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A quasiparticle model has been employed to describe the (2þ 1)-flavor lattice QCD equation of state

with physical quark masses. The interaction part of the equation of state has been mapped to the effective

fugacities of otherwise noninteracting quasigluons and quasiquarks. The mapping is found to be exact for

the equation of state. The model leads to nontrivial dispersion relations for quasipartons. The dispersion

relations, effective quasiparticle number densities, and trace anomaly have been investigated employing

the model. A virial expansion for the equation of state has further been obtained to investigate the role of

interactions in quark-gluon plasma. Finally, Debye screening in quark-gluon plasma has been studied

employing the model.
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I. INTRODUCTION

The main purpose of this article is to explore the quasi-
particle picture of quantum-chromodynamics (QCD) at
high temperature. In particular, we wish to describe recent
lattice data on (2þ 1)-flavor QCD equation of state (EOS)
by employing a quasiparticle model [1–3]. The EOS is an
important quantity to study the properties of hot QCD
matter which is commonly known as quark-gluon plasma
(QGP) in relativistic heavy ion collisions at BNL, RHIC
and CERN, LHC. This study is mandated by the strongly
interacting nature of QGP which has been inferred from the
recent experimental observations at RHIC [4–7]. This ob-
servation is consistent with the lattice simulations of the
EOS [8–14], which predict a strongly interacting behavior
even at temperatures which are a few Tc (QCD transition
temperature).

The most striking features of RHIC results [4] are the
large collective flow and strong jet quenching of high trans-
verse momentum jets shown by QGP. Similar conclusions
have been drawn from the very recent preliminary results
for Pb-Pb collisions at LHC at

ffiffiffi
s

p ¼ 2:76 TeV [15–18].
This has led to a tiny value of the shear viscosity to entropy
density ratio for QGP and near perfect fluid picture of QGP
[3,19–26] (except near the QCD transition temperature
where the bulk viscosity of QGP is equally important as
shear viscosity [27–29]). In an attempt to appreciate this
result, interesting analogies have been drawn with ADS/
CFT correspondence [30] as well as with some strongly
coupled classical systems [31]. In any case, the emergence
of strongly interacting behavior puts into doubt the relia-
bility of a large body of analyseswhich are based on ideal or
nearly ideal behavior of QGP in heavy ion collisions.

In the light of these observations, it would be right to
state that QGP may lie in the strongly interacting domain

(nonperturbative) of QCD. Therefore, lattice gauge theory
[32–34] would be the best approach to address the physics
of QGP in RHIC in terms of a reliable EOS which is very
precisely evaluated [8–11]. The lattice EOS is far from
being ideal. The EOS is � 10% away from its ideal be-
havior even at 4Tc. However, in several works devoted to
QGP ideal EOS is employed. This is certainly not desirable
for QGP in RHIC. Therefore, there is an urgent need to
address this issue by developing models to employ realistic
QGP equations of state to investigate the bulk and transport
properties of QGP. This could be done by casting hot QCD
medium effects in terms of effective quasiparticle degrees
of freedom.
There have been several attempts to describe QCD

medium effects at high temperature in terms of quasipar-
ticle degrees of freedom. These attempts include, (i) the
effective mass approaches to study QCD thermodynamics
[35–39], and (ii) approaches based on the Polyakov loop
[40–44]. A different approach in terms of quasiparticles,
inspired by Landau theory of Fermi liquids has been pro-
posed recently both for EOS based on pQCD [1,2,26,45]
and pure lattice gauge theory [3]. This model is funda-
mentally different from the above two approaches, and
quite powerful: it reproduces the EOS with remarkable
accuracy, especially in the case of lattice EOS—where it
is exact; the collective nature of the quasigluons is manifest
in the single particle dispersion relations. It is also suc-
cessful in terms of predictions regarding the bulk and
transport properties of QGP [1–3,26]. References [3,26]
showed that the shear viscosity and its ratio with the
entropy density (�, �=s) are highly sensitive to the inter-
actions. They could be taken of as good diagnostics to
distinguish various EOS at RHIC.
The model was tested only against the pure SUð3Þ gauge

theory EOS [3], where the description was, as we
mentioned, exact. It was not employed for extracting a
quasiparticle description in the case of full QCD, by the
inclusion of quark sector. In this paper, we remedy this
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draw back and extend the model to the matter sector, by
taking up a recently computed (2þ 1)-flavor lattice QCD
equation of state with physical quark masses [10]. It is to be
noted that this EOS has further been refined by improving
the accuracy in [11,12]. Here, we adopt the philosophy
same as in [3]. Again, we map (2þ 1)-flavor lattice QCD
data for the EOS [10] in terms of quasiparticle degrees of
freedom which are free up to effective gluon fugacity, zg
and effective quark fugacity, zq. In this model, the strange-

quark sector is different from light quark sector due to
contributions coming from the strange-quark mass. They
are otherwise characterize by the same effective fugacity
zq. Such a characterization could only be possible because

the mass corrections from light quark-sector in the decon-
fined phase of QCD are very very small. So, the model will
be more realistic at higher temperatures.

Here, it is worth mentioning that such a quasiparticle
description of the lattice QCD EOS could be thought of as
a first step towards an effective field theory/effective ki-
netic theory to explore complicated nature of strong inter-
action in QGP. Leaving these ambitious investigations for
future studies, here, we have attempted to understand the
role of QCD interactions in terms of a Virial expansion for
QGP employing the quasiparticle model. The Virial ex-
pansion has been obtained in terms of effective quasipar-
ticle number densities which are, in turn, expressed in
terms of zg=q. As we shall see that the Virial expansion

of the EOS is very helpful to understand the role of strong
interaction in QGP and may perhaps play crucial role in
developing the effective models.

