5CÞ��ð�5�̂UÞ� þ T�N
2 ðx1; x2; x3; �;�2ÞðP�CÞ��ð���̂UÞ�

þ 1

M
T�N
3 ðx1; x2; x3; �;�2ÞðP�CÞ��ðP̂UÞ� þ 1

M
T�N
4 ðx1; x2; x3; �;�2ÞðP�CÞ��ð�̂UÞ��; (10)

where F stands for the Fourier transform

F � F ðx1; x2; x3Þð. . .Þ ¼ ðP � nÞ3
Z �Y3

j¼1

d	j

2�

�
ei
P

3
k¼1

xk	kðP�nÞð. . .Þ; (11)

f� is the pion weak decay constant and fN is a constant with the dimension of energy squared; U is the usual Dirac spinor
and C is the charge conjugation matrix.

The price for avoiding the kinematical singularities in the invariant amplitudes in (10) is that apart from the leading
twist contribution we have to keep some admixture of subleading twist (see Appendix C). The relationship between
the parametrization involving pure twist-3 invariant amplitudes employed in Refs. [14,21] and that of Eq. (10) is given by
Eq. (C11).

We introduce the following notations for the leading twist Dirac structures occurring in (10):

ðv�N
1 Þ��;� ¼ ðP̂CÞ��ðP̂UÞ�; ða�N1 Þ��;� ¼ ðP̂�5CÞ��ð�5P̂UÞ�; ðt�N1 Þ��;� ¼ ðP�CÞ��ð��P̂UÞ�;

ðv�N
2 Þ��;� ¼ ðP̂CÞ��ð�̂UÞ�; ða�N2 Þ��;� ¼ ðP̂�5CÞ��ð�5�̂UÞ�; ðt�N2 Þ��;� ¼ ðP�CÞ��ð���̂UÞ�;

ðt�N3 Þ��;� ¼ 1

M
ðP�CÞ��ðP̂UÞ�; ðt�N4 Þ��;� ¼ 1

M
ðP�CÞ��ð�̂UÞ�:

(12)

1Throughout the text we employ Dirac’s ‘‘hat’’ notation for the convolution of a 4-vector with the Dirac matrices: â � ��a
�. The

following conventions are adopted: �� ¼ 1
2 ½��; ���; v� � v�

��, where v� is an arbitrary 4-vector.
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We also employ the shortened notation for the whole set of
twist-3 Dirac structures:

ðs�NÞ��;� ¼ fðv�N
1;2 Þ��;�; ða�N1;2 Þ��;�; ðt�N1;2;3;4Þ��;�g (13)

and for the corresponding invariant amplitudes

H�N
s ¼ fV�N

1;2 ; A
�N
1;2 ; T

�N
1;2;3;4g: (14)

Each invariant amplitude V�N
1;2 , A�N

1;2 , T�N
1;2;3;4 of (10)

is a function of the longitudinal momentum fractions xi
(i ¼ f1; 2; 3g), skewness parameter � ¼ � ð��nÞ

2ðP�nÞ and the

momentum transfer squared �2. The support properties
of �N TDAs in the longitudinal momentum fractions xi
were established in [21].
Now we are going to demonstrate that the �N TDAs

defined in (10) satisfy the polynomiality property. Our
demonstration generally repeats the usual way of arguing
for the case of GPDs (see e.g. [31]).
The ðn1; n2; n3Þ-th (n1 þ n2 þ n3 ¼ N) Mellin moments

of TDAs in x1, x2, x3 lead to derivative operations acting on
three-quark fields:

4ðP �nÞn1þn2þn3þ3
Z
d3xxn11 xn22 xn33

Z �Y3
k¼1

d	k

2�

�
ei
P

3
k¼1

xk	kðP�nÞh�ðPþ�=2ÞjÔ���ð	1n;	2n;	3nÞjNðP��=2Þi

¼ ðP �nÞn1þn2þn3
ifN
f�M

X
s

ðs�NÞ��;�
Z 1þ�

�1þ�
dx1

Z 1þ�

�1þ�
dx2

Z 1þ�

�1þ�
dx3x

n1
1 xn22 xn33 �ðx1þx2þx3�2�ÞH�N

s ðx1;x2;x3;�;�2Þ

¼4ð�1Þn1þn2þn3h�ðPþ�=2Þj½ði ~@þÞn1��ð0Þ�½ði ~@þÞn2��ð0Þ�½ði ~@þÞn3��ð0Þ�jNðP��=2Þi: (15)

Hence, the Mellin moments of nucleon to meson TDAs are expressed through the form factors of the local twist-3
operators:

Ô
�1...�n1

;�1...�n2 ;	1...	n3
��� ð0Þ ¼ ½i ~D�1 . . . i ~D�n1���½i ~D�1 . . . i ~D�n2���½i ~D	1 . . . i ~D	n3���; (16)

where ~D� ¼ ~@� � ig
2 A

l�	l is the covariant derivative (	l stand here for the Gell-Mann matrices). Note that in (15) and
(16) we omit color indices.

Introducing the shortened notation

ð��ÞiðP�Þn1�i � ��1 . . . ��iP�iþ1 . . .P�n1 (17)

we write down the following parametrization for the �N matrix element of the local operator (16):

4h�jÔ�1...�n1
;�1...�n2

;	1...	n3
��� ð0ÞjNi

¼ i
fN
f�M

�X
s

ðs�NÞ��;�
Xn1
i¼0

Xn2
j¼0

Xn3
k¼0

A
sðn1;n2;n3Þ
ijk ð�2Þð��ÞiðP�Þn1�ið��ÞjðP�Þn2�jð�	ÞiðP	Þn3�i

þ
�
ð�̂CÞ��ðP̂UÞ�CV1ðn1;n2;n3Þ

Nþ1 ð�2Þ þ ð�̂CÞ��ð�̂UÞ�CV2ðn1;n2;n3Þ
Nþ1 ð�2Þ þ ð�̂�5CÞ��ð�5P̂UÞ�CA1ðn1;n2;n3Þ

Nþ1 ð�2Þ

þ ð�̂�5CÞ��ð�5�̂UÞ�CA2ðn1;n2;n3Þ
Nþ1 ð�2Þ þ ð��CÞ��ð��P̂UÞ�CT1ðn1;n2;n3Þ

Nþ1 ð�2Þ
þ ð��CÞ��ð���̂UÞ�CT2ðn1;n2;n3Þ

Nþ1 ð�2Þ
�
ð��Þn1ð��Þn2ð�	Þn3

�
; (18)

where the sum in the first term is over all independent Dirac structures (12); A
sðn1;n2;n3Þ
ijk ð�2Þ and C

V1;2;A1;2;T1;2ðn1;n2;n3Þ
Nþ1 ð�2Þ

denote the appropriate invariant form factors.
We introduce the compact notation for the Mellin moments of TDAs:

hxn11 xn22 xn33 H�N
s i ¼

Z 1þ�

�1þ�
dx1

Z 1þ�

�1þ�
dx2

Z 1þ�

�1þ�
dx3�ðx1 þ x2 þ x3 � 2�Þxn11 xn22 xn33 H�N

s ðx1; x2; x3; �;�Þ: (19)

Now from (18) we establish the following relations for ðn1; n2; n3Þ-th (n1 þ n2 þ n3 ¼ N) Mellin moments of TDAs:
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hxn11 xn22 x
n3
3 fV1;2; A1;2; T1;2gi ¼

XN
n¼1

ð�1ÞN�nð2�Þn Xn1
i¼0

Xn2
j¼0

Xn3
k¼0

�iþjþk;nA
fV1;2;A1;2;T1;2gðn1;n2;n3Þ
ijk ð�2Þ

� ð2�ÞNþ1C
fV1;2;A1;2;T1;2gðn1;n2;n3Þ
Nþ1 ð�2Þ;

hxn11 xn22 x
n3
3 fT3;4gi ¼

XN
n¼1

ð�1ÞN�nð2�Þn Xn1
i¼0

Xn2
j¼0

Xn3
k¼0

�iþjþk;nA
fT3;4gðn1;n2;n3Þ
ijk ð�2Þ: (20)

Thus, we conclude that the �N TDAs defined in (10)
indeed satisfy the polynomiality property. For n1 þ n2 þ
n3 ¼ N the highest power of � occurring in ðn1; n2; n3Þ-th
Mellin moment of fV�N

1;2 ; A
�N
1;2 ; T

�N
1;2 g isN þ 1while for T�N

3;4

it is N. Consequently, the TDAs fV�N
1;2 ; A

�N
1;2 ; T

�N
1;2 g include

an analogue of the D-term contribution [19] which gener-
ates the highest possible power of �. Note that, exactly as
in the case of GPDs, the spectral representation [21] cannot
produces the highest possible power of � in the Mellin
moments. Therefore, the complete parametrization of
�N TDAs requires adding a separate D-term contribu-
tion to the spectral representation or a singular modifica-
tion of corresponding spectral densities in the spirit of
Ref. [32].

III. ISOSPIN PARAMETRIZATION FOR LEADING
TWIST BARYON DISTRIBUTION AMPLITUDES

A. Notes on the operator in question

Below we review the group-theoretical properties of the
three-quark operator (1) under the SUð2Þ isospin symmetry
group. Throughout the rest of the paper we adopt the
following conventions:

(i) Letters from the beginning of the Greek alphabet are
reserved for the SUð2Þ isospin indices �, �, �, 
,
� ¼ 1, 2.

(ii) We have to distinguish between upper (contravar-
iant) and lower (covariant) SUð2Þ isospin indices.
We introduce the totally antisymmetric tensor "��
for lowering indices and "�� for rising indices
("12 ¼ "12 ¼ 1): ��"�� ¼ ��, ��"

�� ¼ ��

and ��
� ¼ �"�� ¼ "��.

(iii) Letters from the middle of the Greek alphabet 	,�,
� denote the Lorentz indices.

(iv) Letters from the second half of the Greek alphabet
�, �, � are reserved for the Dirac indices.

(v) Letters from the beginning of the Latin alphabet
a; b; c . . . are reserved for indices of the adjoint
representation of the SUð2Þ isospin group.

(vi) Letters c1, c2, c3 stand for SUð3Þ color indices.

To simplify our formulas we will often skip the color and
the Dirac indices when they are irrelevant for the discus-
sion. We will also often employ the shortened notation for

the arguments of the operator (1): Ô���
��� ðz1; z2; z3Þ �

Ô���
��� ð1; 2; 3Þ.

