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The chiral condensate and dressed Polyakov loop at finite temperature and density have been

investigated in the framework of the Nf ¼ 2þ 1 Nambu-Jona-Lasinio (NJL) model with two degenerate

u, d quarks and one strange quark. In the case of explicit chiral symmetry breaking with physical quark

masses, it is found that the phase transitions for light u, d, and s quark are sequentially happened, and the

separation between the transition lines for different flavors becomes wider and wider with the increase of

baryon density. For each flavor, the pseudocritical temperatures for chiral condensate and dressed

Polyakov loop differ in a narrow transition range in the lower baryon density region, and the two

transitions coincide in the higher baryon density region.
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I. INTRODUCTION

A QCD vacuum is characterized by spontaneous chiral
symmetry breaking and color confinement. The dynamical
chiral symmetry breaking is due to a nonvanishing quark
antiquark condensate, h �qqi ’ ð250 MeVÞ3 in the vacuum,
which induces the presence of the light Nambu-Goldstone
particles, the pions and kaons in the hadron spectrum. The
confinement represents that only colorless states are ob-
served in the spectrum, which is commonly described by
the linearly rising potential between two heavy quarks at
large distances, V �QQðRÞ ¼ �sR, where �s ’ ð425 MeVÞ2
is the string tension.

It is expected that chiral symmetry can be restored and
color degrees of freedom can be freed at high temperature
and/or density. The interplay between chiral and decon-
finement phase transitions at finite temperature and density
are of continuous interests for studying the QCD phase
diagram [1–9]. The chiral restoration is characterized by
the restoration of chiral symmetry, and the deconfinement
phase transition is characterized by the breaking of center
symmetry, which are only well defined in two extreme
quark mass limits, respectively. In the chiral limit when
the current quark mass is zerom ¼ 0, the chiral condensate
h �qqi is the order parameter for the chiral phase transition.
When the current quark mass goes to infinity m ! 1,
QCD becomes pure gauge SUð3Þ theory, which is center
symmetric in the vacuum, and the usually used order
parameter is the Polyakov loop expectation value hPi [1],
which is related to the heavy quark free energy. At zero
density and chiral limit, lattice QCD results show that the
chiral and deconfinement phase transitions occur at the
same critical temperature, e.g. see Refs. [10–14] and also

review papers [15,16]. This result is highly nontrivial
because these two distinct phase transitions involve differ-
ent mechanisms at different energy scales. It has been
largely believed for a long time that chiral symmetry
restoration always coincides with deconfinement phase
transition in the whole ðT;�Þ plane.
However, for the case of finite physical quark mass,

neither the chiral condensate nor the Polyakov loop is a
good order parameter. For heavy quark, there is no dy-
namical chiral symmetry breaking (e.g. see [17]) thus no
chiral restoration. On the other hand, the linear potential
description for confinement property is not suitable for a
light quark system. In recent years, several lattice groups
have made much effort on investigating the chiral and
deconfinement phase transition temperatures with almost
physical quark masses, e.g. RBC-Bielefeld group [18],
which later merged with part of the MILC group [19]
and formed the hotQCD group [20,21], and Wuppertal-
Budapest group [22–26]. The result from the RBC-
Bielefeld group in 2006 [18] found that the two pseudo-
critical temperatures for Nf ¼ 2þ 1 coincide at Tc ¼
192ð7Þð4Þ MeV. The Wuppetal-Budapest group found
that for the case of Nf ¼ 2þ 1, there are three pseudo-

critical temperatures, the transition temperature for chiral

restoration of u, d quarks T
�ðudÞ
c ¼ 151ð3Þð3Þ MeV, the

transition temperature for s quark number susceptibility
Ts
c ¼ 175ð2Þð4Þ MeV, and the deconfinement transition

temperature Td
c ¼ 176ð3Þð4Þ MeV from the Polyakov

loop. Recently, it is shown in [27,28], by using an improved
HISQ action, hotQCD Collaboration results are close to the
Wuppetal-Budapest Collaboration results.
The relation between the chiral and deconfinement

phase transitions has also attracted more interest recently
in studying the phase diagram at high baryon density
region [29]. It is conjectured in Ref. [30] that in the large
Nc limit, a confined but chiral symmetric phase, which is
called quarkyonic phase, can exist in the high baryon
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density region. The quarkyonic phase or chiral density
wave state is due to the quark-hole pairing near the
Fermi surface. Nevertheless, it attracts a lot of interest to
study whether such a chiral symmetric but confined phase
can survive in a real QCD phase diagram, and how it
competes with nuclear matter and the color superconduct-
ing phase [31].

