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We perform a comprehensive analysis of target mass corrections to spin-averaged structure functions

and asymmetries at next-to-leading order. Several different prescriptions for target mass corrections are

considered, including the operator product expansion, and various approximations to it, collinear

factorization, and �-scaling. We assess the impact of each of these on a number of observables,

such as the neutron to proton F2 structure function ratio, and parity-violating electron scattering

asymmetries for protons and deuterons which are sensitive to �Z interference effects. The corrections

from higher order radiative and nuclear effects on the parity-violating deuteron asymmetry are also

quantified.
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I. INTRODUCTION

Tremendous progress has been made in recent years in
the quest to reveal the structure of the nucleon at its deepest
levels. Traditionally deep-inelastic scattering (DIS) of lep-
tons has been the primary tool used to study nucleon
structure at large values of the four-momentum transfer
squared, Q2, where the nucleon’s quark and gluon (or
parton) constituents can be cleanly resolved. Here the
theoretical tools are well developed, and the nucleon’s
structure can be conveniently parametrized in terms of
universal longitudinal momentum distribution functions
of individual quarks and gluons. Global analyses of DIS
and other hard processes have been highly successful in
correlating data over a wide range of kinematics, produc-
ing fits of parton distribution functions (PDFs) to next-
to-leading order (in the strong coupling parameter �s)
accuracy and beyond [1–8].

While the perturbative domain of large Q2 and small
parton momentum fraction x has received considerable
attention both experimentally and theoretically, the region
of large x and low Q2 (� 1–2 GeV2), where nonperturba-
tive effects play a greater role, has been relatively poorly
explored. This is perhaps not too surprising given the
difficulty in reliably computing the various corrections
that are needed to describe data in this region. Examples
of nonperturbative effects that are relevant here include
target mass corrections (TMCs) associated with finite val-
ues of M2=Q2, where M is the nucleon mass, higher twist
terms arising from long-range nonperturbative multiparton
correlations, and nuclear corrections in experiments in-
volving deuterium or heavier nuclei, which are important
at large x for any Q2.

The large-x region has been particularly difficult to
access experimentally, especially in high-energy colliders,
due to the rapidly falling cross sections as x ! 1. The most
extensive data set available that covers this region has been

from experiments at SLAC [9]. More recently, progress on
this front has been made with DIS structure function
measurements at Jefferson Lab, utilizing the high luminos-
ities and duty factors available with the CEBAF accelera-
tor. Indeed, an impressive body of very high-precision data
has now been accumulated over the last decade on various
structure functions, including accurate longitudinal-
transverse separations needed for model-independent
determinations of the F2 and FL structure functions of
protons and nuclei [10]. Future plans at the energy
upgraded Jefferson Lab involve extending the DIS mea-
surements to even larger x (x� 0:85) with planned experi-
ments [11–13] to measure the ratio of d to u quark
distributions, as well as search for effects such as charge
symmetry violation in PDFs and tests of the standard
model in parity-violating DIS asymmetries.
The new data have the potential to provide strong con-

straints on PDFs at large x, where currently uncertainties
remain significant. Several recent analyses [6,7] have in
fact attempted to utilize data at low values of Q2 and
invariant final-state hadron masses W2 ¼ M2 þQ2ð1�
xÞ=x. Stable fits of leading twist PDFs could be obtained
[6] forW down to�3 GeV andQ2 * 1:7 GeV2, as long as
TMC and higher twist corrections were accounted for.
Aside from its intrinsic value, better knowledge of PDFs
at large x may also be important for searches of new
physics signals in collider experiments such as at the
Tevatron or the LHC at large rapidities or for heavy mass
particles [14], as well as at more central rapidities where
uncertainties in large-x PDFs at low Q2 can, through Q2

evolution, affect cross sections at small x and largeQ2 [15].
The increased kinematic reach of the future high-

precision DIS measurements calls for a careful evaluation
of the relevant nonperturbative corrections in order to
unambiguously extract information on leading twist
PDFs or new physics signals. The effects that are most
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amenable to direct computation, in principle, are the
TMCs. As discussed by Nachtmann [16], these effects
are in fact associated with leading twist operators (hence
contain no additional information on the nonperturbative
parton correlations), even though they give rise to
Q2=�2 ¼ 4x2M2=Q2 corrections, where � ¼ Q2=2Mx is
the energy transfer. Nachtmann further showed that one
could generalize the standard operator product expansion
(OPE) of structure function moments to finite Q2 such that
only operators of a specific twist would appear at a given
order in 1=Q2. The resulting target mass corrected struc-
ture functions can then be derived through an inverse
Mellin transformation, as shown by Georgi and Politzer
[17] (for a review of TMCs in the OPE approach see
Ref. [18]).

Later an alternative formulation in terms of collinear
factorization (CF) was used by Ellis, Furmanski and
Petronzio [19] to derive TMCs including the effects of
off-shell partons and parton transverse motion. While the
OPE and CF formulations yield identical results for lead-
ing twist PDFs, they differ in the details of how the target
mass corrections are manifested at finite Q2. Other ver-
sions of TMCs were subsequently derived [20–22] within
the CF formalism using various assumptions about the
intrinsic properties of partons and higher twist contribu-
tions, leading to rather large differences in some cases [22].
Some of the phenomenological implications of the differ-
ent TMC prescriptions were discussed in Refs. [21,22],
including differences between leading order and next-
to-leading order (NLO) results; however, the effects on
observables have not been systematically investigated.
We do so in this paper.

In Sec. II we summarize the main results for TMCs in
the OPE and various CF formulations for the F1, F2, F3

and FL structure functions at NLO, and illustrate the
differences numerically. Implications for various observ-
ables are discussed in Sec. III, including the ratio of
neutron to proton F2 structure functions, which constrain
the d=u PDF ratio at large x, longitudinal to transverse
cross section ratios R, and parity-violating (PV) DIS asym-
metries on the proton and deuteron which are sensitive to
�Z interference structure functions. We also quantify the
effects of perturbative NLO corrections on the R�Z ratio for
the �Z interference, about which nothing is known empiri-
cally, and of nuclear effects on the deuteron PV asymme-
tries. Some finite-Q2 effects on PV asymmetries were
investigated previously in Ref. [23,24], and higher twists
in deuteron PV asymmetries in Refs. [25–29]. Finally, in
Sec. IV we draw some conclusions and outline possible
extensions of this work.

II. TARGET MASS CORRECTIONS

In this section we review the kinematic corrections to
structure functions arising from scattering at finite values

of Q2=�2. We consider several frameworks for the TMCs,
including the conventional one based on the operator prod-
uct expansion, and various approximations to it, as well as
a number of prescriptions using collinear factorization at
leading and next-to-leading order in �s. The structure
functions for the scattering of an unpolarized lepton from
an unpolarized nucleon are defined in terms of the nucleon
hadron tensor [30],

W��¼ 1

4�

Z
d4zeiq�zhpj½Jy�ðzÞ;J�ð0Þ�jpi (1a)

¼
�
�g��þ

q�q�

q2

�
F1ðx;Q2Þþ

�
p��p�q

q2
q�

�

�
�
p��p �q

q2
q�

�
F2ðx;Q2Þ
p�q � i�����q

�p�F3ðx;Q2Þ
2p �q ;

(1b)

where J� is the electromagnetic or weak current operator

for a given virtual boson (�, Z orW�). Here p and q are the
nucleon and exchanged boson four-momenta, respectively,
with q2 ¼ �Q2.
The structure functions F1;2 are related to the product of

two vector or two axial-vector currents, while F3 arises
from the interference of vector and axial-vector currents.
The F1 structure function is proportional to the transverse
virtual boson cross section, and F2 is given by a combina-
tion of transverse and longitudinal cross sections. It is
convenient to also introduce the longitudinal structure
function,

FLðx;Q2Þ ¼ 	2F2ðx;Q2Þ � 2xF1ðx;Q2Þ; (2)

where

	2 ¼ 1þ 4x2M2

Q2
: (3)

In the following wewill summarize target mass corrections
for each of these structure functions computed within the
various approaches outlined above.

