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The magnetic dipole moment and the electric dipole moment of leptons are calculated under the

assumption of lepton flavor violation (LFV) induced by spin-1 unparticles with both vector and axial-

vector couplings to leptons, including a CP-violating phase. The experimental limits on the muon

magnetic dipole moment and LFV process, such as the decay ‘�i ! ‘�j ‘�k ‘
þ
k , are then used to constrain

the LFV couplings for particular values of the unparticle operator dimension dU and the unparticle scale

�U, assuming that LFV transitions between the tau and muon leptons are dominant. It is found that the

current experimental constraints favor a scenario with dominance of the vector couplings over the axial-

vector couplings. We also obtain estimates for the electric dipole moments of the electron and the muon,

which are well below the experimental values.
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I. INTRODUCTION

Scale invariant quantum field theories cannot interpret
matter in terms of particles. Motivated by the Banks and
Zaks model [1], Georgi [2,3] conjectured a scenario that,
unlike the one posed by the standard model (SM) and its
extensions, introduces scale invariant stuff associated with
fractionary anomalous dimension operators. Georgi sug-
gested that a yet unseen scale invariant sector may exist in
the high energy theory such that scale invariant stuff may
interact weakly with the SM fields. Such a hidden sector
may manifest itself at an energy scale �U > 1 TeV, and
since physical particles cannot exist in this sector, the
interactions with the SM fields would occur through scale
invariant fields known as unparticles. Although a compre-
hensive study of this class of theories is very complex, it is
possible to describe its low energy effects through an
effective field theory. This allows one to study the phe-
nomenological effects of unparticle stuff.

The appropriate theoretical framework to describe un-
particle physics is the one introduced by Banks and Zaks
[1]. The hidden sector is a BZ sector, and the associated
fields are described by renormalizable OBZ operators. It is
assumed that these fields interact with the SM fields
through the exchange of heavy particles at a very high
energy MU. Below this energy scale nonrenormalizable
couplings emerge between the fields of the BZ sector
and the SM fields,1 which generically can be written as

OSMOBZ=M
dSMþdBZ�4
U . Dimensional transmutation is

caused by the renormalizable couplings of the BZ sector
at an energy scale �U as scale invariance emerges. Below
this energy scale, an effective theory can be used to de-
scribe the interactions between the SM fields and the BZ
fields, which are associated with unparticles. The effective
Lagrangian can be written as [2,3]

LU ¼ COU

�dBZ�dU
U

MdSMþdBZ�4
U

OSMOU; (1)

where COU
stands for the coupling constant and the op-

erator dimension dU can be fractionary. From theoretical
considerations [4], it has been noted [5,6] that unitarity is
guaranteed in the interval dU > 1. The Lorentz structure of
unparticle operators is nontrivial, but it can be constructed
from the nature of the primary operator OBZ and its
transmutation. Unparticle operators can have a Lorentz
structure of the following types: scalar, OU, vector, O�

U,

spinor or tensor, O��
U . The respective propagators of these

unparticles along with their interactions with the SM par-
ticles have been studied in detail in [1,2,7–10].
The unparticle idea has attracted considerable interest,

and the respective phenomenology has been widely studied
[7,10,11]. One interesting effect could arise from the in-
terference between unparticle and SM amplitudes, such as
could occur in the Drell-Yan process at the Tevatron and
the LHC [10,12]: in particular, the most peculiar effects
could be observed in the dilepton invariant mass distribu-
tion near the Z pole [10,12]. This class of interference
effects could also be evident in diphoton production at
the LHC [13]. As far as the direct production of unparticles
is concerned, it has been studied through monophoton,
e�eþ ! �U, and mono-Z production, e�eþ ! ZU
[11], whereas the production of an unparticle accompanied
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1The dimensions of the respective operators are dBZ and dSM.
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by a monojet was studied in [14]. Several decays of SM
particles into unparticles have been examined: t ! bU
[2], Z ! �ffU [10,11], H ! �U [15], and Z ! �U
[16]. In addition, other topics on unparticle physics have
been studied, such as the possible effects of unparticles
on CP violation [17,18], lepton flavor violation (LFV)
[19–21], and lepton electromagnetic properties [22–24].

In order to impose constraints on unparticle parameters,
several experimental data have been used. The e�eþ !
�U process was studied to explain � ��� production at the
CERN LEP [11]. It was found that LEP data are consistent
with the values �U ¼ 1:35 TeV for dU ¼ 2 and �U ¼
660 TeV for dU ¼ 1:4. Unparticle constraints have also
been obtained from experimental data on cosmology and
astrophysics [25–28].