The paper is organized as follows. In Sec. II, we intro-
duce the quasiparticle model and study its features and
physical significance. Here, we discuss the viability of the
model by studying the temperature dependence of the
quasiparticle pressure, and trace anomaly in terms of ef-
fective fugacities. We find that the model reproduces the
EOS almost exactly. In Sec. III, we discuss the physical
significance and viability of the quasiparticle model. In
Sec. IV, we discuss the implications of the model. Here, we
propose a Virial expansion for QCD at high temperature, in
terms of effective quasiparticle number densities and ex-
plore the role of interaction in hot QCD. We further study
the Debye screening and charge renormalization in hot
QCD. In Sec. V, we present the conclusions and the future
direction of the work.

II. THE QUASIPARTICLE MODEL

Before, we introduce the quasiparticle description, let us
define the notations. The quantities, zg, and zq will denote

effective gluon and quark/antiquark fugacities, respec-
tively. The quasigluon equilibrium distribution function
will be denoted by fgeq, quasiquark/antiquark distribution
function by fqeq for light quarks (u,d), and fseq for strange

quark. The respective dispersions (single quasiparticle en-
ergy) will be denoted as !g

p, !
q
p and !s

p. ng;q;s denotes the

effective quasiparticle number densities. In all the physical
quantities that will be discussed in the paper, the subscript
g will denote the gluonic contribution while q and s denote
the contributions from the light-quark sector and strange-
quark sector, respectively.

A. Underlying distribution functions
and effective fugacity

We initiate the model with the ansatz that the Lattice
QCD EOS can be interpreted in terms of noninteracting
quasipartons having effective fugacities which encodes all
the interaction effects. In the present case, we have three
sector, viz., the effective gluonic sector, the light , and the
strange-quark sector. Here, the effective gluon sector refers
to the contribution of gluonic action to the pressure which
also involves contributions from internal fermion lines.
Because of purely phenomenological reason, this sector
can be recasted in terms of effective gluon quasiparticles
(which are free gluons with effective fugacity). Similarly
the other two sectors also involve interactions among
quark, antiquarks, as well as their interactions with gluons.
The effective gluon fugacity, zg is introduced to capture the

interaction in the effective gluonic sector. On the other
hand, zq captures interactions in other two sectors. The

ansatz can be translated to the form of the equilibrium
distribution functions, fgeq, f

q
eq, and fseq as follows,

fgeq ¼ zg expð��pÞ
ð1� zg expð��pÞÞ ;

fqeq ¼ zq expð��pÞ
ð1þ zq expð��pÞÞ ;

fseq ¼
zq expð��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p Þ
ð1þ zq expð��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ÞÞ
;

(1)

where m denotes the mass of the strange quark, which we
choose to be 0.1 GeV. � ¼ T�1 denotes inverse of the
temperature. Note that we are working in the units where
Boltzmann constant, KB ¼ 1, c ¼ 1, and h=2� ¼ 1.
We use the notation �g ¼ 2ðN2

c � 1Þ for gluonic degrees

of freedom, �q ¼ 2� 2� Nc � 2 for light quarks, �s ¼
2� 2� Nc � 1 for the strange quark for SUðNcÞ. Here,
we are dealing with SUð3Þ, so Nc ¼ 3. Since the model is
valid in the deconfined phase of QCD (beyond Tc, Tc is the
QCD transition temperature), the masses of the light
quarks can be neglected. Therefore, in our model we
only consider the mass for the strange quarks.
As it is well known that QCD thermodynamics at

high temperature is described in terms of a Grand can-
onical ensemble. Now, it is straightforward to write down
an effective Grand canonical partition function for hot
QCD which yields the forms of the distribution function
given in Eq. (1). We denote the partition function by
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Z ¼ ðZg � Zq � ZsÞ. The corresponding expressions in

terms of zg and zq are as follows,

lnðZgÞ ¼ ��gV
Z d3p

8�3
lnð1� zg expð��pÞÞ (2)

lnðZqÞ ¼ �qV
Z d3p

8�3
lnð1þ zq expð��pÞÞ (3)

lnðZsÞ ¼ �sV
Z d3p

8�3
lnð1þ zq expð��ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
ÞÞ (4)

lnðZÞ ¼ lnðZgÞ þ lnðZqÞ þ lnðZsÞ: (5)

Now using the well known thermodynamic relation,
P�V¼ lnðZÞ, we can match the right-hand side of
Eq. (5), with the lattice data for the pressure for (2þ 1)-
flavor QCD [10], where P denotes the pressure and V
denotes the volume. From this relation, we can in principle
determine the temperature dependence of zg and zq.

As emphasized earlier, zg is determined from the contri-

bution to the lattice pressure purely from gluonic action.
This particular contribution to the pressure is denoted as
Pg. Remaining part of the pressure is utilized to fix the

temperature dependence of zq. Now, we have two relations

and two unknowns. Next, we discuss the determination of
zg and zq.

1. Determination of zg and zq

We determine zg and zq numerically. zg has been deter-

mined using the relation,

Pg ¼
���4�g

2�2

Z 1

0
duu2 lnð1� zg expð�uÞÞ: (6)

On the other hand, zq has been determined numerically

using the following relation,

ðP� PgÞ ¼ ��4

2�2

Z 1

0
duu2f�q lnð1þ zq expð�uÞÞ

þ �s lnð1þ zq expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ~m2

p
ÞÞg; (7)

where ~m ¼ �m and u (u ¼ �p) is a dimensionless quan-
tity. We have recorded those values of zg and zq which

satisfy Eqs. (6) and (7). Next, we discuss their behavior
with temperature.