A. Operator product expansion

Target mass corrections to structure functions were first
systematically considered by Georgi and Politzer [17] in
the framework of the operator product expansion. Here the
twist-2 quark bilinears in the product of currents J�J� in

Eq. (1a) are modified with the introduction of covariant
derivatives, �c��D�1 � � �D�nc ; since each derivative D�i

increases both the dimension and spin of the operator by
one unit, the twist (dimension minus spin) remains un-
changed. The expansion in terms of covariant derivatives
yields a series in 1=Q2 with coefficients given by moments
of structure functions. The resulting target mass corrected
structure functions are then accessed through an inverse
Mellin transformation, which gives [17]
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FOPE
1 ðx;Q2Þ ¼ 1þ 	

2	
Fð0Þ
1 ð�;Q2Þ þ 	2 � 1

4	2

�
h2ð�;Q2Þ þ 	2 � 1

2x	
g2ð�;Q2Þ

�
; (4a)

FOPE
2 ðx;Q2Þ ¼ ð1þ 	Þ2

4	3
Fð0Þ
2 ð�;Q2Þ þ 3xð	2 � 1Þ

2	4

�
h2ð�;Q2Þ þ 	2 � 1

2x	
g2ð�;Q2Þ

�
; (4b)

FOPE
L ðx;Q2Þ ¼ ð1þ 	Þ2

4	
Fð0Þ
L ð�;Q2Þ þ xð	2 � 1Þ

	2

�
h2ð�;Q2Þ þ 	2 � 1

2x	
g2ð�;Q2Þ

�
; (4c)

FOPE
3 ðx;Q2Þ ¼ ð1þ 	Þ

2	2
Fð0Þ
3 ð�;Q2Þ þ ð	2 � 1Þ

2	3
h3ð�;Q2Þ; (4d)

where Fð0Þ
i are the structure functions in the M2=Q2 ! 0

limit, evaluated at the modified scaling variable � [16,31],

� ¼ 2x

1þ 	
; (5)

which approaches x as M2=Q2 ! 0. The functions h2, g2
and h3 are associated with higher order terms in M2=Q2

and are given by [17,18]

h2ð�;Q2Þ ¼
Z 1

�
du

Fð0Þ
2 ðu;Q2Þ

u2
; (6a)

g2ð�;Q2Þ ¼
Z 1

�
du

Z 1

u
dv

Fð0Þ
2 ðv;Q2Þ

v2

¼
Z 1

�
duðu� �ÞF

ð0Þ
2 ðu;Q2Þ

u2
; (6b)

h3ð�;Q2Þ ¼
Z 1

�
du

Fð0Þ
3 ðu;Q2Þ

u
: (6c)

(Note that the function g2 here should not be confused with
the spin-dependent g2 structure function measured in po-
larized lepton-nucleon scattering.)

The expressions in Eqs. (4) are known to suffer from the
‘‘threshold problem,’’ in which the target mass corrected

(leading twist) structure functions do not vanish as x ! 1,
and are in fact nonzero in the kinematically forbidden
x > 1 region, where for a proton target baryon number
conservation would be violated. This is clear from the
Oð1Þ terms in Eqs. (4) in which the massless functions

Fð0Þ
i are evaluated at �. Because at any finite Q2 value one

has � < �0 � �ðx ¼ 1Þ< 1, for any input function Fð0Þ
i

which is nonzero for 0< x< 1, the target mass corrected
function at x ¼ 1 will not vanish, FOPE

i ðx ¼ 1; Q2 <1Þ>
0. A number of attempts have been made to ameliorate the
threshold problem [32,33] using various prescriptions and
ansätze, although none of these is unique and without
additional complications [18].
Recently, Kulagin and Petti [34] showed that by expand-

ing the target mass corrected structure functions to leading
order in 1=Q2, the resulting functions have the correct
x ! 1 limits

F1=Q2

1 ðx;Q2Þ ¼ 1

4
ð5� 	2ÞFð0Þ

1 ðx;Q2Þ

� 1

4
ð	2 � 1Þ½xFð0Þ0

1 ðx;Q2Þ � h2ðx;Q2Þ�;
(7a)

F1=Q2

2 ðx;Q2Þ ¼ ð2� 	2ÞFð0Þ
2 ðx;Q2Þ

� 1

4
ð	2 � 1Þ½xFð0Þ0

2 ðx;Q2Þ � 6xh2ðx;Q2Þ�;
(7b)

F1=Q2

L ðx;Q2Þ ¼ Fð0Þ
L ðx;Q2Þ

� 1

4
ð	2 � 1Þ½xFð0Þ0

L ðx;Q2Þ � 4xh2ðx;Q2Þ�;
(7c)

F1=Q2

3 ðx;Q2Þ ¼ 1

4
ð7� 3	2ÞFð0Þ

3 ðx;Q2Þ

� 1

4
ð	2 � 1Þ½xFð0Þ0

3 ðx;Q2Þ � 2h3ðx;Q2Þ�:
(7d)

While avoiding the threshold problem, this prescription,
however, raises the question of whether the 1=Q2 approxi-
mation is sufficiently accurate for structure functions near
x � 1 at moderateQ2. To test the convergence of the 1=Q2

expansion at large x, we further expand the OPE results (4)
to include Oð1=Q4Þ corrections

 0

 1
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 0.5  0.6  0.7  0.8  0.9  1

F
2 

/ F
2O

PE

x

1/Q2 OPE
1/Q4 OPE
approx OPE

FIG. 1 (color online). Ratio of the target mass corrected F2

structure functions using the 1=Q2 (solid, red), 1=Q4 (long-
dashed, green) and phenomenological (short-dashed, blue)
OPE approximations compared with the exact OPE result,
Eq. (4b). Note that the phenomenological OPE approximation
is almost indistinguishable from the exact OPE result, while the
1=Q2 and 1=Q4 expansions deviate from this for x * 0:6.
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F1=Q4

1 ðx;Q2Þ ¼ F1=Q2

1 ðx;Q2Þ þ ð	2 � 1Þ2
�
3

16
Fð0Þ
1 ðx;Q2Þ þ 1

16x
Fð0Þ
2 ðx;Q2Þ þ 3x

16
Fð0Þ0
1 ðx; Q2Þ

þ x2

32
Fð0Þ00
1 ðx;Q2Þ � 1

4
h2ðx;Q2Þ þ 1

8x
g2ðx;Q2Þ

�
(8a)

