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We design a supersymmetric SUð5Þ grand unified theory model using �ð54Þ, a finite non-Abelian

subgroup of SUð3Þf. Heavy right-handed neutrinos are introduced which transform as a three-dimensional

representation of our chosen family group. The model successfully reproduces the hierarchical structures

of the standard model and the Cabibbo-Kobayashi-Maskawa mixing matrix. It then provides predictions

for the light neutrinos with a normal hierarchy and masses such that m�;1 � 5� 10�3 eV, m�;2 �
1� 10�2 eV, and m�;3 � 5� 10�2 eV. We also provide predictions for masses of the heavy neutrinos,

and corrections to the tribimaximal matrix that fit within experimental limits, e.g., a reactor angle of

�7:31�. A simple modification to our model is introduced at the end and is shown to also produce

predictions that fall well within those limits.
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I. INTRODUCTION

The origins of the mass structure in the standard model
(SM) are currently without explanation. However, current
neutrino oscillation data provide clues that a finite non-
Abelian symmetry may be responsible. The oscillation
evidence that we speak of comes in the form of the lepton
mixing matrix (Umnsp) [1], which plays the same role as

the Cabibbo-Kobayashi-Maskawa (CKM) matrix (Uckm)
for the quarks [2]. The most promising and current theo-
retical fit of Umnsp is called the tribimaximal lepton mix-

ing matrix (Utri-bi) [3], and it is in this form one is clearly
lead to the possibility of a non-Abelian finite group being
the key to solving what is often referred to as the flavor
problem.

In this paper, we postulate a finite subgroup of an SUð3Þf
family group: �ð54Þ1 is responsible for the masses and
mixing data observed.2 We reach the goal of creating a
model by way of the Froggatt-Nielsen (FN) formalism,
which is an effective field theory suppressed by some
mass scale [9]. The mass scale of the FN formalism allows
for the introduction of a single parameter that controls the
perturbative nature of the theory. The model is ambitious in
that we try to only use this one parameter throughout. Now,
these details and more of the model building process are
laid out in several sections, which we now summarize.

In order that we produce experimentally viable results, it
is essential to keep in mind all experimental data and
constraints. To this end, Sec. II serves a dual role as a

summary of the data to be reproduced and a discussion
on how it should be accomplished. For the sake of orga-
nization, the section splits the phenomenology into quark
and lepton sectors. We list in each what it is we want to
reproduce from experimental results and how it can be
done.
With these constraints, in Sec. III, we give a closer look

at �ð54Þ and determine how it may be implemented. We
also discuss how and why we split the matter content into
specific representations of our flavor group. Then, under
these choices, we make use of a toy model to demonstrate
how we satisfy the constraints found in the previous
section.
The fourth section contains the model which, as a final

result, can be summarized as coming from SUð5Þ �
�ð54Þ � Zu

3 � Zd
2 � Z2. The underlying assumption of our

model is that we have supersymmetry at this scale. We,
thus, show the superpotential for our theory and take a look
at the contributions to each sector. Here we find the success
of �ð54Þ: it can reproduce all known data in these sectors,
and as for the neutrino sector, the superpotential terms are
quite elegant and produce predictions. Specifically, we find
a normal hierarchy structure with the neutrino masses
being m�;1 � 5� 10�3 eV, m�;2 � 1� 10�2 eV, and

m�;3 � 5� 10�2 eV. As for the angles, we find a reactor

angle of �13 � �7:31�, with a postdicted solar angle of
�� � 34:36�, and an atmospheric angle of �atm �
�45:15�.
The final section includes a simple modification to the

model discussed above. We explore the alteration and show
that it, too, may provide a viable model by taking a specific
example and listing its predictions for the angles of the
lepton mixing matrix.

II. PHENOMENOLOGICAL CONSTRAINTS

The goal is to produce phenomenologically correct
Yukawa matrices for the quark sector and at the same

*jescobar@phys.ufl.edu
1We choose �ð54Þ because at the time in which this work was

done a model for quarks and leptons charged under this flavor
group had not been explored.

2In the literature one can find many possible finite groups as
the origins of the large mixing angles in the lepton sector, e.g.,
for A4 [4], S4 [5], �ð27Þ [6], and PSL2ð7Þ [7]. There are also
more general attempts to solving the flavor problem, of which we
list a few [8].

PHYSICAL REVIEW D 84, 073009 (2011)

1550-7998=2011=84(7)=073009(15) 073009-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.073009


time produce viable neutrino masses and to leading order
the tribimaximal lepton mixing matrix. As for the charged
leptons, the choice of an SUð5Þ grand unified theory (GUT)
will automatically produce a Yukawa from the down-quark
sector. The focus of this section is then the phenomenology
involved in each matter sector and how to consolidate the
data into mass matrices.

A. Quark sector

Current experiments allow for only two but important
pieces of data. These come in the form of the approximate
masses for the quarks and the quark mixing matrix known
as the CKM matrix.

It is well known that by extrapolating mass data to the
unification scale one can parametrize all masses in terms of
the Cabibbo angle �c � :226, producing the hierarchical
structure

me

m�
� Oð�4;5

c Þ; m�

m�

� Oð�2
cÞ; m� �mb; (2.1)
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mb
�Oð�4;5

c Þ; ms

mb

�Oð�2
cÞ; mb

mt

�Oð�3
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� Oð�4
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Included above is the relation between mass of the tau
lepton and bottom quark which are approximately equal
and the intrafamily hierarchy, both of the last relations in
Eqs. (2.1) and (2.2), respectively.

The choice of an SUð5Þ model will guarantee the lepton
masses and down-type quark masses are in fact related and
so ensure that the mass of the tau and bottom quark are
identical. So that with an SUð5Þ model we will try to
reproduce, in the form of eigenvalues of two Yukawa matri-
ces, all the information found in Eqs. (2.1), (2.2), and (2.3).

The last experimental piece of data at our disposal is the
CKM matrix. It is a mixing matrix composed roughly out
of differences in angles that occurs from diagonalizing the
Yukawa matrices of both quark sectors. The information
contained there to third-order approximation is

Uckm � O

1 �c �3
c

��c 1 A�2
c

�3
c �A�2

c 1

0
BB@

1
CCA; (2.4)

A is the appropriate parameter found in the Wolfenstein
prescription. Because of the very nature of its origins there
is a limit in how much information we can derive about the
structure of the quark Yukawas. Nevertheless, there are
clues as to the texture structures and if we add to these
the necessary eigenvalues required we can limit the pos-
sible choices for Yukawa matrices [10].

Taking all these constraints, and following guidelines
found in [10] we find that at the very minimum we would
need
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assuming that coefficients are of Oð1Þ and the Yukawa
matrices are labeled by their corresponding quark charges.
It should be noted that the above is a bit misleading, at least
one of the (2, 3) positions must be �2

c. Now, the model
building will have to satisfy the hard texture constraints
given above and fall within the limits placed.
We do so not using the Cabbibo angle as our expansion

parameter for the whole model but instead � � 0:20. There
is some arbitrariness to this, the only constraint being that
� > 0:182,3 but we have chosen the stated value so that the
mass relations are consistent at energies of the GUT scale
of 2� 1016 GeV and its value must remain close to the
Cabibbo angle if we expect Eq. (2.5) to remain true.

