PHYSICAL REVIEW D 84, 073006 (2011)

Model-independent determination of the axial mass parameter
in quasielastic neutrino-nucleon scattering
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Quasielastic neutrino-nucleon scattering is a basic signal process for neutrino oscillation studies.
At accelerator energies, the corresponding cross section is subject to significant uncertainty due to the
poorly constrained axial-vector form factor of the nucleon. A model-independent description of the axial-
vector form factor is presented. Data from the MiniBooNE experiment for quasielastic neutrino scattering
on '2C are analyzed under the assumption of a definite nuclear model. The value of the axial mass

022 4+

parameter, m, = 0.85703% + 0.09 GeV, is found to differ significantly from extractions based on tradi-
tional form factor models. Implications for future neutrino scattering and pion electroproduction

measurements are discussed.
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L. INTRODUCTION

High statistics neutrino experiments are probing the
hadronic structure of nuclear targets at accelerator energies
with ever greater precision. Extracting the underlying
weak-interaction parameters, or new physics signals, re-
quires similar precision in the theoretical description of the
strong interactions.

A basic cross section describes the charged-current qua-
sielastic scattering process on the neutron,

v,tn—u +p (H

Recent evidence indicates a tension between measure-
ments of this process in neutrino scattering at low [1-4]
and high [5] neutrino energies, and between results from
neutrino scattering and results inferred from pion electro-
production [6]. In particular, with a commonly used dipole
ansatz for the axial-vector form factor of the nucleon,
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different experiments have reported values for the so-
dipole
St

Fiipole (qz) _
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called axial mass parameter m World averages
reported by Bernard et al. [6] find comparable values
obtained from neutrino scattering results prior to 1990,

miip(’le = 1.026 £ 0.021 GeV, and from pion electro-
production, m$P” = (1.069 — 0.055) = 0.016 GeV." The

NOMAD Collaboration reports [5] miip(’le = 1.05 =

0.02 = 0.06 GeV. In contrast, MiniBooNE reports [3]

mffp ol — 135+ 0.17 GeV, and other recent results from

the K2K SciFi [1], K2K SciBar [7], and MINOS [8]
Collaborations similarly find central values higher than
the above-mentioned world average. Quasielastic

"The difference 0.055 is a correction to the conventional
representation of the pion electroproduction amplitude, as pre-
dicted by heavy baryon chiral perturbation theory [6].
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PACS numbers: 13.15.+g, 11.55.—m, 13.60.—r, 14.20.Dh

neutrino-nucleon scattering (1) is a basic signal process
in neutrino oscillation studies. It is essential to obtain
consistency between experiments utilizing different beam
energies, and different nuclear targets.

While a number of effects could be causing this tension,
we here investigate perhaps the simplest possibility: that
the parametrizations of the axial-vector form factor in
common use are overly constrained. Such a possibility
seems natural, considering that the dipole ansatz has
been found to conflict with electron scattering data for
the vector form factors. We do not offer new insight on
whether other effects, such as nuclear modeling, could also
be biasing measurements. However, we point out that by
gaining firm control over the nucleon-level amplitude, such
nuclear physics effects can be robustly isolated.

The axial mass parameter as introduced in (2) is not
well-defined, since the true form factor of the proton does
not have a pure dipole behavior. Sufficiently precise mea-
surements forced to fit this functional form will necessarily
find different values for m$" resulting from sensitivity
to different ranges of g. Let us define the axial mass para-
meter in terms of the form factor slope at g*> = 0: m, =
[F',(0)/2F ,(0)]~'/2. This definition is model-independent,
and allows us to sensibly address tensions between differ-
ent measurements. To avoid confusion, whenever (2) is
used we refer to the extracted parameter as m5"". We will
show that the slope at g> = 0 is essentially the only rele-
vant shape parameter for current data at 9> < 1 GeV?, and
introduce the formalism to systematically account for the
impact of other poorly constrained shape parameters on the
determination of m,. A related study of the vector form
factors of the nucleon was presented in [9].

The paper is structured as follows. In Sec. II we discuss
the application of analyticity and dispersion relations to the
axial-vector form factor of the nucleon. Section III presents
results for the extraction of the axial-vector form factor
slope from MiniBooNE data. We illustrate constraints
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imposed by our analysis on nuclear models, by determin-
ing the binding energy parameter in the relativistic Fermi
gas (RFG) model of Smith and Moniz [10]. Section IV
gives an illustrative analysis of constraints on the axial
mass parameter from pion electroproduction data.
Section V discusses the implications of our results. For
completeness, the Appendix collects formulas for the RFG
nuclear model.