F1=Q4

2 ðx;Q2Þ ¼ F1=Q2

2 ðx;Q2Þ þ ð	2 � 1Þ2
�
23

16
Fð0Þ
2 ðx;Q2Þ þ 3x

8
Fð0Þ0
2 ðx;Q2Þ þ x2

32
Fð0Þ00
2 ðx;Q2Þ

� 3xh2ðx;Q2Þ þ 3

4
g2ðx;Q2Þ

�
; (8b)

F1=Q4

L ðx;Q2Þ ¼ F1=Q2

L ðx;Q2Þ þ ð	2 � 1Þ2
�
3

16
Fð0Þ
L ðx;Q2Þ þ 1

4
Fð0Þ
2 ðx;Q2Þ þ x

8
Fð0Þ0
L ðx;Q2Þ

þ x2

32
Fð0Þ00
L ðx;Q2Þ � xh2ðx; Q2Þ þ 1

2
g2ðx;Q2Þ

�
; (8c)

F1=Q4

3 ðx;Q2Þ ¼ F1=Q2

3 ðx;Q2Þ þ ð	2 � 1Þ2
�
13

16
Fð0Þ
3 ðx;Q2Þ þ 5x

16
Fð0Þ0
3 ðx;Q2Þ þ x2

32
Fð0Þ00
3 ðx;Q2Þ � 3

4
h3ðx;Q2Þ

�
; (8d)

where the first ðFð0Þ0
i Þ and second ðFð0Þ00

2 Þ derivatives of the
structure functions are with respect to x. In fact, one can
show that for a structure function that behaves at large x as
ð1� xÞn, the target mass corrected result will vanish in the
x ! 1 limit up to order 1=Q2n�2 in the expansion. For n �
3, as is typical for nucleon structure functions, the thresh-
old problem will therefore appear only at order 1=Q6.

The accuracy of the 1=Q2 expansions is illustrated in
Fig. 1, where in order to isolate the target mass effect from
the specific form of the structure function parametrization
we have taken for simplicity the form F2 � ð1� xÞ3. Both
the 1=Q2 and 1=Q4 approximations are found to reproduce
the full OPE result very well up to x � 0:6, but significant
deviations are visible at larger x. Furthermore, while there
is a modest improvement in the agreement with the exact
result for 0:6 & x & 0:8 after inclusion of the 1=Q4 terms,
both expansions appear to break down for x * 0:8. The
reliability of a low order 1=Q2 expansion is therefore
questionable at these x values, and hence their efficacy in
removing the x ! 1 threshold problem.

Since the integrals in the functions h2;3 and g2 can be

time consuming to compute numerically, Schienbein et al.
[18] found phenomenological analytic forms which ap-
proximate the target mass corrected F2 and F3 structure
functions in Eqs. (4b) and (4d) by

F
approx
2 ðx;Q2Þ¼ð1þ	Þ2

2	3

�
1þ3ð	2�1Þ

	ð1þ	Þ ð1��Þ2
�
Fð0Þ
2 ð�;Q2Þ;

(9a)

Fapprox
3 ðx;Q2Þ¼ð1þ	Þ

2	2

�
1� ð	2�1Þ

2	ð1þ	Þð1��Þln�
�
Fð0Þ
3 ð�;Q2Þ:

(9b)

These turn out to be rather good approximations to the
exact results, as Fig. 1 illustrates for the F2 case. For all
values of x, the phenomenological approximation (9a)
stays within 5% of the full OPE result.

B. Collinear factorization

An alternative approach to TMCs relies on the collinear
factorization (CF) formalism [19–22], which makes use of
the factorization theorem to relate the hadronic tensor for
lepton-hadron scattering to that for scattering from a par-
ton. Here parton distributions are formulated directly in
momentum space, avoiding the need to perform an inverse
Mellin transform to obtain the PDF from its moments. An
advantage of the CF formalism for TMCs is that it can be
extended to other hard scattering processes, such as semi-
inclusive DIS [35], where an OPE is not available.

1. Ellis, Furmanski and Petronzio

The first study of TMCs within CF was made by Ellis,
Furmanski, and Petronzio (EFP) [19], who analyzed the
virtual photon-hadron scattering amplitude using a
Feynman diagram technique to expand the hard scattering
term about the collinear direction, incorporating both par-
ton off-shellness (or interactions) and parton transverse
momentum in twist-4 contributions [36]. Using the same
notation as for the OPE TMCs above, the EFP results for
the target mass corrected structure functions are given by

FEFP
1 ðx;Q2Þ¼ 2

1þ	
Fð0Þ
1 ð�;Q2Þþð	2�1Þ

ð1þ	Þ2h2ð�;Q
2Þ; (10a)

FEFP
2 ðx;Q2Þ¼ 1

	2
Fð0Þ
2 ð�;Q2Þþ3�ð	2�1Þ

	2ð1þ	Þ h2ð�;Q
2Þ; (10b)

FEFP
L ðx;Q2Þ¼Fð0Þ

L ð�;Q2Þþ2�ð	2�1Þ
ð1þ	Þ h2ð�;Q2Þ; (10c)

FEFP
3 ðx;Q2Þ¼ 1

	
Fð0Þ
3 ð�;Q2Þþ 2ð	2�1Þ

	ð1þ	Þ2h3ð�;Q
2Þ; (10d)

where again the Fð0Þ
i refer to the uncorrected structure

functions, and h2;3 are given in Eqs. (6). [Note that the

definition of the longitudinal structure function in EFP
differs from the usual definition (2) by a factor x, and the
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F2 structure function is proportional to what EFP call the
‘‘transverse’’ structure function, which in standard usage is

proportional to F1.] Because the massless functions Fð0Þ
i

are evaluated at �, the target mass corrected structure
functions will suffer from the same threshold problem as
in the OPE analysis in Eqs. (4). While the expressions in
Eqs. (10) were derived in Ref. [19] at leading order in �s,
in this work we will assume their validity also at NLO.

The prefactors for the leading terms proportional to Fð0Þ
i

in Eqs. (10) are remarkably close to those for the leading
terms in the OPE expressions in Eqs. (4). To first order in
1=Q2, the leading term prefactors for F1 in both OPE and
EFP reduce to (1� x2M2=Q2). Similarly, the F2 prefactors
both reduce to (1� 4x2M2=Q2), while those for FL reduce
to 1. For the F3 structure function, however, the Oð1=Q2Þ
prefactor is (1� 3x2M2=Q2) for OPE, whereas for the EFP
CF result it is (1� 2x2M2=Q2).

At leading order in the massless limit the longitudinal
structure function vanishes identically. At NLO, however,
it receives contributions from both quark and gluon PDFs
convoluted with the respective hard coefficient functions.
For electromagnetic scattering, for example, one has [37,38]

F�ð0Þ
L ðx;Q2Þ ¼ �sðQ2Þ

�

Z 1

x

dy

y

�
x

y

�
2
�
4

3
F�ð0Þ;LO
2 ðy;Q2Þ

þ c�ðy� xÞgðy;Q2Þ
�
; (11)

where c� ¼ 2
P

qe
2
q, and F�ð0Þ;LO

2 is given by the leading

order expression for F�ð0Þ
2 . Similar expressions hold also for

the longitudinal structure functions associated with other
electroweak currents. In our numerical calculations discussed
below we will always compute FL at NLO.