B. Lepton sector

Unification via SUð5Þ will automatically produce infor-
mation about the charged leptons once the down-quark
Yukawas are known. So we will only concentrate on both
the neutral leptons and heavy neutrinos.
In terms of experimental data, the lepton sector does not

share the same richness as the quark sector, but we do have
available to us two key pieces of data.4 First, experimental
results have given us the mass squared differences [12]

�m2
21 � 7:59þ0:19

�0:21 � 10�5 eV2;

j�m2
23j � 2:43	 0:13� 10�3 eV2:

(2.6)

Notice that the second relation does not allow us to deter-
mine the exact hierarchical structure. Nevertheless, a use-
ful constraint that can be derived from the above is

4Cosmological data also provide limits on the sum of neutrino
masses and the size of the most massive neutrino [11]X

m�;i < ð0:17–2:0Þ eV; i ¼ 1; 2; 3;

0:04<m�;heaviest < ð0:07–0:70Þ eV:

3One can understand this limit by using the mass relation for
the up-quark found in Eq. (2.3). We do not wish that it go as �7,
which occurs when the value of � is as small as it can be, viz.,
� � 0:182.
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the average value being � 32:0.
The second piece of experimental data comes in the

form of the lepton mixing matrix Umns, which we shall
assume to be approximately the tribimaximal matrix

Umnsp � Utri-bi ¼

ffiffi
2
3

q
1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

0
BBBB@

1
CCCCA: (2.8)

The seesaw mechanism requires the existence of the

regular neutral lepton Yukawa matrix Yð0Þ and an invertible
Majorana matrix Ymaj [13]. These together are needed for

the light neutrino mass approximation of

Y � � � v2

M
Yð0ÞðYmajÞ�1Yð0ÞT; (2.9)

where v is the usual electroweak vacuum value and M is
the mass scale of the Majorana term of the heavy right-
handed neutrinos. We can then diagonalize the above by
Umns, i.e.,

Y � ¼ Umnspm�UT
mnsp: (2.10)

The diagonal term m� will in general contain three differ-
ent eigenvalues (masses) and after selecting these eigen-
values we can produce the light neutrino matrix from the
tribimaximal matrix:

m� ¼
m1

m2

m3

0
BB@

1
CCA) Y�

¼
�1 �2 �2

�2 �3 �1 þ �2 � �3

�2 �1 þ�2 ��3 �3

0
BB@

1
CCA; (2.11)

in which we have that

�1 ¼ 1
6ð4m1 þ 2m2Þ; �2 ¼ 1

6ð�2m1 þ 2m2Þ;
�3 ¼ 1

6ðm1 þ 2m2 þ 3m3Þ: (2.12)

Thus, the eigenvalues as functions of entries of Y� are
given as

m1 ¼ �1 � �2; m2 ¼ �1 þ 2�2;

m3 ¼ 2�3 ��1 ��2: (2.13)

III. MODEL BUILDING WITH �ð54Þ
The focus of this section is to describe in some detail the

strategy taken to produce our model. We begin with an

attempt to familiarize ourselves with �ð54Þ by having a
quick look at its salient features. A complement to this
section, i.e. with a more mathematical description of this
group, can be found in Appendices A and B.
In brief, Appendix A contains a comparison of the group

itself to that of a similar group �ð27Þ, which has been
investigated as a flavor group [6], while Appendix B con-
tains some of the mathematical information regarding the
group �ð54Þ that a reader would want to know for this
paper.
Our model makes use of a supersymmetric SUð5Þ GUT

theory. This, of course, has a direct impact on how we build
a theory under our flavor group. Now, although for the most
part the choice of GUT is somewhat arbitrary, an SUð5Þ
theory has a method of unifying the charged lepton and
down-type quark masses in a simple elegant way. Our
choice means that we must place matter into specific
representations under SUð5Þ [14], these are

�N � 1; L; �d� �5; Q; �u; �e� 10: (3.1)

The L and Q are the SUð2Þ weak doublets and the remain-
ing particles are the right-handed weak singlets.

A. �ð54Þ as a flavor group

A glance at Appendix B and looking at the character
table, Table V, shows that the group has both two- and
three-dimensional representations. This translates into
many options for assigning representations to the matter
content. Although all options can be explored, we wish to
limit them, and for an SUð5Þ theory this can be done by
examining the mass of the top quark.
The origin of its mass is at tree level, since its value

seems close to that of the vacuum expectation value (vev)
of the Higgs particle. Ensuring this result satisfactorily for
the three-dimensional representation is very difficult if not
impossible to do. To see that this is indeed the case, let us
for the moment describe what would happen if we used
such a three-dimensional representation.
First, our model assumes that the top quark mass comes

from the product of two ten-dimensional representations
of SUð5Þ. Let us assume that under our flavor group the
X� 10 transforms as any of the four three-dimensional
representations, i.e. 31, 32, �31, �32.

5 Then the interaction
term responsible for mass produces no singlets but in-
stead, schematically, a direct sum of three-dimensional
representations

X � X � ð�31 � �31ÞS � �32;A; (3.2)

5It is the case that the labels of the flavor group representation
will be boldfaced just like for SUð5Þ. The difference between the
two, besides some obvious cases like the 5 and �5, is that those of
the flavor group will usually contain subscripts. These should not
be confused with family indices, as in the case of SUð5Þ singlets,
which should be understood by context.
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with the subscripts S for the symmetric combination and
A for the antisymmetric one. The bar should be under-
stood as the complex conjugate of whichever 3 is taken
for X. In order to get a singlet term we must have a flavon
� which transforms as either a 31 or a �31 depending on
the representation chosen for the 10 so that via the FN
mechanism

g

M
�X � X; (3.3)

is the mass operator for the top quark, where g is a
coupling constant, M is the mass scale for the mechanism,
and we have suppressed the Higgs. In order to explain the
mass of the top properly, the vev of the flavon field must
be the same order as the mass scale, i.e., h�i �M. In
terms of model building this fact is difficult to explain and
it can be difficult to control the interaction terms involv-
ing �. These difficulties are enough to make us avoid the
use of the three-dimensional representation of �ð54Þ to
describe the up-quarks.

We have chosen instead to have the top quark be a
singlet under the flavor group, i.e. X3 � 1, while the two
remaining flavors together form a two-dimensional repre-
sentation ðX1; X2ÞT � 2r, r ¼ 1; 2; 3; 4. Under this scheme
we have a natural way to explain the mass of the top quark
at tree level: X3X3Hu, where Hu is the up-type Higgs field.
So we take the approach that both quark sectors can be

written in the same fashion just described. Our motivation
for the choice of 2 � 1 structure is twofold.
First, if we had chosen instead that the �5 transform as 3

under �ð54Þ it would be difficult to control the power in �
of any one entry in a Yukawa matrix without the danger of
producing that same power in another. An issue may then
arise that same power is lower than the power required. We
refer the reader to Appendix B to confirm this. The second
weaker reason is simply that the Yukawas of both quark
sectors are similar by having structures which are cop-
acetic with the use of two-dimensional representations.
Texture zero structures that occur in both quark sectors
are easily achievable and can be understood as coming
from the vevs of the two-dimensional flavon.
We summarize our choice for the SUð5Þ matter content

under �ð54Þ:
ð101; 102ÞT; 103 ��ð54Þ 2p; 1; ð�51; �52ÞT;
�53 ��ð54Þ 2r; 1; p; r ¼ f1; 2; 3; 4g;
ð11; 12; 13ÞT ��ð54Þ 3s or �3s; s ¼ 1; 2;

(3.4)

included above is the case where p ¼ r. We now inves-
tigate the type of Yukawa matrices we can produce based
on our choice of representations. All the possibilities for
the up-quark and down-quark Yukawas are summarized
with just two matrices, respectively,

where s0; s00 ¼ f1; 2; 3; 4g. The up Yukawa must always
necessarily be the left case. While for the down it may be
either the right case when p � r � s0 � s00, or the left
when p ¼ r.