2. Behavior of zg and zq

The determination of the quasiparton distribution func-
tions given in Eq. (1) is complete once the temperature
dependence of zg and zq is fixed. The behavior of zg and zq
as a function of temperature is shown in Fig. 1 and in Fig. 2
respectively. Clearly, both of them acquire their ideal
values (unity) only asymptotically. At lower temperatures,

the magnitude of both zg and zq is smaller indicating the

larger strength of interactions there.
For further analysis, we seek analytic forms for zg and

zq as a function of temperature, which would render the
computation more amenable. At this juncture, we note that
there are limited number of lattice data for the pressure for
a huge range of temperature (ð0:5� 4:0ÞTc). Since the
effective fugacities have been determined from the lattice
pressure, the limitations get inherited by them as well,
which further passed on to other thermodynamic quantities
such as energy density, entropy density and trace anomaly.
We hope that the functional form is not drastically altered
by future refinements in lattice data.
We find that there is no universal functional form that

describes the data in the full range of temperatures, either
in the gluonic sector or the quark sector. There are some
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FIG. 1 (color online). Behavior of zg as a function of T=Tc.
The points denote the values obtained from lattice data and solid
line denote the fitting function. The fitting parameters are listed
in Table. I.
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FIG. 2 (color online). Behavior of zq as a function of T=Tc.
The points denote the values obtained from lattice data and solid
line denote the fitting function. The fitting parameters are listed
in Table. I.
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common features though. Both the sectors are character-
ized by a ‘‘low temperature’’ and a ‘‘high temperature’’
regime, with the cross over temperatures given by xg;q �
Tg;q=Tc � 1:68, 1.70, respectively. The functional forms

on either side of xg;q are the same for both the sectors, but

with different parameters. Thus, when x < xq;g, the good

fitting function has the form a0g;q expð�b0g;q=x5Þ. In the

complementary case x > xq;g, it has the form

a0g;q expð�b0g;q=x2Þ. The latter form is mandated by the

fact that at high temperature the trace anomaly, ��3P
T4 pre-

dominantly goes as 1=T2 [10] in lattice QCD. We list the
fitting parameters for zg and zq in Table I.

We shall utilize these forms to study temperature depen-
dence of the trace anomaly in later part of the paper. We
shall see that these forms correctly reproduce the high and
low temperature behavior of the trace anomaly.

Temperature dependences of effective fugacities, in
Figs. 1 and 2 reveal that the effective gluon and quark
fugacities are of same order of magnitude for the whole
range of temperature. This indicates that effective gluons
and quarks contribute equally in our description. Its pos-
sible physical consequences, and an understanding from
basic calculations in QCD is beyond the scope of the
present work and will be a matter of future investigations.

It is worth noting that effective fugacity descriptions
have been earlier employed in condensed matter systems
in the last decade. To study the nature of Bose-Einstein
(BE) condensation transition in interacting Bose gases, a
parametric EOS in terms of the effective fugacity has been
proposed by Li et al. [46]. This provides a scheme to
explore the quantum-statistical nature of the BEC transi-
tion. There have been other works to study the noninter-
acting BE systems in harmonic trap [47] as well interacting
bosonic systems [48]. Moreover, effective fugacity de-
scription has been used for a unitary fermion gas by
Chen et al. [49] for studying thermodynamics with non-
Gaussian correlations. None of them employed the effec-
tive dispersion relations which we obtain naturally in this

work. We shall now proceed to discuss the physical sig-
nificance of the quasiparticle model and its viability.

III. PHYSICAL SIGNIFICANCE
AND VIABILITY OF THE MODEL

A. The modified dispersion relations

It has been emphasized in Ref. [2] that the physical
significance of effective fugacity could be seen in terms
of modified dispersion relations. The effective fugacities
modify the single quasiparton energy as follows,

!g
p ¼ pþ T2@TlnðzgÞ

!q
p ¼ pþ T2@TlnðzqÞ

!s
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
þ T2@TlnðzqÞ:

(8)

These dispersion relations can be interpreted as follows.
The single quasiparton energy not only depends upon the
momentum but also gets contribution from the collective
excitations of the quasipartons. The second terms is like
the gap in the energy due to the presence of quasiparticle
excitations. This immediately reminds us of Landau’s the-
ory of Fermi liquids. Therefore, it is safe to say that the
present quasiparticle model is in the spirit of Landau theory
of Fermi liquids. These modified dispersion relations in
Eq. (8) have emerged from the thermodynamic definition
of the average energy of the system, due to the temperature
dependent fugacities, zg=q. Let us consider the expression

for the energy density, � obtained in terms of the grand
canonical partition function, Z as,

� ¼ � 1

V

@ lnðZÞ
@�

: (9)

Substituting for the effective partition function (Z ¼
Zg � Zq � Zs), we obtain,

� � �g

8�3

Z
d3pðpþ T2@T lnðzgÞÞfgeq þ 1

8�3

Z
d3pf

�
pþ T2@T lnðzqÞÞ�qf

q
eq þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
þ T2@T lnðzqÞÞ�sf

s
eq

��

� 3ðPg þ Pq þ PsÞ þ
T2@T lnðzgÞ

2�2

Z
d3p�gf

g
eq þ T2@T lnðzqÞ

2�2

Z
d3pð�qf

q
eq þ �sf

s
eqÞ: (10)

TABLE I. Fitting parameters for zg and zq

zg;q ag;q bg;q a0g;q b0g;q
Gluon 0:803� 0:009 1:837� 0:039 0:978� 0:007 0:942� 0:035
Quark 0:810� 0:010 1:721� 0:040 0:960� 0:007 0:846� 0:033
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The above equation can be recasted employing the expres-
sion for the pressure in terms of the temperature dependent,
zg=q as,

ð�� 3PÞ
T4

¼ T
@

@T

�
P

T4

�
(11)

Therefore, these modified dispersion relations naturally
ensure the thermodynamic consistency condition in high
temperature QCD, and lead to the trace anomaly, which we
have discussed, in detail, in the next subsection. Moreover,
these effective fugacities can be expressed in terms of
effective quasiparticle number densities. These number
densities leads to a simple Virial expansion for the EOS
which we shall discuss in the next section.