It is important also to note that Eqs. (10) have been
derived considering Feynman diagrams with two or four
legs attached to the hadronic correlator (see Figs. 2 and 3 of
Ref. [19]), which forM ¼ 0 give rise to twist-2 and twist-4
contributions to the structure functions, respectively. For
M � 0, however, the quark and gluon equations of motion
allow one to extract a twist-2 contribution from the four-leg
diagrams, which when added to the twist-2 target mass
correction yields the full result in Eqs. (10). It is an
interesting question whether by resumming the twist-2
parts of n-leg diagrams one would be able to recover the
TMC expressions (10).

2. Accardi and Qiu

In both the EFP and OPE treatments of TMCs, the
resulting structure functions are nonzero for x > 1. The
analysis of Accardi and Qiu (AQ) [22] traced this problem
to baryon number nonconservation in the handbag diagram
for M � 0. Working with two-leg diagrams only, in con-
trast to EFP who also consider four-leg diagrams up to
twist-4, the AQ target mass corrected structure functions
are given by [22]

FAQ
1 ðx;Q2Þ ¼ ~Fð0Þ

1 ð�;Q2Þ; (12a)

FAQ
2 ðx;Q2Þ ¼ 1þ 	

2	2
~Fð0Þ
2 ð�;Q2Þ; (12b)

FAQ
L ðx;Q2Þ ¼ 1þ 	

2
~Fð0Þ
L ð�;Q2Þ; (12c)

FAQ
3 ðx;Q2Þ ¼ 1

	
~Fð0Þ
3 ð�;Q2Þ: (12d)

Here the functions ~Fð0Þ
i are defined as

~F ð0Þ
i ð�;Q2Þ ¼ X

f

Z �=x

�

dz

z
Cf
i

�
�

z
;Q2

�
’fðz;Q2Þ; (13)

where Cf
i are the perturbatively calculable hard coefficient

functions for a given parton flavor f, including parton
charge factors, ’f are the parton densities of the nucleon,

and the sum is taken over all active flavors. The upper limit
in Eq. (13) ensures that the target mass corrected structure
functions vanish for x > 1, as required by kinematics,
although jet mass corrections need to be introduced in
order to render the target mass corrected functions zero
at x ¼ 1 [22]. It remains an interesting exercise to apply
the same prescription to twist-4 diagrams as in Ref. [19] in
order to establish a more direct correspondence between
the AQ and EFP approaches. Of course, for M2=Q2 ! 0
the upper limit of integration in Eq. (13) is 1, and both
approaches recover the standard factorization theorem for
structure functions [39].

3. �-scaling

When the upper limit of integration in Eq. (13) is taken
to be 1, the AQ structure functions reduce to the simple
�-scaling (�-S) form introduced by Aivazis et al. [20] and
used by Kretzer and Reno [21]. The target mass corrected
structure functions in this case are simply given by

F�-S
1 ðx; Q2Þ ¼ Fð0Þ

1 ð�;Q2Þ; (14a)

F�-S
2 ðx; Q2Þ ¼ 1þ 	

2	2
Fð0Þ
2 ð�;Q2Þ; (14b)

F�-S
L ðx; Q2Þ ¼ 1þ 	

2
Fð0Þ
L ð�;Q2Þ; (14c)

F�-S
3 ðx; Q2Þ ¼ 1

	
Fð0Þ
3 ð�;Q2Þ: (14d)

Note that the form of the target mass corrected functions in
Eqs. (14) closely resembles that in Eqs. (12), with the two
forms equivalent at leading order. At this order the struc-
ture functions satisfy a modified Callan-Gross relation
[22],

	2F�-S
2 ðx;Q2Þ ¼ 2xF�-S

1 ðx;Q2Þ: (15)

The leading order �-scaling structure functions are also
related to the leading, Oð1Þ terms of the OPE expressions
in Eqs. (4),
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FOPEðleadingÞ
i ð�;Q2Þ ¼ 1þ 	

2	
F�-S
i ð�;Q2Þ; (16)

where the prefactor, to order 1=Q2, is given by (1�
x2M2=Q2). In fact, the �-scaling formulas (14) would
coincide with the EFP results in Sec. II B 1 in the absence
of four-leg Feynman diagrams [19].

C. TMC comparisons

The effects of the different TMC prescriptions on struc-
ture functions are illustrated in Figs. 2–5 for the F�

1 , F
�
2 , F

�
L

and FWþ
3 structure functions of the proton, respectively.

(The results for structure functions associated with other
boson exchanges, such as W�, Z, or �Z interference, are
very similar to these.) The uncorrected proton structure

functions Fð0Þ
i are constructed from the CTEQ-Jefferson

Lab (CJ) global PDF fits [7], evaluated at Q2 ¼ 2 GeV2.
For each of the structure functions the effects of TMCs
become more prominent with increasing x, and naturally
their magnitude decreases at larger Q2.

For the F�
1 structure function in Fig. 2, the deviation

from unity of the ratio of target mass corrected to uncor-
rected functions ranges from �10% at x ¼ 0:4, to more
than a factor of 2 for x * 0:7. The model dependence of the
TMCs to F�

1 is relatively weak; the OPE [17] and EFP [19]

results are similar to within a few percent for all x, while
the �-scaling [20,21] and AQ [22] prescriptions differ from
the OPE by & 5% and 15%, respectively, for x & 0:8.
(Results for x * 0:9 are not shown as the input nucleon
PDFs are not constrained in this region and display nu-
merical instability at x * 0:95.) In fact, at low and mod-
erate x the OPE and EFP TMCs track each other rather
closely, as expected from the equality of their leading term
prefactors at order 1=Q2. Similarly, the AQ and �-scaling
prescriptions are much closer to each other than to the OPE
and EFP results, as may be anticipated from the structure of
the respective TMC expressions in Eqs. (12) and (14).
Qualitatively similar behavior is seen also for the target

mass correctedF�
2 structure function in Fig. 3. Here a dip in

the ratio of corrected to uncorrected functions at x� 0:4,
however, delays the sharp rise above unity to x * 0:6. As
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for F�
1 , the EFP result agrees with the OPE to a few percent

over the entire x range, and the AQ and �-scaling ratios are
almost identical for x < 0:4. The two sets of ratios differ
by & 7% for x < 0:7, before diverging somewhat as
x ! 1.

For the F�
L structure function in Fig. 4 the differences

between the various TMC prescriptions are more dramatic.
The OPE and EFP ratios begin to rise steeply at low x, with
the corrected functions exceeding the uncorrected ones by
more than a factor of 5 already by x ¼ 0:5. The AQ and
�-S ratios, on the other hand, rise above unity at much
higher x, reminiscent of the F1 ratios in Fig. 2. The two sets
of corrections differ by more than 50% by x ¼ 0:3, and by
* 80% for x > 0:8. This qualitatively rather different be-
havior can be understood by directly comparing Eqs. (4)
and (10) to Eqs. (12) and (14). Unlike the �-S and AQ
prescriptions, the OPE and EFP FL results include terms
involving integrals over F2, which is generally 	 FL. In
fact, to leading order with no TMCs, the FL structure
function vanishes, and adding NLO corrections within
the AQ or �-S prescriptions does not produce a significant
increase. In contrast, the OPE and EFP prescriptions al-
ways receive large F2 contributions, making the target

mass corrected to uncorrected ratio considerably larger in
these approaches.
The strong correlations between the OPE and EFP pre-

dictions are not as visible for the F3 structure function,
which, unlike the other structure functions, differs already
at Oð1=Q2Þ. The general shape of the TMC ratio, illus-

trated in Fig. 5 for the FWþ
3 structure function, resembles

that for F�
2 in Fig. 3, but with a rise above unity beginning

at lower x. The various prescriptions agree to �10% for
x & 0:4, and �40% for x & 0:8, but generally display
more spread than in F�

1 or F�
2 .