Recall that at the end of Sec. II A it was mentioned that
we shall try to reproduce the texture structure and con-
straints of Eq. (2.5). In order to show how this can be
accomplished, we will make use of a toy model that uses
two matter fields, �, c , and two flavons �1 and �2. The
goal is then to show how to obtain the texture structure we
seek from matrices constructed in the fashion shown by
Eq. (3.5).

B. A quark sector toy model

We start with the notation that is used in this toy model
and throughout other sections from now on. So far we have
decided that the representations of the matter content will

be split into 2 � 1 flavor representations for reasons ex-
plained in the section before. So in order to distinguish
matter that transforms as a 2 from that transforming as a 1,
our convention uses an underline for doublets and no such
underline for singlets, e.g., we write, for the left-handed
quark SUð2Þ doublet

Q 
 Q1

Q2

� �
� 22; Q 
 Q3 � 1; (3.6)

where it is understood that the subscripts on theQ’s denote
flavor indices. As can be seen the notation will be cleaner
than using subscripts or superscripts to denote the differ-
ences in representations. For the flavon fields the variable
�will be used for 3, � for 2, and	 for either the 11 or the 1
representations. Any subscripts found on the flavons will
aid in simply distinguishing among them.
Returning to our toy model, we shall assume that our

fields should transform as shown in Table I.
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The second flavon will be used for the case where we
want to show with clarity a quadratic term in flavons. For
the purpose of brevity we will look at the Yukawa term
for the down-type quarks, but when possible we will
discuss the up-type quark Yukawa as well. The reason
for looking at the down Yukawa is that it presents the
most generic possible scheme since it allows both the case
where p ¼ r and p � r.

A Yukawa matrix for the down-quark can be built from
the flavon interacting with the terms � c , �c , �c , �c .

Schematically the structure of the mass matrix is therefore

� c �c
�c �c

 !
; (3.7)

following the same partitioning scheme as in Eq. (3.5).
With all the above in mind, we shall now look at several
cases involving different choices for relationships between
the variables p, r, s. In each case we list the possible results
and label them, only going up to quadratic order in flavon
fields. Greek letters not previously defined are just cou-
pling constants, and multiple such constants in front of a
term indicate there are a number of different ways to get a
flavor invariant. The first case where p ¼ rwill be the case
for our model and so we will spend some time pointing out
its important features.

(1) p ¼ r. One should notice that this is the first case in
Eq. (3.5). There are two possible choices we can
take for the flavon; either p ¼ r ¼ s or p ¼ r � s.

(i) p ¼ r ¼ s. The tree-level results allow for a nonzero
term in the (3, 3) position, useful in the case of the
top quark. However, this is not the only allowed
contribution, since all the zero order contributions
are

O ð��Þ: 
� c þ��c
0 
 0

 0 0
0 0 �

0
@

1
A: (3.8)

For a realistic model, we would not like the 2� 2
locations occupied at this order. To avoid these re-
sults, we are lead to conclude that � c must be

charged under some symmetry that forbids it.
For first-order contributions in flavons we have

O ð�Þ: 
�1� c þ��1�c þ �0�1�c

�

a 0 �b
0 
b �a

�0b �0a 0

0
@

1
A: (3.9)

The reader should notice how the vevs contribute to
the entries above. A choice of a ¼ 0 would mean
that the (1, 1) zero could be protected. For the up-
quarks we could instead have a ¼ ��2 and b ¼ 0 in
order to satisfy our texture constraint while hoping
that symmetries disallow any 2� 2 terms.
A look at the Kronecker products reveals that the
second-order in flavons can produce doublets and
two types of singlets:

Oð�2Þ: ð
;�; �Þ�1�2� c þ
�1�2�c

þ 
0�1�2�c þ 	�1�2�c

�


bd �bcþ �ad 
ac

�adþ �bc 
ac 
bd


0ac 
0bd 	ðadþ bcÞ

0
BB@

1
CCA:

(3.10)

The ð
;�; �Þ is there because the associated term
contains three different ways to obtain a singlet,
hence the three couplings (see Appendix B). It
should be noted that there are in fact two different
but equivalent ways to perform the product of the
first term:

ð�1�Þð�2c Þ and ð�1�2Þð� c Þ: (3.11)

Because they are equivalent, there will be no need to
differentiate between them and we shall make no
effort in the future to do so.
For the up-quarks, if we for the moment assumed
only one flavon, say �1 with b ¼ 0, we see that we
respect the (1, 1) zero while the (2, 2) can be filled in.
Via the FN mechanism we are allowed to have that
a � �2 so that we can produce the textures allowed
in Eq. (2.5). Note that this is indeed realized in our
model.

(ii) p ¼ r � s. The tree-level results should remain the
same. The results differ from above in that there are
no possible first-order interactions.
The zeroth order terms are given by

O ð�0Þ: 
� c þ��c
0 
 0

 0 0
0 0 �

0
@

1
A: (3.12)

The second-order results follow much in the same
way as the case where p ¼ r ¼ s:

TABLE I. Matter content and flavons for the toy model with
p; r; s ¼ f1; 2; 3; 4g.
Matter SUð5Þ �ð54Þ Flavons, hvevi SUð5Þ �ð54Þ
c , c �5 2r 1 �1, a b

� �
T 1 2s

�, � 10 2p, 1 �2, c d
� �

T 1 2s
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Oð�2Þ: ð
;�Þ�1�2� c þ��1�2�c

�

0 
adþ �bc 0


bcþ �ad 0 0

0 0 �ðadþ bcÞ

0
BB@

1
CCA:

(3.13)

Once again there is an ambiguity about how to
perform the product of the first term. Direct calcu-
lation for all possible cases shows again that the
ambiguity is irrelevant because each product is
equivalent. Notice that there are only two couplings,
which show that there are only two ways to produce
singlets for this case.

(2) p � r. Now we have the second case of Eq. (3.5).
Before we go on to discuss the two possible choices,
looking at Table IV, we find that

2 p� 2r ¼ 2s0 � 2s00 ; p� r� s0 � s00: (3.14)

The above has direct implications at tree level since
now there is only one result we can have and that is

O ð�0Þ: 
�c �
0 0 0
0 0 0
0 0 


0
@

1
A: (3.15)

As for the first order, a flavon can only transform as
either the 2s0 or the 2s00 . The specifics will depend on
the representations, but the results will be in one of
four sets of possible combinations where in each set
only one matrix would be chosen:

O ð�Þ: 
�1� c �


a 0 0
0 
b 0
0 0 0

0
@

1
A or

0 
b 0

a 0 0
0 0 0

0
@

1
A


a 0 0
0 
b 0
0 0 0

0
@

1
A or

0 
a 0

b 0 0
0 0 0

0
@

1
A
; (3.16)

where we list only two sets for brevity and the other two can be obtained by interchanging a and b. The ‘‘or’’ is because
there are two possible choices for representation of �1, a theme that continues at second order:

O ð�2Þ: 
�1�2� c þ��1�2�c �


ac 0 0
0 
bd 0
0 0 �ðadþ bcÞ

0
@

1
A or

0 
bd 0

ac 0 0
0 0 �ðadþ bcÞ

0
@

1
A


ac 0 0
0 
bd 0
0 0 �ðadþ bcÞ

0
@

1
A or

0 
ac 0

bd 0 0
0 0 �ðadþ bcÞ

0
@

1
A
; (3.17)

where to get the other set of matrices one needs only to
interchange the roles of the ac terms with bd.