Apart from the tree-level effects, loop induced unpar-
ticle effects have been studied in the literature [21–23,29].
The electron magnetic dipole moment via scalar and vector
unparticles was obtained in [7,22]. This study was later
extended for the muon magnetic moment due to scalar
unparticles with LFV couplings [23], whereas the lepton
electric dipole moment via scalar unparticles was studied
in [24]. In addition, the calculation of the fermion dipole
moments via fermion unparticles was presented in [9]. The
study of loop induced decays mediated by unparticles has
also been addressed, for instance, the decays li ! lj�

[21,23] and Z ! �lilj [29]. In this work we are interested

in calculating the spin-1 unparticle contribution to the
magnetic dipole moment (MDM) and the electric dipole
moment (EDM) of leptons in the most general case when
there are LFV interactions. To our knowledge, this calcu-
lation has not been presented in the literature.

The rest of the work is organized as follows. In Sec. II
we present an overview of unparticle operators. Section III
is devoted to the results for the lepton electromagnetic
vertex mediated by vector unparticles, while the numerical
analysis is presented in Sec. IV. The conclusions and out-
look are presented in Sec. V.

II. UNPARTICLE INTERACTIONS WITH
THE SM FIELDS

The interactions between the SM particles and unpar-
ticles occur through the exchange of heavy fields of mass
MU. Once those heavy fields are integrated out, the
effective Lagrangian that describes the interactions be-
tween the SM particles and unparticles is obtained. This
effective Lagrangian is composed of a tower of effective
operators that can be constructed out of the SM fields by
invoking the SULð2Þ �UYð1Þ gauge symmetry. For in-
stance, the effective interactions of spin-0 and spin-1 un-
particles with SM fermions are as follows [1,2,7,8,10]:

LUS
¼ �ij

S

�dU�1
U

�fifjOU þ �ij
P

�dU�1
U

�fi�
5fjOU; (2)

LUV
¼ �ij

V

�dU�1
U

�fi��fjO
�
U þ �ij

A

�dU�1
U

�fi���
5fjO

�
U; (3)

where i and j stand for the family index and �ij
J ¼

COU
�dBZ

U =MdSMþdBZ�4
U stands for the associated coupling

constants. These effective operators break scale invariance.
Because of the invariant scale nature of unparticles,

their propagators can be constructed by means of unitary
cuts and the spectral decomposition formula. Therefore,
the scalar unparticle propagator is given by

�Fðp2Þ ¼ AdU

2 sinðdU�Þ ð�p2 � i�ÞdU�2; (4)

where the AdU function, which is introduced to normalize

the spectral density [11], is given as follows:

AdU ¼ 16�2
ffiffiffiffi
�

p
ð2�Þ2dU

�ðdU þ 1
2Þ

�ðdU � 1Þ�ð2dUÞ : (5)

As far as the vector unparticle is concerned, its propagator
is given by

���
F ðp2Þ ¼ �Fðp2Þ���ðpÞ; (6)

where ���ðpÞ is given explicitly as

���ðpÞ ¼ �g�� þ a
p�p�

p2
: (7)

The form of this expression is due to the spin structure
of this class of unparticles [11]. Also p2 � M2, which is
a reflection of the unphysical nature of unparticles. When
the unparticle field is taken as transverse, it turns out that
p��

��ðpÞ ¼ 0, which translates into the condition

a ¼ 1. However, in the context of a specific conformal
invariance, a ¼ 2ðdU � 2Þ=ðdU � 1Þ [6]. In the limit
dU ! 1þ the propagator �Fðp2Þ turns out to be the propa-
gator of a massless scalar particle, as expected:

lim
dU!1þ

�Fðp2Þ ¼ 1

p2
: (8)

III. UNPARTICLE CONTRIBUTION TO ELECTRIC
AND MAGNETIC DIPOLE MOMENTS

OF LEPTONS

Among the best measured particle observables, the
muon MDM, a�, stand outs: it has been measured with

an impressive accuracy of 0.54 ppm. The current world
average, which is dominated by the measurements of the
E281 Collaboration at Brookhaven National Laboratory, is
given by [30]

a
Exp:
� ¼ 116 592 089ð63Þ � 10�11ð0:54 ppmÞ; (9)

where the statistical and systematic errors, 0.46 ppm and
0.28 ppm, have been added in quadrature.
The SM theoretical prediction is given by the sum of the

QED, electroweak, and hadronic contributions. A recent
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review of these calculations is given in [31]. While the
QED and electroweak contributions to a� have been cal-

culated with great precision, the largest uncertainty arises
from the hadronic contribution, which is still under revi-
sion. The theoretical SM prediction is

aSM� ¼ 116 591 834ð48Þ � 10�11; (10)

where the �ðe�eþ ! hadronsÞ data have been used to
calculate the leading-order hadronic vacuum polarization
contribution [32]. There is thus a discrepancy between the
experimental and theoretical predictions larger than 3.6
standard deviations [33]:

�a� ¼ a
Exp
� � aSM� ¼ 255ð80Þ � 10�11: (11)

As long as this disagreement is attributed entirely to new
physics [34], the allowed minimal and maximal limits
for these contributions, with 95% C.L., are �a�
¼ ð255� 1:96� 80Þ � 10�11. It may be, however, that
such a discrepancy will reduce to an acceptable level
once the hadronic contribution is determined with better
accuracy.