The operator (1) transforms according to the

2 � 2 � 2 ¼ 4 	 2 	 2 (21)

representation of the isospin SUð2Þ. To find out the opera-
tors transforming according to the isospin- 32 and isospin- 12
representations we single out the totally symmetric and
totally antisymmetric parts of (1):

Ô ��� ¼ Ô½���� þ Ôf���g þ ~̂O
���

: (22)

The totally symmetric part

Ôf���g ¼ 1
6ð������þ������þ������

þ������þ������þ������Þ (23)

obviously transforms according to isospin- 32 representa-

tion. The totally antisymmetric part

Ô½���� ¼ 1
6ð������ ������� �������

þ������ ������� þ������Þ (24)

is zero in SUð2Þ. The explicit expression for the remaining

part ~̂O
���

reads:

~̂O��� ¼ 1
3ð2������ ������� �������Þ: (25)

One can represent ~̂O
���

as a sum of three operators which
are antisymmetric in pairs of indices ½�;��, ½�; �� and
½�;��:

~̂O��� ¼ Ô½����
1 þ Ô½� ����

2 þ Ô�½���
3 : (26)

The explicit expressions for the operators Ô:½::�:
1;2;3 read

Ô½����
1 ¼ 1

9ð2������ þ������ � 2������

������� ������� þ������Þ;
Ô½� ����

2 ¼ 1
9ð2������ þ������ þ������

������� ������� � 2������Þ;
Ô�½���

3 ¼ 1
9ð2������ � 2������ þ������

������� ������� þ������Þ: (27)

Contracting operators (27) with the appropriate " tensor we
get a spinor transforming according to the fundamental
representation of SUð2Þ. Note that only two operators in
(27) are independent due to the relation
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"��Ô
½����
1 � "��Ô

½� ����
2 þ "��Ô

�½���
3 ¼ 0: (28)

Thus, in complete accordance with (21), the tensor decom-
position of the three-quark operator (1) involves two copies
of operators transforming according to the isospin- 12 rep-

resentations of the isospin group.

B. Case of nucleon DA

In this subsection we suggest convenient notations for
the leading twist nucleon distribution amplitude. We in-
troduce the isospin parametrization for the leading twist
nucleon DA and rederive the familiar results [33,34] for the
symmetry properties of the nucleon DA. This technique is
applied in the next subsection to the analysis of the more
involved cases of isospin structure and symmetry proper-
ties of �ð1232Þ DA and �N TDAs and GDAs.

The leading twist nucleon DA [34] is defined through the

matrix element of the three-quark operator Ô���
��� ð1; 2; 3Þ

between a nucleon state and the vacuum. Being guided by
the principle of invariance under SUð2Þ isospin we can put
down the following isospin decomposition for the matrix
element in question:

4h0jÔ���
��� ð1; 2; 3ÞjN
ðpNÞi

¼ "����

 MN

1���ð1; 2; 3Þ þ "����

 MN

2���ð1; 2; 3Þ
þ "����


 M
N
3���ð1; 2; 3Þ: (29)

The three isospin invariant amplitudes are not independent
due to the identity

"����

 þ "����


 � "����

 ¼ 0: (30)

It is worth emphasizing that the fact we have only two
independent invariant isospin amplitudes meets with the
consequences of the Wigner-Eckart theorem [35] for the

matrix element of the three-quark operator Ô. Indeed, as
we checked in Sec. III A, the tensor decomposition of the

operator Ô involves two independent copies of operators
transforming according to the isospin- 12 representations of

the isospin group. However, it should be properly taken
into account that the nucleon DA also possesses specific
properties under group of permutations of three-quark

fields occurring in the operator Ô.
To address this issue we introduce the following nota-

tions for the combinations of the isotopic amplitudes de-
fined in (29) which, as it is demonstrated below, are
symmetric under permutation of the appropriate quark

fields in the operator Ô���
��� ðz1; z2; z3Þ:

MN
2���ðz1; z2; z3ÞþMN

3���ðz1; z2; z3Þ �MNf12g
��� ðz1; z2; z3Þ;

MN
1���ðz1; z2; z3Þ�MN

3���ðz1; z2; z3Þ �MNf13g
��� ðz1; z2; z3Þ;

�MN
1���ðz1; z2; z3Þ�MN

2���ðz1; z2; z3Þ �MNf23g
��� ðz1; z2; z3Þ:

(31)

Note that these combinations satisfy the identity

MNf12g
��� ðz1; z2; z3Þ þMNf13g

��� ðz1; z2; z3Þ
þMNf23g

��� ðz1; z2; z3Þ ¼ 0: (32)

In fact this is nothing but the familiar isospin identity for
nucleon DA. Indeed, one may check that

4h0jÔuud
���ðz1; z2; z3ÞjNpðpNÞi

¼ �4h0jÔddu
���ðz1; z2; z3ÞjNnðpNÞi ¼ MNf12g

��� ðz1; z2; z3Þ;
4h0jÔudu

���ðz1; z2; z3ÞjNpðpNÞi
¼ �4h0jÔdud

���ðz1; z2; z3ÞjNnðpNÞi ¼ MNf13g
��� ðz1; z2; z3Þ;

4h0jÔduu
���ðz1; z2; z3ÞjNpðpNÞi

¼ �4h0jÔudd
���ðz1; z2; z3ÞjNnðpNÞi ¼ MNf23g

��� ðz1; z2; z3Þ
(33)

and recover the usual form of the isospin identity from (32).
Note that the neutron DA differs from that of the proton
only by the overall sign, as it is well known.
To derive further symmetry properties of the nucleon

DA under permutation of their arguments we employ the
fact that quarks field operators in (1) anticommute. This
allows in addition to (32) to establish the following rela-
tions for the isospin amplitudes:

MNf12g
��� ð1; 2; 3Þ ¼ MNf12g

��� ð2; 1; 3Þ;
MNf13g

��� ð1; 2; 3Þ ¼ MNf13g
��� ð3; 2; 1Þ;

MNf23g
��� ð1; 2; 3Þ ¼ MNf23g

��� ð1; 3; 2Þ;
MNf23g

��� ð1; 2; 3Þ ¼ MNf12g
��� ð2; 3; 1Þ;

MNf13g
��� ð1; 2; 3Þ ¼ MNf12g

��� ð1; 3; 2Þ;

(34)

For example, the last identity in (34) is the consequence of
the relations

h0j"c1c2c3�c1�
� ð1Þ�c2�

� ð2Þ�c3�
� ð3ÞjN
ðpNÞi

¼ �h0j"c1c2c3�c1�
� ð1Þ�c3�

� ð3Þ�c2�
� ð2ÞjN
ðpNÞi

¼ h0j"c1c2c3�c1�
� ð1Þ�c2�

� ð3Þ�c3�
� ð2ÞjN
ðpNÞi: (35)

The first three identities in (34) justify our definitions (31)
while the two last ones further constrain isospin invariant
amplitudes.
We choose to express all invariant isospin amplitudes

through MNf12g. This allows to write down the following
invariant isospin parametrization for the nucleon DA:

4h0jÔ���
��� ð1;2;3ÞjN
ðpNÞi¼"����


 M
Nf12g
��� ð1;3;2Þ

þ"����

 M

Nf12g
��� ð1;2;3Þ: (36)

The next step is to consider the effect of the relations
(32) and (34) for the nucleon DA. To the leading twist
accuracy we neglect mass effects (pN ! p, where p is
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lightlike) and employ the standard parametrization for the
invariant amplitude symmetric under the exchange of the
two first quark field operators:

MNf12g
��� ðz1;z2;z3Þ¼fN½Vpðz1;z2;z3ÞvN

��;�þApðz1;z2;z3ÞaN��;�
þTpðz1;z2;z3ÞtN��;��; (37)

where fvN; aN; tNg��;� are the conventional Dirac struc-

tures:

vN
��;� ¼ ðp̂CÞ��ð�5UðpÞÞ�; aN��;� ¼ ðp̂�5CÞ��ðUðpÞÞ�;

tN��;� ¼ ðp�CÞ��ð���5UðpÞÞ�: (38)

The symmetry relations (B3) for the Dirac structures (38)
under the interchange of the two first Dirac indices together
with (34) lead to the familiar symmetry properties:

Vpð1; 2; 3Þ ¼ Vpð2; 1; 3Þ; Tpð1; 2; 3Þ ¼ Tpð2; 1; 3Þ;
Apð1; 2; 3Þ ¼ �Apð2; 1; 3Þ: (39)

Next, using symmetry relations (34) and isospin identity
(32) together with the Fierz transformation (B4) for the
Dirac structures (38), one may establish the well known
relation for twist-3 nucleon DAs [7,33,34]:

2Tpð1; 2; 3Þ ¼ ðVp � ApÞð1; 3; 2Þ þ ðVp � ApÞð2; 3; 1Þ:
(40)

This reflects the fact that at leading twist there is only one
independent nucleon DA, usually denoted as �N:

�N � Vp � Ap: (41)

The DAs Vp, Ap and Tp are expressed through this latter
function according to

2Vpð1; 2; 3Þ ¼ �Nð1; 2; 3Þ þ�Nð2; 1; 3Þ;
2Apð1; 2; 3Þ ¼ ��Nð1; 2; 3Þ þ�Nð2; 1; 3Þ;
2Tpð1; 2; 3Þ ¼ �Nð1; 3; 2Þ þ�Nð2; 3; 1Þ:

(42)

C. Case of �ð1232Þ DA
In this subsection we introduce the invariant isospin

notations for the leading twist DA of �ð1232Þ resonance
[36]. With respect to SUð2Þ isospin group � resonance
state represents a spin tensor with one covariant spinor
index and one vector index:

Iaj�b
i ¼
�
i"abc�

�

 þ 1

2
ðaÞ�
�bc

�
j�c�i: (43)

It is natural to choose the isospin conventions for � reso-
nance so that the isospin classification of � states coincide
with that for isospin- 32 �N states (A22).