The above provides a small glimpse into the workings of
two-dimensional representations. Although not discussed
above, one can tell which entries provide texture zeros by
clever choice of vevs. With an understanding of the texture
structure that �ð54Þ can produce, we are now ready to
discuss our model.

C. Some remarks

We had mentioned in the beginning of the section that
we would let the right-handed neutrinos transform as 31 of
our flavor group. The choice is somewhat arbitrary, we
could have easily chosen the representation �31, 32, or �32.
Regardless, their Clebsch-Gordan (CG) coefficients are
similar enough so that any choice would do with no clear
advantage of one over the other.

As for the choice of two-dimensional representations for
the matter content, there is some arbitrariness to this too. A

look at Appendix B, focusing on the CG coefficients, will
reveal that all two-dimensional representations under the
case 2r � 2r have the same result. The only interesting
feature occurs in the 2p � 2r with p � r case. In terms of

model building, one could make use of the fact that such a
product produces two different two-dimensional represen-
tations. Even though this could be exploited in a clever
fashion, the author has found that using the same two-
dimensional representation throughout requires less fla-
vons and leads, consequently, to a simpler model.
Finally, now that we have opted to use the same 2 for our

model, which one should be used? Looking at Appendix B
shows that taking the product of 21 � 31 produces CG

coefficients that contain powers of ! ¼ e2�i=3. The same
is true for the cases involving 22 and 23 with the sole
exception of 24. It should be possible to absorb the !
into coupling constants, thus in effect we have no real
advantage of using one representation over another.
However, for the sake of clarity and simplicity we choose
instead to use 24 and avoid the issue altogether.
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IV. THE SUð5Þ ��ð54Þ MODEL

The model has a supersymmetric background, and we
assume that we are above the unification scale of the SUð5Þ
GUT. The matter content found in the standard model fits
into SUð5Þ representations as

X� 10; �� �5; �N � 1: (4.1)

For reasons discussed in Sec III Awe chose to have both �5
and the 10 in two- and one-dimensional representations but
kept the heavy neutrinos as three dimensional, i.e.,

ðX1; X2ÞT 
 �� 24; X3 
 �� 1;

ð�1;�2ÞT 
 c � 24; �3 
 c � 1; �N � 31:

(4.2)

Remember that the top quark mass was a motivation for
using the singlet and doublet structure for the 10. Aside
from these assignments there are other charges that we
have given these fields, namely, the Zu

3 � Zd
2 � Z2 charges.

The superscripts indicate that these charges are primarily
given to those fields that contain the associated right-
handed particle.

As we will show soon, the quark and charged lepton
sectors are populated mainly by three extra fields:

�u � 24; �d � 24; 	� 1: (4.3)

The letters as subscripts remind us that these fields are
charged under a cyclic symmetry (Zn) with a superscript of
that same letter.

On the other hand, the neutral lepton sector is primarily
populated by just two three-dimensional flavons:

�� �31; �0 � �31; (4.4)

once again indicating the appropriate �ð54Þ charge. The
final ingredients are the Higgs fields which include both
the five- and 45-dimensional representations of SUð5Þ.

We may now present the superpotential, but without all
the clutter of coupling constants,

Wmodel ¼ Wu þWd þW�
Dirac þW�

Majorana; (4.5)

where

Wu � ��Hu þ ð�u�Þ�Hu þ �2dð�u�Þ�Hu

þ ð�u�Þð�u�ÞHu þ �2dð�u�Þð�u�ÞHu;

Wd � �cHd þ ð�u�ÞcHd þ �2dð�u�ÞcHd

þ �ð�dc ÞHd þ ð�u�Þð�dc ÞHd

þ ð�dc Þð	�H45
d Þ;

W�
Dirac � �c �NHu þ ð�0c Þ �NHu;

W�
Majorana

M
� �2NN þ�02NN: (4.6)

The value M is the Majorana mass scale that is to be
determined at a later time. We have listed only terms that

contribute to lowest order in their respective matrix entries.
The parentheses have no bearing on how to take products
under our flavor group, they merely indicate that distinct
fields have the correct cyclic charges to be neutral under
those charges. For a summary of the field content and their
charges look at Table II.
It should be stated that in Table II we could have

included another cyclic symmetry Zn
2 . For this symmetry

the �N would be odd and so would the� and�0 flavons. All
other fields could in principle remain neutral. The model,
however, does not seem to require the extra symmetry and
so we leave this symmetry out of the table.
The next three subsections will contain some of the finer

details of our model. The first two subsections include a
look at the vevs of the new fields we have introduced and a
detailed look at how each of the superpotential terms
populate their matrices. The last section presents the final
results of our model. These phenomenological results in-
clude the masses for both light and heavy neutrinos as well
as the expected corrections to the tribimaximal matrix.

A. Flavon content and vacuum expectation values

The vacuum expectation values of the flavon fields
go as

h	i�c; h�i�ða1;a2ÞT; h�i�ðb1;b2;b3ÞT; (4.7)

where the exact vevs can be found in the table discussed
above. As said in the Introduction, we make use of the FN
mechanism, which means that each flavon vev will be
suppressed by an effective mass scale (M) of some gauged
interaction at much higher energies. The suppressed vevs
then are postulated to go as

TABLE II. Field content and charges of our model with ! ¼
e2�i=3. There could be another symmetry Zn

2 but it is found

unnecessary.

Matter SUð5Þ �ð54Þ Zu
3 Zd

2 Z2

�N 1 31 1 1 1

c , c �5 24, 1 1, 1 �1, 1 1, 1

�, � 10 24, 1 !, 1 1, 1 1, 1

Higgs

Hu, Hd 5, �5 1, 1 1, 1 1, 1 1, 1

H45
u , H45

d 45, 45 1, 1 !2, ! 1, 1 �1, �1

Flavons, hvevi
�u, a1 0

� �
T 1 24 !2 1 1

�d, 0 a02
� �

T 1 24 1 �1 1

�, b1 b1 0
� �

T 1 �31 1 1 1

�0, b01 0 0
� �

T 1 �31 1 �1 1

Singlets, hvevi
	, c 1 1 1 1 �1
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c

M
� �mþ1;

a1
M

� �2;
a02
M

� �;

b1
M

;
b01
M

� �n; m � 0; n > 0;
(4.8)

where m and n are integers. The value of m can be
determined from the relative size of v5;d, the vev of the

Hd, to the vev v45;d of H45
d by way of

h	H45
d i / �mv45;d � v5;d: (4.9)

For v45;u, the vev of H45
u , we assume that v5;u � v45;u �

v45;d. The implicit assumption above is that v45;d � v5;d,

otherwise we may lose our perturbative power by having a
singlet with a vev that is greater or equal to the FN scaleM.
Finally, we must mention the relative size between v5;u to

that of v5;d; we expect

cotð�Þ 
 v5;d

v5;u

/ Oð�3Þ; (4.10)

which would satisfy the intrafamily relationship mb=mt.
As for the value of n, it may be determined by the size

of the baryon asymmetry our model predicts from lepto-
genesis constraints on the lightest of the heavy neutrinos,
M1 [15]. Current approximate bounds limit the mass of
M1 > 108 GeV and, as we shall see at the end of this
section, this limit will restrict our possible choices for n
such that n ¼ 1; 2; 3.