In the framework of QCD effective models, there is still
no dynamical model that can describe the chiral symmetry
breaking and confinement simultaneously. The main diffi-
culty of an effective QCD model to include confinement
mechanism lies in that it is difficult to calculate the
Polyakov loop analytically. Currently, the popular models
used to investigate the chiral and deconfinement phase
transitions are the Polyakov Nambu-Jona-Lasinio model
[32–39] and Polyakov linear sigma model [40,41].
However, the shortcoming of these models is that the
temperature dependence of the Polyakov loop potential is
put in by hand from lattice result, which cannot be self-
consistently be extended to finite baryon density. Recently,
efforts have been made in Refs. [42,43] to derive a low-
energy effective theory for confinement-deconfinement
and chiral symmetry breaking/restoration.

Recent investigation revealed that quark propagator heat
kernels can also act as an order parameter as they transform
nontrivially under the center transformation related to
deconfinement transition [44–46]. The exciting result is
the behavior of the spectral sum of the Dirac operator
under center transformation [45,47–49]. A new order pa-
rameter, called dressed Polyakov loop has been defined
that can be represented as a spectral sum of the Dirac
operator [49]. It has been found the infrared part of the
spectrum particularly plays a leading role in confinement
[45]. This result is encouraging since it gives a hope to
relate the chiral phase transition with the confinement-
deconfinement phase transition. The order parameter for
chiral phase transition is related to the spectral density of
the Dirac operator through Banks-Casher relation [4].
Therefore, both the dressed Polyakov loop and the chiral
condensate are related to the spectral sum of the Dirac
operator. Behavior of the dressed Polyakov loop is mainly
studied in the framework of Lattice gauge theory [50–52].
Apart from that, studies based on Dyson-Schwinger equa-
tions [53–55] and the PNJL model [56,57] have been
carried out. In those studies the role of dressed Polyakov
loop as an order parameter is discussed at zero chemical
potential. The dressed Polyakov loop at finite temperature
and density has been investigated in the two-flavor NJL
model in Ref. [58]. In this paper, we show the phase
diagram in the framework of a three-flavor NJL model
by using the dressed Polyakov loop as an equivalent order
parameter.

This paper is organized as follows. We introduce the
dressed Polyakov loop as an equivalent order parameter of
confinement-deconfinement phase transition and the NJL

model in Sec. II. Then in Sec. III, we show the results of the
three-flavor QCD phase diagram in the T-� plane in the
chiral limit and in the case of explicit chiral symmetry
breaking, respectively. At the end, we give the conclusion
and discussion.

II. DRESSED POLYAKOV LOOP AND THE
THREE-FLAVOR NJL MODEL

We first introduce the dressed Polyakov loop. To do this
we have to consider a Uð1Þ valued boundary condition for
the fermionic fields in the temporal direction instead of the
canonical choice of antiperiodic boundary condition,

c ðx; �Þ ¼ e�i�c ðx; 0Þ; (1)

where 0 � �< 2� is the phase angle and � is the inverse
temperature.
Dual quark condensate �n is then defined by the Fourier

transform (with respect to the phase �) of the general
boundary condition dependent quark condensate [49–51],

�n ¼ �
Z 2�

0

d�

2�
e�in�h �c c i�; (2)

where n is the winding number.
The particular case of n ¼ 1 is called the dressed

