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Advantages of the original symmetrical form of the parametrization of the lepton mixing matrix are

discussed. It provides a conceptually more transparent description of neutrino oscillations and lepton

number violating processes like neutrinoless double beta decay, clarifying the significance of Dirac and

Majorana phases. It is also ideal for parametrizing scenarios with light sterile neutrinos.
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I. INTRODUCTION

Since the historic discovery of neutrino oscillations,
massive neutrinos currently provide the most direct and
testable evidence for physics beyond the standard model
(SM) of particle physics. At low energies, nine (seven)
parameters must be determined depending on whether
neutrinos are Majorana (Dirac) particles [1].1 Here we
tacitly assume the former, more general, and theoretically
preferred case. Parametrizing the lepton mixing matrix
[2,3] in a convenient and intuitive manner is very helpful
for data handling and interpretation of the physics, such as
neutrino oscillation searches in upcoming long-baseline
experiments [4,5] or searches for neutrinoless double
beta decay [6,7]. While the former are sensitive to the
Dirac phase, Majorana phases [1,8–11] are crucial to de-
scribe the latter.

The Particle Date Group (PDG) has adopted a parame-
trization of the lepton mixing matrix in which it is a
product of three consecutive rotations multiplied with a

diagonal phase matrix P containing the Majorana phases
[12]. The mixing matrix can be written as

U ¼ R23ð�23; 0ÞR13ð�13;�ÞR12ð�12; 0ÞP; (1)

where Rijð�;’Þ is a rotation around the ij axis, e.g.

R13ð�13;�Þ ¼
cos�13 0 sin�13e

�i�

0 1 0
� sin�13e

i� 0 cos�13

0
B@

1
CA: (2)

The position of the Dirac phase � is the convention chosen
by the PDG. The twoMajorana phases, denoted here � and
�, are usually put inside P, to the right of the mixing
matrix: P ¼ diagðei�; ei�; 1Þ. However, there is no consen-
sus notation yet in what concerns the parametrization of
these phases, neither for their names (e.g. �1 and �2 or ’1

and ’2 or � and �, sometimes with a minus sign, some-
times divided by two, etc.), nor for their position within the
matrix ðP ¼ diagð1; ei�; ei�Þ, or P ¼ diagðei�; ei�; 1Þ,
etc.). The mixing matrix Eq. (1) is explicitly given by

U � ~UP ¼
c12c13e

i� s12c13e
i� s13e

�i�

�ðs12c23 þ c12s23s13e
i�Þei� ðc12c23 � s12s23s13e

i�Þei� s23c13

ðs12s23 � c12c23s13e
i�Þei� �ðc12s23 þ s12c23s13e

i�Þei� c23c13

0
BB@

1
CCA: (3)

The elements jUe1j and jU�3j are known with good

accuracy, thus the two ‘‘large’’ angles �12 and �23 are well
determined by solar and atmospheric neutrino oscillation
data. There is also recent evidence for a nonzero value of the
‘‘small’’ element jUe3j from the T2K Collaboration [13]
and the global neutrino oscillation data sample [14,15].
While there are eight equivalent ways to parametrize the
mixing matrix [16], the above order of rotation is useful in
the sense that experimentally the straightforwardly measur-

able elements jUe1j, jUe3j, and jU�3j allow to directly

extract the angles in the three-neutrino lepton mixing ma-
trix.2 In contrast, the other equivalent parametrizations do
not share this property.

II. A MORE CONVENIENT PARAMETRIZATION
OF THE MIXING MATRIX

The above form U is nothing but a rewriting of the
‘‘symmetrical’’ form K proposed in Ref. [1] (apart from
factor ordering, which was left unspecified in the ori-
ginal paper). Here we would like to argue in favor of

*werner.rodejohann@mpi-hd.mpg.de
†valle@ific.uv.es
1Many more parameters exist if neutrino masses arise from

type-I seesaw; the parametrization in Ref. [1] covers all seesaw
cases.