II. ANALYTICITY CONSTRAINTS

This section provides form factor definitions and
details of the model-independent parametrization based
on analyticity.

A. Form factor definitions

The nucleon matrix element of the standard model weak
charged current is

(p(P)1Iy" In(p))

_ i
o« M(P)(P'){YMFl(CIZ) + WU'MVCIVFz(QQ)
N
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where g* = p/* — p#, and we have enforced time-
reversal invariance and neglected isospin-violating effects
as discussed in the Appendix. The vector form factors
F,(g%) and F,(g?) can be related via isospin symmetry
to the electromagnetic form factors measured in electron-
nucleon scattering. At low energy, the form factors
are normalized as F1(0) = 1, F5(0) = u, . — 1. For
definiteness we take a common nucleon mass, my =
(m, + m,)/2. Parameter values used in the numerical
analysis are listed in Table II. In applications to quasielas-
tic electron- or muon-neutrino scattering, the impact of Fp
is suppressed by powers of the small lepton-nucleon mass
ratio. For our purposes, the pion pole approximation is
sufficient,?

2m?
—— N Falg?). 4)
mz —(q

m
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The axial-vector form factor is normalized at g> = 0 by
neutron beta decay (see Table II). Our main focus is on
determining the g> dependence of F,(g?) in the physical
region of quasielastic neutrino scattering, 0> = —¢> = 0.
As discussed in the introduction, an expansion at g> = 0
defines an ‘“‘axial mass parameter” my, via

2F,(0)
Fy(0)°
©)

Fulq?) = FA(O)I:] +i2q + ] = my
my

Here and throughout, m, = 140 MeV denotes the pion mass.
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Equivalently, we may define an “‘axial radius” r,, via
r2 6F",(0)
Fu(g?) = F4(0 1+—A2+---]:> = |2
A(q ) A( )[ 6 q r'A FA(O)
(6)

The factors appearing in (5) and (6) are purely conven-
tional, motivated by the dipole ansatz (2), and by the
analogous charge-radius definition for the vector form
factors. Asymptotically, perturbative QCD predicts
[13,14] a ~ 1/Q* scaling, up to logarithms, for the axial-
vector form factor. However, the region 0?>=<1GeV?is
far from asymptotic, and the functional dependence of
F4(g*) remains poorly constrained at accessible neutrino
energies.

B. Analyticity
We proceed along lines similar to the vector form factor
analysis in [9]. Recall the dispersion relation for the form
factor,

Fu(r) = , (7N

[ s /ImFA(t + i0)
where ¢ = ¢? and the integral starts at the three-pion cut,
tewr = 9m2. We can make use of this model-independent
knowledge by noticing that the separation between the
singular region, ¢ = t,,, and the kinematically allowed
physical region, # = 0, implies the existence of a small
expansion parameter, |z| < 1. As illustrated in Fig. 1, by a
standard transformation, we map the domain of analyticity
onto the unit circle in such a way that the physical region is
mapped onto an interval:

\/tcut B \/tcut — Iy
\/tcut —tt \/tcut — Iy
where 1 is a free parameter representing the point mapping

onto z = (. Analyticity implies that the form factor can be
expressed as a power series in the new variable,

®)

Z(t Teuw To) -

Falg®) = Y apz(g®). 9)
k=0

The coefficients a; are bounded in size, guaranteeing con-
vergence of the series. Knowledge of ImF, over the cut

[ = | /
0?2 ’

max ™ ~ -

FIG. 1 (color online).
the unit circle.

Conformal mapping of the cut plane to
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translates into information about the coefficients in the z
expansion [9]. In particular we have

1 T
ay=— L dOReF4[1(0) + i0] = F4(1y),

2 (7
Ar=1 = _; '/;) dHImFA[t(ﬁ) + 10] Sln(ka)

(10
. [ dr Jlew ~ — fo ImF ,(t) sin[k6(1)],
feut V cut
where
t=zo+mft(0)- 1D

1 — cosé

C. Coefficient bounds

For a given kinematic range 0 < —t < Q2.., we can
choose the free parameter f in (8) to minimize the result-
ing maximum size of |z|. It is straightforward to see that the

“optimal” value of #y is 17" = toy (1 = /1 + QZux/tewt)s
and for this value of 7y, |z| = [(1 + QZu/teu)/* — 11/
[(1 4 Q2,/te)"* + 1]. For example, if the kinematic
range is Q.. = 1 GeV?, then our expansion parameter
is constrained to be |z| = 0.2. Terms beyond linear order in
the expansion are suppressed by |z|> < 0.04, etc., and are
not tightly constrained by current experimental data. This
is the sense in which the slope of the form factor (conven-
tionally taken at g> = 0) is essentially the only relevant
shape parameter. The effects of the higher order terms must
of course be accounted for in assessing the uncertainty on
extracted observables. We now turn to this question.