Polyakov loop which transforms in the same way as the
conventional thin Polyakov loop under the center symme-
try and hence is an order parameter for the deconfinement
transition [49–51]. It reduces to the thin Polyakov loop and
to the dual of the conventional chiral condensate in infinite
and zero quark mass limits, respectively, i.e., in the chiral
limit m ! 0 we get the dual of the conventional chiral
condensate and in the m ! 1 limit we have a thin
Polyakov loop [49–51].
The Lagrangian of the three-flavor NJL model [59] is

given as

L ¼ �c ði��@� �mÞc þGs

X
a

fð �c �ac Þ2

þ ð �c i�5�ac Þ2g � KfDetf½ �c ð1þ �5Þc �
þ Detf½ �c ð1� �5Þc �g; (3)

where c ¼ ðu; d; sÞT denotes the transpose of the quark
field, andm ¼ Diagðmu;md;msÞ is the corresponding mass
matrix in the flavor space. �a with a ¼ 1; � � � ; N2

f � 1 are

the eight Gell-Mann matrices, andDetf means determinant

in flavor space. The last term is the standard form of the
’t Hooft interaction, which is invariant under SUð3ÞL �
SUð3ÞR �Uð1ÞB symmetry, but breaks down the UAð1Þ
symmetry.
The � dependent thermodynamic potential in the mean

field level is given as the following:

�� ¼ X
f

��;Mf
þ 2Gs

X
f

h�i2�;f � 4Kh�i�;uh�i�;dh�i�;s;

(4)
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with

��;Mf
¼ �2Nc

Z
�

d3p

ð2�Þ3
�
Ep;f þ 1

�
lnð1þ e��E�

p;f Þ

þ 1

�
lnð1þ e��Eþ

p;f Þ
�
; (5)

where the sum is in the flavor space, Ep;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

�;f

q
and E�

p;f ¼ Ep;f � ½�þ ið�� �ÞT�, with the constituent

quark mass

M�;i ¼ mi � 4Gsh�i�;i þ 2Kh�i�;jh�i�;k; (6)

where ði; j; kÞ is the quark flavor indices ðu; d; sÞ, and
h�i�;f ¼ h �c fc fi�. We will only consider isospin sym-

metric quark matter and define a uniform chemical poten-
tial � for u, d, and s.

It is known that the NJL model lacks of confinement and
the gluon dynamics is encoded in a static coupling constant
for four point contact interaction. However, assuming that
we can read the information of confinement from the dual
chiral condensate, it would be interesting to see the behav-
ior of the dressed Polyakov loop in a scenario without any
explicit mechanism for confinement.

The thermodynamic potential contains an imaginary
part. We take only the real part of the potential and the
imaginary phase factor is not considered in this work. The
mean field h�i� is obtained by minimizing the potential for

each value of � 2 ½0; 2�Þ for fixed T and �. The conven-
tional chiral condensate is h�i� ¼ h �c c i�. For brevity,
from here on we will represent the conventional chiral
condensate as h�i. The dressed Polyakov loop �1 is ob-
tained by integrating over the angle.

III. PHASE DIAGRAM FOR THREE FLAVORS

We investigate phase transitions for two cases, i.e., in the
chiral limit and in the case of explicit chiral symmetry
breaking with physical quark mass, and the corresponding
parameters shown in Table_I are taken from Refs. [60–62]:

A. Phase diagram in the chiral limit

We first consider the case of chiral limit, i.e.mu ¼ md ¼
ms ¼ 0. In Fig. 1, we show the behavior of the conven-
tional chiral condensate �h�i and the corresponding

dressed Polyakov loop�1 for u, d, and s quarks at different
chemical potentials as functions of temperature. For both
order parameters, it is observed that there are three tem-
perature regions for �h�i and �1. For �h�i, at smaller
temperatures it remains constant at a value corresponding
to the value of the conventional chiral condensate in the
vacuum, then it drops to zero at the critical temperature Tc,
and eventually keeps zero above the critical temperature.
The critical temperature decreases with the increase of the
chemical potential. It is noticed that, in order to guide eyes,
we have connected the two end points of the order parame-
ter at the jump.
On the other hand the behavior for the dressed Polyakov

loop is just the opposite. It remains zero for small tem-
peratures and then jumps at the critical temperature, and
finally saturates to a high value that varies very slowly with
temperatures. The almost zero value of �1 for small tem-
peratures is due to the fact that the Uð1Þ boundary condi-
tion dependent general quark condensate nearly does not
vary with the angle � for small temperatures [see Eq. (2)].
It is seen that the phase transitions for chiral restoration