Next, we look at the group velocity of quasipartons. The
group velocity can be obtained as ~vp ¼ @ ~p!p. It is easy to

see that the modified term in the dispersion relations is
purely temperature dependent, therefore it will not change
the group velocity of a quasiparton. ~vp ¼ p̂ for quasi-

gluons and quasiquarks (u,d) and ~vp ¼ ~pffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p . for strange

quarks. The dispersion relation in Eq. (8) contributes to the
trace anomaly in hot QCD which we shall discuss soon.

Let us now discuss the significance of gluon condensate,
in the hot QCD thermodynamics. In this context, D’Elia,
Giacomo, and Meggiolaro [50] have studied the electric
and magnetic contributions to the condensate, and shown
that near Tc the former vanishes, however the latter re-
mains unchanged. These authors investigated such effects
by analyzing the two-point correlation functions both in
pure-gauge sector, and the full QCD [50,51]. It has been
shown in [52] that the effects of the gluon condensate are
significant for T � Tc, and becomes vanishingly small
beyond 2Tc. Therefore, in the effective mass description
of hot QCD for the temperatures, T ¼ 1� 2Tc, one needs
to consider the contributions of the condensate, while
comparing the predictions on thermodynamic observables
with the lattice QCD data. However, in our model, zg, zq
capture these effects, and we do not need to incorporate the
contributions separately. This can be understood as fol-
lows, In the lattice data employed here, normalization of
the pressure and energy density were chosen such that at
T ¼ 0, these quantities vanish [10], and the effects of the
gluon condensate may be significant at higher tempera-
tures. These effects are well captured in the trace anomaly
in lattice QCD, which is the basic quantity computed in the
lattice. And, all other thermodynamic quantities have been
derived from the trace anomaly. In turn, these effects are
automatically encoded in the pressure, the energy density,
etc. In our study, such effects have been captured in the
effective fugacities, zg=q from the beginning, since, we

have determined them from the lattice data on pressure.
The gluon condensate contribute significantly to the energy
density, entropy density, and the trace anomaly through the
temperature derivatives of the zg=q, in terms of modified

dispersion relations.

B. Viability of the model

As it has been already emphasized in the previous
section that the model yields (2þ 1)-flavor lattice QCD
EOS almost perfectly. To check further the viability of the
model, we study the temperature dependence of the qua-
siparticle pressure, energy density, and the trace anomaly
and check them against the direct lattice results. Lets us
first discuss the temperature dependence of the pressure.
We have plotted the quasiparticle pressure along with the
lattice data in Fig. 3. We find that the agreement between
the lattice data and quasiparticle model for the EOS is
almost perfect beyond Tc. The temperature dependence
of the energy density as a function of temperature is shown
in Fig. 4. The quasiparticle results agree well with the
lattice data beyond Tc.
Encouraged from the crucial observation that lattice and

quasiparticle model predictions are the same, we now
proceed to study the trace anomaly as a function of tem-
perature obtained from the quasiparticle model.

1. The trace anomaly

Trace anomaly gets contribution from all the three sec-
tors. The gluonic and light quarks contributions come
purely from the modified part of the dispersion relations.
On the other hand, in the strange-quark sector trace anom-
aly gets additional contribution from the mass. We denote
the trace anomaly by � ¼ ð�� 3PÞ � �g þ�q þ�s.

�g

T4
¼ T@T lnðzgÞ

ng

T3

�q

T4
¼ T@T lnðzqÞ

nq

T3

�s

T4
¼ T@T lnðzgÞ ns

T3

(12)
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FIG. 3 (color online). Behavior of P=T4 as a function of T=Tc.
The quasiparticle pressure is obtained by using the fitting pa-
rameters for zg and zq listed in Table I. Lattice Data are also

shown as points.
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where ng, nq and ns are the effective number densities for

the quasipartons and are defined by,

ng ¼ �g

2�2

Z 1

0
dpp2fgeq � T3

�gPolyLog½3; zg�
�2

nq ¼ �q

2�2

Z 1

0
dpp2fqeq � T3

��qPolyLog½3;�zq�
�2

ns ¼ �s

2�2

Z 1

0
dpp2fseq � T3

��sPolyLog½3;�zq�
�2

� 3 ~m2

�2
lnð1þ zqÞ: (13)

We shall first discuss the behavior of these effective num-
ber densities as a function of temperature and thereby the
temperature dependence of the trace anomaly in hot QCD.

We determine the effective number densities exactly by the
numerical evolutions of the integrals in Eq. (13). They are
represented in terms of PolyLog functions merely to under-
stand the nontrivial temperature dependence of the effec-
tive number densities. Here, we see that ng=T

3, and

nq=s=T
3 scales with T=Tc in a nontrivial way. Their behav-

iors with temperature are shown in Figs. 5 and 6.
We have also shown the Stefan-Boltzmann value

for the number densities in Figs. 5 and 6. ðng=T3ÞjSB ¼
�g�ð3Þ=�2; ðnq=T3ÞjSB¼3�q�ð3Þ=4�2; and ð�s=T

3ÞjSB ¼
3�s�ð3Þ=4�2. Note that the SB limit has not been obtained
even at T ¼ 5Tc. The effective number densities are
roughly �10% away at this temperature in all the three
sectors. This is just the reflection of the fact that lattice
EOS itself is away from SB limit there.
Using Table. I, the quantities T@T lnðzgÞ and T@ lnðzqÞ

can easily be obtained as,
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FIG. 6 (color online). Behavior of nq (left) and ns (right) as a function of T=Tc. They are obtained by employing the discrete data
points for zq as well as fitting parameter for of zq listed in Table. I including the strange-quark mass dependence. The Stefan-

Boltzmann (SB) value is also shown beyond 3Tc.
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T@T lnðzgÞ ¼
8><
>:

5bg
x5

; x 	 xg
2b0g
x2

; x> xg

T@T lnðzqÞ ¼
8><
>:

5bq
x5

; x 	 xq
2b0q
x2

; x> xq

:

(14)

It is now straightforward to compute the trace anomaly
employing the fitting functions for the effective fugacities;
and effective quasiparticle number densities using Eq. (12).
Behavior of � along with corresponding lattice values has
been shown in Fig. 7. As it is clear from Fig. 3 and 7,
pressure and trace anomaly computed by employing the
quasiparticle model show good agreement with the lat-
tice data of the same. This sets the utility of the model.
Once these two quantities are known, it is straight-
forward to determine the energy density (e) and the en-
tropy density (s) by the standard thermodynamic relations,

e ¼ 3Pquasi þ �, s ¼ eþPquasi

T � 4Pquasi þ�.