The expansion coefficients appearing in (9) can be used
to define norms,

1/p
14l = (Slaul) (12)
k
In particular, |[F4lle = supgla;| = lim,_.||F4ll, pro-
vides a bound on the maximum coefficient size. The finite-
ness of the integral appearing in the relation

1 foeo dt |tow—to
Full, =(— = Fu(0)? 1
el = (5 [ el op) )

together with ||F4||e = ||F4ll,, establishes that a finite
upper bound exists for the coefficients. As a first approach
to estimating the actual bound ||F AI |, consider an “‘axial-
vector dominance” ansatz, Fy ~m2 /(m% —t—il', m, ),
where m, = 1230(40) MeV and I, = 250-600 MeV
are the mass and width of the lowest lying axial-vector,
isovector meson [11]. More precisely, let us define the form
factor via its dispersion relation with [15]

3
Nm, T,
22 2 2
(t—mg ) + T mg

ImF4(t + i0) = o0t —t (14)

cut)»
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TABLE L. Typical bounds on the coefficient ratios /3 a?/a3
(first line of table) and |a,/ay| (second line) in an axial-vector
dominance ansatz. The range corresponds to the range
250-600 MeV for the a; width and the range 1190-1270 MeV
for the a; mass.

th=0 to = 17 (1.0 GeV?)
F 411/ Fa(to)l 1.5-1.7 1.9-2.3
Falloo/1F 4 (20)] 1.0-1.4 1.4-1.8

where N is a normalization constant determined below.
Using the dispersion relation (7) with (14) we find

NmT, ()
Eatti0=""10r 12 2[5 1°g(|zcm— )
m2 _
+ M arg[b(tm>]+meu—zcm)], (15)

where b(t) =t —m2 +il', m, ,and N is determined by
the value of F4(0). Table I displays the values for ||F 4|,
and ||F4||s computed in this ansatz. For the latter quantity
one can show that

e
CFAGL \b(tey) + VTow — 10)bUten)

While this model is not a rigorous description of the true
spectral function in (7), it indicates an order-unity bound
on the coefficients appearing in (9). Additional support for
an order-unity bound is provided by a related detailed
study of nucleon vector form factors [9], and by form factor
studies in a wide range of meson transitions [16,17].

In the following numerical analysis, we follow [9], and
investigate fits with various bounds on coefficients, e.g.
|Clk| = 5 and |61k| = 10.

Ay

III. EXTRACTION OF THE AXIAL
MASS PARAMETER

The MiniBooNE Collaboration has presented binned
results representing the double differential cross section,
do/dE pdcosf,, for the quasielastic scattering process (1)
on a neutron bound inside '>C. We apply our description of
F4(g?) to extract m, (equivalently, r,) from the neutrino
scattering data, under the assumption of a definite nuclear
model, the relativistic Fermi gas model [10] as described in
the Appendix.

Our theory prediction is obtained using (A30), integrat-
ing over the energy-dependent v, flux from Table V of [3];
this result is divided by 6 to obtain the per-neutron event
rate, and divided by the total flux to obtain the flux-
averaged cross section. Corresponding experimental val-
ues for the double differential cross section are taken from
Table VI of [3]. We form an error matrix,

= (80728, + (5N)o0r), (17)
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TABLE II. Numerical values for input parameters.
Parameter Value Reference
|Vl 0.9742 [11]
M 2.793 [11]
Mo —1.913 [11]
my 0.1057 GeV [11]
Gr 1.166 X 107> GeV 2 [11]
my 0.9389 GeV [11]
F4(0) —1.269 [11]
€, 0.025 GeV [12]
Dr 0.220 GeV [3]

where o; = (do/dE,dcosf,)AE,Acosf, denotes a
partial cross section, 6o; denotes the shape uncertainty
from Table VII of [3], and 6N = 0.107 is the normaliza-
tion error from [3]. We form the chi-squared function

X2 _ Z(a_(iexpt. _ O_Eheory)Ei; 1 (a_jxpt. _ a_;heory), (18)
ij

and minimize x> to find best fit values for my. Error
intervals are defined by Ay?> = 1. The nucleon form
factors and the nuclear model employ parameter values
listed in Table II. Following the analysis of [3], the vector
form factors F; and F, are given by the Budd-Bodek-
Arrington parametrization (BBA2003)[18]. We use a de-
fault value €, = 0.025 GeV, as extracted from electron
scattering data on nuclei in [12]. This value is different
from the central value adopted in the MiniBooNE analysis
[3], where €, = 0.034 £ 0.09 GeV. We show below that
such a high value of €, is not favored by the MiniBooNE
data, but investigate fit results for different values of €,,.