III. IMPLICATIONS FOR OBSERVABLES

Having examined the differences between the various
TMC prescriptions on individual structure functions, in
this section we consider the effects of TMCs, and, in
particular, their model dependence, on several observables
that will be measured in upcoming experiments. These
include the ratio of the neutron to proton F2 structure
functions, the longitudinal to transverse (LT) cross section
ratios, and parity-violating deep-inelastic scattering asym-
metries for the proton and deuteron.
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A. Neutron to proton ratio

Historically, the ratio of d to u quark distributions in the
proton has been determined primarily through the ratio of
neutron to proton electromagnetic DIS cross sections,

Rnp ¼ d2
�n=dxdy

d2
�p=dxdy

¼ F�n
2

F�p
2

�
1� y� y2½	2 � 1� 2	2=ð1þ R�nÞ�=4
1� y� y2½	2 � 1� 2	2=ð1þ R�pÞ�=4

�
;

(17)

where y ¼ �=E is the fractional energy transfer from the
lepton, and R�N is the ratio of the longitudinal to transverse
cross sections, or structure functions,

R�N ¼ F�N
L

2xF�N
1

(18)

for nucleon N. With the assumption that R�n ¼ R�p, the
ratio of cross sections becomes the ratio of F2 structure
functions, Rnp ! F�n

2 =F�p
2 . To leading order, the ratio (17)

is then given by Rnp ¼ ð1þ 4d=uÞ=ð4þ d=uÞ, which il-

lustrates the sensitivity to the d=u PDF ratio. In practice,
differences between R�p and R�n generated perturbatively
at NLO have a negligible effect on the ratio Rnp at the

kinematics considered here.
The absence of free neutron targets has meant that in

practice inclusive deuterium structure function data has
been used to obtain indirect information on the neutron,
and hence the d quark. This procedure is known to suffer
from significant model dependence at large values of x
[7,40,41], leading to several novel new experiments being
proposed [11–13] to determine the d=u ratio with minimal
nuclear model uncertainties. In order for these measure-
ments to be unambiguously analyzed, it is important to

quantify the extent of TMC uncertainties at the kinematics
of the experiments, which will typically reach a maximum
Q2 � 10–15 GeV2 at x � 0:8.
The effects of TMCs on the ratio Rnp are illustrated in

Fig. 6 for the CJ PDFs [7] at Q2 ¼ 2 GeV2 (left) and
10 GeV2 (right). The shaded bands represent the d=u
uncertainty range as applied to the OPE TMC prescription,
with the central solid (red) curve denoting the median value
for OPE calculated with the same PDFs as the other TMC
prescriptions. The target mass corrections atQ2 ¼ 2 GeV2

are sizable, reaching � 25%–30% at x ¼ 0:7 for the OPE
and EFP prescriptions, and � 12% for the �-S and AQ
results. At the higher Q2 ¼ 10 GeV2 value the TMCs
decrease to � 5% and � 2% for the OPE/EFP and
�-S=AQ calculations, respectively. Treating each of the
TMC prescriptions on equal footing, this would suggest
an uncertainty due to TMCs of & 3% for all values of
x accessible in the planned experiments [11–13].
The TMC uncertainty can be compared with the range of

Rnp predicted from PDFs extracted under different as-

sumptions about the size of nuclear corrections in deute-
rium, which currently represents the largest uncertainty in
the d=u ratio at x * 0:5 [7]. This is illustrated in the bands
in Fig. 6, which represent the Rnp ratio evaluated from the

range of CJ PDFs [7] for the OPE TMC prescription. The
results show that for Q2 ¼ 2 GeV2 the uncertainty result-
ing from nuclear corrections is some 2–3 times larger than
that associated with TMCs at x ¼ 0:8. Both the uncertain-
ties in the d quark PDF and in the TMCs decrease as
x decreases, albeit more slowly for the latter. At x ¼ 0:6,
in fact, the two uncertainties are comparable, while for
x & 0:4 the TMC uncertainty is actually larger.
With increasing Q2 both the TMCs and their uncertain-

ties decrease, while the uncertainty in the leading twist
PDFs remains approximately Q2 independent, as can be

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0  0.2  0.4  0.6  0.8

R
np

 / 
R

np
(0

)

x

Q2 = 2 GeV2

d/u uncertainty
OPE
EFP
ξ-S
AQ

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0  0.2  0.4  0.6  0.8

x

Q2 = 10 GeV2

FIG. 6 (color online). Ratio of target mass corrected (Rnp) to uncorrected (Rð0Þ
np) neutron to proton F2 structure function ratios at

Q2 ¼ 2 GeV2 (left) and Q2 ¼ 10 GeV2 (right), for the OPE (solid, red), EFP (short-dashed, blue), �-S (long-dashed, green), and AQ
(dot-dashed, orange) TMC prescriptions. The shaded band represents the uncertainty in the ratio d=u for the OPE result. Note that the
AQ and �-S results are almost identical.

BRADY et al. PHYSICAL REVIEW D 84, 074008 (2011)

074008-8



seen more clearly in the comparison of the absolute values
of Rnp in Fig. 7. At Q2 ¼ 2 GeV2 the bands representing

the Rnp ratio evaluated from the CJ PDFs [7] using

different TMC prescriptions (specifically the extremal
EFP and AQ results) do not overlap until x� 0:75, mean-
ing that at smaller x the true d=u behavior will be obscured
by the relatively large TMC model uncertainty.
Interestingly, the TMCs actually decrease the nuclear un-
certainty range at lower Q2, since the action of the x ! �
rescaling is to effectively feed information from lower x in
the uncorrected functions (which have relatively small d=u
uncertainty) to higher x values (where the d=u uncertainty
is larger). Consequently, at higher Q2 the sensitivity to the
d=u ratio increases both due to the smaller spread of results
for different TMC prescriptions, and to the weakening of
the TMC effect in moving strength from lower x for a
particular TMC prescription. This is indeed visible in
Fig. 7 for the Rnp ratio at Q2 ¼ 10 GeV2, in which the

EFP and AQ extremal TMC bands very nearly coincide
over the entire x range, as well as with the ratio computed
without TMCs. Such values of Q2 will therefore be re-
quired in order to cleanly extricate the d=u ratio from
measurements of the neutron to proton ratio without ambi-
guities associated with TMC model dependence.