If we see, closely the behavior of energy density or the
trace anomaly as a function of temperature in Figs. 4 and 7,
we observe that around T ¼ 1:7Tc, both the quantities are
not showing smooth behavior. There is no physical reason
associated with this. This is merely the artifact of the two
distinct fitting functions for zg and zq below and above this

temperature. At this temperature these functions have dif-
ferent slopes. This problem may not be present, if we could
have found a single fitting functions for zg and zq for the

whole range of temperatures. As emphasized earlier, these
fitting functions were needed to compute, the temperature
derivatives of zg and zq. Moreover, these points merely

reflect the fact that at this point, perhaps various thermo-
dynamic quantities are changing their slopes, but smoothly,
which is not captured appropriately in the fitting functions.
This may not be thought of as a serious problem since, one
could compute the temperature derivatives of zg and zq,

directly by inverting relations in Eq. (12). In that case, we
shall not get a continuous curve for energy density, rather
discrete points and they will perfectly match with the
lattice predictions.

IV. IMPLICATIONS OF THE MODEL

A. Virial expansion for hot QCD

To translate QCD interactions in RHIC era in terms of a
Virial expansion is quite a nontrivial task. There are very
few attempts in this direction [53]. Here, we see that the
quasiparticle understanding of equation of state for QGP
plays very crucial role to obtain a very simple Virial
expansion of the EOS in terms of effective quasiparticle
number densities. The model tells us that the Virial expan-
sion in (2þ 1)-flavor QCD could be subdivided in three
sectors, viz., gluonic, light-quark, and strange-quark sector
and one can define the Virial expansion in each sector and
finally combine them.
We begin with the purely gluonic sector first and sub-

sequently discuss the matter sector (light quarks and
strange quarks).

1. Virial expansion in purely gluonic sector

To obtain the Virial expansion in this sector, we Taylor
expand the pressure, Pg and the effective gluon number

density, ng in gluonic sector in the powers of zg (assuming

zg < 1) and eliminate the explicit dependence of zg from

both the expressions. This technique which is the standard
way to obtain the Virial expansion of a ideal Bose/Fermi
gas with fixed number of particles [54], is equally appli-
cable here, although the systems are physically distinct,
since zg and zq do not correspond to the particle conser-

vation. The procedure is straightforward. For the sake of
completeness, we shall write a few steps. The expressions
for Pg and ng in the powers of zg are obtained as,

Pg

�gT
¼ 1

�3
th

X1
l¼1

blz
l
g: (15)

ng
�g

¼ 1

�3
th

X1
l¼1

lblz
l
g: (16)

The quantity �th � 1=T is the thermal wave length of
gluons and the coefficient bl is given as,

bl ¼ 1

2�2l

Z 1

0
u2 expð�luÞdu � 1

�2l4
: (17)

Consequently the ratio of Eq. (15) with Eq. (16) and
expanding it as,

Pg

ngT
¼ X1

k¼1

akð ~Ng�
3
thÞk�1 �

P1
l¼1 blz

l
gP1

l¼1 lblz
l
g

; (18)
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FIG. 7 (color online). Behavior of trace anomaly as a function
of T=Tc. The solid line denotes the values obtained from the
quasiparticle description and the points denote the lattice results.
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where ~Ng ¼ ng
�g

and ak’s are the Virial coefficients. Using,

Eq. (15) and (16) in Eq. (18) and comparing the terms of
order zg, z

2
g and z3g, we obtain,

a1 ¼ 1;

a2 ¼ �b2
b21

� ��2

24
;

a3 ¼
�
�2b3 þ 4b2

2

b1

�
b31

a4 ¼ 1

b41

�
�3b4 � 20b32

b21
þ 18b2b3

b1

�
:

(19)

One can, in principle obtain all the Virial coefficients com-
paring various order coefficients of zg in Eq. (18). Now, the

Virial expansion up to OððN0
g�

3
thÞ3Þ can be written as,

Pg

ngT
¼ 1þ a2ðN0

g�
3
thÞ þ a3ðN0

g�
3
thÞ2 þ a4ðN0

g�
3
thÞ3: (20)

If we exploit the temperature dependence of effective
gluon number density shown in Fig. 5. We can compare the
strength of various order terms in Eq. (20). We find that
third term is 
 second term and fourth term is 
 third
term. Remember that the Virial coefficients in Eq. (19) do
not acquire any temperature dependence and are same as
those for an ideal gluonic plasma with temperature inde-
pendent fugacity. The interactions merely renormalizes the
number density of quasigluons. This confirms our view
point that hot QCD medium effects can entirely be mapped
in to the noninteracting/weakly interacting quasiparticle
degrees of freedom. The validity of the Virial expansion
in this sector is ensured by the fact that N0

g�
3
th 
 1.

Let us nowmove to the matter sector and first discuss the
light quark sector followed by the strange-quark sector.