With respect to the Lorentz group � resonance field
is described with the help of the Rarita-Schwinger

spin-tensor U�

 ðp�; s�Þ. As usual, �U�ðp�; s�Þ ¼

ðU�ðp�; s�ÞÞy�0. For p
2
� ¼ M2

� spin-tensor U�

 satisfies

the following auxiliary conditions:

ðp̂� �M�ÞU�ðp�; s�Þjp2
�
¼M2

�
¼ 0;

�U�ðp�; s�ÞU�ðp�; s�Þjp2
�
¼M2

�
¼ �2M�;

��U�ðp�; s�Þjp2
�
¼M2

�
¼ p

�
�U�ðp�; s�Þjp2

�
¼M2

�

¼ 0: (44)

Being guided by the invariance under the isospin group
we may write the following tensor decomposition for the
matrix element of the three-quark operator between �
resonance state and vacuum:

4h0jÔf���g
��� ðz1; z2; z3Þj�a
ðp�Þi ¼ ðfaÞf���g
M�

���ð1; 2; 3Þ:
(45)

Here ðfaÞf���g
 stands for the only tensor totally symmetric
in �, �, � one can construct out of the existing structures:

ðfaÞf���g

¼ 1

6
ððaÞ��"����


 þ ðaÞ��"����

 þ ðaÞ��"����




þ ðaÞ��"����

 þ ðaÞ��"����


 þ ðaÞ��"����

 Þ

� 1

3
ððaÞ��"����


 þ ðaÞ��"����

 þ ðaÞ��"����


 Þ;
since ðaÞ��"�� ¼ ðaÞ��"��: (46)

One may check that the convolutions of the invariant tensor

ðfaÞf���g
 with the isospin projecting operators (A26) re-
spect the following properties:

P3=2
b
�
a
ðfbÞf���g� ¼ ðfaÞf���g
;

P1=2
b
�
a
ðfbÞf���g� ¼ 0: (47)

We employ the following parametrization for the lead-
ing twist invariant amplitude M�

���ð1; 2; 3Þ:

M�
���ð1; 2; 3Þ ¼ �	1=2

�ffiffiffi
2

p fv�
��;�V

�ð1; 2; 3Þ

þ a���;�A
�ð1; 2; 3Þ þ t���;�T

�ð1; 2; 3Þg

� f3=2�ffiffiffi
2

p ’�
��;��

�3=2ð1; 2; 3Þ; (48)

where fv�; a�; t�; ’�g��;� are the usual Dirac structures

v�
��;� ¼ ð��CÞ��U�

� ;

a���;� ¼ ð���5CÞ��ð�5U�Þ�;
t���;� ¼ 1

2
ð��CÞ��ð��U�Þ�;

’�
��;� ¼ ð��CÞ��

�
p�U� � 1

2
M��

�U�

�
�

(49)

and the constants 	1=2
� , f3=2� are defined in Ref. [36]. The

factor � 1ffiffi
2

p in (48) ensures matching with the parametri-

zation of [36] for the uuu DA of j�þþi [c.f. Eq. (50)]. The
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DAs V�, A�, T� and��3=2 in (48) thus coincide with those
of Refs. [9,36].

The isospin identities for the invariant amplitude
M�

���ðz1; z2; z3Þ are derived analogously to how this was

done for the nucleon case in the previous subsection.
Consider

4h0j"c1c2c3uc1� ðz1Þuc2� ðz2Þuc3� ðz3Þj�þþi
¼ � ffiffiffi

2
p

M�
���ð1; 2; 3Þ: (50)

The invariance under permutations of three u-quark fields
in (50) leads to the complete symmetry of the invariant
matrix element under simultaneous permutations of the
arguments and of the Dirac indices:

M�
���ð1;2;3Þ¼M�

���ð1;3;2Þ¼M�
���ð2;1;3Þ¼M�

���ð2;3;1Þ
¼M�

���ð3;2;1Þ¼M�
���ð3;1;2Þ: (51)

Employing (51) together with the well-known symmetry
relations (B6) for the Dirac structures (49) and the twist-3
Fierz transformations (B7) one establishes the familiar
relations [36] for the invariant functions V�, A�, T� and
��3=2 defined in (48). Introducing the notation
��1=2ð1; 2; 3Þ ¼ V�ð1; 2; 3Þ � A�ð1; 2; 3Þ these relations
can be written as

2V�ð1; 2; 3Þ ¼ ��1=2ð1; 2; 3Þ þ��1=2ð2; 1; 3Þ;
2A�ð1; 2; 3Þ ¼ ���1=2ð1; 2; 3Þ þ��1=2ð2; 1; 3Þ;
T�ð1; 2; 3Þ ¼ ��1=2ð2; 3; 1Þ;

(52)

together with the consistency condition

��1=2ð1; 2; 3Þ ¼ ��1=2ð3; 2; 1Þ: (53)

Meanwhile,��3=2ð1; 2; 3Þ turns out to be totally symmetric.

IV. ISOSPIN PARAMETRIZATION
FOR �N TDA AND GDA

Let us consider now the matrix element of three-quark

operator Ô���
��� ðz1; z2; z3Þ between �N states both in TDA

and GDA regimes. From the point of view of the isospin
symmetry the two regimes can be analyzed on the same
footing since the pion field �a transforms according to the
adjoint representation of the isospin group. So below we
present the isospin decomposition of �N TDA. The ex-
pression for �N GDA is exactly the same.
Isospin decomposition for �N TDA should involve both

the isospin- 32 and isospin- 12 parts. Thus, analogously to the

cases of � and nucleon DAs, we can write the following
isospin decomposition:

4h�ajÔ���
��� ðz1; z2; z3ÞjN
i ¼ ðfaÞf���g
Mð�NÞ3=2

��� ð1; 2; 3Þ þ "��ðaÞ�
Mð�NÞ1=2
1 ���ð1; 2; 3Þ

þ "��ðaÞ�
M
ð�NÞ1=2
2 ���ð1; 2; 3Þ þ "��ðaÞ�
M

ð�NÞ1=2
3 ���ð1; 2; 3Þ

¼ ðfaÞf���g
Mð�NÞ3=2
��� ð1; 2; 3Þ þ "��ðaÞ�
Mð�NÞ1=2f13g

��� ð1; 2; 3Þ
þ "��ðaÞ�
M

ð�NÞ1=2f12g
��� ð1; 2; 3Þ; (54)

where ðfaÞf���g
 is the symmetric tensor defined in (46). To put down the last equality in (54) we employed the
identity

"��ðaÞ�
 ¼ �"��ðaÞ�
 þ "��ðaÞ�
 (55)

to eliminate the third structure corresponding to the isospin- 12 representation. Analogously to (31) we introduce the
notations

M
ð�NÞ1=2
2 ���ð1; 2; 3Þ þM

ð�NÞ1=2
3 ���ð1; 2; 3Þ � M

ð�NÞ1=2f12g
��� ð1; 2; 3Þ;

M
ð�NÞ1=2
1 ���ð1; 2; 3Þ �M

ð�NÞ1=2
3 ���ð1; 2; 3Þ � M

ð�NÞ1=2f13g
��� ð1; 2; 3Þ;

�M
ð�NÞ1=2
1 ���ð1; 2; 3Þ �M

ð�NÞ1=2
2 ���ð1; 2; 3Þ � M

ð�NÞ1=2f23g
��� ð1; 2; 3Þ:

(56)

Our present goal is to establish the isospin and
permutation symmetry identities for �N TDA invariant
isotopic amplitudes. We will show that isotopic and per-
mutation symmetry reduces the number of independent
�N TDAs from 16 functions [8 both for the isospin- 12
and isospin- 32 parts as in Eq. (10)] to just 8 independent

functions.

A. Isospin- 12 case

One may check that the isospin- 12 invariant amplitudes

satisfy the set of identities analogous to the isospin invari-
ant amplitudes for nucleon DA. The isospin identity reads

M
ð�NÞ1=2f12g
��� ð1;2;3ÞþM

ð�NÞ1=2f13g
��� ð1;2;3Þ

þM
ð�NÞ1=2f23g
��� ð1;2;3Þ¼0: (57)
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The permutation symmetry results in the set of identities analogous to (34):

M
ð�NÞ1=2f12g
��� ð1; 2; 3Þ ¼ M

ð�NÞ1=2f12g
��� ð2; 1; 3Þ; M

ð�NÞ1=2f13g
��� ð1; 2; 3Þ ¼ M

ð�NÞ1=2f13g
��� ð3; 2; 1Þ;

M
ð�NÞ1=2f23g
��� ð1; 2; 3Þ ¼ M

ð�NÞ1=2f23g
��� ð1; 3; 2Þ; M

ð�NÞ1=2f13g
��� ð1; 2; 3Þ ¼ M

ð�NÞ1=2f12g
��� ð1; 3; 2Þ;

M
ð�NÞ1=2f23g
��� ð1; 2; 3Þ ¼ M

ð�NÞ1=2f12g
��� ð2; 3; 1Þ: (58)

For M
ð�NÞ1=2f12g
��� ð1; 2; 3Þ we introduce the parametrization (10) and define 8 leading twist isospin- 12 �N TDAs:

M
ð�NÞ1=2f12g
��� ð1; 2; 3Þ ¼ i

fN
f�M

�
V
ð�NÞ1=2
1 ð1; 2; 3Þðv�N

1 Þ��;� þ A
ð�NÞ1=2
1 ð1; 2; 3Þða�N1 Þ��;� þ T

ð�NÞ1=2
1 ð1; 2; 3Þðt�N1 Þ��;�

þ V
ð�NÞ1=2
2 ð1; 2; 3Þðv�N

2 Þ��;� þ A
ð�NÞ1=2
2 ð1; 2; 3Þða�N2 Þ��;� þ T

ð�NÞ1=2
2 ð1; 2; 3Þðt�N2 Þ��;�

þ 1

M
T
ð�NÞ1=2
3 ð1; 2; 3Þðt�N3 Þ��;� þ 1

M
T
ð�NÞ1=2
4 ð1; 2; 3Þðt�N4 Þ��;�

�
: (59)

One may check that the permutation symmetry relations (58) result in the familiar symmetry properties of the isospin- 12
�N TDAs:

V
ð�NÞ1=2
1;2 ð1;2;3Þ ¼ V

ð�NÞ1=2
1;2 ð2;1;3Þ; T

ð�NÞ1=2
1;2;3;4 ð1;2;3Þ ¼ T

ð�NÞ1=2
1;2;3;4 ð2;1;3Þ; A

ð�NÞ1=2
1;2 ð1;2;3Þ ¼�A

ð�NÞ1=2
1;2 ð2;1;3Þ: (60)