and dressed Polyakov loop are of first order in the whole
T-� plane. For the two-flavor case, it was found that these
two phase transitions are of second order. The Nf depen-

dent result is in agreement with the results given by
Pisarski and Wilczek in Ref. [63]. The first-order phase
transition in the three-flavor case is due to the ’t Hooft
interaction in Eq. (3), which contributes a cubic term in the
thermodynamical potential in Eq. (4).
Figure 2 shows the phase diagram of three-flavor in the

chiral limit. We find almost exact matching for the tran-
sition temperatures calculated from these two quantities in
the whole T-� plane.

FIG. 1 (color online). The conventional chiral condensate
�h�iu;d;s and the dressed Polyakov loop �u;d;s

1 of u, d, s quarks
as functions of temperature for different values of the chemical
potentials. Here, �h�i and �1 both are measured in ½GeV3�.

TABLE I. Two sets of parameters in yhree-flavor NJL model:
the current quark mass mq for up and down quark and ms for

strange quark, coupling constants G and K, with a spatial
momentum cutoff � ¼ 602:3 MeV.

mq[MeV] ms[MeV] Gs�
2 K�5

Chiral limit 0 0 1.926 12.36

Physical mass 5.5 140.7 1.835 12.36
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B. Phase diagram with physical quark mass

For the case of finite quark massmu¼md¼5:5MeV and
ms¼140:7MeV, we have chosen the model parameters of
Gs�

2 ¼ 1:835, K�5 ¼ 12:36 with � ¼ 602:3 MeV as in
Ref. [60] to fit m� ¼ 135:0 MeV, f� ¼ 92:4 MeV, mK ¼
497:7 MeV, and m	0 ¼ 957:8 MeV.

In Figs. 3 and 4, we show the behavior of the conven-
tional chiral condensate �h�i and the dressed Polyakov
loop �1 at different chemical potentials as functions of
temperature for u, d, and s quarks, respectively.

For both cases, it is observed that there are three tem-
perature regions for �h�i and �1. For �h�i, at smaller
temperatures it remains constant at a value corresponding

to the value of the conventional chiral condensate in the
vacuum, then it rapidly decreases in a small window of
temperature and eventually almost saturates to a lower
value. The decreasing occurs at different temperatures for
different values of the chemical potentials. On the other
hand the behavior for the dressed Polyakov loop is just the
opposite. It remains almost zero for small temperatures and
then rises rapidly, finally saturating to a high value that
varies very slowly with temperatures. The almost zero
value of �1 for small temperatures is due to the fact that
the Uð1Þ boundary condition dependent general quark
condensate nearly does not vary with the angle � for small
temperatures [see Eq. (2)].
The critical temperature for a real phase transition or the

pseudocritical temperature for a crossover is extracted
from the susceptibility of the order parameter or the tem-
perature derivative of the order parameter. For example, for
a chiral phase transition of the strange quark, the (pseudo)
critical temperature is extracted from the temperature
derivative @ð�<�s>Þ=ð@TÞ. This quantity describes
how fast the order parameter changes with temperature.
Normally the critical temperature corresponds to the fastest
change of the order parameter, and the temperature deriva-
tive of the order parameter shows a peak at the critical
point. However, there are some subtleties to determine
the pseudocritical temperature for the chiral restoration
of the strange quark. We show how we determine the
pseudocritical temperature of the crossover by using
Fig. 5, which is the temperature derivative of the chiral
condensate of the strange quark corresponding to Fig. 4.
For � ¼ 0, from Fig. 5 one can observe that the tem-

perature derivative of the strange quark condensate shows a
peak at T ¼ 196 MeV; correspondingly, from Fig. 4, one
can see that the strange quark condensate changes fast at

FIG. 2 (color online). Three-flavor phase diagram in the T-�
plane for the case of chiral limit. The solid line is the critical line
for �1, and the dashed line is the critical line for conventional
chiral phase transition.

FIG. 3 (color online). The conventional chiral condensate
�h�iu;d and the dressed Polyakov loop �u;d

1 of u, d quarks as

functions of temperature for different values of the chemical
potentials. Here, �h�i and �1 both are measured in ½GeV3�.