The slope at g> = 0, and hence m, from (4) is most
sensitive to low-Q? data. We analyze this sensitivity by
considering the effect of a cut on Q2. The value of Q7 for a
given value of the observed muon energy and angle can be
reconstructed assuming quasielastic scattering on a free
neutron, but is not determined unambiguously once nuclear
effects are included. As a proxy for Q2, we define an
approximate “‘reconstructed” Q2,

e = 2EX°E, — ZET,,CC‘/EIZL — m? cosf,, —m?, (19)

where E%¢ approximates the neutrino energy in the nu-
cleon rest frame,

mNE/L - mi/Z

my — E, +y[E% — m? cos,

We note that Q% coincides with Q2. used by K2K in the
limit €, — 0 [1], and with QéE used by MiniBooNE in the
limit €, — 0 and equal proton and neutron masses [3]. For
simplicity we have chosen to make the cut independent of
the binding energy used in the nuclear model. We empha-
size that this choice is used simply to define the subset of

Exe = (20)
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FIG. 2 (color online). Extracted value of m, versus QZ...
Dipole model results for m$""® are shown by the red circles;
z expansion results with |a,| = 5 are shown by the blue squares,
z expansion results with |a;| = 10 are shown by the green
diamonds.

data to be analyzed, and does introduce theoretical uncer-
tainty in the numerical results.
Our results are displayed in Fig. 2, where we compare

extractions of mf;p"le in the dipole ansatz (2) with extrac-
tions of m, employing the z expansion (8). We present
results for data with Q. = Q2 .., where Q. is defined in
(18) and Q2. = 0.1,0.2, ..., 1.0 GeVZ. We study two dif-
ferent coefficient bounds, |a;| = 5 and |a,| = 10. For def-
initeness we have truncated the sum in (8) at k., = 7, but
have checked that the results do not change significantly if
higher orders are included. As the figure illustrates, the
z expansion results lie systematically below results assum-
ing the dipole ansatz. In contrast to results from the one-
parameter dipole ansatz, high-Q? data have relatively small
impact on the model-independent determination of miy.
Taking for definiteness Q2,,, = 1.0 GeV?, we find

my=0.851232+0.09GeV (neutrino scattering), (21)

where the first error is experimental, using the fit with
la;| = 5, and the second error represents residual form fac-
tor shape uncertainty, taken as the maximum change of the
1o interval when the bound is increased to |a;| = 10. As a
comparison, a fit assuming the dipole form factor, and the
same Q2 yields m$P”® = 1.29 + 0.05 GeV.>

It is not our purpose in this paper to investigate in detail
the additional uncertainty that should be assigned to (20)
due to nuclear effects. We note that a fit of the MiniBooNE
data to the RFG model with free parameter €, yields the
value, without an assumption on the value of m, (for

2 = 1.0GeV?, kpax = 7)

€, =28 + 3 MeV, (22)

A dipole fit including the entire data set without a cut on Q2

: dipole __ +0.03
yields m, " = 1.287 ;.
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FIG. 3 (color online). Comparison of the axial-vector form
factor F', as extracted using the z expansion (green diamonds)
and dipole ansatz (red circles)

where the result is insensitive to the choice of bound,
la,] =5 or |a] = 10.* While the data do not appear to
favor significantly higher values of €,, we note that
for €,=34MeV [3], the result (21) becomes m (€, =
34MeV) =1.05+043+0.12, compared to m}*" (e, =
34 MeV) = 1.44 = 0.05.

We have performed fits at different values of the pa-
rameter 7, finding no significant deviation in the results.
The results do not depend strongly on the precise value of
the bound (e.g. |a;| = 5 versus |a;| = 10). Similar to [9],
we conclude that the estimation of shape uncertainty in
(21) should be conservative. The fit (21) yields coeffi-
cients’ ay = F4(0) = —1.269, a; = 2.9} a, = —8*S.
These values are in accordance with our assumption of
order-unity coefficient bounds. As discussed in the
introduction, current experiments do not significantly con-
strain shape parameters beyond the linear term, a;.