Another well-studied fermion electromagnetic property
is the EDM, df, which can provide an excellent probe of

new sources of CP violation. In the SM, the Cabbibo-
Kobayashi-Maskawa (CKM) mechanism cannot account
for the amount of CP violation required to explain the
baryogenesis asymmetry of the Universe. It has long
been known that the experimental observation of an
EDM of fundamental particles will hint to new physics
as the SM predictions are very small. For instance, the
electron EDM is predicted to be negligibly small as it
arises up to the three-loop level via the CKM phase.
Other models such as supersymmetry, multi-Higgs, and
left-right symmetric models predict much larger values
for de [35]. The current experimental limit on the electron
EDM with 90% C.L. is [36]

jdej � 1:6� 10�27 e cm; (12)

whereas the experimental limits on the positive and nega-
tive muon EDMs with 95% C.L. are [37]

jdþ� j � 2:1� 10�19 e cm; (13)

jd�� j � 1:5� 10�19 e cm: (14)

We will calculate the contribution to the lepton MDM
and EDM induced by a spin-1 unparticle with both vector
and axial-vector LFV couplings.

A. Lepton dipole moments via a spin-1 unparticle

The Feynman diagram contributing to the electromag-
netic vertex is shown in Fig. 1. From Eq. (3) we obtain both
vector and axial-vector LFV unparticle couplings. We will
use Feynman parameters for the calculation, and the spec-
tral form for the unparticle propagator will be considered:

�Fðp2Þ ¼ AdU

2�

Z 1

0

dm2ðm2ÞdU�2

p2 �m2 þ i�
: (15)

After the momentum space integration is worked out, we
will proceed with the spectral integral.
After some lengthy algebra we arrive at the following

results. The MDM of the lepton j due to a spin-1 unparticle
can be written as

aUj ¼ X
J¼V;A

X
i¼e;�;�

j�ij
J j2FJðmi; dUÞ; (16)

where the FJ functions can be written as

FJðmi; dUÞ ¼ AdU

16�2 sinð�dUÞ
�
m2

i

�2
U

�
dU�1

fJð ffiffiffiffi
ri

p
; dUÞ;

(17)

with
ffiffiffiffi
ri

p ¼ mj=mi and

fVðz; dUÞ ¼ �z

2� dU

Z 1

0
dxð1� xÞdU�1x2�dUð1� z2xÞdU�3ðð3ð3� xÞ � 4dUÞ þ zð3ðdU � 1Þxþ dU � 3Þ

þ z2ðð1þ xÞ2dU þ ðx� 5Þx� 2Þ � z3ð3ðdU � 1Þxþ dU � 3ÞxÞ; (18)

and also fAðz; dUÞ ¼ fVð�z; dUÞ. We note that there is a flip in the sign of the contributions from vector and axial-vector
couplings.

FIG. 1. Feynman diagram for the lepton electromagnetic ver-
tex induced by unparticles.
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For our analysis below, we will also need the contribu-
tion to a� from a spin-0 unparticle with both scalar and
pseudoscalar LFV couplings. We obtain a similar result as
that given by Eqs. (16) and (17), with J running over S and
P, while the fS function is

fSðz;dUÞ¼�z
Z 1

0
dxð1�xÞdUx1�dUð1�z2xÞdU�2ð1þzxÞ;

(19)

and fPðz; dUÞ ¼ fSð�z; dUÞ. These results coincide with
those presented in [23] and serve as a cross-check for our
calculation method.

We would also like to note that in the case of diagonal
unparticle couplings, we obtain, for the spin-0 and spin-1
unparticle contributions to a‘,

aU‘ ¼ AdU�ð2� dUÞ�ð2dU � 1Þ
16�2 sinð�dUÞ�ðdU þ 2Þ

�
m2

‘

�2
U

�
dU�1

�
�
2ðdU � 2Þj�‘

V j2 þ
4ð2� dUÞ
dU � 1

j�‘
Aj2 � 3j�‘

Sj2

þ ð2dU � 1Þj�‘
Pj2

�
; (20)

where �‘
J ¼ �‘‘

J stands for the diagonal unparticle cou-
plings. This result agrees with the result presented in [22]
for the electron MDM.

As far as the lepton EDM is concerned, we will consider
the contribution from both spin-0 and spin-1 unparticles.