Finally, we also note that in global QCD fits of PDFs it
was recently found [6] that the impact of the model depen-
dence of TMCs on leading twist PDFs is reduced signifi-
cantly with the inclusion of a phenomenological 1=Q2

higher twist term in the F2 structure function parametriza-
tion, with the two effects partially compensating each
other. Since the higher twist contribution to FL is indepen-
dent of that for F2, a similar cancellation may be expected
also when including FL data in the global fits. The uncer-
tainties in extracted PDFs induced by the model depen-
dence of TMCs may therefore be smaller than those
suggested in Fig. 6 if the data are analyzed within a global
PDF context.

B. Longitudinal to transverse structure function ratios

While the LT cross section ratio R�N is expected to play
a relatively minor role in the measurements of the neutron
to proton F2 structure function ratio in Eq. (17), mostly
because of the cancellation between the proton and neutron
R�N values, the effects of TMCs on the ratio itself may be
more significant. This was already suggested by the large
prescription dependence of TMCs for the longitudinal
structure function F�

L in Fig. 4. The effects of TMCs on

the LT ratio are also important to quantify in connection
with establishing the low-Q2 behavior of R�N at finite x, to
determine the onset of gauge invariance constraints on the
longitudinal structure function [42].
In Fig. 8 we illustrate the TMC effects on R�p for

Q2 ¼ 2 and 10 GeV2 for each of the TMC prescriptions
considered. All of the TMCs increase the magnitude of the
R�p ratio, with the AQ and �-S prescriptions having a
relatively modest effect (approximately a factor of 2 for
x � 0:6–0:8 at Q2 ¼ 2 GeV2, but only a few percent at
Q2 ¼ 10 GeV2), while the EFP and OPE both alter the
ratio significantly for x * 0:1. The enhancement of R�p for
the latter is predicted to be about an order of magnitude for
x � 0:6–0:8 at Q2 ¼ 2 GeV2, and still a factor of 3–4 at
Q2 ¼ 10 GeV2.
Some differences are also expected between the longi-

tudinal to transverse cross section ratios at NLO for pro-
cesses involving electromagnetic and weak currents. In
particular, as will be discussed in more detail in
Sec. III C below, asymmetries measured in parity-violating
electron scattering are sensitive to interference effects
between � and Z boson exchange, and differences between
the R� and R�Z LT ratios can affect the measured asym-
metries [23,24].
In Fig. 9 the ratio of the proton R�Z to R� LT ratios is

shown at Q2 ¼ 2 and 10 GeV2. While at leading order
both of these ratios are zero, at NLO the different relative
contributions from quark PDFs to the electromagnetic and
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�Z interference structure functions leads to deviations of
the ratios from unity of up to � 4% at Q2 ¼ 2 GeV2, and
up to� 2% atQ2 ¼ 10 GeV2. The effects of the TMCs are
again very small for the �-scaling and AQ prescriptions,
but more significant for the OPE and EFP results. Overall,
the spread in the TMC predictions for the R�Z=R� ratio
amounts to & 4–5% for x between 0.6 and 0.8 at Q2 ¼
2 GeV2, and & 2% at Q2 ¼ 10 GeV2. Note that the dip in
the ratios at x < 0:1, which is insensitive to TMCs, reflects
the greater role played by gluons at low x, but is mostly
irrelevant for the kinematics of the proposed experiments
[11–13].

For the case of the isoscalar deuteron target, stronger
cancellations between the quark content of R�Z and R� are
expected to lead to smaller deviations of their ratio from
unity at large x. This is indeed observed in Fig. 10, where
again the dip in the ratio at very low x is associated with
NLO gluon dominance of the LT ratios as x ! 0. At x ¼
0:2, for example, the gluonic content of FL suppresses the
deuteron R�Z=R� ratio by � 2% for Q2 ¼ 2 GeV2, and

� 1% for Q2 ¼ 10 GeV2. At higher x the deviations de-
crease until the ratio approaches unity asymptotically as
x ! 1. In the region of xwhere the LT ratios are dominated
by quarks, the fact that the same isoscalar combination of
quark PDFs enters both the electromagnetic and �Z inter-
ference structure functions leads to almost negligible TMC
effects. The absence of significant TMC effects in the
deuteron ratio is, as expected, even more clearly visible
at the higher Q2 value.
Finally, for experiments involving deuteron targets one

needs to account for the fact that the nucleons in the
nucleus are bound and hence have structure functions
that differ from those of free nucleons. In Fig. 11 the LT
ratio R�Z for the �Z interference structure functions of the
deuteron is shown relative to that for a free isoscalar
nucleon (defined as protonþ neutron) at Q2 ¼ 2 GeV2,
using the nuclear smearing model of Refs. [34,43]
(see also Ref. [7]). The shape of the deuteron to nucleon
ratio computed at NLO in the absence of TMCs displays
a dramatic rise above unity with increasing x that is
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characteristic of the nuclear EMC ratio [44]. The effects of
Fermi motion in fact lead to a divergent ratio at x ¼ 1. The
inclusion of TMCs suppresses the rise at large x, from
� 60% at x ¼ 0:6 to 20% for the �-scaling and AQ pre-
scriptions, and to � 5% for the OPE and EFP cases, with
larger differences as x ! 1. This suppression arises be-
cause TMCs shift strength in FL from small x to large x,
thereby lessening the impact of the nuclear smearing. Since
the TMC effects in the OPE and EFP prescriptions are
larger than that for the �-S and AQ cases (see Fig. 4), the
nuclear corrections for the former in Fig. 11 are smaller.

The smearing corrections to the electromagnetic LT
ratio R� are almost identical to those in Fig. 11.
Consequently, the net effect on the ratio R�Z=R� for the
deuteron computed with or without nuclear corrections is
& 0:05%, and can be neglected for the kinematics of
interest.

C. Parity-violating DIS

Measurements of parity-violating deep-inelastic scatter-
ing (PVDIS) asymmetries on the proton have been pro-
posed at Jefferson Lab [13] to provide independent
constraints on the ratio of d=u quark distributions at large
x, free of the nuclear correction uncertainties associated
with deuterium measurements [45]. In the case of deuteron
targets, where much of the dependence on hadron structure
effects cancels, PVDIS asymmetries are sensitive to sev-
eral effects, including charge symmetry violation in PDFs
[46], or to standard model parameters whose precise mea-
surement can reveal signals for new physics [25,47]. In this
section we examine the effects of TMCs on the PVDIS
asymmetries of the proton and deuteron, and discuss the
phenomenological implications of their uncertainties on
future planned experiments.
The PVasymmetry is defined through the difference and

sum of the inclusive cross sections for scattering either a
right-handed (R) or left-handed (L) electron from an un-
polarized target,

APV ¼ 
R � 
L


R þ 
L

; (19)

where 
R;L � ðd2
=d�dE0ÞR;L. Since the purely electro-

magnetic and purely weak contributions to the cross sec-
tion are independent of electron helicity for Q2 
 M2

Z,
they cancel in the numerator, leaving only the �Z interfer-
ence term. The denominator, on the other hand, contains all
contributions, but is dominated by the purely electromag-
netic component. In terms of structure functions, the asym-
metry can be written [23]

APV ¼ �
�
GFQ

2

2
ffiffiffi
2

p
��

��
geAY1

F�Z
1

F�
1

þ geV
2
Y3

F�Z
3

F�
1

�
; (20)

where geA ¼ �1=2 and geV ¼ �1=2þ 2sin2�W are the ax-
ial and vector couplings of the Z boson to the electron, with
�W the weak mixing angle, and the functions Y1;3 parame-

trize the dependence on y and on the R� and R�Z ratios,
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Y1¼1þð1�yÞ2�y2½1þ	2�2	2=ðR�Zþ1Þ�=2
1þð1�yÞ2�y2½1þ	2�2	2=ðR�þ1Þ�=2

�
1þR�Z

1þR�

�
;

(21a)

Y3¼ 1�ð1�yÞ2
1þð1�yÞ2�y2½1þ	2�2	2=ðR�þ1Þ�=2

�
	2

1þR�

�
:

(21b)

In the limit of Q2 ! 1, where 	 ! 1 and R�;�Z ! 0, the
kinematical factors simplify to Y1 ! 1 and Y3 !
½1� ð1� yÞ2�=½1þ ð1� yÞ2�.