Figure 3 compares the form factor extraction resulting
from the z expansion fit to the extraction from the dipole fit.
Here we take Q2. = 1.0 GeV?, k,,,, = 7, and |a;| = 10
for the z fit. The dipole fit assumes m$"® = 1.29 +
0.05 GeV.

IV. COMPARISON TO CHARGED-PION
ELECTROPRODUCTION

The axial-vector component of the weak current defin-
ing F,(¢%) in (3) can also be probed in pion electro-
production measurements. The electric dipole amplitude
for threshold charged-pion electroproduction obeys a low-
energy theorem in the chiral limit relating this amplitude
to the axial-vector form factor of the nucleon [19]. After

4Usinga _a dipole ansatz for 2« = 1.0 GeV? without
fixing m,""° yields €, = 22 = 7 MeV.

>For this purpose we take ky, = 7 in (9) and enforce |a;| =
10 for k = 3.
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FIG. 4 (color online). Extraction of m, using charged-pion
electroproduction measurements, in the dipole ansatz and in
the z expansion. Data sets are as described in the text. Dipole
results are shown as the red circles, and z expansion results with
la;| = 5 are shown as the blue squares.

applying chiral corrections, such measurements can thus
in principle be used to determine m,. Data for this pro-
cess have been interpreted in the context of the dipole
ansatz (2). We found that the dipole assumption can
strongly bias extractions of m, in neutrino scattering
measurements. In order to gauge whether the same state-
ment is true for the electroproduction data, let us apply the
z expansion to extract m, from the inferred F,(g*) values
for an illustrative data set, taken from Refs. [20-24].
We have selected data sets that appear in the compilation
[6] (cf. Fig. 1 of that reference), and that also explicitly list
inferred values of F,(g?) (see also [25-29)). Figure 4 dis-
plays extractions of m, in both the z expansion and the
dipole ansatz (2) for each of the five data sets.® For the
larger bound |a,| = 10, the slope of F,(g?) is not con-
strained to be positive by each individual data set, and we
display only the result for |a;| = 5. Applying the z expan-
sion to the entire (17 point) data set, we find

my =0.927012 £0.08 GeV  (electroproduction), (23)

where the errors are experimental, and from residual shape
uncertainty, as in (20). In contrast, a fit of the same data to

the dipole ansatz yields m$*”® = 1.00 + 0.02 GeV. These
averages are also displayed in Fig. 4. We emphasize that
our chosen data set is not exhaustive We have not at-
tempted to address questions such as correlations between
different data sets, or uncertainties from model-dependent

For definiteness, where necessary we have chosen one
amongst different models for applied hard-pion corrections:
the Benfatto-Nicolo-Rossi (BNR) prescription [30] in [22-24],
and the BNR prescription with first form factor assumption in
[20] (“F,=F Y in Table 2 of [20]). We have combined the
low-Q? and high-Q? data from [22,23] to obtain the Daresbury
(1975/1976) data point in Fig. 4.
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hard-pion corrections. We leave a more detailed treatment
to future work.

V. SUMMARY

We have presented a model-independent description of
the axial-vector form factor of the nucleon. This form
factor plays a crucial role in neutrino quasielastic scatter-
ing at accelerator energies, which is a basic signal process
for neutrino oscillation studies, and is an important ingre-
dient in normalizing the neutrino flux at detector locations.
Recent tensions between measurements in neutrino scat-
tering at different energies, and between neutrino scatter-
ing and pion electroproduction measurements indicate a
problem in our understanding of this elementary process.

Several studies have tried to address these discrepancies.
Modified nuclear models [31-33] have been used to find
an axial mass close to the MiniBooNE result. Other nuclear
models include effects of multinucleon emission [34—39],
and have been reported to obtain better agreement with
the differential MiniBooNE data from [3]. One of these
studies [39] reports a dipole axial mass extracted from
MiniBooNE data in agreement with world averages from
[5,6]. Another group [40], modifies the magnetic form
factor G, for nucleons bound in carbon but does not
change the form factors G or F4. The assumption of the
dipole ansatz (2) is a crucial element in many of these
studies.” Our analysis shows that this ansatz introduces a
strong bias in measurements, which must be addressed in
order to disentangle nucleon-level interactions from nu-
clear effects.