2See Ref. [17] for a recent application of the other possible
parametrizations and [18] for a rare use of the symmetrical
parametrization we will study in this work.
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the conceptual advantages of the original symmetrical
presentation of the lepton mixing matrix [1]. For the case
of three neutrinos it is given as

K ¼ !23ð�23;�23Þ!13ð�13;�13Þ!12ð�12;�12Þ; (4)

where each of the!’s is effectively 2� 2, characterized by
an angle and a CP phase, e.g.

!13 ¼
c13 0 e�i�13s13
0 1 0

�ei�13s13 0 c13

0
B@

1
CA:

Explicitly, the symmetrical parametrization of the lepton
mixing matrix, K can be written as

K ¼
c12c13 s12c13e

�i�12 s13e
�i�13

�s12c23e
i�12 � c12s13s23e

�ið�23��13Þ c12c23 � s12s13s23e
�ið�12þ�23��13Þ c13s23e

�i�23

s12s23e
ið�12þ�23Þ � c12s13c23e

i�13 �c12s23e
i�23 � s12s13c23e

�ið�12��13Þ c13c23

0
BB@

1
CCA: (5)

Here all three CP violating phases are physical [9]: �12,
�23, and �13. Even though the parametrization is fully
‘‘symmetric’’ there is a basic difference between Dirac and
Majorana phases. In order to understand this let us use the
identity [1]

P�1KP ¼ !23ð�23;�23 � �Þ!13ð�13;�13 � �Þ
�!12ð�12;�12 þ �� �Þ; (6)

which allows us, up to unphysical phases, to identify the
Dirac phase as

� $ �13 ��12 ��23: (7)

This formula relates the Dirac phase, which denotes the
phase responsible for CP violation in neutrino oscillations
in the PDG parametrization, with the equivalent phase in
the symmetrical representation. Note that it obeys field
rephasing invariance, as it should. Moreover, in contrast
to the PDG description, in the symmetrical form CP vio-
lation in neutrino oscillations is immediately recognized as
a three-generation phenomenon involving the phases of all
three generations,3 an important conceptual advantage.

Recall that the neutrino oscillation probability for a
	� ! 	� flavor transition is given by

Pð	� !	�Þ¼
��������
X
j

U�
�jU�je

�i
m2
j

2EL

��������
2

¼����4
X
i>j

<fU�
�iU�jU�iU

�
�jgsin2

��m2
ij

4E
L

�

þ2
X
i>j

=fU�
�iU�jU�iU

�
�jgsin

��m2
ij

2E
L

�
;

whereE is the neutrino energy, L is the distance traveled by
the neutrino, and �m2

ij � m2
i �m2

j (mi being positive

mass eigenvalues) are the neutrino mass-squared differ-
ences. Here < and = denote real and imaginary parts. For
three families there is only one independent imaginary part
=fU�

�iU�jU�iU
�
�jg, which is responsible for CP violation

in neutrino oscillations. Comparing this invariant with the
PDG and symmetrical parametrizations gives

JCP ¼ =fU�
e1U

�
�3Ue3U�1g ¼

8<
:

1
8 sin2�12 sin2�23 sin2�13 cos�13 sin� ðPDGÞ;
1
8 sin2�12 sin2�23 sin2�13 cos�13 sinð�13 ��12 ��23Þ ðsymmetricalÞ;

and shows the same result as Eq. (7).

A. Application to lepton number violating phenomena

As is well known, there are two conceptually different
kinds of CP violating phenomena [1]. In the language
of the PDG parametrization, one is associated to the
‘‘Dirac phase’’ � and is the exact analogue to the CP phase
in the quark mixing matrix, responsible for the area of
the Cabibbo-Kobayashi-Maskawa unitarity triangle, while

the other one is associated to the two ‘‘Majorana phases’’
� and �, which do not show up in neutrino oscilla-
tions [8–11] but do affect lepton number violating
amplitudes.
In what follows we will briefly discuss the role of

Majorana phases in determining the rates characterizing
neutrinoless double beta decay and neutrino-anti-neutrino
oscillations [9].
A suitable parametrization of Majorana phases plays a

very important role in interpreting the effective mass pa-
rameter characterizing the amplitude for neutrinoless
double beta decay (see Ref. [7] for a recent review). Its
explicit form reads