FIG. 4 (color online). The conventional chiral condensate
�h�is and the dressed Polyakov loop �s

1 of s quark as functions

of temperature for different values of the chemical potentials.
Here, �h�i and �1 both are measured in ½GeV3�.
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T ¼ 196 MeV, which is the critical temperature for a
chiral phase transition of the u, d quarks at zero chemical
potential. However, the value of the strange quark conden-

sate at Tu;d
c;� ¼ 196 MeV is still around its vacuum value;

one cannot locate the pseudocritical temperature of the

strange quark at Tu;d
c;� ¼ 196 MeV even though there is a

peak for the temperature derivative of the strange quark
condensate. The reasonable explanation of the fast change

of the strange quark condensate at Tu;d
c;� ¼ 196 MeV is that

the strange quark feels the chiral phase transition of u, d
quarks due to the flavor mixing effect. For � ¼ 0, from
Fig. 5 one can also observe a bump region of the tempera-
ture derivative of the strange quark condensate around T ¼
250 MeV; however, there is no obvious peak that shows
up. Therefore, we cannot extract an explicit pseudocritical
temperature from the chiral phase transition of the strange
quark. Correspondingly, we find that the strange quark
condensate at � ¼ 0 changes smoothly with temperature.

The temperature derivative of the strange quark conden-
sate at � ¼ 200 MeV is similar to the case at � ¼ 0. The
only difference is that the peak moves to a lower tempera-
ture. The small jump at the large strange chiral condensate
region is induced by the u, d quark chiral phase transition.
It cannot be regarded as the phase transition for the strange
quark even though it corresponds to a peak of the strange
chiral susceptibility, because the order parameter does not
change very much compared to its vacuum value. It should
still be regarded as in the chiral symmetry breaking phase.
At � ¼ 320 MeV, it is seen from Fig. 5 that the left peak

develops to a sharp peak at Tu;d
c;�, and an obvious peak

shows up in the right bump region. Therefore, one can
extract the pseudocritical temperature for the chiral phase
transition of the strange quark. For a higher chemical
potential, e.g, � ¼ 460 MeV or � ¼ 490 MeV, because
u, d quarks are already in chiral symmetric phase, there is
only one peak that shows up for the temperature derivative
of the strange quark condensate in Fig. 5, and the location

of the peak gives the pseudocritical temperature of the
phase transition.
As we have discussed in detail above, one has to com-

bine the information from the order parameter itself as well
as the temperature derivative of the order parameter in
order to determine the pseudocritical temperature of the
crossover. This method is also used to determine the
dressed Polyakov loop of the strange quark. The critical
and pseudocritical temperatures extracted from the tem-
perature derivative of the order parameters are shown in
Fig. 6. It is found that the chiral and deconfinement phase
transitions are flavor dependent.
At the low baryon chemical potential region when �<

270 MeV, for light flavors, i.e. for u, d quarks, we observe
from Fig. 3 that the conventional chiral condensate and the
dressed Polyakov loop change rapidly with the increase of
temperature. From the temperature derivative of the order
parameters of the chiral condensate and dressed Polyakov
loop, we can obtain two separate pseudocritical tempera-

tures T�
c and TD

c for fixed �, and we find T�
c is always

smaller than TD
c .

However, in the chemical potential region when �<
270 MeV, for s quark, from Fig. 4 we can see that the
conventional chiral condensate and dressed Polyakov loop
change smoothly with the increase of temperature. From
the temperature derivative of the order parameters, one
cannot extract the values of the pseudocritical temperatures
as already discussed. Therefore, in Fig. 6 of the three-flavor
phase diagram, we can read that in the region around
0<�< 270 MeV, the phase transitions for u, d are
crossover, and different order parameters have different

FIG. 5 (color online). The derivative of strange chiral conden-
sate @ð�h�isÞ=@T as functions of T for different values of �.