We introduce two independent isospin- 12 �N TDAs:

�
ð�NÞ1=2
1;2 ð1; 2; 3Þ � V

ð�NÞ1=2
1;2 ð1; 2; 3Þ � A

ð�NÞ1=2
1;2 ð1; 2; 3Þ: (61)

Employing the Fierz transformations (B9) and (B10), one establishes the consequences of the isospin symmetry relation
(57):

T
ð�NÞ1=2
3;4 ð1; 2; 3Þ þ T

ð�NÞ1=2
3;4 ð1; 3; 2Þ þ T

ð�NÞ1=2
3;4 ð2; 3; 1Þ ¼ 0 (62)

and

2T
ð�NÞ1=2
1;2 ð1;2;3Þ ¼�

ð�NÞ1=2
1;2 ð1;3;2Þþ�

ð�NÞ1=2
1;2 ð2;3;1Þþ2g1;2ð�;�2ÞTð�NÞ1=2

3 ð1;2;3Þþ2h1;2ð�;�2ÞTð�NÞ1=2
4 ð1;2;3Þ;

2V
ð�NÞ1=2
1;2 ð1;2;3Þ ¼�

ð�NÞ1=2
1;2 ð1;2;3Þþ�

ð�NÞ1=2
1;2 ð2;1;3Þ; 2A

ð�NÞ1=2
1;2 ð1;2;3Þ ¼��

ð�NÞ1=2
1;2 ð1;2;3Þþ�

ð�NÞ1=2
1;2 ð2;1;3Þ;

(63)

where g1;2ð�;�2Þ, h1;2ð�;�2Þ are defined in (B10). We conclude that the parametrization of the isospin- 12�N TDAs/GDAs
require 4 independent functions: �

ð�NÞ1=2
1;2 and T

ð�NÞ1=2
3;4 . The latter should satisfy the symmetry relations (62).

B. Isospin- 32 case

The consequences of the isotopic and permutation symmetries for the isospin- 32 invariant amplitude Mð�NÞ3=2 are

analogous to that for �ð1232Þ DA (51). It turns out to be completely symmetric under simultaneous permutations of
the arguments and the Dirac indices:

M
ð�NÞ3=2
��� ð1; 2; 3Þ ¼ M

ð�NÞ3=2
��� ð1; 3; 2Þ ¼ M

ð�NÞ3=2
��� ð2; 1; 3Þ ¼ M

ð�NÞ3=2
��� ð2; 3; 1Þ ¼ M

ð�NÞ3=2
��� ð3; 2; 1Þ ¼ M

ð�NÞ3=2
��� ð3; 1; 2Þ: (64)

Again, in accordance with (10), we introduce the following parametrization for the leading twist isospin- 32 �N TDAs:

M
ð�NÞ3=2
��� ð1; 2; 3Þ ¼ i

fN
f�M

�
V
ð�NÞ3=2
1 ð1; 2; 3Þðv�N

1 Þ��;� þ A
ð�NÞ3=2
1 ð1; 2; 3Þða�N1 Þ��;� þ T

ð�NÞ3=2
1 ð1; 2; 3Þðt�N1 Þ��;�

þ V
ð�NÞ3=2
2 ð1; 2; 3Þðv�N

2 Þ��;� þ A
ð�NÞ3=2
2 ð1; 2; 3Þða�N2 Þ��;� þ T

ð�NÞ3=2
2 ð1; 2; 3Þðt�N2 Þ��;�

þ 1

M
T
ð�NÞ3=2
3 ð1; 2; 3Þðt�N3 Þ��;� þ 1

M
T
ð�NÞ3=2
4 ð1; 2; 3Þðt�N4 Þ��;�

�
: (65)

Analogously to the isospin- 12 case, employing the Fierz identities of Appendix B, one may check that the permutation
symmetry relations (64) result in the following symmetry properties of the isospin- 32 �N TDAs:
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V
ð�NÞ3=2
1;2 ð1;2;3Þ ¼ V

ð�NÞ3=2
1;2 ð2;1;3Þ; T

ð�NÞ3=2
1;2 ð1;2;3Þ ¼ T

ð�NÞ3=2
1;2 ð2;1;3Þ; A

ð�NÞ3=2
1;2 ð1;2;3Þ ¼�A

ð�NÞ3=2
1;2 ð2;1;3Þ; (66)

while T
ð�NÞ3=2
3;4 is totally symmetric.

Introducing two independent isospin- 32 �N TDAs:

�
ð�NÞ3=2
1;2 ð1; 2; 3Þ � �V

ð�NÞ3=2
1;2 ð1; 2; 3Þ þ A

ð�NÞ3=2
1;2 ð1; 2; 3Þ; (67)

and employing further consequences of permutation and isotopic symmetry relations (64) one may express isospin- 32 TDAs
as

2T
ð�NÞ3=2
1;2 ð1;2;3Þ ¼�

ð�NÞ3=2
1;2 ð1;3;2Þþ 2g1;2ð�;�2ÞTð�NÞ3=2

3 ð1;2;3Þþ 2h1;2ð�;�2ÞTð�NÞ3=2
4 ð1;2;3Þ;

2V
ð�NÞ3=2
1;2 ð1;2;3Þ ¼��

ð�NÞ3=2
1;2 ð1;2;3Þ��

ð�NÞ3=2
1;2 ð2;1;3Þ; 2A

ð�NÞ3=2
1;2 ð1;2;3Þ ¼�

ð�NÞ3=2
1;2 ð1;2;3Þ��

ð�NÞ3=2
1;2 ð2;1;3Þ;

(68)

where g1;2ð�;�2Þ, h1;2ð�;�2Þ are defined in (B11). The
consistency condition for (68) may be established from
(64):

�
ð�NÞ3=2
1;2 ð1; 2; 3Þ ¼ �

ð�NÞ3=2
1;2 ð3; 2; 1Þ: (69)

Thus, we conclude that the parametrization of the
isospin- 32 �N TDAs/GDAs involves 4 independent func-

tions: T
ð�NÞ3=2
3;4 (completely symmetric under permutation of

their variables) and �
ð�NÞ3=2
1;2 [symmetric under permutation

1 $ 3 cf. Eq. (69)].

V. CHIRAL CONSTRAINTS FOR �N TDAS

In this section we rederive for �N GDAs the soft pion
theorem [20] proposed in [16] to be valid at a scale Q2 

�3

QCD=m. Our technique of handling isospin developed in

Sec. III and IV permits to distinguish between the isospin- 12
and isospin- 32 �N GDAs. This allows to fully take into

account the consequences of the isotopic and permutation
symmetries for �N GDAs. Using crossing between �N
GDAs and �N TDAs discussed in Sec. I we simulta-
neously argue that the soft pion theorem for �N GDAs
constrains �N TDAs in the chiral limit (m ! 0). The
problem of validity of analytic continuation in �2 existing
for m � 0 has the same status as that for the case of pion
GPDs vs 2� GDAs [18] (see also discussion in [37]).
Assuming smallness of nonanalytic corrections to the
relevant matrix element in the narrow domain in ð�2; �Þ

plane defined by the inequalities

ðM�mÞ2<�2< ðMþmÞ2; M�m

Mþm
<�<

Mþm

M�m
(70)

(see left panel of Fig. 1) one may argue that the soft pion
limit provides us with the reference point for realistic
modeling of �N TDAs.
Let us consider the matrix element of the three-quark

operator Ô���
��� ðz1; z2; z3Þ in the regime of �N GDA:

h0jÔ���
��� ðz1; z2; z3Þj�að�p�ÞN
ðp1Þi: (71)

According to the partial conservation of axial current
hypothesis (see e.g. [38]), a soft pion theorem [20] is valid
for the matrix element (71):

h0jÔ���
��� ðz1; z2; z3Þj�aN
i
¼ � i

f�
h0j½Q̂a

5 ; Ô
���
��� ðz1; z2; z3Þ�jN
i: (72)

The commutator of the chiral charge operator Q̂a
5 with the

quark field operators is given by

½Q̂a
5 ;�

�
�� ¼ �1

2ðaÞ���5
���

�
� ; (73)

where a are the Pauli matrices.
Computing the commutator of the chiral charge with the

operator Ô in (72) with the help of the chain rule
½A; BCD� ¼ ½A; B�CDþ B½A;C�Dþ BC½A;D� we get:

4h0jÔ���
��� ðz1; z2; z3Þj�aN
i ¼ 4

i

2f�

�
ðaÞ���

5
��h0jÔ���

��� ðz1; z2; z3ÞjN
i þ ðaÞ���
5
��h0jÔ���

���ðz1; z2; z3ÞjN
i

þ ðaÞ���5
��h0jÔ���

��� ðz1; z2; z3ÞjN
i
�

¼ i

2f�

�
ðaÞ��"

����

 �5

��M
Nf13g
��� ð1; 2; 3Þ þ ðaÞ��"

����

 �5

��M
Nf12g
��� ð1; 2; 3Þ

þ ðaÞ��"
����


 �5
��M

Nf13g
��� ð1; 2; 3Þ þ ðaÞ��"

����

 �

5
��M

Nf12g
��� ð1; 2; 3Þ

þ ðaÞ��"����

 �

5
��M

Nf13g
��� ð1; 2; 3Þ þ ðaÞ��"����


 �5
��M

Nf12g
��� ð1; 2; 3Þ

�
: (74)

In the last equality we used the general isospin parametrization (36) for the nucleon DA.
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Our present goal is to single out the contributions coming from (74) into the invariant isospin amplitudes

M
ð�NÞ3=2
��� ð1; 2; 3Þ, Mð�NÞ1=2f12g

��� ð1; 2; 3Þ and M
ð�NÞ1=2f13g
��� ð1; 2; 3Þ in the isospin decomposition for �N TDA/GDA (54).