3In this sense the Dirac phase has an intrinsic geometric
meaning, like the curl of two vectors or the area of a triangle.
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hmi ¼
��������
X
j

U2
ejmj

��������¼
( jc212c213m1e

2i� þ s212c
2
13m2e

2i� þ s213m3e
2i�j ðPDGÞ;

jc212c213m1 þ s212c
2
13m2e

2i�12 þ s213m3e
2i�13 j ðsymmetricalÞ: (8)

Only the two Majorana phases should appear in hmi [9].
However, this is not at all clear in the PDG presentation. In
contrast, the symmetrical parametrization provides a man-
ifestly transparent description in which only the two
Majorana phases appear in hmi, as it should. Currently
nuclear matrix element uncertainties prevent the extraction
of Majorana phases from neutrinoless double beta decay.
However, should these be circumvented and should the
determination of the Majorana phases become an issue,
then the symmetrical parametrization will surely be pre-
ferred over the PDG one.

It has long been known that the lepton mixing matrix
characterizing the charged current interaction of Majorana
neutrinos in gauge theories may have complex entries that
conserve CP [19]. These special CP conserving situations
are associated with Wolfenstein’s CP signs [20], when
neutrino mass states are CP eigenstates with CP parity

CP ¼ �i. There are four possible inequivalent sign con-
figurations in the sum in Eq. (8): (þþþ), (þ�� ),
(þ�þ), and (þþ�). These are in correspondence
to special values of the Majorana phases, namely, �12 ¼
�13 ¼ 0, �12 ¼ �13 ¼ �=2, �13 ¼ �=2 with �12 ¼ 0,
and �13 ¼ 0 with �12 ¼ �=2, respectively. Majorana
phases would also show up in processes analogous to
neutrinoless double beta decay, such as decays like
Kþ ! ���þ�þ, whose amplitude would be proportional
to
P

U2
�imi, and have extremely low branching ratios, see

Ref. [7] and references therein.
Let us now comment on neutrino-antineutrino oscilla-

tions. AGedanken experiment looking for antineutrinos �	�

in a beam of neutrinos 	� has been suggested in Ref. [9] in
order to clarify the physical nature of Majorana phases at
the two-generation level. In the three-generation case the
probability for such a process is given as

Pð	� ! �	�Þ ¼ 1

E2

��������
X
j

U�jU�jmje
�iEjt

��������
2

¼ 1

E2

��������
X
i;j

U�jU�jU
�
�iU

�
�imimje

�iðEj�EiÞt
��������:
(9)

leading to complicated transition probability expressions,
which will not be explicitly given here. The least unreal-
istic channel is represented by 	e to �	e transitions, be-
cause the transition probabilities go with the ratio of mass
over energy squared, and electron neutrinos can be pro-
duced with much lower energy than the other flavors. For
three families, Pð	e ! �	eÞ depends only on the Majorana

phases �12 and �13 for the symmetrical parametrization,
whereas the PDG case leads to a dependence on all three
phases. Note the analogy to the effective mass discussed
above.

B. Application to seesaw and sterile neutrinos

We now turn to the lepton mixing matrix characterizing
models containing gauge singlets such as seesaw models.
Their most general form was presented within the sym-
metrical parametrization in Ref. [1], covering seesaw
schemes of all types, type I, type II, and type III. Since it
applies to an arbitrary number m of nondoublet leptons
(singlets in type I and II, triplets in type III) this parame-
trization also covers low-scale in addition to high-scale
seesaw schemes. To a good approximation, in the standard
high-scale seesaw case neutrino oscillations are well de-
scribed by the simplest unitary form of the lepton mixing
matrix used above in Eqs. (1) or (4). In contrast, for the
low-scale seesaw schemes [21–24] neutrino oscillations
involve only a unitarity-violating truncation of the full
mixing matrix, see, for example, Refs. [25,26]. In both
cases one has an ‘‘effective’’ neutrino oscillation descrip-
tion with m ¼ 0, i.e. the extra neutral states are too heavy
to take part in the oscillation phenomena. Because these
possibilities have already been widely discussed in the
literature, here we will focus on the alternative possibility
that singlets are light enough to participate in oscillations,
in the simple case ofm ¼ 1, i.e. one ‘‘sterile’’ neutrino plus
three active ones. This possibility has recently regained
attention [27]. In terms of the mixing matrix, a useful order
of rotation is 34-24-14-23-13-12. We have, therefore,