FIG. 6 (color online). Three-flavor phase diagram in the T-�
plane for the case of mu ¼ md ¼ 5 MeV and ms ¼ 140:7 MeV.
The dashed-dotted lines are the critical line for �1, and the
dashed lines are the critical line for conventional chiral phase
transition in the region of crossover. The solid lines indicates the
first-order phase transitions, and the solid circle indicates the
critical end points for chiral phase transitions of u, d quarks.
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pseudocritical temperatures. The s flavor experiences a
rapid crossover, and no pseudocritical temperatures can
be extracted from the order parameters. From the lattice
results in Ref. [24] at zero chemical potential, there is also
no pseudocritical temperature for the order parameter of the
strange quark’s chiral condensate.

At a higher baryon chemical potential region, it is ob-
served from Fig. 3 that the conventional chiral condensate
and the dressed Polyakov loop change sharply with the
increase of temperature. From the temperature derivative
of the order parameters, we find that the phase transitions
are of first order, and the critical temperatures for chiral
and dressed Polyakov loop coincide with each other around
the critical end point (CEP).

For s quark, from Fig. 4 we can see that when the
chemical potential becomes higher and higher, the conven-
tional chiral condensate and dressed Polyakov loop change
more rapidly with the increase of temperature. The tem-
perature derivative of the order parameters gives separate
values of the pseudocritical temperatures in the region
270<�< 450 MeV, and the two pseudocritical tempera-
tures merge in the region of �> 450 MeV.

From Fig. 6 of the three-flavor phase diagram, we can
see that the critical end point for u, d flavors lies at

ðTu;d
CEP;�

u;d
CEPÞ ¼ ð68:4 MeV; 317:8 MeVÞ, which is differ-

ent from the results in Ref. [58] for pure two-flavor NJL
model. The difference result from (1) different model
parameters having been used, and (2) the coupling of s
quark to u, d quark contributing one extra term in the
thermodynamical potential compared to the pure two-
flavor case. The location of CEP in this work is in good
agreement with that in Ref. [64].

In Figs. 7 and 8, we show the details of locating the CEP.
In the first-order phase region, there are two branches of
number densities, i.e., for fixed chemical potential, the

number density nq ¼ � @�
@� has a jump at the transition

temperature. The two branches of number densities merge
at the CEP. This feature is shown in Fig. 7. At the CEP, the
phase transition is of second order and this is indicated by
the divergent behavior of the number susceptibility. We

show the number susceptibility �q ¼ � @2�
@�2 as functions of

the temperature in Fig. 8. It is clearly seen that �q develops

a sharp peak at CEP.

IV. CONCLUSION AND DISCUSSION

We investigate the chiral condensate and the dressed
Polyakov loop or dual chiral condensate at finite tempera-
ture and density in the three-flavor Nambu-Jona-Lasinio
model. It is found that in the chiral limit, the phase tran-
sitions are of first order and the critical temperature for
chiral phase transition coincides with that of the dressed
Polyakov loop. In the case of explicit chiral symmetry
breaking, it is found that the phase transitions are flavor
dependent, and there is a phase transition range for each
flavor. The transition range of the s quark is located at
higher temperature and higher baryon density than that of
u, d quarks. At low baryon density region, it is found that
the transition range of u, d quarks are not separated too
much from that of the s quark; however, the separation of
the transition ranges for u, d quarks and the s quark
becomes wider and wider with the increase of the chemical
potential.
For light u, d quarks, the pseudocritical temperature for

chiral transition T�
c is smaller than that of the dressed

Polyakov loop TD
c in the low baryon density region where

the transition is a crossover, and these two phase transitions
coincide in the first-order phase transition region at high
baryon density. For the s quark, both transitions are of
smooth crossover at low baryon density and become rapid
crossover at a moderate baryon density region where the

FIG. 7 (color online). The quark number density nq as func-
tions of the temperature for different chemical potentials, and nq
is in units of ½GeV3�.

FIG. 8 (color online). The number susceptibility �q=T
2 as

functions of the temperature for different chemical potentials.
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pseudocritical temperatures for the chiral condensate and
the dressed Polyakov loop are separated. Then, at enough
high baryon density, these two transitions coincide with
each other.

Our results are based on the NJL model, where the gluon
dynamics is encoded in a static coupling constant for four
point contact interaction; a quantitative comparison will
not match with lattice results. However, we believe the
scenario of the sequential phase transitions is physically
correct.