Using the parametrization (37) for MNf12g
��� ð1; 2; 3Þ, the isospin decomposition (29) and symmetry relations (34) for the

nucleon DA together with the Fierz identities from Appendix B one may check that

M
ð�NÞ3=2
��� ðz1; z2; z3Þ ¼ i

2f�
f�5

��M
Nf12g
��� ðz1; z2; z3Þ � �5

��M
Nf12g
��� ðz1; z2; z3Þ þ �5

��M
Nf13g
��� ðz1; z2; z3Þ � �5

��M
Nf13g
��� ðz1; z2; z3Þg

¼ ifN
f�

�
�ð�5

��v
N
��;�Þ 12 ½�Nð1; 2; 3Þ þ�Nð2; 1; 3Þ þ�Nð3; 2; 1Þ þ�Nð3; 1; 2Þ�

� ð�5
��a

N
��;�Þ 12 ½��Nð1; 2; 3Þ þ�Nð2; 1; 3Þ ��Nð3; 2; 1Þ þ�Nð3; 1; 2Þ�

� ð�5
��t

N
��;�Þ 12 ½�Nð1; 3; 2Þ þ�Nð2; 3; 1Þ�

�
; (75)

where�N is the leading twist nucleon DA (41). The invariant amplitude (75) satisfies the isospin- 32 symmetry relations (64).
This provides an additional cross-check.

M
ð�NÞ1=2f12g
��� ðz1; z2; z3Þ ¼ i

2f�

1

3
f�5

��M
Nf12g
��� ðz1; z2; z3Þ þ 3�5

��M
Nf12g
��� ðz1; z2; z3Þ � �5

��M
Nf12g
��� ðz1; z2; z3Þ

� 2�5
��M

Nf13g
��� ðz1; z2; z3Þ þ 2�5

��M
Nf13g
��� ðz1; z2; z3Þg

¼ i

f�

�
�ð�5

��v
N
��;�Þ 112 ½��Nð1; 2; 3Þ ��Nð2; 1; 3Þ � 4ð�Nð3; 1; 2Þ þ�Nð3; 2; 1ÞÞ�

� ð�5
��a

N
��;�Þ 112 ½�Nð1; 2; 3Þ ��Nð2; 1; 3Þ � 4ð�Nð3; 1; 2Þ ��Nð3; 2; 1ÞÞ�

� ð�5
��t

N
��;�Þ 512 ½�Nð1; 3; 2Þ þ�Nð2; 3; 1Þ�

�
: (76)

Analogously,

M
ð�NÞ1=2f13g
��� ðz1; z2; z3Þ ¼ i

2f�

1

3
f�5

��M
Nf13g
��� ðz1; z2; z3Þ þ 3�5

��M
Nf13g
��� ðz1; z2; z3Þ � �5

��M
Nf13g
��� ðz1; z2; z3Þ

� 2�5
��M

Nf12g
��� ðz1; z2; z3Þ þ 2�5

��M
Nf12g
��� ðz1; z2; z3Þg: (77)

Again one may check that Mð�NÞ1=2f12g Mð�NÞ1=2f13g (76) and (77) computed from the soft pion theorem satisfy the isospin- 12
and permutation symmetry relations (57) and (58).

In particular for p�0 GDAwe get

4h0ju�ð1Þu�ð2Þd�ð3Þjp�0i ¼ M
ð�NÞ1=2f12g
��� ð1; 2; 3Þ þ 2

3
M

ð�NÞ3=2
��� ð1; 2; 3Þ ¼ ifN

f�

�
�ð�5

��v
N
��;�Þ 12V

pð1; 2; 3Þ

� ð�5
��a

N
��;�Þ 12A

pð1; 2; 3Þ � ð�5
��t

N
��;�Þ 32T

pð1; 2; 3Þ
�
;

4h0ju�ð1Þu�ð2Þd�ð3Þjn�þi ¼ �4h0jd�ð1Þd�ð2Þu�ð3Þjp��i ¼ ffiffiffi
2

p
M

ð�NÞ1=2f12g
��� ð1; 2; 3Þ �

ffiffiffi
2

p
3

M
ð�NÞ3=2
��� ð1; 2; 3Þ

¼ ifN
f�

�
�ð�5

��v
N
��;�Þ 1

2
ffiffiffi
2

p ½��Nð1; 2; 3Þ ��Nð2; 1; 3Þ � 2ð�Nð3; 1; 2Þ þ�Nð3; 2; 1ÞÞ�

� ð�5
��a

N
��;�Þ 1

2
ffiffiffi
2

p ½�Nð1; 2; 3Þ ��Nð2; 1; 3Þ � 2ð�Nð3; 1; 2Þ ��Nð3; 2; 1ÞÞ�

� ð�5
��t

N
��;�Þ 1

2
ffiffiffi
2

p ½�Nð1; 3; 2Þ þ�Nð2; 3; 1Þ�
�
: (78)

So we recover the result of [16].
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Now we can establish the consequences of the soft
pion theorem (72) for �N TDAs. Applying crossing
to the matrix element (71) is trivial up to the problem of
appropriate analytic continuation in �2. The contributions

to �N TDAs occurring in the parametrization (10)
can be established with the help of the relations
between the Dirac structures (12) and those of (75) and
(76):

�5
��v

N
��;� ¼ 1

M

�
ðv1

�NÞ��;� � 1

2
ðv2

�NÞ��;�
�
; �5

��a
N
��;� ¼ 1

M

�
ða1�NÞ��;� � 1

2
ða2�NÞ��;�

�
;

�5
��t

N
��;� ¼ � 1

M

�
ðt1�NÞ��;� � 1

2
ðt2�NÞ��;�

�
: (79)

One may check that in the chiral limit this results in the following contributions to the independent isospin- 12 and

isospin- 32 �N TDAs (61) and (67) regular at �2 ¼ M2:

�
ð�NÞ1=2
1 ðx1; x2; x3; � ¼ 1;�2 ¼ M2Þj soft

pion
¼ 1

24
�N

�
x1
2
;
x2
2
;
x3
2

�
þ 1

6
�N

�
x3
2
;
x2
2
;
x1
2

�
;

�
ð�NÞ1=2
2 ðx1; x2; x3; � ¼ 1;�2 ¼ M2Þj soft

pion
¼ � 1

2
�

ð�NÞ1=2
1 ðx1; x2; x3; � ¼ 1;�2 ¼ M2Þj soft

pion
;

�
ð�NÞ3=2
1 ðx1; x2; x3; � ¼ 1;�2 ¼ M2Þj soft

pion
¼ 1

4

�
�N

�
x1
2
;
x2
2
;
x3
2

�
þ�N

�
x3
2
;
x2
2
;
x1
2

��
;

�
ð�NÞ3=2
2 ðx1; x2; x3; � ¼ 1;�2 ¼ M2Þj soft

pion
¼ � 1

2
�

ð�NÞ3=2
1 ðx1; x2; x3; � ¼ 1;�2 ¼ M2Þj soft

pion
:

(80)

The singular at �2 ¼ M2 contribution from the u-channel
nucleon exchange pole is considered in the next Section.

VI. u-CHANNEL N AND � EXCHANGE
CONTRIBUTION INTO �N TDAS

In this section, by employing the results of Secs. III and
IV, we construct a simple resonance exchange model for
the isospin- 12 and isospin- 32 �N TDAs. It represents a

consistent model for �N TDAs in the Efremov-
Radyushkin-Brodsky-Lepage (ERBL)-like region and sat-
isfies the appropriate symmetry relations established in
Sec. IV as well as the polynomiality conditions of Sec. II.
It turns out, in particular, that the nucleon exchange results
in a pure D-term contribution supplementary to the spec-
tral representation of [21]. Let us also mention that the
nucleon pole contribution may become dominant in the
near to threshold kinematics of the reaction (2), where
�2 �M2 is small enough.

A. Nucleon exchange contribution

The effective Hamiltonian for � �NN interaction can be
written as (see e.g. [39]):

H effð�NNÞ ¼ ig�NN
�N�ðaÞ���5N

��a: (81)

After the reduction the matrix element in question reads:

h�aðp�ÞjÔ���
��� ð	1n; 	2n; 	3nÞjN
ðp1; s1Þi

¼ X
sp

h0jÔ���
��� ð	1n; 	2n; 	3nÞjN�ð��; spÞi

� ðaÞ�

ig�NN

�U%ð��; spÞ
�2 �M2

ð�5Uðp1; s1ÞÞ%: (82)

�N TDAs are computed form the matrix element (82) with
the help of the Fourier transform (11).
Let us first consider isospin structure of (82). Employing

the isospin decomposition of the nucleon DA (36) one may
check that (82) contributes only into the invariant ampli-

tudes M
ð�NÞ1=2f12g
��� and M

ð�NÞ1=2f13g
��� .

The inverse Fourier transform allowing to express the
matrix element in the second line of (82) through the

nucleon DA MNf12g
��� ðy1; y2; y3Þ reads:

F�1ð	kð�� � nÞÞð. . .Þ
¼

Z
d3y�ð1� y1 � y2 � y3Þeiðp�nÞ2�

P
3
k¼1

yk	kð. . .Þ:
(83)

Calculation of the Fourier transform (11) of (82) gives:

4F ðx1; x2; x3Þ 14 ½F
�1ð	kð�� � nÞÞ½MNf12g

��� ðy1; y2; y3Þ��

¼ ðp � nÞ3
Z 1

0
dy1dy2dy3�ð1� y1 � y2 � y3Þ

�Y3
k¼1

1

2�

Z
d	ke

i	kðxk�2�ykÞðp�nÞ
�
MNf12g

��� ðy1; y2; y3Þ

¼ 1

ð2�Þ2 �ðx1 þ x2 þ x3 � 2�Þ
�Y3
k¼1

�ð0 � xk � 2�Þ
�
MNf12g

���

�
x1
2�

;
x2
2�

;
x3
2�

�
: (84)
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Thus, we obtain the following result for the contribution of the matrix element (82) into �N TDA:

M
ð�NÞ1=2f12g
��� ðx1;x2;x3Þ¼ 1

ð2�Þ2�ðx1þx2þx3�2�Þ
�Y3
k¼1

�ð0�xk�2�Þ
�
fN

X
sp

�
Vp

�
x1
2�

;
x2
2�

;
x3
2�

�
ð��̂CÞ��ð�5Uð��;spÞÞ�

þAp

�
x1
2�

;
x2
2�

;
x3
2�

�
ð��̂�5CÞ��Uð��;spÞ�þTp

�
x1
2�

;
x2
2�

;
x3
2�

�
ð���CÞ��ð���5Uð��;spÞÞ�

�

� ig�NN
�U%ð��;spÞ

�2�M2
ð�5Uðp1;s1ÞÞ%: (85)