U ¼ !34ð�34; 0Þ!24ð�24; �24Þ!14ð�14;�14Þ!23ð�23; 0Þ
�!13ð�13:�13Þ!12ð�12; 0ÞP; (10)

with P ¼ diagðei�; ei�; ei�Þ in the sense of the PDG de-
scription, or in the symmetrical form:

K ¼ !34ð�34;�34Þ!24ð�24; �24Þ!14ð�14;�14Þ
�!23ð�23;�23Þ!13ð�13;�13Þ!12ð�12;�12Þ: (11)

First note that the number of rotations for 3þ 1 neutrino
types (six) is exactly the number of phases (three Dirac and
three Majorana), a characteristic feature of the symmetrical
parametrization [1].
Consider first the effective mass characterizing neutri-

noless double beta decay in this case, which is given as
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hmi ¼
( jc212c213c214m1e

2i� þ s212c
2
13c

2
14m2e

2i� þ s213c
2
14m3e

2ið���13Þ þ s214m4e
�2i�14 j ðPDGÞ;

jc212c213c214m1 þ s212c
2
13c

2
14m2e

2i�12 þ s213c
2
14m3e

2i�13 þ s214m4e
2i�14 j ðsymmetricalÞ:

Obviously the symmetrical parametrization has advantages
over the one of PDG. Indeed, again, the CP conserving
cases corresponding to different CP signs are obtained by
choosing the three Majorana phases �12;13;14 to be �=2 or
zero.

Regarding oscillations, the three Dirac phases in the
PDG description are �13, �14, and �24. While there are

nine [28] independent Jij�� ¼ =fU�
�iU

�
�jU�jU�ig, only

three independent CP asymmetries Pð	� ! 	�Þ �
Pð	� ! 	�Þ exist. In the symmetrical parametrization,

the relevant independent phase combinations appearing
in oscillation probabilities are

I123 ¼ �12 þ�23 ��13;

I124 ¼ �12 þ�24 ��14;

I134 ¼ �13 þ�34 ��14:

(12)

Each of the phase combinations Iijk, with i < j < k, is seen

to span three generations, as necessary for the existence of
CP violation in neutrino oscillations. Note that there is a
fourth possible combination, I234. However, since

I123 þ I134 � I124 ¼ I234 (13)

holds, this fourth invariant is not independent. This condi-
tion actually implies that Iijk is a 2-cocycle [29]. This is

true for an arbitrary number Ns of additional sterile neu-
trinos: noting that the 1

2NsðNs � 1Þ rotations between ster-

ile neutrinos are unphysical, it is easy to see that for N
massive neutrinos, includingNs ¼ N � 3 sterile neutrinos,
there are N � 1 ¼ Ns þ 2Majorana phases and 2N � 5 ¼
2Ns þ 1 Dirac phases. Each massless neutrino results in
one Majorana phase less. The total number of 3ðN � 2Þ ¼
3ðNs þ 1Þ phases corresponds exactly to the number of
physical rotations, which is 1

2NðN � 1Þ � 1
2NsðNs � 1Þ ¼

3ðN � 2Þ. The symmetrical parametrization is therefore
tailor-made also for concisely describing the phenomenol-
ogy of sterile neutrinos.