B. Quark Yukawas

The purpose of this section is to explore in detail the
results written in Eq. (4.6) for the quark sectors. We shall
limit our investigation to demonstrating the origins of all
Yukawa textures and the necessary coupling constants.
Each superpotential contains terms that produce the lead-
ing order contribution to their Yukawa matrix. All other
terms, including those which are of Oð�8Þ and higher for
the up-quarks and Oð�5Þ for the down-quarks, will be
neglected.

The superpotential contributions making the up Yukawa
matrix are given by

Wu � ��Hu þ 
ð�u�Þ�Hu þ ��2dð�u�Þ�Hu

þ 
ð�u�Þð�u�ÞHu þ ��2dð�u�Þð�u�ÞHu: (4.11)

It should be stated that the SUð5Þ algebra requires that any
contribution to the H45

u from the 10 must be antisymmetric
in flavor space. As a result, the only antisymmetric combi-
nation ð��ÞA produces a 11. Since there are no flavon 11
singlets, there are no devastating low order contributions
and the only contributions that can survive would be cor-
rections to the Yukawa matrices, e.g., the lowest order
correction is �3uð	��H45

u Þ.
In Eq. (4.11) the Greek letters 
, �, 
, � are couplings

which also aid in identifying where each term contributes
to the up Yukawa matrix:

Yð2=3Þ
5 � O

0 ��6 ��4

��6 
�4 
�2

��4 
�2 1

0
BB@

1
CCA: (4.12)

The down-quark sector is a bit more complex, for we
include both contributions due to the regular Higgs Hd and
the H45

d . Both contributions will be added to produce a

single Yukawa matrix, and so below we only include those
terms that are leading in their sum. Primes on Greek letters
are for the couplings that occur in this case, and so the
terms we have are

Wd � �cHd þ 
0ð�u�ÞcHd þ �0�2dð�u�ÞcHd

þ �00�ð�dc ÞHd þ ð�0; �00Þð�u�Þð�dc ÞHd

þ 
0ð�dc Þð	�H45
d Þ; (4.13)

with ð�0; �00Þ meaning that there are two ways to produce
singlets, each with their own couplings. In terms of �, we
have

Yð�1=3Þ
5 � O

0 �0�3 �0�4

�00�3 0 
0�2

�00� 0 1

0
BB@

1
CCA;

Yð�1=3Þ
45 � O

0 0 0

0 
0�2 0

0 0 0

0
BB@

1
CCA:

(4.14)

Finally, with all the above results, one can construct the
Yukawa matrices from the well-known results of SUð5Þ
GUT models [16]:

Yð2=3Þ ¼ Yð2=3Þ
5 ;

Yð�1=3Þ ¼ Yð�1=3Þ
5 þ Yð�1=3Þ

45 ;

Yð�1Þ ¼ Yð�1=3ÞT
5 � 3Yð�1=3Þ

45 :

(4.15)

C. Neutrino masses

A similar procedure as outlined in [17] is followed here.
We postulate the addition of two new terms to the super-
potential of the MSSM:

W� ¼ LHuY
ð0Þ �N þM �NYmaj

�N: (4.16)

The Majorana term also comes with a mass scale M
which we suppose can come from a higher energy scale.

The matrices Yð0Þ and Ymaj are the same Yukawa and

Majorana matrices as defined in Sec. II B and seen in
Eq. (2.9). We designed the model to produce the above
with the assumptions that the flavors of �N together form a
31 under our flavor group. To accomplish the task, we
employed the use of two three-dimensional representa-
tions � and �0, whose details can be found in Table II.
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Our model, Eq. (4.6), produces the Dirac term

W�
Dirac � �c �NHu þ ð�0c Þ �NHu; (4.17)

rewritten here for convenience. The resulting Yukawa
matrix is

Yð0Þ � 1

M

0 0 b01
0 b01 0

b1 b1 0

0
BB@

1
CCA: (4.18)

In the above there are no coupling constants included,
because they are of Oð1Þ and can be simply absorbed by
their respective vevs. In principle, it would be possible to
get tribimaximal mixing in the case that Oðb01Þ � Oðb1Þ.
However, if this is the case, and it is carried through to the
Majorana matrix, then the light neutrino matrix Y� would
contain entries that are sums of various powers in �. A
somewhat simple calculation will show that this is true.

In cases like these, it is difficult to diagonalize byUtri-bi,
since either careful cancellations are needed in the various
powers in � or some explanation for the complexity of the
coupling constants should be given. To avoid such a com-
plication, it is found best to assume thatOðb01Þ ¼ Oðb1Þ. In
fact, its found that much more elegant results can arise
when one assumes that b01 ¼ b1 and so this is the assump-
tion we shall make.

The Majorana contributions terms, found in Eq. (4.6),
are

W�
Majorana

M
� �2NN þ�02NN: (4.19)

The Majorana matrix is then

Ymaj

�2n
�


 	 


	 
 



 
 �

0
BB@

1
CCAþ


0 0 0

0 0 
0

0 
0 0

0
BB@

1
CCA: (4.20)

The unprimed Greek letters correspond to couplings for the
� and primed letters for �0. Do not confuse these parame-
ters for those written down in the quark sector. Just as
before, they are coupling constants resulting from the
number of ways one can get a singlet term. Notice that
the vevs of the flavons are included, but found within �2n

by Eq. (4.8). The best choices for the parameters above
seem to be


 ¼ 	 ¼ 0; 
 ¼ �� ¼ 
0 ¼ 1;

j
0j ¼ 0:100	 0:004:
(4.21)

The parameter 
0 can control the value of ratio of the mass
squared differences found in Eq. (2.7). The choice of
j
0j ¼ 0:1 produces exactly the ratio of 32 that fits current
data.