Now it is straightforward to trace the contribution of the nucleon exchange matrix element into the particular invariant
functions occurring in the parametrization of �N TDA. For this issue, employing formulas given in the Appendix C, one
has to express the Dirac structures in (85) in terms of standard ones. For example, let us consider the first term in (85). To
the leading twist accuracyX

sp

ð��̂CÞ��ð�5Uð��; spÞÞ�ð �Uð��; spÞÞ%ð�5Uðp1; s1ÞÞ% ¼ 2�ðP̂CÞ��ðð�̂Uðp1; s1ÞÞ� þMðUðp1; s1ÞÞ�

¼ 2�ðP̂CÞ��ððP̂Uðp1; s1ÞÞ� þ �ðP̂CÞ��ðð�̂Uðp1; s1ÞÞ�: (86)

Finally, one establishes the expressions for the contribution of the nucleon exchange into the isospin- 12 �N TDAs

fV1; A1; T1gð�NÞ1=2ðx1; x2; x3Þ ¼ �ERBLðx1; x2; x3Þðg�NNÞ Mf�
�2 �M2

2�
1

ð2�Þ2 fV
p; Ap; Tpg

�
x1
2�

;
x2
2�

;
x3
2�

�
;

fV2; A2; T2gð�NÞ1=2ðx1; x2; x3Þ ¼ �ERBLðx1; x2; x3Þðg�NNÞ Mf�
�2 �M2

�
1

ð2�Þ2 fV
p; Ap; Tpg

�
x1
2�

;
x2
2�

;
x3
2�

�
;

(87)

where we introduced the notation

�ERBLðx1; x2; x3Þ �
Y3
k¼1

�ð0 � xk � 2�Þ: (88)

Notice that (87) is a pure D- term contribution. It is non-
zero only in the ERBL-like region and its ðn1; n2; n3Þ-th
(n1 þ n2 þ n3 ¼ N) Mellin moments give rise to mono-
mials of � of the maximal allowed power N þ 1.

B. �ð1232Þ exchange contribution
The effective Hamiltonian for �N� interaction reads

(see e.g. [40]):

H effð�N�Þ ¼ g�N�
�N�P

3=2
b
�
a
R



�a@

��b þ h:c:; (89)

where Pð3=2Þ denotes the isospin- 32 projecting operator

(A26). g�N� is a dimensional coupling constant. As usual,
the � resonance is described with the help of the Rarita-
Schwinger spin-tensor U�

� which satisfies the auxiliary
conditions (44).

After the reduction the matrix element in question reads:

h�aðp�ÞjÔ���
��� ð	1n; 	2n; 	3nÞjN
ðp1; s1Þi

¼ X
s�

h0jÔ���
��� ð	1n; 	2n; 	3nÞj�b�ð��; s�ÞiP3=2

b
�
a


� g�N�
�U�
%ð��; s�Þ

�2 �M2
ðiP�ÞðUðp1; s1ÞÞ%: (90)

For the matrix element involving � we employ the
parametrization (45) with M�

��� given by (48). As a

consequence of the identity (47) � exchange populates
only the isospin- 32 �N TDAs.

To compute the on-shell numerator of graph (90) we
employ the method of contracted projectors [41] (see also
Appendix I of Chapter I of [38]). We introduce the corre-
sponding on-shell spin sum:

��
���ð��Þjð��Þ2¼M2

�
� X3=2

s�¼�3=2

U��ð��; s�Þ �U�
� ð��; s�Þ;

(91)

which carries two Dirac indices as well as two Lorentz
indices. The contracted projector is defined as

P ð3=2Þ
�� ð	; P;��Þ � 	��

�
���ð��ÞP�; (92)

where P� ¼ 1
2 ðp1 þ p�Þ� and 	 in principle may be an

arbitrary vector. In order to keep with the u-channel baryon
resonance exchange picture of the ��N ! N� reaction (2),
	 should be chosen as:

	� ¼ 1

2
ðqþ p2Þ�: (93)

We also introduce the components of P� and 	� trans-

verse with respect to �� denoted as 6P� and 	�
2:

6P� �P��ðP ��Þ
�2

��; 	� �	��ð	 ��Þ
�2

��; (94)

2Not to be confused with the contraction with � matrices. We
rather adopt Dirac’s ‘‘hat’’ notation for this issue.
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Then the explicit expression for the on-shell contracted projector reads [38]:

P ð3=2Þ
�� ð	; P;��Þjð��Þ2¼M2

�
¼ � 1

3
j6Pjj	j

�
P0
2

�ð	 � 6PÞ
j	jj6Pj

�
� 	̂ ^6P

j	jj6PjP
0
1

�ð	 � 6PÞ
j	jj6Pj

��
ð��̂þM�Þ

¼ � 1

3
j	jj6Pj

�
3
ð	 � 6PÞ
j	jj6Pj �

1

j	jj6Pj	̂
^6P
�
ð��̂þM�Þ; (95)

where P0
kð. . .Þ stands for the derivative of the k-th Legendre polynomial. Note that the argument of the polynomials is the

cosine of the u-channel center-of-mass frame scattering angle at ð��Þ2 ¼ M2
�:

cos�u ¼ ð	 � 6PÞ
j	jj6Pj ¼

1� �M2�m2

�2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðM2�m2Þ2

ð�2Þ2 � 2ðM2þm2Þ
�2

q þO

�
1

Q2

�
; (96)

For our purpose we also need the derivative of the contracted projector:

@

@	�
P ð3=2Þð	; P;��Þ ¼

�
�6P� þ 1

3

�
�� � ��

�2
�̂

�
^6P
�
ð��̂þM�Þ: (97)

The calculation of contributions of graph (90) into the appropriate invariant form factors is then straightforward and
analogous to that for the case of nucleon exchange. For example to trace the contributions into V

ð�NÞ3=2
1;2 one has to

decompose

ð��CÞ��
�X
s�

U�ð��; s�Þ �U�ð��; s�ÞP�Uðp1; s1Þ
�
�
¼ ð��CÞ��

�
@

@	� P ð3=2Þð	; P;��ÞUðp1; s1Þ
�
�

(98)

over the basis of the Dirac structures of (65).
After some algebra one may work out the following contributions of (90) into the invariant form factors (65) to the

leading twist-3:

fVð�NÞ3=2
1;2 ;A

ð�NÞ3=2
1;2 gðx1;x2;x3;�;�2Þj�ð1232Þ ¼ ��ERBLðx1;x2;x3Þ 1

ð2�Þ2 fV
�;A�g

�
x1
2�

;
x2
2�

;
x3
2�

�

� g�N�	
1=2
� Mf�ffiffiffi

2
p ð�2�M2

�ÞfN
R1;2ð�;M�Þ;

T
ð�NÞ3=2
1;2 ðx1;x2;x3;�;�2Þj�ð1232Þ ¼ ��ERBLðx1;x2;x3Þ

�
1

ð2�Þ2T
�

�
x1
2�

;
x2
2�

;
x3
2�

�
g�N�	

1=2
� Mf�ffiffiffi

2
p ð�2�M2

�ÞfN
R1;2ð�;M�Þ

þ 1

ð2�Þ2�
�

�
x1
2�

;
x2
2�

;
x3
2�

�
g�N�f

3=2
� M2f�ffiffiffi

2
p ð�2�M2

�ÞfN
~R1;2ð�;M�Þ

�
;

T
ð�NÞ3=2
3;4 ðx1;x2;x3;�;�2Þj�ð1232Þ ¼ ��ERBLðx1;x2;x3Þ 1

ð2�Þ2�
�

�
x1
2�

;
x2
2�

;
x3
2�

�
g�N�f

3=2
� M2f�ffiffiffi

2
p ð�2�M2

�ÞfN
R3;4ðM�Þ: (99)

Here 	1=2
� is a dimensional constant with the dimension ½GeV�3 and f3=2� is a dimensional constant with the dimension

½GeV�2. In Ref. [36] the following numerical values are quoted:

j	1=2
� j �

ffiffiffi
3

2

s
M�jf1=2� j ¼ ð1:8� 0:3Þ � 10�2 GeV3; jf3=2� j ¼ 1:4� 10�2 GeV2: (100)

The functions R1;2, ~R1;2 are determined by residue at the pole �2 ¼ M2
�. They read as

R1ð�;M�Þ ¼
ð�� 3ÞM2

� þ 2MM��þ 4ðM2 �m2Þ�
3MM�

;

R2ð�;M�Þ ¼
�4�M3 þ ð4�m2 þ 6M2

�ÞM�M3
�ð�� 3Þ þ 4m2M��

6MM2
�

; R3ðM�Þ ¼ �M�

M
; R4ðM�Þ ¼ 1þM�

2M
;

~R1ð�;M�Þ ¼ ðMðMþM�Þ �m2Þ�
M2

�M2
�

ð1� �Þ
2M2

; ~R2ð�;M�Þ ¼ MM� þ ðm2 þM2Þ�
2M2

þM2
�

ð1� �Þ
4M2

: (101)
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The crucial point is that the � exchange contribution
into �N TDAs should satisfy symmetry relations for the
isospin- 32 TDAs established in Sec. IV. Employing the set

of the Fierz identities, one may check that the part of (99)
involving contributions of V�, A�, T� decouples and
satisfies the symmetry relations (64) as a consequence of
symmetry relations (52) for � DAs.