The EDM of fermion j, which can only arise if both �ij
V and

�ij
A (�ij

S and �ij
P ) are nonzero and have an imaginary phase,

is given by

dUj ¼ X
ðJ;KÞ

X
i¼e;�;�

Imð�ij
J �

�ij
K ÞGðJ;KÞðmi; dUÞ; (21)

where ðJ;KÞ runs over ðV; AÞ and ðS; PÞ. The GðJ;KÞ func-
tions are defined as

GðJ;KÞðmi; dUÞ ¼ eAdU

32�2 sinð�dUÞmi

�
�
m2

i

�2
U

�
dU�1

gðJ;KÞð ffiffiffiffi
ri

p
; dUÞ (22)

with

gðV;AÞðz; dUÞ
¼ 1

2� dU

Z 1

0
dxð1� xÞdU�1x2�dUð1� z2xÞdU�3

� ð4ð1� z2xÞð2� dUÞ þ ð1� 3xÞ
þ z2ððx2 � 1ÞdU þ ðx� 1Þxþ 2ÞÞ; (23)

gðS;PÞðz; dUÞ ¼ �
Z 1

0
dxð1� xÞdUx1�dUð1� z2xÞdU�2:

(24)

In the limit of a heavy internal lepton, mj � mi, the

integration can be dealt with, and we obtain

GðV;AÞðmi;dUÞ¼3ðdU�2ÞðdU�1ÞAdU

64�sin2ð�dUÞmi

�
m2

i

�2
U

�
dU�1

; (25)

GðS;PÞðmi; dUÞ ¼ ðdU � 1ÞdUAdU

64�sin2ð�dUÞmi

�
m2

i

�2
U

�
dU�1

: (26)

These expressions can be useful for the muon and tau loop
contributions to the electron EDM and the tau loop con-
tribution to the muon EDM.

IV. NUMERICAL ANALYSIS AND DISCUSSION

Apart from the muon MDM, experimental limits on
LFV processes are known to be useful to constrain LFV
couplings. LFV processes involving the muon are among
the most constrained by the experiment. For instance,
there are stringent constraints on LFV muon decays:
BRð� ! e�Þ< 2:4� 10�12 [38] and BRð� ! 3eÞ<
1:0� 10�12 [39]. Furthermore, the bound on the � ! e�
rate is expected to be improved by about 1 order of
magnitude by the MEG experiment [40]. However, less
stringent constraints exist for LFV � transitions:
BRð�!��Þ<4:4�10�8 [41], BRð�!3eÞ<3:6�10�8

[42], etc. Below we will analyze the constraints on LFV
spin-1 unparticle couplings.

A. Muon anomalous magnetic moment

A comprehensive analysis of the spin-1 unparticle con-
tribution to the muon MDMwould require one to deal with
several free parameters: six coupling constants, the unpar-
ticle scale, and the unparticle operator dimension. We will
take another approach instead and consider some particular
scenarios of LFV together with the hypothesis that there is
no large cancellation between different unparticle contri-
butions. First of all, we will assume that there is a hierarchy
in the LFV unparticle couplings, as it is assumed in
other models of LFV, i.e., j�e�j< j�e�j< j���j � �ii

for all the unparticle couplings. Since experimental data
strongly constrain LFV between the muon and the electron,
we will concentrate on the scenario where LFV transitions
are dominated by the couplings of spin-1 unparticles with
the tau and muon leptons. More specifically, we will focus
on the following three scenarios:
(A) Vector and axial-vector LFV couplings of similar

size.
(B) Vector-dominated LFV couplings.
(C) Axial-vector-dominated LFV couplings.
To discuss these scenarios we first evaluate numerically

each term, FJðmi; dUÞ, of the sum of Eq. (16). The results
are shown in Fig. 2 as functions of the dimension dU and
for�U ¼ 1 TeV. We do not show the contributions due to
the electron loop, as we assumed that the LFV couplings
involving the electron are subdominant. While the
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contributions from vector couplings are positive, the axial-
vector contributions are negative. We also note that
FAðmi; dUÞ ’ �FVðmi; dUÞ, and so the vector and axial-
vector contributions can largely cancel out. This effect is
more evident in the contributions of the tau lepton.
Furthermore, the contributions from axial-vector couplings
are larger in magnitude than the vector contributions, with
the largest contribution arising from the muon loop. This
means that as long the vector and axial-vector unparticle
couplings are of similar order of magnitude (scenario A),
the total contribution to the muon MDM could be negative.
This is a scenario disfavored by the current experimental

data, which require a positive contribution to aU� from new

physics. The situation is rather similar for the scalar and
pseudoscalar contributions, which, for comparison, are
shown in Fig. 3, although in this case the scalar contribu-
tions are slightly larger in magnitude than the axial-vector
contributions. If all the unparticle couplings are of similar

size, the unparticle contribution to aU� could be negative, as

the axial-vector plus pseudoscalar contributions could be
dominant. However, even if all the unparticle couplings
are large, the total contribution to a� could still be positive

by a sort of fine-tuning. We consider the scenario in which
the axial-vector couplings are negligible in comparison
to the vector couplings (scenario B), such that the total

contribution to aU� is positive. Below we will analyze the

possible constraints on vector unparticle couplings under
this assumption.