Until now, there have been six quark flavors observed in
experiment. These six flavors cover a very wide energy
scale, from several MeV to several hundred GeV. Only
light quarks experience dynamically chiral symmetry
breaking in the vacuum, and chiral phase transition in
high temperature and density. However, there are no
good order parameters to describe the deconfinement phase
transition of light quarks. The conventional Polyakov loop
is a good order parameter for confinement-deconfinement
phase transition in the limit of infinity heavy quark mass
and has the interpretation of the free energy of an infinity
heavy quark. In analogy to that we can regard the dressed
Polyakov loop as an order parameter for confinement-
deconfinement phase transition for a quark with mass m,
and interpret the dressed Polyakov loop as the free energy
of a quark with any mass m [52]. Therefore, in principle,
each flavor can have different critical temperatures for
deconfinement phase transition. Lattice results already
reflect such properties at zero chemical potential, e.g. the
pseudocritical temperatures for order parameters of u, d
quarks, s quark and the Polyakov loop are different, and the
pseudocritical temperature is higher for heavier quark
mass.

It is natural to understand that the separation of the phase
transition range for different flavors becomes wider and
wider with the increase of the chemical potential. Lattice
result at zero chemical potential gives that the pseudocriti-
cal temperature for u, d quarks is around 155 MeV, and for
s quark is around 175 MeV. The difference is around
20 MeV. However, at zero temperature, the u, d quarks
restore chiral symmetry at the chemical potential around

their vacuum constituent masses, i.e. �u;d
c �Mu;d �

330 MeV, and the s quark restores chiral symmetry at
the chemical potential around �s

c �Ms � 550 MeV. The
difference is around 200 MeV.

Based on the above analysis, in Fig. 9, we show our
conjectured three-dimensional (3D) QCD phase diagram
for finite temperature T, quark chemical potential �q, and

isospin chemical potential �I.
In the plane of ð�; TÞ, each flavor has its own transition

range. The transition range is wider in the low baryon
density and becomes narrower and narrower with the in-
crease of the chemical potential, and eventually merges at
higher chemical potential. By using the lattice results at
zero density, we identify the phase transition range around

155 MeV for u, d quark, 175 MeV for s quark, and
190 MeV for heavy flavor. The upper solid line is for the
Polyakov loop, which does not change so much with the
increase of baryon density. This result agrees with that in
any Polyakov loop NJL model and Polyakov loop linear
sigma model. Because of the flavor dependent phase tran-
sitions, we naturally expect the color superconducting
phase for yhe two-flavor quark system and three-flavor
quark system in different baryon density regions [31].
Because of the finite mass of the strange quark, the three-
flavor color superconducting phase can be in the color
flavor locking (CFL) phase [65], CFL-kaon condensate
phase (CFL-K) [66], or uSC/dSC phase [67].
When isospin asymmetry is considered, the phase dia-

gram becomes much more complicated. At a low baryon
density region, there will be pion superfluidity and kaon
superfluidity phases [68]. In the color superconducting
phase, because isospin asymmetry induces mismatch be-
tween the pairing quarks, there will appear unstable gap-
less excitations [69,70] when charge neutrality condition is
considered. It has been vastly discussed in many literatures
about the true ground state of the charge neutral two-flavor
and three-flavor cold quark matter, e.g., the Larkin-
Ovchinnikov-Fulde-Ferrell sate or other crystalline struc-
ture [71], the gluon condensate state [72], the current
generation state [73], and so on. The detailed analysis
given in Ref. [74] shows that in the gapless color super-
conducting phase, both the phase part and magnitude part
of the order parameter will develop instabilities. The phase
part develops into the chromomagnetic instability, which
induces the plane-wave state; the magnitude part develops
the Sarma instability and Higgs instability; the Sarma
instability can be competed with charge neutrality condi-
tion. If the Higgs instability cannot be cured by the electric
or color Coulomb interaction, it will induce the inhomoge-
neous state.

FIG. 9 (color online). Conjectured 3D QCD phase diagram at
finite temperature T, quark chemical potential �q and isospin

chemical potential �I.
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