The situation with the contribution involving ��

is more complicated. This turns out to be due to the

fact that the Fierz identities (B10) for the tensor
structures t�N3 , t�N4 involve coefficient functions with

explicit dependence on � and �2. In order to satisfy
symmetry relation (64) we have to add a polynomial
background to �N TDAs T1;2. Symmetry relation (64)

fixes the background uniquely. This provides the following
final result for �ð1232Þ exchange contributions into

T
ð�NÞ3=2
1;2 :

T
ð�NÞ3=2
1 ðx1; x2; x3; �;�2Þj�ð1232Þ ¼ ��ERBLðx1; x2; x3Þ

�
1

ð2�Þ2 T
�

�
x1
2�

;
x2
2�

;
x3
2�

�
g�N�	

1=2
� Mf�ffiffiffi

2
p

fNð�2 �M2
�Þ

R1ð�;M�Þ

þ 1

ð2�Þ2 �
�

�
x1
2�

;
x2
2�

;
x3
2�

�
g�N�f

3=2
� M2f�ffiffiffi
2

p
fN

� ~R1ð�;M�Þ
�2 �M2

�

� 1� �

2M2

��
; (102)

T
ð�NÞ3=2
2 ðx1; x2; x3; �;�2Þj�ð1232Þ ¼ ��ERBLðx1; x2; x3Þ

�
1

ð2�Þ2 T
�

�
x1
2�

;
x2
2�

;
x3
2�

�
g�N�	

1=2
� Mf�ffiffiffi

2
p

fNð�2 �M2
�Þ

R2ð�;M�Þ

þ 1

ð2�Þ2 �
�

�
x1
2�

;
x2
2�

;
x3
2�

�
g�N�f

3=2
� M2f�ffiffiffi
2

p
fN

� ~R2ð�;M�Þ
�2 �M2

�

þ 1� �

4M2

��
: (103)

VII. CONCLUSIONS

We considered general symmetry properties of �N tran-
sition distribution amplitudes. We showed that the Lorentz
invariance results in the polynomiality property of the
Mellin moments of TDAs in the longitudinal momentum
fractions. Analogously to the GPD case, we revealed the
presence of a D-term contribution for the �N TDAs V1;2,

A1;2 and T1;2 generating the highest power monomials of

the Mellin moments.
The detailed account of the isospin and permutation

symmetries allowed us to provide a unified description of
all isotopic channels in terms of eight independent �N
TDAs. The general constraints derived here should be
satisfied by any realistic model of TDAs.

The crossing relation between�N TDAs and GDAs lead
us to establish a soft pion theorem for the isospin- 12 and

isospin- 32 �N TDAs. This yields normalization conditions

for �N TDAs.
We also presented a simple resonance exchange model

for �N TDAs considering nucleon and�ð1232Þ exchanges
in the isospin- 12 and isospin- 32 channels, respectively.

Nucleon exchange may be considered as a pure D-term
contribution complementary to the spectral representation
for TDAs in terms of quadruple distributions.

This work opens the way to various consistent models of
baryon to meson TDAs to be confronted with experimental
data.
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APPENDIX A: ISOTOPIC INVARIANCE AND
ISOSPIN CLASSIFICATION OF �N STATES

Generators of the SUð2Þ isospin group satisfy the famil-
iar commutation relation:

½Ia; Ib� ¼ i"abcIc: (A1)

When constructing spinor representations of SUð2Þ one has
to distinguish between the covariant and thev contravariant
representations. We choose to transform �N� field according
to the covariant representation and to transform N� field
according to the contravariant representation

½Ia; �N��¼ 1

2
ðaÞ��

�N�; ½Ia;N��¼�1

2
ðaÞ��N

�; (A2)

where a are the Pauli matrices.
We adopt the following standard convention upon the

nucleon field [42]:

N�ðxÞ ¼
Z d3k

ð2�Þ3
M

k0

X
s¼1;2

feikxdy�ðk; sÞVðk; sÞ

þ e�ikxb�ðk; sÞUðk; sÞg;
�N�ðxÞ ¼

Z d3k

ð2�Þ3
M

k0

X
s¼1;2

feikxby�ðk; sÞ �Uðk; sÞ

þ e�ikxd�ðk; sÞ �Vðk; sÞg:

(A3)
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Here spinors Uðk; sÞ and �Uðk; sÞ � Uyðk; sÞ�0 describe
a nucleon, respectively, in the initial and final states,
while spinors �Vðk; sÞ � Vyðk; sÞ�0 and Vðk; sÞ describe
an antinucleon in the initial and final states.

The creation and annihilation operators in (A3) satisfy
the usual anticommutation relations for fermions [42]:

fb�ðp;sÞ;by�ðp0; s0Þg ¼ ð2�Þ3p0

M
�3ðp�p0Þ�ss0�

�
�;

fd�ðp;sÞ;dy�ðp0; s0Þg ¼ ð2�Þ3p0

M
�3ðp�p0Þ�ss0�

�
�:

(A4)

The ‘‘in’’ nucleon state jN�i is defined according to:

jN1i � jNpðp; sÞi ¼ by1 ðp; sÞj0i;
jN2i � jNnðp; sÞi ¼ by2 ðp; sÞj0i:

(A5)

Analogously, the ‘‘in’’ antiparticle state j �N�i is defined as:
j �N1i � jN �pðp; sÞi ¼ dy1ðp; sÞj0i;
j �N2i � jN �nðp; sÞi ¼ dy2ðp; sÞj0i: (A6)

In order to check the consistency of our conventions
(A2) and (A3) we should explicitly construct the isospin
and hypercharge operators and make sure that the nucleon
and antinucleon states (A5) and (A6) have the proper
quantum numbers.

With the help of Noether’s theorem from the free nu-
cleon Lagrangian

L ¼ i

2
½ �N��

�ð@�N�Þ � ð@� �N�Þ��N�� �m �N�N
� (A7)

employing (A2) we construct the explicit expression for
the nucleon isospin operator:

IðNÞ
a ¼

Z
d3x:Ny

�ðxÞ
ðaÞ��
2

N�ðxÞ:

¼
Z d3k

ð2�Þ3
M

k0

X
s

�
by�ðk; sÞ

ðaÞ��
2

b�ðk; sÞ � dy�ðk; sÞ

� ðaÞ��
2

d�ðk; sÞ
�
:

(A8)

Thus, the isospin operator acts on the incoming nucleon
state according to

IðNÞ
a jN�i¼1

2
ðaÞ��jN�i; IðNÞ

a j �N�i¼�1

2
ðaÞ��j �N�i: (A9)

We also introduce the hypercharge operator Y according
to

½Y; �N�� ¼ �N�; ½Y;N�� ¼ �N�: (A10)

The explicit expression for the nucleon hypercharge op-
erator reads

YðNÞ ¼
Z d3k

2�3

M

k0

X
s

½by�ðk; sÞb�ðk; sÞ � dy�ðk; sÞd�ðk; sÞ�:

(A11)

It acts on the nucleon states according to

YðNÞ
a jN�i ¼ jN�i; YðNÞ

a j �N�i ¼ �j �N�i: (A12)

Now we construct the nucleon charge operator employ-
ing the Gell-Mann-Nishijima formula

QðNÞ ¼ IðNÞ
3 þ YðNÞ

2
(A13)

and perform the classification of states (A5) and (A6) to
check the consistency of our conventions.
The case of pion field is simpler since for the adjoint

representation of SUð2Þ there is no difference between
covariant and contravariant representation. Indeed, using

½Ia; �b� ¼ i"abc�c � ðtaÞcb�c (A14)

one may check that ðtaÞbc ¼ �ðtaÞcb.
We describe pions with the help of real pseudoscalar

field �a:

�aðxÞ ¼
Z d3k

ð2�Þ32k0
ðeikxaþa ðkÞ þ e�ikxa�a ðkÞÞ (A15)

and adopt the usual conventions of [42] for the commuta-
tion relations of the corresponding creation/annihilation
operators a�a . Pion states are defined as j�ai ¼ aþa j0i.
The expression for the pion isospin operator reads:

Ið�Þa ¼ i
Z

d3x:�bðxÞðtaÞbc@0�cðxÞ:

¼
Z d3k

ð2�Þ32k0
ðtaÞbcaþb ðkÞa�c ðkÞ: (A16)

Pion isospin operator acts on the pion state according to

Ið�Þa j�bi ¼ ðtaÞcbj�ci: (A17)

We may construct the usual charged combinations

j��i ¼
���������1 � i�2ffiffiffi

2
p

	
; j�0i ¼ j�3i: (A18)

Now we perform the isospin classification of pion-
nucleon states. Let us consider the action of the isospin
operator Ia on the pion-nucleon state

Iaj�bN
i ¼ fIðNÞ
a � 1ð�Þ þ Ið�Þa � 1ðNÞgj�bN
i

¼
�
i"abc�

�

 þ 1

2
ðaÞ�
�bc

�
j�cN�i: (A19)

The action of the operator of the total isospin I2 on the
pion-nucleon state then reads:

I2j�aN
i ¼
�
11

4
�ab�

�

 � i"bacðcÞ�


�
j�bN�i: (A20)
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This allows to classify the pion-nucleon states with
respects to total isospin I2 and its third projection I3 and
compute the Clebsch-Gordan coefficients:

jI; I3i ¼
X
a;


Ca
ðI; I3Þj�aN
i: (A21)

Let us emphasize that the calculation of the Clebsch-
Gordan coefficients is subject of adopting a particular
phase convention. There is much controversy on this point
in the literature (see discussion in [35]). To be consistent
we prefer to fix our own phase convention which turns out
to be different from the so-called Condon-Shortley and
Wigner phase convention adopted, e.g. in the tables in [43].

The calculation within our phase convention gives the
following result for the isospin- 32 �N states:��������32;32

	
¼
���������1N1þ i�2N1ffiffiffi

2
p

	
;

��������32;12
	
¼�

ffiffiffi
2

3

s
j�3N1iþ

ffiffiffi
1

3

s ���������1N2þ i�2N2ffiffiffi
2

p
	
;

��������32;�1

2

	
¼

ffiffiffi
2

3

s
j�3N2iþ

ffiffiffi
1

3

s ���������1N1� i�2N1ffiffiffi
2

p
	
;��������32;�3

2

	
¼
���������1N2� i�2N2ffiffiffi

2
p

	
:

(A22)

The expansion of the isospin- 12 �N states reads:

��������12 ;12
	
¼

ffiffiffi
1

3

s
j�3N1iþ

ffiffiffi
2

3

s ���������1N2þ i�2N2ffiffiffi
2

p
	
;

��������12 ;�1

2

	
¼�

ffiffiffi
1

3

s
j�3N2iþ

ffiffiffi
2

3

s ���������1N1� i�2N1ffiffiffi
2

p
	
:

(A23)

The inverse expansion reads

j�aN
i ¼
X
I;I3

Da
ðI; I3ÞjI; I3i;

where Da
ðI; I3Þ ¼ ðCa
ðI; I3ÞÞy:
(A24)

Note that the last equality in (A24) should be understood as
the equality of the corresponding numerical values (and not
as that of SUð2Þ spin-tensors).