If the current discrepancy between the theoretical SM
prediction and the experimental value of the muonMDM is
assumed to be due entirely to unparticle interactions, the
allowed limits with 95% C.L. for this class of contributions

are 98:2� 10�11 � aU� � 411:8� 10�11. We have found

the allowed area on the j���
V j vs j���

V j plane, which is
shown in Fig. 4, for several values of �U and dU that are
consistent with the bounds obtained for the scale �U from
monophoton production at the LEP [11] (see Table I). As
inferred from Fig. 4, the experimental data allow a magni-
tude of the vector couplings as large as unity for dU ’ 2
and �U ¼ 1 TeV, whereas the strongest constraints are
obtained for dU close to unity. In general, the limits on
j���

V j are slightly stronger than the limits on j���
V j, which

is in agreement with our assumption. We also note that the
bounds on the vector and axial-vector unparticle couplings
are of similar order of magnitude as the bounds on the
scalar and pseudoscalar unparticle couplings, as shown in
Fig. 5. To obtain that plot we have assumed that the
dominant contribution to the muon MDM arises from a
spin-0 unparticle.

B. Bounds from the decay � ! 3�

It has long been known that LFV couplings can also be
constrained from the experimental bounds on the tree-level
induced decays ‘�i ! ‘�j ‘�k ‘

þ
k . We will examine the

bounds obtained from the � ! 3� decay, which involves
the �

��
V and �

��
V couplings. The calculation for the

‘�i ! ‘�j ‘�k ‘
þ
k decay width was already presented in

[19] for the scalar unparticle contribution. We have calcu-
lated the contribution from vector unparticles, and the
result is presented in Appendix A. Let us consider the
scenario we are working in, and neglect the axial-vector
contributions. With these assumptions we can write, for the
� ! 3� branching ratio,

BRð�!3�Þ¼m���
28�3

��������
AdU

sinðdU�Þ
��������

2
�
m�

�U

�
4ðdU�1Þ

�j���
V j2j���

V j2	1

�
m�

m�

;dU

�
&10�8; (27)
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FIG. 2 (color online). Partial contributions from the indicated
lepton loop to the muon MDM due to vector (V) or axial-vector
(A) unparticle couplings as a function of the dU dimension and
for �U ¼ 1 TeV. The absolute values of the (negative) (A)
contributions are shown. The horizontal lines are the minimal
and maximal allowed limits on new physics contributions to a�
with 95% C.L. Notice that the contributions from the tau loops
are indistinguishable.
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FIG. 3 (color online). The same as in Fig. 2, but for the scalar
and pseudoscalar contributions to a�. The absolute values of the

(negative) (P) contributions are shown.
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with �� the tau mean life. The right-hand side of the
inequality is the experimental constraint [33], and the 	1

function is defined in Appendix A.
Equations (16) and (27) can serve to further constrain

the allowed values of the coupling constants. We show in
Fig. 6 the allowed area obtained after numerical evaluation
of Eq. (27) for several values of �U and dU. We observe
that the � ! 3� decay constrains considerably the size of
the �

��
V parameter, whose allowed value is extremely small

for dU close to unity, where the �
��
V allowed values are

considerably larger. There is also an allowed area in which
the opposite is true (j���

V j � j���
V j), but we will not

consider it as it conflicts with our previous assumptions.
For comparison, we also have obtained the allowed area on
the j���

S j vs j���
S j plane when it is considered that LFV

scalar unparticle couplings give the main contributions to
the muon MDM and the � ! 3� decay. The results are
shown in Fig. 7 for several values of �U and dU. We
observe that the allowed size of the scalar unparticle cou-
plings is of a similar order of magnitude as for the vector
unparticle couplings.
We also analyzed the possible constraints obtained from

the � ! �� decay. This involves the ���
V , ���

V , and �e�
V

couplings. We find that the respective constraints are less
stringent than the ones obtained in Fig. 6, so we will not
consider this decay mode.

C. Electron and muon electric dipole moment

In order to have a nonzero EDM, both kinds of unpar-
ticle couplings, vector-axial or scalar-pseudoscalar, must
be nonzero. Also, an imaginary phase is required. We will
try to get an estimate of the order of magnitude for the
electron and muon EDMs induced by unparticles. Apart

from the magnitude of the j�ij
V;Aj and j�ij

S;Pj parameters, the

TABLE I. Constraints on �U from monophoton production
data at LEP with 95% C.L. and assuming �ee

V ¼ 1 [11].

dU �U (TeV)
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FIG. 4 (color online). Allowed area on the j���
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V j plane consistent with the experimental limit on the muon MDM with
95% C.L. We used the indicated values of �U and dU.
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EDM depends on the associated CP-violating phases, so
its analysis is even more complicated. The most general

form for the unparticle couplings is �ij
J ¼ j�ij

J j expð�i
ijJ Þ,
where 
ijJ ¼ �
jiJ is a CP-violating phase. Therefore

Imð�ij
J �

�ij
K Þ¼ j�ij

J jj�ij
Kjsin�
ijðJ;KÞ, with �
ijðJ;KÞ ¼ 
ijJ � 
ijK

the relative phase between J and K couplings. Depending

on the relative sign of the CP-violating phases, �
ijðV;AÞ and
�
ijðS;PÞ, the partial contributions can add coherently or

destructively. We will content ourselves with considering
a somewhat restrictive scenario, which will allow us to get
an estimate of the order of magnitude of the EDM. First of
all, as was the case for the muon MDM, we will assume
that there is no large cancellation between different con-
tributions to the EDM, so we can analyze each contribution
separately. Also, to be consistent with the previous dis-
cussion, we will assume the following hierarchy, j���

V;Sj �
j��e

V;Sj and j�e�
V;Sj � j�e�

V;Sj. This means that the EDM

would be entirely driven by the tau loop contributions. In
view of this scenario, we numerically evaluate the tau loop
contributions to theGðJ;KÞ functions of Eq. (21). The results
are shown in Fig. 8. We observe that the contribution from

the tau loop to the electron and muon EDMs are indistin-
guishable, which means that the EDM is entirely controlled
by the magnitude of the coupling constants and the imagi-
nary phases. For this calculation we used the approximate
formulas given by Eqs. (25) and (26), and made a cross-
check with the exact calculation obtained by numerical
integration of Eqs. (23) and (24).

We now consider the constraints on the coupling con-

stants obtained above to estimate the muon EDM in our

working scenario. Both ðV; AÞ and ðS; PÞ contributions are
of the order of 10�17 e cm for dU ’ 1:1 and 10�21 e cm
for dU ’ 1:6. We will consider the case in which the ðV; AÞ
coupling prevails over the ðS; PÞ coupling. The allowed

magnitude of the j���
V j parameter is of the order of 10�5 for

dU ¼ 1:1 and 10�3 for dU ¼ 1:6. A good assumption for

the j���
A j coupling is that its magnitude is about 1 or 2

orders of magnitude below j���
V j. This would not spoil the

bounds we obtained above. Therefore, the muon EDM is

about jdU� j ’ j sin���
ðV;AÞj � 10�30 e cm for dU ’ 1:1,

whereas jdU� j ’ j sin���
ðV;AÞj � 10�29 e cm for dU ’ 1:6.

These results are well below the experimental limit on
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FIG. 5 (color online). The same as in Fig. 4, but for the bounds on the j���
S j vs j���

S j plane.

LEPTON ELECTRIC AND MAGNETIC DIPOLE MOMENTS . . . PHYSICAL REVIEW D 84, 073010 (2011)

073010-7



the muon EDM, as the imaginary phase is expected to be

very small. The magnitudes of the coupling constants for
LFV transitions involving the electron are expected to be
more suppressed as long as the hierarchy discussed above
is respected. Then we can estimate that the electron
EDM induced by vector unparticles is well below the
10�30 e cm level and far from the experimental measure-
ment. Moreover, since the constraints on LFV spin-0 and
spin-1 unparticle couplings are similar, the contributions to
the muon and electron EDMs from both spin-0 and spin-1
unparticles are expected to be of similar size. Even if all
different unparticle contributions add coherently, it is hard
to expect a large size of the electron and muon EDMs due
to unparticles.

V. CONCLUDING REMARKS

The lepton magnetic and electric dipole moments were
calculated in the framework of unparticle physics assum-
ing interactions mainly driven by a spin-1 unparticle with
both vector and axial-vector couplings to leptons.
Analytical expressions were found that agree with previous

calculations for the muon MDM in the limit of flavor
conserving couplings.
The muon MDM was numerically evaluated to obtain

bounds on the coupling constants from the experimental
measurements assuming that LFV is mainly dominated by
LFV couplings involving the muon and tau leptons. It was
found that the latest experimental data for the muon MDM
favor a scenario in which the spin-1 unparticle contribution
is dominated by the vector couplings since the contribution
from axial-vector couplings is negative. It is also found that
the decay � ! 3� can constrain considerably the allowed
magnitude of the ���

V and ���
V couplings.

As far as the EDM is concerned, since it depends on
several free parameters, we content ourselves with estimat-
ing its order of magnitude. It is found that the unparticle
contributions are well below the experimental limits of the
electron and muon EDMs.
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Note added in proof.—After this paper was submitted,
we became aware of Ref. [43], where the chromomagnetic
dipole moment of the top quark via flavor diagonal scalar
and vector unparticle couplings was calculated. Our general
results, including nondiagonal unparticle couplings, can also
be useful to reproduce the results presented in that paper.