1. Proton asymmetry

The proton PVDIS asymmetry is shown in Fig. 12 for
Q2 ¼ 2 and 10 GeV2 in the form of the ratio of the target
mass corrected to uncorrected asymmetries. For all pre-
scriptions the TMC effects are maximal at x � 0:7, where
they are of the order of 3–4% at Q2 ¼ 2 GeV2 and & 1%

at Q2 ¼ 10 GeV2. The results are slightly higher for the
�-S and AQ corrections (which are virtually indistinguish-
able) than for the OPE and EFP (which are also almost
identical). The small size of the effects is principally due to
the strong cancellation of the TMCs in the F1 structure

functions, namely, ðF�Z
1 =F�

1 ÞTMC � ðF�Z
1 =F�

1 Þð0Þ, even

though jFTMC
1 =Fð0Þ

1 j 	 1 at high x. Overall, the results

indicate that the asymmetries themselves are less sensitive
to TMCs than are the LT ratios R�;�Z on which the asym-
metries depend.
Since one of the main goals of the proton PVDIS mea-

surements will be to reduce the uncertainties on PDFs at
large x, particularly on the d=u ratio, it is instructive to
compare the magnitude of the TMC effects with the ex-
pected sensitivity of the asymmetry to different possible
PDF behaviors at large x. In Fig. 13 we show the proton
asymmetry APV computed from the full range of CJ PDFs
[7] including minimal and maximal nuclear corrections
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(shaded bands) relative to the central PDF fits. The uncer-
tainty band increases with increasing x, reflecting the
larger uncertainty on the d quark PDF at large x, and in
the absence of TMCs ranges from � 3% at x ¼ 0:6 to
� 11% at x ¼ 0:8 for both Q2 ¼ 2 and 10 GeV2. This is
significantly larger than the TMC uncertainty band in
Fig. 12, where the spread of the TMC model predictions
is 
 1%, even though the absolute target mass effect is
somewhat larger.

The effect of TMCs on the PDF uncertainty, illustrated
in Fig. 13 for the OPE prescription, is to reduce the
uncertainty band at large x for the lower Q2 value, in
analogy with the effect seen in Fig. 7 for the Rnp ratio,

with strength moving from lower x to higher x by the
x ! � rescaling of the structure functions. The slightly
different effects of TMCs on the various structure functions
present in the asymmetry render the uncertainty band on
APV more asymmetric at Q2 ¼ 2 GeV2. At the higher
Q2 ¼ 10 GeV2 value, the impact of TMCs on the uncer-
tainty band is reduced considerably, with the two bands
(corresponding to no TMCs and the OPE TMC prescrip-
tion) approximately coinciding for all x.

The conclusion from the combined results of Figs. 12
and 13 is that the effect of TMCs and particularly their
uncertainties can be minimized in the APV ratio by mea-
suring the asymmetry at values of Q2 � 10 GeV2 or
higher; at lower Q2, although the TMC uncertainties are
not large, some residual corrections will need to be applied
in the range 0:4 & x & 0:9, where the TMCs are � 1% or
higher.

2. Deuteron asymmetry

Unlike for a proton target, for PVDIS on an isoscalar
deuterium nucleus most of the dependence on PDFs can-
cels if one assumes that PDFs in the proton and neutron are
related by charge symmetry [25]. In fact, in the valence
quark region (x * 0:5) where sea quarks and gluons can be
neglected, the deuteron asymmetry can be written at lead-
ing order as [23,30,48]

Ad
PV � �

�
GFQ

2

2
ffiffiffi
2

p
��

�
6

5
ðgeAð2guV � gdVÞ þ Y3g

e
Vð2guA � gdAÞÞ;

½x 	 0�; (22)

where guV ¼ �1=2þ ð4=3Þsin2�W , gdV ¼ 1=2�
ð2=3Þsin2�W , guA ¼ 1=2, and gdA ¼ �1=2. (Note that the
conventions for geV;A in Ref. [23] differ by a factor of 2

compared with those used here, although the asymmetry is
of course independent of the convention.) Consequently
accurate measurement of deuteron PVDIS has been pro-
posed as a sensitive test of either the weak mixing angle
sin2�W (deviations of which from its standard model value
may signal the presence of new physics), or more conven-
tionally of charge symmetry violation (CSV) in PDFs.

Nonzero values of �u and �d are predicted in nonper-
turbative models of the nucleon to arise from quark mass
differences and electromagnetic effects (for a review see
Ref. [46]), and can also be generated from radiative QED
corrections in Q2 evolution [49–51]. Defining charge
symmetry-violating PDFs by

�u ¼ up � dn; �d ¼ dp � un; (23)

the PVDIS asymmetry (22) in the presence of CSV is
modified according to

ð2guV;A � gdV;AÞ ! ð2guV;A � gdV;AÞð1þ�V;AÞ; (24)

where the fractional CSV corrections are given by

�V;A ¼
�
� 3

10
þ 2guV;A þ gdV;A

2ð2guV;A � gdV;AÞ
��
�u� �d

uþ d

�
: (25)

These approximate expressions serve to illustrate explicitly
the role of CSV in the PVDIS asymmetry; in practice,
however, the full deuteron asymmetry can be computed
including the effects of CSVat NLO, as well as sea quarks
and gluons.
Using the MRSTQED parametrization of PDFs [50],

which generates nonzero values of �u and �d through
radiative QED effects, the effect of CSV on the deuteron
asymmetry Ad