We also compute the isospin projecting operators:

PI
b
�
a
 ¼

X
I3;I

0
3

Cb
�ðI; I3ÞDa
ðI; I03ÞjI; I03ihI; I3j: (A25)

The explicit expressions for the isospin projecting opera-
tors read [40]:

P3=2
b
�
a
 ¼ 2

3

�
�ba�

�

 � i

2
"bacðcÞ�


�
;

P1=2
b
�
a
 ¼ 1

3

�
�ba�

�

 þ i"bacðcÞ�


�
:

(A26)

APPENDIX B: FIERZ IDENTITIES

Employing the Fierz identity for � matrices (see e.g.
[44]) one may establish the following useful identity for
arbitrary Dirac structures 
, 
0:

ð
CÞ��ð
0UÞ�
¼ 1

4

�
C��ð

0UÞ� þ ð��CÞ��ð
��
0UÞ�

þ ð�5CÞ��ð
�5
0UÞ� � ð�5��CÞ��ð
�5��
0UÞ�
� 1

2
ð��CÞ��ð
��


0UÞ�
�
: (B1)

Here U stands for an arbitrary spin-tensor with one Dirac
index and C is the charge conjugation matrix.

1. Nucleon DA

To the leasing twist-3 the parametrization of the nucleon
DA involves the following Dirac structures

vN
��;� ¼ ðp̂CÞ��ð�5UÞ�; aN��;� ¼ ðp̂�5CÞ��ðUÞ�;

tN��;� ¼ ðp�CÞ��ð���5UÞ�: (B2)

The Dirac structures (B2) satisfy symmetry relations:

vN
��;�¼vN

��;�; aN��;�¼�aN��;�; tN��;�¼ tN��;�: (B3)

With the help of (B1) one may establish the following
set of the Fierz identities valid to the leading twist-3
accuracy:

vN
��;� ¼ 1

2
ðvN �aN � tNÞ��;�;

aN��;� ¼ 1

2
ð�vN þaN � tNÞ��;�;

tN��;� ¼ ð�vN �aNÞ��;�:
(B4)

2. �ð1232Þ DA
Leading twist Dirac structures employed in the parame-

trization (48) of �ð1232Þ resonance DA read:

v�
��;� ¼ ð��CÞ��U�

� ;

a���;� ¼ ð���5CÞ��ð�5U�Þ�;
t���;� ¼ 1

2
ð��CÞ��ð��U�Þ�;

’�
��;� ¼ ð��CÞ��ðp�U� � 1

2
M��

�U�Þ�:

(B5)

The Dirac structures (B5) satisfy symmetry relations:

v�
��;� ¼ v�

��;�; a���;� ¼ �a���;�;

t���;� ¼ t���;�; ’�
��;� ¼ ’�

��;�;
(B6)

The set of the corresponding Fierz identities valid to the
leading twist-3 accuracy reads:
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v�
��;� ¼

�
1

2
v� � 1

2
a� þ t�

�
��;�

;

a���;� ¼
�
� 1

2
v� þ 1

2
a� þ t�

�
��;�

;

t���;� ¼
�
1

2
v� þ 1

2
a�

�
��;�

; ’�
��;� ¼ ’�

��;�:

(B7)

3. �N TDA

Below we consider the properties of the Dirac structures
(12) occurring in the parametrization of the �N TDA.
First, one may check that the Dirac structures (12) satisfy
symmetry relations:

ðv�N
1;2 Þ��;� ¼ ðv�N

1;2 Þ��;�; ða�N1;2 Þ��;� ¼ �ða�N1;2 Þ��;�;
ðt�N1;2;3;4Þ��;� ¼ ðt�N1;2;3;4Þ��;�: (B8)

The set of the corresponding Fierz identities for the
structures s�N1;2 is similar to that for the case of the nucleon

DA (B4):

ðv�N
1;2 Þ��;� ¼ 1

2
ðv�N

1;2 Þ��;� �
1

2
ða�N1;2 Þ��;� �

1

2
ðt�N1;2 Þ��;�;

ða�N1;2 Þ��;� ¼ � 1

2
ðv�N

1;2 Þ��;� þ
1

2
ða�N1;2 Þ��;� �

1

2
ðt�N1;2 Þ��;�;

ðt�N1;2 Þ��;� ¼ �ðv�N
1;2 Þ��;� � ða�N1;2 Þ��;�: (B9)

The result for ðt�N3;4 Þ is a bit more involved:

ðt�N3 Þ��;� ¼ ðt�N3 Þ��;� þ g1ð�;�2Þðv�N
1 þ a�N1 þ t�N1 Þ��;�

þ g2ð�;�2Þðv�N
2 þ a�N2 þ t�N2 Þ��;�;

ðt�N4 Þ��;� ¼ ðt�N4 Þ��;� þ h1ð�;�2Þðv�N
1 þ a�N1 þ t�N1 Þ��;�

þ h2ð�;�2Þðv�N
2 þ a�N2 þ t�N2 Þ��;�; (B10)

where

g1ð�;�2Þ ¼ ��2ð1� �Þ � 2ðm2 þM2Þ�
4M2

;

g2ð�;�2Þ ¼ 2�m2 þ 2M2ð�� 2Þ þ�2ð1� �Þ
8M2

;

h1ð�;�2Þ ¼ ��2ð1� �Þ � 2ðm2 �M2Þ�
2M2

;

h2ð�;�2Þ ¼ 2ðm2 þM2Þ�þ �2ð1� �Þ
4M2

:

(B11)

APPENDIX C: CHOICE OF INDEPENDENT
DIRAC STRUCTURES

Keeping the first-order corrections in the masses and �2
T

one can establish the following Sudakov decomposition for
the momenta of reaction (2) [14]:

p1 ¼ ð1þ �Þpþ M2

1þ �
n;

q ’ �2�

�
1þ ð�2

T �M2Þ
Q2

�
pþ Q2

2�ð1þ ð�2
T�M2Þ
Q2 Þ

n;

p� ¼ ð1� �Þpþm2 � �2
T

1� �
nþ �T ;

� ¼ �2�pþ
�
m��2

T

1� �
� M2

1þ �

�
nþ�T:

(C1)

Because of the Dirac equation

p̂ 1Uðp1; s1Þ ¼ MUðp1; s1Þ (C2)

one has two following relations for the large (Uþ ¼ p̂ n̂ U)
and small (U� ¼ n̂ p̂ U) components of the nucleon Dirac
spinor:

p̂Uðp1; s1Þ ¼ M

1þ �
Uþðp1; s1Þ

�
p ¼ 1

1þ �
p1 � M2

ð1þ �Þ2 n
�
;

n̂Uðp1; s1Þ ¼ 1þ �

M
U�ðp1; s1Þ�

n ¼ 1þ �

M2
p1 � ð1þ �Þ2

M2
p

�
:

(C3)

As the consequence of the Dirac equation we establish
the following identities:

ðP̂Uðp1;s1ÞÞ�¼ M

1þ�
Uþðp1;s1Þ�þ1

2
ð�̂TUðp1;s1ÞÞ�

þð1þ�Þ
2M

�
M2

1þ�
þm2��2

T

1��

�
U�ðp1;s1Þ�;

(C4)

ð�̂Uðp1;s1ÞÞ�¼�2�
M

1þ�
Uþðp1;s1Þþð�̂TUðp1;s1ÞÞ�

�ð1þ�Þ
M

�
M2

1þ�
�m2��2

T

1��

�
U�ðp1;s1Þ�:

(C5)

The last term in (C4) and (C5) is of subleading twist while
the two first terms are of the leading twist. Thus, among the
four structures containing the leading twist contribution
which can be written as

ðP̂Uðp1; s1ÞÞ�; ð�̂Uðp1; s1ÞÞ�;
Uðp1; s1Þ�; and ð�̂TUðp1; s1ÞÞ�

(C6)

only two are independent. In order to keep the traditional
formulation of the polynomiality condition for �N TDAs
and avoid the appearing of singular 1

1þ� we choose

ðP̂Uðp1; s1ÞÞ� and ð�̂Uðp1; s1ÞÞ� to be the independent

Dirac structures.
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We establish the following useful relations:

2�ðP̂UÞ� þ ð�̂UÞ� ¼ ð1þ �Þð�̂TUÞ� þ
�
4�M2 þ ðm2 �M2 � �2Þð1þ �Þ

M

�
U�

� : (C7)

From (C4) we also establish the relation:

MUþðp1; s1Þ� ¼ ð1þ�ÞðP̂Uðp1; s1ÞÞ�� 1þ�

2
ð�̂TUðp1; s1ÞÞ��ð1þ�Þ2

2M

�
M2

1þ�
þm2��2

T

1��

�
U�ðp1; s1Þ�: (C8)

This results in

MUðp1; s1Þ� ¼ ðP̂Uðp1; s1ÞÞ� � 1

2
ð�̂Uðp1; s1ÞÞ� þ

�
Twist-4 terms

�
: (C9)

One may also check that

ðP̂ �̂Uðp1; s1ÞÞ� ¼ 2ðP2 �M2Þ
M

ðP̂Uðp1; s1ÞÞ� � P2

M
ð�̂Uðp1; s1ÞÞ� þ

�
Twist-4 terms

�
;

ð�̂ P̂ Uðp1; s1ÞÞ� ¼ 2ðP ��ÞðUðp1; s1ÞÞ� � ðP̂ �̂Uðp1; s1ÞÞ�
¼ �2

2M
ðP̂Uðp1; s1ÞÞ� þ

�
M� �2

4M

�
ð�̂Uðp1; s1ÞÞ� þ

�
Twist-4 terms

�
:

(C10)

The relation of new definition (10) of �N TDAs to that of [14,21] is given by

fV1;A1;T1g�Nj½14;12� ¼
�

1

1þ�
fV1;A1;T1g�N � 2�

1þ�
fV2;A2;T2g�N

���������Thiswork
;

fV2;A2g�Nj½14;21� ¼
�
fV2;A2g�N þ 1

2
fV1;A1g�N

���������Thiswork
;

T�N
3 j½14;21� ¼ T�N

2 jThis workþ 1

2
T�N
1 jThiswork

T�N
2 j½14;21� ¼

�
1

2
T�N
1 þT�N

2 þT�N
3 � 2�T�N

1

���������Thiswork
;

T�N
4 j½14;21� ¼

�
1þ�

2
T�N
1 þð1þ�ÞT�N

4

���������Thiswork
:

(C11)

These relations can be easily established employing Eqs. (C4) and (C5) and the identity ���̂T ¼ �
�
T þ ��T . Note the

appearance of 1
1þ� factors that are of pure kinematical origin and, in particular, lead to violation of polynomiality property

of TDAs.
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