APPENDIX A: DECAY ‘�i ! ‘�j ‘
�
k ‘

þ
k

In this appendix we present the calculation for the
‘�i ! ‘�j ‘�k ‘

þ
k decay mediated by spin-1 unparticles,

which proceeds through two tree-level Feynman diagrams
(in the first diagram the unparticle couples to the final
‘�k ‘

þ
k leptons, while the second diagram is obtained

through the exchange of ‘�j $ ‘�k ). After introducing the

Feynman rules for the spin-1 unparticle, the decay width
can be written as

�ð‘�i !‘�j ‘�k ‘
þ
k Þ

¼ mi

29�3

��������
AdU

sinðdU�Þ
��������

2
�
mi

�U

�
4ðdU�1Þ

�
Z
dx1

Z
dx2ðjM1j2þjM2j2�2ReðM12ÞÞ: (A1)
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FIG. 7 (color online). The same as in Fig. 6, but when the dominant contribution to a� and � ! 3� arises from a spin-0 unparticle.
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tinguishable.

LEPTON ELECTRIC AND MAGNETIC DIPOLE MOMENTS . . . PHYSICAL REVIEW D 84, 073010 (2011)

073010-9



If j ¼ k a factor of 1=ð2!Þmust be included as there are two
identical particles in the final state. The integration area on
the x1 vs x2 plane is

4s2k�s2j �x1�1�2sj;

x2⪌
1

2

0
@1�x1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1�x1Þ2�4s2j Þðx1þs2j �4s2kÞ

x1þs2j

vuut
1
A;

(A2)

where sj ¼ mj=mi. In addition, Mi arises from the

squared amplitude corresponding to each Feynman dia-
gram andM12 from their interference. These terms depend
on the dU dimension and the x1, x2 variables, and are
given by

jM1j2 ¼ j�kk
V j2ðj�ij

V j2f1ðsj; skÞ þ j�ij
A j2f1ð�sj; skÞÞ

þ j�kk
A j2ðj�ij

V j2f2ðsj; skÞ þ j�ij
A j2f2ð�sj; skÞÞ;

(A3)

jM2j2 ¼ j�ik
V j2ðj�jk

V j2g1ðsj; skÞ þ j�jk
A j2g1ð�sj; skÞÞ

þ j�ik
A j2ðj�jk

V j2g2ðsj; skÞ þ j�jk
A j2g2ð�sj; skÞÞ

þ 2Reðð�ik
A �

ik
V �

�jk
V ��jk

A ÞÞg3ðsj; skÞ; (A4)

M12 ¼ �ik
A ð�kk

A ð��ij
V ��jk

V h1ðsj; skÞ þ ��ij
A ��jk

A h1ð�sj; skÞÞ
þ �kk

V ð��jk
V ��ij

A h2ðsj; skÞ þ ��jk
A ��ij

V h2ð�sj; skÞÞÞ
þ ðV $ A; h1ðsj; skÞ $ h2ð�sj;�skÞÞ: (A5)

For the sake of clarity, we omitted the explicit dependence
on x1, x2, and dU. The fi, gi, and hi functions are

f1ðu; vÞ ¼ �ð2u3 þ ð1þ x1Þu2 þ 2ð2v2 þ x1Þu
þ ðx1 � 1Þð2v2 þ x1Þ
þ 2ðx1 þ x2 � 1Þx2Þðu2 þ x1Þ2ðdU�2Þ; (A6)

f2ðu; vÞ ¼ f1ðu;�vÞ þ 2v2ð2uþ x1 � 1Þðuð3uþ 2Þ þ 2x1 þ 1Þðu2 þ x1Þ2dU�5; (A7)

g1ðu; vÞ ¼ 1
2½u4ðv� 1Þðx2ðvþ 3Þ þ 2v2 þ vþ 1Þ þ u2ðð5� x2Þv4 � ððx2 � 10Þx2 þ 4x1ðx2 þ 1Þ � 3Þv2

þ 2x22v� 2v5 þ x2ð�2x22 þ x2 � 4x1ðx2 þ 1Þ þ 1ÞÞ � 2x32ð2vðvþ 1Þ þ 2x1 � 1Þ � 4ðx1 � 1Þ2
� 2uvð2vþ x2 � 1Þðv2 þ x2Þðvð3vþ 2Þ þ 2x2 þ 1Þv4 � x22ðð4x1 � 3Þv2 þ 3v4 þ 10v3 þ 4ðx1 � 1Þx1Þ
� x2v

2ð6v3 þ v2 þ 4x1ð2x1 � 3Þ þ 3Þ � 2x42�ðv2 þ x2Þ2ðdU�3Þ; (A8)

g2ðu; vÞ ¼ g1ð�u;�vÞ; (A9)

g3ðu; vÞ ¼ �4ðu2 � v2Þð1þ x2Þðv2 þ x2Þ2ðdU�2Þ; (A10)

h1ðu;vÞ¼ 1
2½u6ðvþ1Þþu5ð1�x2ðv�1Þþv2Þþu4ððx1þx2�4Þv2þðx1�x2Þv�4v3þ2ðx22þx1ðx2þ1ÞÞÞ
�u3ð�x22ðvþ1Þ�x2ðvð2ðv�2Þv�x1þ1Þþ3x1Þþvðvðvð4vþx1�1Þ�2x1þ4Þþ1Þþx2�x1Þ
þu2ð�2ðx1þ1Þv4þð�3x1�2x2þ3Þv3þð3x21þðx2�7Þx1þðx2�7Þx2þ1Þv2�x2ðx1þx2�1Þv
þ2ðx2�1Þx22þ2x1x2ð3x2�1Þþx21ð4x2þ1ÞÞ�uð�x1x