PV is illustrated in Fig. 14. In the valence
quark region the CSVeffect is small at intermediate x, x�
0:4, but increases to around 1% at x� 0:8. This is roughly
comparable to the earlier fit in Ref. [49] which parame-
trized the CSV PDFs as �u� �d ¼ 2

ffiffiffi
x

p ð1� xÞ4 �
ðx� 0:0909Þ, with  ¼ �0:2 as the best fit parameter.
(The constraints on  were found to be relatively weak,
however, and values of  from�0:8 toþ0:65 produced fits
at the 90% confidence level, with effects on the asymmetry
ranging from � 4% to 8% over the range 0:4 & x & 0:8.)
Deviations of the full NLO result from the valence ap-
proximation appear already at x & 0:7, however, and these
differ quite markedly at small x, as Fig. 14 indicates.
Interestingly, the full asymmetry becomes larger at smaller
x because of CSV effects in the light sea quarks, which
produce an asymmetry of about 2% at x � 0:2. On the
other hand, cleanly separating the CSV effects from sea
quark and gluon contributions, which introduce additional
x dependence beyond that in Eqs. (22), (24), and (25), as
well as possible differences between CSV in valence and
sea quark PDFs, becomes more challenging at small x.
With sought-after CSV effects that could be & 1–2%, it

is vital to quantify the impact of TMCs on the deuteron
PVDIS asymmetries and, in particular, the TMC prescrip-
tion dependence. The effect of TMCs on the full asymme-
try relative to the charge-symmetric asymmetry is
negligible at x & 0:5, but decreases the CSV signal by up
to 50% at x � 0:8, as Fig. 14 demonstrates for the OPE
prescription. The model dependence of TMCs is illustrated
for the various prescriptions in Fig. 15, where the ratio of
asymmetries is shown with TMCs to those without TMCs.
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The net effect is very small, peaking at �0:1% at x � 0:4,
even at the Q2 ¼ 2 GeV2 value. The TMC prescription

dependence of this ratio is even smaller, making it essen-

tially negligible on the scale of a CSV signal of�1%. If the

target mass corrected asymmetries were calculated with

the charge symmetry-violating MRSTQED PDFs, the ef-

fect would be somewhat larger, peaking at �0:3% around

x � 0:4. However, the TMC model dependence is still

negligible at around 0.05%. As expected, the impact of

TMCs on the deuteron asymmetries at the larger Q2 ¼
10 GeV2 value is considerably smaller. It is therefore

likely that TMCs would only play a role in deuteron

PVDIS measurements if the CSVeffects were on the scale

of a fraction of a percent, at which point they would not be

discernible within the expected precision of the experiment

[13]. The corrections due to nuclear smearing in the

deuteron would have similarly negligible effects on the

measured deuteron asymmetry.

IV. CONCLUSIONS

With the increased precision and kinematic reach of new
experiments planned in the next few years, particularly at
Jefferson Lab with its 12 GeV upgrade, the need for
reliable theoretical tools with which to analyze the data
is becoming ever more pertinent. This is especially true for
data that will be taken at large values of x, where a number
of different subleading effects come to the fore. In this
work we have performed a comprehensive analysis of one
class of such corrections, namely, those associated with
finite values of x2M2=Q2, or target mass corrections. We
have detailed several approaches to TMCs, including the
standard OPE method, as well as prescriptions based on
collinear factorization, and have compared their effects on
various spin-averaged structure functions at next-to-
leading order.
For the TMCs computed via the OPE, we find that the

1=Q2 and 1=Q4 approximations to the full results are
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accurate only up to x � 0:6, beyond which the series dis-
plays rather slow convergence. Such an expansion has been
proposed to avoid the threshold problem at x ¼ 1; our
findings suggest, however, that a low order expansion
may not be applicable as x ! 1. Numerically, we find
that TMCs in the OPE approach are very similar to those
computed via the EFP implementation of collinear facto-
rization, especially for the vector structure functions F1 (or
FL) and F2. This can be demonstrated analytically, through
the equality to order 1=Q2 of the prefactors associated with
the leading terms. The comparative phenomenology of
these prescriptions has not previously been addressed in
the literature.

Similarly, the �-scaling and AQ prescriptions, which are
derived from different approximations within the collinear
factorization framework, yield corrected structure func-
tions that closely track each other over much of the x range
accessible experimentally. In all cases the magnitude of the
TMCs, and, in particular, their model dependence is, not
surprisingly, significantly more important at lowQ2 values
(� 2 GeV2). Target mass corrections are suppressed with
increasing Q2, although even at Q2 � 10 GeV2 they are
not negligible for some observables at very large x. The
greatest model dependence of TMCs arises for the longi-
tudinal structure function, where because of the mixing
between the FL and F2 structure functions the effects for
the OPE and EFP prescriptions are significantly larger than
for the AQ and �-scaling approaches, where no mixing
occurs.

In addition to quantifying the impact of TMCs on struc-
ture functions, we further discussed the limitations these
place on unambiguously extracting information on PDFs
(such as the d=u ratio or charge symmetry violation) from
observables. For the ratio Rnp of neutron to proton F2

structure functions we make the interesting observation
that at low Q2 not only is one subject to greater TMC
uncertainties than at large Q2, but the x ! � rescaling due
to TMCs effectively also decreases the sensitivity to the
d=u ratio at large x that measurements of Rnp attempt to

constrain.
For parity-violating DIS from the proton, the effects of

TMCs and perturbative NLO radiative corrections are
similar in both the electromagnetic and �Z interference
LT ratios R� and R�Z, with & 4–5% differences for Q2 ¼
2 GeV2 at intermediate and larger x. For the deuteron the
differences between R� and R�Z are smaller in the valence
quark dominated region, with negligible dependence on
the TMC prescription, but become larger at very small x
(& 8% and 4% at Q2 ¼ 2 and 10 GeV2, respectively)
through gluonic contributions at NLO. The magnitude of
TMCs in the R�Z ratio itself, however, is significant at large
x, especially for the OPE and EFP prescriptions. We also
considered the effects of nuclear corrections in the
deuteron on the �Z LT ratio, which become important

for x * 0:4–0:5; however, the similarity of these with the
effects on the electromagnetic LT ratio leads to nuclear
corrections largely canceling in the PVDIS asymmetry.
The effects of TMCs on the parity-violating asymme-

tries themselves are generally rather small, especially at
higher Q2 values, Q2 � 10 GeV2, although at lower Q2

some residual TMC dependence is evident in the case of
the proton asymmetry. Measurements of the proton
PVDIS asymmetry are planned to provide a unique
combination of PDFs in order to constrain the d=u ratio
at large x [13]. For the deuteron, the size of TMCs is
about an order of magnitude smaller than the expected
CSV effects in PDFs, which are estimated to be at the
Oð1%Þ level. On the other hand, while the corrections to
the LT ratios and asymmetries computed here have been
perturbative, nonperturbative effects such as those asso-
ciated with nonzero parton transverse momentum in the
nucleon can produce additional strength in the longitu-
dinal structure functions [52]. This may be particularly
relevant for the ratio R�Z, whose phenomenology is
essentially unknown at low Q2. Estimates of nonpertur-
bative contributions to R�Z would therefore be necessary
before making more definitive conclusions about its role
in PVDIS.
In the future, additional effects not discussed here may

need to be considered at large x, principal among which are
dynamical higher twist corrections associated with non-
perturbative multiparton correlations. These are very diffi-
cult to compute from first principles, and only rudimentary
model estimates have been available to date. Further in-
sight into the relation between TMCs and higher twists
may also shed light on the threshold problem, whereby the
target mass corrected structure functions remain finite at
the nucleon elastic scattering point, x ¼ 1, as well as on the
difference between the various TMC prescriptions. Other
corrections that may affect future analysis of large-x data
are threshold resummations, which involve formally sum-
ming, to all orders in �s, terms containing logarithms of
1� x that become large as x ! 1. The results on the
phenomenology of the target mass corrections contained
in the present work should provide a benchmark for future
theoretical and experimental investigations of these addi-
tional corrections. This analysis can also be extended to the
spin-dependent sector [53–56], where the phenomenology
of the collinear factorization framework, in particular, has
not been as fully developed.
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