D. Phenomenological results

We have successfully produced Yukawa matrices with
entries of the same order as we had sought in Eq. (2.5). We
have even produced a set of matrices for the neutrinos that
together produce a light neutrino matrix that can be diago-
nalized by the tribimaximal matrix. Here we take things a
step further and try to reproduce the SM results and find
values for the neutrino sector.
The first step is to reproduce the results of the SM

extrapolated to the energy scale of 2� 1016 GeV [18].
We have seen that for the quark sector, based on our
superpotential terms, there are ten parameters to be deter-
mined. One of these parameters is found to be irrelevant
and so left equal to one [the (1, 3) and (3, 1) entries of the
up Yukawas]. We are then left with nine that are chosen
such that they reproduce masses and the CKM matrix
which means only seven constraints and so two free pa-
rameters. The last two parameters are chosen such that they
at the same time respect the mass of the down-quark (due
to higher order corrections) and also fit the limits of the
experimental results for the solar angle of the lepton mix-
ing matrix. Our model has some sensitivity to the values of
the final parameters which explains the errors we placed on
the predicted angles.
As for the neutrinos, we have discussed these free pa-

rameters and because of the constraints imposed both by
data and the tribimaximal matrix, we have only one pa-
rameter (what we called 
0 in the neutrino analysis).
Quark sector:

Yð2=3Þ �
0 1:1�6 �4

1:1�6 �4 �1:8�2

�4 �1:8�2 1

0
BB@

1
CCA;

mu � v5;u

2:7�8

2:3�4

1

0
BB@

1
CCA;

(4.22)

and

Yð�1=3Þ �
0 0:5�3 0:5�4

�0:3�3 0:5�2 �0:6�2

�0:5� 0 1

0
BB@

1
CCA;

md � v5;d

0:6�4

0:5�2

1

0
BB@

1
CCA:

(4.23)

Diagonalization also reproduces a CKM matrix (Uckm)
consistent with data extrapolated to the GUT scale.
Lepton sector: SUð5ÞwithH45

d guarantees our successful

reproduction of the masses
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Yð�1Þ �
0 �0:3�3 �0:5�

0:5�3 �1:5�2 0

0:5�4 �0:6�2 1

0
BB@

1
CCA;

me � v5;d

0:2�4

1:5�2

1

0
BB@

1
CCA:

(4.24)

As for the neutrinos, we have found that

Yð0Þ � �2n

0 0 1

0 1 0

1 1 0

0
BB@

1
CCA;

Ymaj � �2n


0 0 1

0 0 2

1 2 �1

0
BB@

1
CCA;

j
0j ¼ 0:10:

(4.25)

Using the light neutrino approximation and using

0 ¼ 	0:10 we obtain

Y� � v2
5;u

2M�

0 � �

� �1 1þ �

� 1þ� �1

0
BB@

1
CCA;

m� � v2
5;u

2M�

�

2�

2þ�

0
BB@

1
CCA;

(4.26)

where we remind the reader that m� is the scale for
light neutrino masses. The value of � is such that
� � 0:22 for 
0 ¼ �0:10 and � � �0:18 for 
0 ¼
0:10. We predict that the mass scale M is

M � 3� 1015 GeV; (4.27)

a value that is one order away from our GUT model
scale. Results that follow are independent on the sign of

0. Both the corrections to the tribimaximal matrix and
the masses of the light neutrinos (normal hierarchy) are
predicted to be

j�ei � 0:83j�1i þ 0:57j�2i � 0:13j�3i;
m�;1 � 5� 10�3 eV

j��i � �0:47j�1i þ 0:53j�2i � 0:71j�3i;
m�;2 � 1� 10�2 eV

j��i � �0:33j�1i þ 0:64j�2i þ 0:70j�3i;
m�;3 � 5� 10�2 eV;

(4.28)

where we want to make it clear that

m�;2

m�;1

¼ 2;
m�;3

m�;1

¼ 10; and

X
i

m�;i ¼ 6:5� 10�2 eV:
(4.29)

We predict that the masses for the heavier neutrinos are

M�
heavy � �2n

9:7� 1012 GeV

2:2� 1014 GeV

3:4� 1014 GeV

0
BB@

1
CCA; (4.30)

i.e., two masses are nearly degenerate. As mentioned ear-
lier, the value of n could be chosen such that the masses are
consistent with limits posed by leptogenesis responsible
for the baryon asymmetry [15],

M1
9:7�2n�1012 GeV>108 GeV!n¼1;2;3: (4.31)

Because corrections for the tribimaximal matrix are
obtained from diagonalization of the charged lepton
Yukawa, care must be taken so that the angles obtained
are well within experimental limits [12]:

j�13j<11:4�; �� � 34:43þ1:35�
�1:22 ;

36:8� <��atm < 53:2�:
(4.32)

With the above in mind, we predict (and postdict) that

�13 � �7:31þ0:60�
�1:75 ; �� � 34:46þ1:02�

�1:52 ;

�atm � �45:15þ0:04�
�0:10 :

(4.33)

We should mention that the reactor angle (�13) is somewhat
large. The origin for this is the (1, 3) position of the charged
lepton Yukawa, which leads to a rotation angle (from
diagonalizing the Yukawa) ‘‘�13’’ that is comparable to
the ‘‘�12’’ rotation angle. Now we can track the phases by
following the guidelines given in [19], which provides
methods for determining how many free phases there are
and where in the Yukawas they may be located. We then
find that the (1, 3) position for the charged lepton Yukawa
could have a phase. So the reactor angle, being a sum of
two comparable angles (as stated earlier) with a phase
difference between them, could be such that in general
0� & ��13 & 7:31�.

V. A POSSIBLE MODIFICATION

We present here a modification to our previous model
that is based on the possibility that the flavor singlets of
the matter content may be charged under the Z2 of our
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previous model. Table III contains only the changes we
expect to make to the model.

Notice that one of the 3 flavons that was previously
neutral is now odd by necessity (unless we change the
neutrino terms) under the Z2 charge. As for the super-
potential, the major changes are the terms that contribute
to the 1� 2 and 2� 1 blocks of the Yukawa matrices, no
changes are found for the neutrino terms:

Wmodel ¼ Wu þWd þW�
Dirac þW�

Majorana; (5.1)

where

Wu � ��Hu þ ð�u�Þð	�ÞHu þ �2dð�u�Þð	�ÞHu

þ ð�u�Þð�u�ÞHu þ �2dð�u�Þð�u�ÞHu;

Wd � �cHd þ �2dð�cH45
d Þ þ ð	�Þð�dc ÞHd

þ ð�u�Þð�dc ÞHd þ ð�dc Þð	�H45
d Þ;

W�
Dirac � �c �NHu þ ð�0c Þ �NHu;

W�
Majorana

M
� �2NN þ�02NN: (5.2)

The vev M�mþ1 of the 	 field still depends heavily on the
relative size of the two down-type Higgs’ vevs. Since we
cannot know for sure the value of these, all we can do is
to write down the form of the Yukawa matrix as a
function of m:

Yð2=3Þ
5 � O

0 ��6 ��mþ5

��6 
�4 
�mþ3

��mþ5 
�mþ3 1

0
BB@

1
CCA; (5.3)

and

Yð�1=3Þ
5 � O

0 �0�3 0

�00�3 0 0

�00�2þm 0 1

0
BB@

1
CCA;

Yð�1=3Þ
45 � O

0 0 0

0 
0�2 
0�2

0 0 0

0
BB@

1
CCA:

(5.4)

We have decided to keep the same Greek letters as before
because they still correspond to the same terms of our
previous model with the sole exception of 
0 which now
originates from the 45 Higgs. We take as a concrete
example the case where m ¼ 1:

Yð2=3Þ � O

0 2:5�6 �6

2:5�6 2:3�4 �4

�6 �4 1

0
BB@

1
CCA;

Yð�1=3Þ � O

0 0:5�3 0

0:6�3 0:5�2 1:3�2

�4�3 0 1

0
BB@

1
CCA:

(5.5)

Leaving out many of the details and keeping all other
results the same, the mixing angles for this case of our
model become

�13 � �1:05þ2:80�
�1:16 ; �� � 34:48þ0:52�

�1:25 ;

�atm � �44:47	 0:01�:
(5.6)