2. Virial expansion in the matter sector

We shall exactly follow the same procedure discussed
earlier to obtain the Virial expansion. We denote the light
quarks contribution to pressure as Pq and contribution

from strange quarks to Ps. Expanding these quantities
along with effective number densities nq and ns in the

power of zq (assuming zq < 1), we obtain the following

expressions,

Pq

�qT
¼ 1

�3
th

X1
l¼1

ð�1Þl�1blz
l
q (21)

Ps

�sT
¼ 1

�3
th

X1
l¼1

ð�1Þl�1b0lz
l
q (22)

nq
�q

¼ 1

�3
th

X1
l¼1

ð�1Þl�1lblz
l
q (23)

ns
�s

¼ 1

�3
th

X1
l¼1

ð�1Þl�1lb0lz
l
q: (24)

Where the coefficient b0l is defined as,

b0l ¼
1

2�2l

Z 1

0
u2 expð�l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ ~m2

p
Þdu ¼ bl � ~m2

4�2l3

(25)

Repeating the analysis same as for gluons, and denoting the
Virial coefficients in light quark sector as aql and strange-

quark sector as asl , the Virial expansion for Pq and Ps

would have the following forms,

Pq

nqT
¼ aq1 þ aq2ðN0

q�
3
thÞ þ aq3ðN0

q�
3
thÞ2 þ aq4ðN0

q�
3
thÞ3

Ps

nsT
¼ as1 þ as2ðN0

s�
3
thÞ þ as3ðN0

s�
3
thÞ2 þ as4ðN0

s�
3
thÞ3:

(26)

where N0
q ¼ nq

�q
and N0

s ¼ ns
�s
. In principle, all the Virial

coefficients (aql and asl ) are possible to compute in terms

of bl and b0l. We shall only discuss up to the fourth Virial

coefficient. These coefficients are obtained as follows,

aq1 ¼ 1; aq2 ¼ b2
b21

¼ �2

24
; aq3 ¼

�
�2b3 þ 4b2

2

b1

�
b31

aq4 ¼
1

b41

�
3b4 þ 20b32

b21
� 18b2b3

b1

�
;

as1 ¼ 1; as2 ¼
�
b2 � ~m2

25�2

���
b1 � ~m2

22�2

�
2
;

as3 ¼
�
�2b03 þ 4ðb02Þ2

b0
1

�
ðb01Þ3

;

as4 ¼
1

ðb01Þ4
�
3b04 þ

20ðb02Þ3
ðb01Þ2

� 18b02b
0
3

b01

�
:

(27)

Again the dominant contribution is from the second
terms in the Virial expansion of Pq and Ps in Eq. (26).

This we have observed by exploiting the temperature de-
pendence of the effective quasiparticle number densities
shown in Fig. 6.
Since the total quasiparticle pressure is P ¼ Pg þ Pq þ

Ps, Virial expansion of the full EOS can be obtained by
using the individual Virial expansions obtained in the
effective gluonic sector (EGS), and the matter sector
[Eqs. (20) and (26)]. Note that all the Virial coefficients
in EGS as well as in the matter sector are independent of
temperature. The information about the interaction has
been captured in the effective quasiparton number den-
sities. The second Virial coefficient is negative in the
gluonic sector and positive in the quark sector. This is
expected from the quantum statistics of quasigluons and
quasiquarks. It is straightforward an exercise to determine
the other thermodynamic observables in term of effective
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quasiparton number densities by using the well known
thermodynamic relations. These expressions will also
contain the temperature derivatives of effective number
densities in addition. In other words, both zg and the modi-

fication factor to the dispersion relations, T@T lnðzgÞ,
T@T lnðzqÞ will appear in their expressions. Finally, the

validity of the Virial expansion in the matter sector is
ensured by the fact that N0

q;s�
3
th <<1.

This is perhaps the first time, we have obtained such a
simple Virial expansion for hot QCD where interactions
appear as suppression factors through the effective quasi-
parton number densities. This has only been possible due to
the quasiparticle description of hot QCD. Interesting
enough, such a description works well down to tempera-
tures which are of the order 1:0Tc. The Virial expansion
here highlights the role of interactions in hot QCD. The
Virial expansion may possibly play crucial role to explore a
quantitative understanding of Fermi liquid like picture of
hot QCD interactions as indicated by our quasiparticle
description and also play important role to develop effec-
tive field theory and effective kinetic theory for such a
quasiparticle model. We shall leave these interesting issues
for the future investigations.

At this juncture, we wish to mention that there has been
a very recent attempt [55] to study the nuclear matter EOS
at subnuclear density in a Virial expansion of a non-ideal
gas. The Virial expansion is obtained by considering the
fugacities for various species such as neutron, proton etc.
The method to obtain the Virial coefficients is standard
one as employed in the present work. However, the major
difference between the two is in the physical meaning of
the fugacities.

B. Comparison with other approaches

We now intend to compare our quasiparticle model with
other existing models. In the recent past [40–43] and in a
very recent work [44], effects of hot QCD medium have
been interpreted in terms of single particle states (effective
gluons/quark-anti-quarks) via the Polyakov loop. In these
approaches, the expectation value of the Polyakov loop
appears in the effective gluon/quark-antiquark distribution
functions [43]. It provides a suppression factor in the form
of a effective fugacity to an isolated particle with color
quantum numbers. On the other hand, there have been
successful attempts to encode the high temperature QCD
medium effects in terms of effective thermal masses for
quasipartons [35–39]. In the recent past, effective mass
models have been employed to describe (2þ 1)-flavor
QCD [56,57] and the agreement was found to be good.
The effective mass models, which we discussed so far are
based on the lowest order results in perturbative QCD,
equivalently leading order hard-thermal-loop (HTL) re-
sults. These models are improved by incorporating the
next order HTL contributions by Rebhan and Romatschle
[58]. Their predictions were shown to be in agreement with

the lattice results including (2þ 1)-flavor QCD.
Furthermore, there are other approaches which also in-
volves quasiparticle picture of hot QCD along with the
contribution from the gluon condensate [52]. We shall
compare our model with these approaches one by one.
Let us consider the Polyakov loop approach first. There