It has been argued that current neutrino data might imply
in fact that two sterile neutrinos are present [30]. A pos-
sible order of the nine physical rotations is

K ¼ !25ð�25;�25Þ!34ð�34;�34Þ!35ð�35;�35Þ
�!24ð�24; �24Þ!23ð�23;�23Þ!15ð�15;�15Þ
�!14ð�14;�14Þ!13ð�13;�13Þ!12ð�12;�12Þ: (14)

Again, the effective mass characterizing neutrinoless
double beta decay automatically looks straightforward:

hmi ¼ jc212c213c214c215m1 þ s212c
2
13c

2
14c

2
15e

2i�12

þ s213c
2
14c

2
15m3e

2i�13 þ s214c
2
15m4e

2i�14

þ s215m5e
2i�15 j; (15)

involving just the four physical Majorana phases.
Regarding CP violation in oscillations, there are

5
3

� �
� 3 ¼ 10� 3 ¼ 7

different Iijk combinations with i < j < k and i, j 2
f1; 2; 3; 4; 5g, where the subtraction of 3 stems from the
cases that have both 4 and 5 in ijk:

I123; I124; I125; I134; I135; I234; I235: (16)

There also exist

5
4

� �
� 3 ¼ 5� 3 ¼ 2

‘‘sumrules’’ in analogy to Eq. (13), namely,

I123 þ I134 � I124 ¼ I234 and I123 þ I135 � I125 ¼ I235:

(17)

Hence, at the end there are five physical DiracCP violating
phase combinations affecting neutrino oscillation proba-
bilities; for instance one could choose

I123 ¼ �12 þ�23 ��13; (18)

I124 ¼ �12 þ�24 ��14; (19)

I134 ¼ �13 þ�34 ��14; (20)

I125 ¼ �12 þ�25 ��15; (21)

I135 ¼ �13 þ�35 ��15: (22)

The phase relevant for CP violation in the short-baseline

oscillations 	e

ð�Þ $ 	�

ð�Þ
sector is =fU�

e4U
�
�5U�4Ue5g /

sinð�14 ��15 ��24 þ�25Þ ¼ sinðI125 � I124Þ.
The generalization to Ns sterile neutrinos is now clear:

In more mathematical language, adopted from Ref. [29],
one may define the operator � (with �2 ¼ 0) such that
[cf. Eq. (13)]

�I1234 � Fð4Þ
1234 ¼ I123 þ I134 � I124 � I234 ¼ 0: (23)

For general i, j, k, l with i < j < k < l one has �Iijkl ¼ 0.

For five active generations one has ten Iijk and five

Fð4Þ
ijkl ¼ 0, one of which can be expressed by the other

four, for instance,
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Fð4Þ
2345 ¼Fð4Þ

1235þFð4Þ
1345�Fð4Þ

1234�Fð4Þ
1245 or �F12345 ¼ 0:

(24)

Therefore, the standard result of 10� ð5� 1Þ ¼ 6 Dirac
phases is obtained. If all generations were active, then the
number of independent phase combinations would be

N

3

 !
� N

4

 !
� N

5

 !" #
¼ N

0

 !
� N

1

 !
� N

2

 !" #

¼ 1

2
ðN � 1ÞðN � 2Þ: (25)

One simply subtracts the number of 1
2NsðNs � 1Þ ¼

1
2 ðN � 3ÞðN � 4Þ unphysical rotations from this result

to obtain the already quoted 2N � 5 ¼ 2Ns þ 1 Dirac
phases. The first binomial in Eq. (25) is the number of
ijk combinations with i < j < k, the second binomial is
the number of sumrules between them, and the third bino-
mial describes the linear relations existing between the
sumrules. For instance, five active generations have

5
3

� �
¼ 10

different Iijk combinations with i < j < k and i,

j 2 f1; 2; 3; 4; 5g. A number of

5
4

� �
¼ 5

sumrules exist, with

5
5

� �
¼ 1

linear relation between them.

III. FINAL REMARKS

In summary, the issue of a proper parametrization
scheme for the lepton mixing matrix will become rele-
vant as experiments reach sensitivity to CP violation,
either of Dirac or Majorana type—even more so if present
indications for sterile neutrinos are confirmed in up-
coming experiments. While the form given in the PDG is
just a rewriting of the symmetrical form proposed in
Ref. [1], we have advocated here the conceptual advan-
tages of the original symmetrical presentation for the de-
scription of neutrino oscillations and, especially, of lepton
number violating processes like neutrinoless double beta
decay.
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