VI. CONCLUSION

The goal of this paper was to create a model for an SUð5Þ
GUT that can reproduce all known data with the use of a
flavor group �ð54Þ. We began with the SM in the form of
mass hierarchies and one mixing matrix. With these in
mind, we found constraints, Eq. (2.5), on the form of the
texture structures the quark Yukawa matrices must have.
A look at the flavor group and the aid of a toy model

allowed us to see how one can possibly reproduce these
texture structures. The lepton sector, as far as neutrinos are
concerned, was obtained with a minimalist approach of
introducing only the fewest number of new flavons and
fairly simple vev structures. From these principles we have
succeeded in producing a viable model for neutrinos that
can satisfy all constraints provided by experiments.
Finally, we provided a possible alternative that would be

viable for more strict assumptions as to the relationship
between the vevs of the Hd and H45

d . The model should be

considered in every respect as viable as the first one, but
contains the bonus of needing less parameters.
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APPENDIX A: A COMPARISON
OF �ð54Þ WITH �ð27Þ

There are a great deal of similarities between these two
groups, but �ð27Þ has been used as a flavor group in a
number of investigations. Likely this has been the case
because, as we shall show here, its structure is not as
complex as that of �ð54Þ. The richness in its structure
actually starts with its presentations which shares all the
same features of �ð27Þ but with the addition of two con-
jugations and two second-order elements. To see this let us
look at the presentation for �ð27Þ [20]:
�ð27Þ � ðZ3 � Z3Þ 2Z3: a

3 ¼ c3 ¼ d3 ¼ 1;

cd ¼ dc; aca�1 ¼ c�1d�1; ada�1 ¼ c:

(A1)

We clearly see that there are three third-order elements and
as expected two of them commute. A look at Table IV
shows that the group includes nine one-dimensional and
two three-dimensional representations. Now the presenta-
tion of �ð54Þ [21] is
�ð54Þ � ðZ3 � Z3Þ 2S3: a3 ¼ b2 ¼ ðabÞ2 ¼ c3 ¼ d3 ¼ 1;

cd ¼ dc; aca�1 ¼ c�1d�1; ada�1 ¼ c;

bcb�1 ¼ d�1; bdb�1 ¼ c�1: (A2)

It is clear from the above that �ð54Þ has not only third-
order operators but also second-order ones, which adds to
its complexity. As a result, looking at Appendix B, one sees
that it has not only one- and three-dimensional representa-
tions but also two-dimensional representations.

A summary of these facts and a quick description of the
Kronecker products is contained in Table IV found below.

APPENDIX B: FLAVOR SYMMETRY �ð54Þ
The flavor group under consideration is a special case

of �ð6n2Þ, where n ¼ 3. A complete study of �ð6n2Þ can
be found in Ref. [21]. From this source we may obtain the

character table, Kronecker products, and the Clebsch-
Gordan coefficients. We list some results here, specifically
the character tables and Kronecker products.

1. Character table

The character table, Table V, reveals a rich structure
behind this group. One clearly sees that there are one-,
two-, and three-dimensional representations. Notice that
the three-dimensional representations are complex, where
the conjugates are indicated by a bar.

2. Kronecker products

In order to build a theory with invariant quantities, it is
necessary to know how products of representations break
down into irreducible representations:

11�11 ¼ 1
11�21 ¼ 21
11�22 ¼ 22
11�23 ¼ 23
11�24 ¼ 24
11�31 ¼ 32
11� �31 ¼ �32
11�32 ¼ 31
11� �32 ¼ �31

21�21 ¼ ð1þ21ÞSþð11ÞA
21�22 ¼ 23þ24
21�23 ¼ 22þ24
21�24 ¼ 22þ23
21�31 ¼ 31þ32
21� �31 ¼ �31þ �32
21�32 ¼ 31þ32
21� �32 ¼ �31þ �32

22�22 ¼ ð1þ22ÞSþð11ÞA
22�23 ¼ 21þ24
22�24 ¼ 21þ23
22�31 ¼ 31þ32
22� �31 ¼ �31þ �32
22�32 ¼ 31þ32
22� �32 ¼ �31þ �32

23�23 ¼ ð1þ23ÞSþð11ÞA
23�24 ¼ 21þ22
23�31 ¼ 31þ32
23� �31 ¼ �31þ �32
23�32 ¼ 31þ32
23� �32 ¼ �31þ �32

24�24 ¼ ð1þ24ÞSþð11ÞA
24�31 ¼ 31þ32
24� �31 ¼ �31þ �32
24�32 ¼ 31þ32
24� �32 ¼ �31þ �32

31�31 ¼ ð�31þ �31ÞSþð�32ÞA
31� �31 ¼ 1þ21þ22þ23þ24
31�32 ¼ �31þ �32þ �32
31� �32 ¼ 11þ21þ22þ23þ24
32�32 ¼ ð�31þ �31ÞSþð�32ÞA
32� �32 ¼ 1þ21þ22þ23þ24

3. Clebsch-Gordan coefficients

We first must define a vector space of each of the
irreducible representations. These will demonstrate how a
vector transforms under the generators a, b, and c of the
irreducible representations:

TABLE IV. Summary of some of the differences between
�ð27Þ and �ð54Þ. The values r; s; p; t ¼ 1; 2; 3; 4.

�ð27Þ �ð54Þ
Nine 1- and two

3-dimensional representations

Two 1-, four 2-, and four

3-dimensional representations

2p � 2r ¼ 2s � 2t; p � r � s � t

3 � 3 ¼ �3 � �3 � �3 2r � 2r ¼ ð1 � 2rÞS � 11;A
3 � �3 ¼ P

91 3 � 3 ¼ �3 � �3 � �3

3 � �3 ¼ ð1 or 11Þ � 21 � 22 � 23 � 24
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31:

x1

x2

x3

0
BB@

1
CCA �

x2

x3

x1

0
BB@

1
CCA

a

;

x3

x2

x1

0
BB@

1
CCA

b

;

!x1

!2x2

x3

0
BB@

1
CCA

c

;

�31:

x1

x2

x3

0
BB@

1
CCA �

x2

x3

x1

0
BB@

1
CCA

a

;

x3

x2

x1

0
BB@

1
CCA

b

;

!2x1

!x2

x3

0
BB@

1
CCA

c

;

32:

x1

x2

x3

0
BB@

1
CCA �

x2

x3

x1

0
BB@

1
CCA

a

;

�x3

�x2

�x1

0
BB@

1
CCA

b

;

!x1

!2x2

x3

0
BB@

1
CCA

c

;

�32:

x1

x2

x3

0
BB@

1
CCA �

x2

x3

x1

0
BB@

1
CCA

a

;

�x3

�x2

�x1

0
BB@

1
CCA

b

;

!2x1

!x2

x3

0
BB@

1
CCA

c

;

21:
x1

x2

 !
�

!x1

!2x2

 !
a

;
x2

x1

 !
b

;
x1

x2

 !
c

;

22:
x1

x2

 !
�

!x1

!2x2

 !
a

;
x2

x1

 !
b

;
!2x1

!x2

 !
c

;

23:
x1

x2

 !
�

!x1

!2x2

 !
a

;
x2

x1

 !
b

;
!x1

!2x2

 !
c

;

24:
x1

x2

 !
�

x1

x2

 !
a

;
x2

x1

 !
b

;
!x1

!2x2

 !
c

;