2
2ðvþ1Þ�x1x2ðvð2ðv�2Þvþ1Þþ2x1�1Þ

þvðvðx1ðvð4v�3Þþ2Þ�v�2x21�1Þþx1ÞÞ�ðx21�1Þv4þðx1ð1�2x2Þ�1Þv3�x1ðx2�1Þx2v
þð2x2þx1ð2x21þð2x2�3Þx1þðx2�3Þx2þ1ÞÞv2þ2x1x2ðx1þx2�1Þðx1þx2Þ�ðu2þx1ÞdU�3ðv2þx2ÞdU�3;

(A11)

h2ðu; vÞ ¼ 1
2½u3ðx2 þ 1Þðv� 1Þ þ u2ððx1 þ 2x2 � 2Þv2 � ðv2 � 1Þvþ x1 þ 2x2ðx1 þ x2ÞÞ þ uðð2x1 þ 3x2 � 1Þv3

� 2ðx1 þ 3x2 � 1Þv2 þ ðx2ð2x1 þ 3x2 � 2Þ � 1Þv� 6v4 � x2ð2x1 þ x2 � 1ÞÞ þ u4ðvþ 1Þ þ x22ð3ðv� 1Þv
þ 4x1 � 2Þ þ ðx1 � 1Þv2ðvð3v� 2Þ þ 2x1 � 1Þ þ x2ðð6x1 � 4Þv2 þ ð1� 2x1Þv� 3v3 þ 2ðx1 � 1Þx1Þ
þ 2x32�ðu2 þ x1ÞdU�2ðv2 þ x2ÞdU�3: (A12)
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1. Decay ‘i ! 3lj

In the case of this decay, the above expressions simplify
considerably. We can write the decay width as

�ð‘i ! 3‘jÞ

¼ mi

210�3

��������
AdU

sinðdU�Þ
��������

2
�
mi

�U

�
4ðdU�1Þ

� ½j�jj
V j2ðj�ij

V j2	1ðsj; dUÞ þ j�ij
A j2	1ð�sj; dUÞÞ

þ j�jj
A j2ðj�ij

V j2	2ðsj; dUÞ þ j�ij
A j2	2ð�sj; dUÞÞ

þ 2Reð�jj
A �

�jj
V �ij

V�
�ij
A Þ	3ðsj; dUÞ�; (A13)

with

	iðz; dUÞ ¼
Z

dx1
Z

dx2�iðz; dUÞ; (A14)

where the integration limits on the x1 vs x2 plane are now
given by

3s2j � x1 � 1� 2sj;

x2⪌
1

2

0
B@1� x1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1� x1Þ2 � 4s2j Þðx1 � 3s2j Þ

x1 þ s2j

vuut
1
CA;

(A15)

and the �i functions, whose explicit dependence on x1 and
x2 has also been omitted for clarity, are given by

�1ðz; dUÞ ¼ �1
2ð2q2ðdU�2Þ

1 ððzþ 1Þð3z� 1Þx1 þ x21 þ 2ðx1 þ x2 � 1Þx2 þ ð6z� 1Þz2Þ
þ ðq1q2ÞdU�2ðx1 þ x2 þ z� 1Þðx1 þ x2 þ ð3zþ 1ÞzÞÞ þ ðx1 $ x2Þ; (A16)

�2ðz; dUÞ ¼ 1
2ð4q2dU�5

1 ðzþ 1Þ2ðx1 þ 2z� 1Þz2 þ 2q
2dU�4
1 ððzþ 1Þ2x1 � 2x22 � x21 � 2ðx1 � 1Þx2 � ð10zþ 3Þz2Þ

þ 2qdU�3
1 qdU�2

2 ðzþ 1Þðx1 þ 2z� 1Þðx1 þ 2z2 þ zÞz� ðq1q2ÞdU�3z2ðzþ 1Þ2ðx1x2 þ ðx1 þ x2Þz2
þ zðzðzþ 1Þ � 1ÞÞ � ðq1q2ÞdU�2ððx1 þ x2 þ 2Þz2 þ x21 þ x22 þ 2x1x2 � x1 � x2

þ ð7z2 � 1ÞzÞÞ þ ðx1 $ x2Þ; (A17)

�3ðz; dUÞ ¼ �2ðqdU�3
1 q

dU�2
2 ð1þ x21 � 2z2Þz2 þ q

dU�2
1 q

dU�2
2 ðx1 þ x2 � 1Þðx1 þ x2ÞÞ þ ðx1 $ x2Þ: (A18)

We also introduced the notation qi ¼ xi þ z2.
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