are certain similarities and a number of differences be-
tween our model and this approach. The similarities are,
(i) both the approaches lead to an effective description of
hot QCD in terms of free quasiparticles, (ii) the expectation
value of the Polyakov loop which plays the role of effective
fugacity as well as effective quasiparton fugacities (zg=q) in

our model appear as the suppression factors in the corre-
sponding quasiparton distribution functions, (iii) in both
the approaches the group velocity (vgr ¼ @ ~p!p), remains

unchanged, (iv) both the models are quite successful in
reproducing the lattice data on thermodynamic observables
(For more details on Polyakov loop method see [42]. Our
model yield lattice EOS for SUð3Þ pure-gauge theory al-
most perfectly which the deviations which are one part in a
million [26]), and same is true for the (2þ 1)-flavor lattice
EOS, and (v) the effective gluon distribution function in
[43,44] has a similar mathematical structure as our model.
In spite of these similarities, our model is fundamentally
distinct from this approach. Our model is purely phenome-
nological, and is more in the spirit of Landaus theory of
Fermi liquids. We list below the major differences between
the two approaches.
(i) The expectation value of the Polyakov loop appear-

ing in the single particle distribution function does
not change the dispersion relation for quasipartons.
On the other hand, in our model, we obtain nontrivial
quasiparton dispersion relations. ðT2@Tlnðzg=qÞ.

(ii) The Polyakov loop (its phase) appears as an imagi-
nary chemical potential in the single particle distri-
bution functions [43,44]. This is unlikely to happen
in our model. The effective fugacities in our model
cannot be interpreted as chemical potentials (real/
imaginary) (since there is no conservation of parti-
cle number). They are introduced merely to capture
all the interaction effects present in hot QCD
medium.

(iii) Employing our quasiparticle model, one can study
the bulk and transport properties of hot and dense
matter (QGP) in RHIC. These studies have been
reported for pure SUð3Þ gauge theory in [3,26] and
will be presented separately for full lattice gauge
theory in the near future.

Let us now compare our model with the effective mass
models. In this approach, lattice QCD data for the EOS had
been interpreted in terms of effective thermal gluon mass
and effective thermal quark mass. The quasiparticle model
proposed in this paper is completely distinct from this
model. The major difference is in the philosophy itself.
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The effective fugacities are not the effective masses and
they can be interpreted as effective mass in some limiting
case (p 
 T2@T lnðzg=qÞ). Moreover, our approach ex-

plores the Fermi liquid like picture of hot QCD. Another
major difference in two of the approaches can be realized
in terms of group velocity vgr, vgr in two approaches is not

the same. In the effective mass approaches vgr depends

on thermal mass parameter ( ~vgr ¼ ~p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þmðTÞ2p

). We

have obtained a Virial expansion for hot QCD in terms of
the quasipartons. This has not been done employing either
of these two models.

Let us now discuss the quasiparticle models which in-
corporate the effects of gluon condensate explicitly in
the analysis [52,59]. In these studies, the importance of
the gluon condensate is highlighted, and its effect on the
thermodynamic observables in hot QCD was studied in
detail [52]. In particular, Castorina and Mannarelli [52],
have analyzed the thermodynamic properties of hot QCD
between 1� 2Tc by explicitly incorporating the gluon
condensate along with the gluon, and quark quasiparticles
with thermal masses. The results show excellent agreement
with the lattice predictions, both in the pure glue sector and
the full QCD sector. Apart from the differences in the
dispersion relations, and the philosophy with our model,
there has been a very crucial difference. As emphasized
earlier, in our model the effect of gluon condensate has
been incorporated from the beginning, and not treated
explicitly as in [52]. However, both the models are equally
successful to describe the lattice QCD thermodynamics.

There is an alternate way to interpret the effective fu-
gacities in terms of effective mass, as follows. Let us
suppose, zg=q � expð�meffjg=q=TÞ. The quantity, meff can

be thought of as meff ¼ g0ðTÞT, where g0 is an effective
coupling. It is to be observed that zg=q are of the order of

0.15 around Tc; it leads to an estimate for g0 � 2:0. This
indicates the nonperturbative nature of hot QCD matter
near Tc. Moreover, g0 becomes less than one beyond 1:3Tc,
and this observation is valid in both effective gluon and
matter sector.

C. Debye screening mass and charge renormalization

To investigate how the partonic charges modify in the
presence of hot QCD medium, we consider the expression
for the Debye mass derived in semiclassical transport
theory [60] in terms of equilibrium parton distribution
functions. The same expression was obtained from the
chromo-electric response functions of QGP [2]. The
Debye mass in terms of the quasiparton distribution func-
tions, which are obtained from the (2þ 1)-lattice QCD
EOS, is given by,

M2
D¼�2NcQ

2
Z d3p

8�3
@pf

g
eqþQ2

Z d3p

8�3
@pð4fqeqþ2fseqÞ;

(28)

where Q2 is the effective coupling which appears in the
transport equation. If one assumes QGP as an ideal system
of massless gluons and quarks, Eq. (28) reproduces the
leading order HTL result for the Debye mass; with the
identification that Q2 � g2ðTÞ (gðTÞ is QCD running cou-
pling constant at finite temperature).
Employing the distribution functions displayed in

Eq. (1) to Eq. (28), we obtain the following expressions
for the

M2
D ¼ Q2T2

�
Nc

3

6Polylog½2; zg�
�2

þ 1

2
��12PolyLog½2;�zq�

�2
� ~m2

4�2
lnð1þ zqÞ

�
:

(29)

While determining the Debye mass in Eq. (29) from
Eq. (28), we employ Eq. (1) and the following standard
integrals,

Z 1

0
p2dp

zg=qexpð��pÞ
ð1�zg=qexpð��pÞÞ2�� 2

�3
PolyLog½2;�zg=q�

Z 1

0
pdp

zqexpð��pÞ
ð1þzqexpð��pÞÞ2�

1

�3
lnð1þzqÞ: (30)