11: x
� �

� x
� �

a; �x
� �

b; x
� �

c:

With the above mappings defined, it becomes possible to
find the outcomes of taking the product of any two repre-
sentations. The list below is not exhaustive, but we include
those that are important to this paper.:

(i) x � y: 11 � 11 ¼ 1

x � y ¼ xy: (B1)

(ii) x � y: 11 � 2r ¼ 2r, r ¼ 1; 2; 3; 4.

x � y ¼ xy1
�xy2

� �
: (B2)

(iii) x � y: 2r � 2r ¼ ð1 � 2rÞS � ð11ÞA

x � y ¼
�
1ffiffiffi
2

p ðx1y2 þ x2y1Þ �
x2y2

x1y1

 !�
S

�
�
1ffiffiffi
2

p ðx1y2 � x2y1Þ
�
A
: (B3)

(iv) x � y: 21 � 22 ¼ 23 � 24

x � y ¼ x2y2
x1y1

� �
� x1y2

x2y1

� �
: (B4)

(v) x � y: 21 � 23 ¼ 22 � 24

x � y ¼ x2y2
x1y1

� �
� x2y1

x1y2

� �
: (B5)

(vi) x � y: 21 � 24 ¼ 22 � 23

x � y ¼ x1y2
x2y1

� �
� x1y1

x2y2

� �
: (B6)

(vii) x � y: 22 � 23 ¼ 21 � 24

x � y ¼ x2y2
x1y1

� �
� x1y2

x2y1

� �
: (B7)

(viii) x � y: 22 � 24 ¼ 21 � 23

x � y ¼ x1y1
x2y2

� �
� x1y2

x2y1

� �
: (B8)

(ix) x � y: 23 � 24 ¼ 21 � 22

x � y ¼ x1y2
x2y1

� �
� x1y1

x2y2

� �
: (B9)

TABLE V. ! ¼ e2�i=3.

Character table of �ð54Þ
n ¼ 3 1C1 1Cð1Þ

1 1Cð2Þ
1 6C1 6Cð0Þ

2 6Cð1Þ
2 6Cð2Þ

2 9Cð0Þ
3 9Cð1Þ

3 9Cð2Þ
3

1 1 1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 �1 �1 �1

21 2 2 2 2 �1 �1 �1 0 0 0

22 2 2 2 �1 �1 2 �1 0 0 0

23 2 2 2 �1 �1 �1 2 0 0 0

24 2 2 2 �1 2 �1 �1 0 0 0

31 3 3! 3!2 0 0 0 0 1 !2 !
�31 3 3!2 3! 0 0 0 0 1 ! !2

32 3 3! 3!2 0 0 0 0 �1 �!2 �!
�32 3 3!2 3! 0 0 0 0 �1 �! �!2

FLAVOR �ð54Þ IN SUð5Þ SUPERSYMMETRIC MODEL PHYSICAL REVIEW D 84, 073009 (2011)

073009-13



(x) x � y:

21 � 31 ¼ 31 � 32
21 � 31 ¼ 31 � 32

x � y ¼ 1ffiffiffi
2

p
x1y1 þ!2x2y1

!x1y2 þ!x2y2

!2x1y3 þ x2y3

0
BB@

1
CCA

� 1ffiffiffi
2

p
x1y1 �!2x2y1

!x1y2 �!x2y2

!2x1y3 � x2y3

0
BB@

1
CCA: (B10)

(xi) x � y: 24 � 31 ¼ 31 � 32

x � y ¼ 1ffiffiffi
2

p
x1y3 þ x2y2

x1y1 þ x2y3

x1y2 þ x2y1

0
BB@

1
CCA � 1ffiffiffi

2
p

x1y3 � x2y2

x1y1 � x2y3

x1y2 � x2y1

0
BB@

1
CCA:

(B11)

(xii) x � y: 24 � �31 ¼ �31 � �32

x� y¼ 1ffiffiffi
2

p
x1y2 þ x2y3

x1y3 þ x2y1

x1y1 þ x2y2

0
BB@

1
CCA� 1ffiffiffi

2
p

x1y2 � x2y3

x1y3 � x2y1

x1y1 � x2y2

0
BB@

1
CCA:

(B12)

(xiii) x � y: 31 � 31 ¼ ð�31 � �31ÞS � ð�32ÞA

x � y ¼
x1y1

x2y2

x3y3

0
BB@

1
CCA � 1ffiffiffi

2
p

x2y3 þ x3y2

x3y1 þ x1y3

x1y2 þ x2y1

0
BB@

1
CCA

2
664

3
775

S

� 1ffiffiffi
2

p
x2y3 � x3y2

x3y1 � x1y3

x1y2 � x2y1

0
BB@

1
CCA

2
664

3
775

A

: (B13)

(xiv) x � y: 31 � �31 ¼ 1 � 21 � 22 � 23 � 24

x � y ¼ 1ffiffiffi
3

p ðx1y1 þ x2y2 þ x3y3Þ

� 1ffiffiffi
3

p x1y1 þ!2x2y2 þ!x3y3

!x1y1 þ!2x2y2 þ x3y3

 !

� 1ffiffiffi
3

p x1y2 þ!2x2y3 þ!x3y1

x3y2 þ!2x2y1 þ!x1y3

 !

� 1ffiffiffi
3

p x2y1 þ!2x3y2 þ!x1y3

x2y3 þ!2x1y2 þ!x3y1

 !

� 1ffiffiffi
3

p x3y2 þ x2y1 þ x1y3

x2y3 þ x1y2 þ x3y1

 !
: (B14)

(xv) x � y: 31 � 32 ¼ �32 � �32 � �31

x � y ¼
x1y1

x2y2

x3y3

0
BB@

1
CCA � 1ffiffiffi

2
p

x2y3 þ x3y2

x3y1 þ x1y3

x1y2 þ x2y1

0
BB@

1
CCA

� 1ffiffiffi
2

p
x2y3 � x3y2

x3y1 � x1y3

x1y2 � x2y1

0
BB@

1
CCA: (B15)

(xvi) x � y: 31 � �32 ¼ 11 � 21 � 22 � 23 � 24

x � y ¼ 1ffiffiffi
3

p ðx1y1 þ x2y2 þ x3y3Þ

� 1ffiffiffi
3

p x1y1 þ!2x2y2 þ!x3y3

�!x1y1 �!2x2y2 � x3y3

 !

� 1ffiffiffi
3

p x1y2 þ!2x2y3 þ!x3y1

�x3y2 �!2x2y1 �!x1y3

 !

� 1ffiffiffi
3

p �x2y1 �!2x3y2 �!x1y3

x2y3 þ!2x1y2 þ!x3y1

 !

� 1ffiffiffi
3

p �x3y2 � x2y1 � x1y3

x2y3 þ x1y2 þ x3y1

 !
: (B16)

(xvii) x � y: �31 � �31 ¼ ð31 � 31ÞS � ð32ÞA

x � y ¼
x1y1

x2y2

x3y3

0
BB@

1
CCA � 1ffiffiffi

2
p

x2y3 þ x3y2

x3y1 þ x1y3

x1y2 þ x2y1

0
BB@

1
CCA

2
664

3
775

S

� 1ffiffiffi
2

p
x2y3 � x3y2

x3y1 � x1y3

x1y2 � x2y1

0
BB@

1
CCA

2
664

3
775

A

: (B17)
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