The Debye mass with the Ideal EOSðzg ¼ 1; zq ¼ 1Þ
will be,

ðMI
DÞ2 ¼ Q2T2

�
Nc

3
þ 1

2
� ~m2

4�2
lnð2Þ

�
: (31)

To analyze the role of interactions, we define the effec-
tive charges Qg, Qq, and Qs as,

Qg ¼ Q

��
6PolyLog½2; zg�

�2

�
1=2

�

Qq ¼ Q

���12PolyLog½2;�zq�
�2

�
1=2

�
� Qs

(32)

Debye mass could be written in terms of these effective
charges as,

M2
D¼

�
Nc

3
Q2

gþ1

2
ðQ2

qþQ2
sÞ
�
T2�Q2T2 ~m2

4�2
lnð1þzqÞ:

(33)

As stated earlier, in the ideal limit Eq. (33) will reduce to
Eq. (31). The quantities, Qg, and Qq;s approach to Q. This

observation tells us that interactions merely renormalize
the effective partonic charges. In fact, the effective charges
are reduced as compared toQ and asymptotically approach
to the ideal value, Q.
To see, how interactions modify Debye screening mass,

we consider the ratio �d ¼ MD=M
I
D. The behavior of �d

as a function of temperature is shown in Fig. 8. �d ap-
proaches the ideal value unity only asymptotically and
�d 	 1. This implies that the presence of interactions
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suppresses the Debye mass as compared to its ideal
counterpart.

Next, we compare MD with the Debye mass obtained
in lattice QCD. Let us first discuss the Debye screening
mass computed in lattice gauge theory. It has been calcu-
lated in pure-gauge theory (Nf ¼ 0) [61], in 2-flavor QCD

(Nf ¼ 2) [62,63], and in 2þ 1-flavor QCD [64]. The

lattice data on Debye mass have been fitted with the simple
ansatz motivated by leading order result on Debye mass,
mL

D � AmLO
D , where mL

D denotes the lattice data and,

mLO
D �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ Nf

6 Þ
q

gðTÞT denotes the leading order Debye

mass. Here, gðTÞ is the two loop running coupling con-
stant. This form fits the data quite well if A � 1:4–1:6 [64].

In our case (see Eq. (33)),Q2 is a free parameter. We can
fix it to match the Debye mass with the lattice result, mL

D.
This leads to,

Q2¼A2 g2ðTÞ
ð6PolyLog½2;zg�Þ=�2

;

Q2¼A2g2ðTÞ
�
ðð6PolyLog½2;zg��12PolyLog½2;�zq�Þ=�2Þ

� ~m2

4�2
lnð1þzqÞ

��1
(34)

in EGS and full QCD withNf flavors, respectively. In other

words, the Debye mass obtained from the quasiparticle
model can exactly be matched with the lattice results for
theDebyemass. TheDebyemass is needed to determine the
transport parameters for quark-gluon plasma in RHIC [26].
It is of interest to derive the form of heavy quark potential
[65,66] employing the formalism of chromo-electric re-
sponse functions [2,65]. While deriving the potential, one
should keep in mind the fact that hadronic phase to quark-
gluon plasma transition is a crossover [67,68] rather than a
true phase transition. These issues will be taken up in a
separate communication in near future.

V. CONCLUSIONS AND FUTURE PROSPECTS

In conclusion, a quasiparticle model for (2þ 1)-flavor
lattice QCD has been proposed which is valid in the
deconfined phase of QCD. The interactions have been
encoded in to the effective gluon and quark fugacities.
These effective fugacities nontrivially modify the single
quasiparton energies and lead to the trace anomaly in hot
QCD. The description accurately reproduces the lattice
QCD pressure, energy density, and the trace anomaly. In
particular, the model accurately reproduces their low and
high temperature behavior. We find that the model is
fundamentally distinct from the other quasiparticle models
(effective thermal mass, Polyakov loop models, and mod-
els with gluon condensate).
Employing the model, temperature dependence of the

effective quasiparticle number densities has been obtained.
AVirial expansion for QGP has been proposed in terms of
effective quasiparticle number densities. The Virial expan-
sion of the quasiparticle equation of state gets contribution
from three sectors, viz., the effective gluonic sector, the
light-quark-sector, and the strange-quark sector. These
sectors were dealt separately and eventually lead to the
complete Virial expansion. This is perhaps the first time
such a Virial expansion has been proposed for hot QCD.
Interestingly, the Virial expansions came out to be mathe-
matically similar as that for an ideal system of gluons, light
quarks and, strange quark with temperature dependent
fugacities. The Virial expansion has ensured that the qua-
siparticles are noninteracting. The interactions merely
modulate the quasiparticle number densities and modify
the single quasiparticle energies in a nontrivial way.
The Virial expansion may play important role to explore

the Fermi liquid like picture of hot QCD in the matter
sector and, in building effective kinetic theory with the
quasiparticle model. The Virial expansion has revealed that
the interactions appear to various observables determined
by employing the quasiparticle description only in two
ways, either through the effective fugacities (act as modu-
lation factors) or through the modified dispersion relation.
Finally, Debye mass has been obtained employing the
expression obtained from semiclassical transport theory
and effective coupling has been determined in terms of
effective fugacities. This observation will be required in
determining the transport coefficients for quark-gluon
plasma. We find the Debye mass obtained from the quasi-
particle model can exactly be matched with the lattice
results.
The implications of model to study the transport coef-

ficients (shear viscosity, bulk viscosity) will be taken up in
the near future. It would also be of interest to extend the
present model in the case of finite baryon density, and
studying quark-number susceptibilities. It is to be of great
interest to establish possible connections of our quasipar-
ticle model with the Polyakov loop models, which is a
matter of future investigations.
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