Under the assumption of a definite nuclear model (the
RFG model, summarized in the Appendix, with parameter
values as in Table II), we extract m, as defined model-
independently in (5) from the differential MiniBooNE data
[3]. The result is displayed in (21), m, = 0.857922 =
0.09 GeV. This result may be contrasted with a fit to an
illustrative data set for pion electroproduction displayed

in (23), my = 0.92*313 = 0.08 GeV. These Valuis may
ipole __
4

be compared to fits using the dipole ansatz (2): m

1.29 £ 0.05 GeV (neutrino scattering) and m
1.00 = 0.02 GeV (electroproduction). A discrepancy is
apparent in the dipole ansatz (2), but can be ascribed to
the unjustified and restrictive assumption on the form
factor shape. After gaining firm control over the nucleon-
level amplitude, nuclear effects can be robustly isolated.
For example, in the context of the RFG model, we extract
the result (22) for the binding energy parameter €.

The axial mass parameter, or equivalently, the axial
radius (6), is a fundamental parameter of nucleon structure.
The results (21) and (23) can be expressed as

dipole __
" =

A parametrization that modifies the dipole behavior at large
Q? is presented in [41].
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0.807397 = 0.12 fm (neutrino scattering)

0.741%12 +0.05 fm (electroproducti - @
747606 = 0. production)

rFp =

More precise measurements in both neutrino scattering and
pion electroproduction are necessary to substantially re-
duce the errors on my, or equivalently r,. This would be
necessary to provide a model-independent confirmation of
the convergence of chiral perturbation theory corrections
based on comparison of electroproduction and neutrino
scattering data.

A related study of the nucleon vector form factors was
presented in [9]. As described there, different expansion
“schemes” are possible. For example, we may replace (9)
with (1) F () = X az(t)*, where ¢ is analytic below
t.- A choice such as ¢ ~ (1 — t/m”?)" with m' ~ GeV
could be used to enforce a 1/Q>" falloff for asymptotic Q2,
while retaining the known analytic structure of the form
factor. Such modifications do not significantly impact the
extraction of my, and we have focused on the simplest
choice (fy = 0 and ¢ = 1).

Our study indicates that the error on the axial mass
parameter extracted using the dipole ansatz is under-
estimated. While the errors from a model-independent
analysis may be larger, it is essential to study model-
independent numbers in order to draw firm conclusions.
The simulation of more complicated neutrino scattering
processes (e.g. pion and photon production), is indirectly
affected by enforcing agreement with the quasielastic data.
It is important for current and future neutrino experiments
[3,5,42-49] to converge on consistent values for funda-
mental neutrino cross sections.

The analysis presented here can be applied to other
neutrino scattering data sets, involving different nuclear
targets, and including neutral current scattering and anti-
neutrino scattering. It is interesting to extend the analysis
of electroproduction data; more precise low-energy elec-
troproduction measurements have potential to impact the
interpretation of future neutrino measurements. It is also of
interest to incorporate model-independent constraints into
more sophisticated nuclear models.
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APPENDIX: RFG MODEL FOR QUASIELASTIC
NEUTRINO SCATTERING

A number of notations and conventions for the form
factors and RFG nuclear model [10] exist in the literature.
For completeness we collect here the relevant formulas
used in our analysis.
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1. Nucleon matrix element of the weak current
The relevant part of the weak-interaction Lagrangian is

G . _
£=jénﬂwu—ywmnu—wm+Hn (A1)

The cross section for v(k) + n(p) — €~ (k') + p(p’) on a
free neutron is
1 &K
4k - pl ) Cm2E,
d3p/
(27T)32Ep/

Ofree =

|M?|2m)* 6% (k + p — k' — p'),
(A2)
where the spin-averaged, squared amplitude is

— G%’lvudl2
4

|M?| L Yy (p(pHliay, (1 = ys)dln(p))

spins
X{p(pliy, (1 = ys)dln(p))".

The leptonic tensor neglecting the neutrino mass is
( 60123 — _1)

Lr7 = 8(kMK" + kYK — ghvk - K — ier*Pok kL),
(A4)

(A3)

The hadronic matrix element appearing in (A3) is parame-
trized by

(p(P"lity (1 = ys)dln(p)) = a? (p")T ,(q)u(p),
(AS)

where ¢ = k — k' = p’ — p and we have defined the ver-
tex function

— I v qM
I.(q) = vy,Fi(g®) + MUWQ Fy(q*) + m_NFS(qz)

/

Put P
+ ¥u¥sFalg?) + 4Mm EysFr(q?)
N

s (A6)
We may write the cross section of (A2) as
2 2 3
where the nucleon structure function is
& &p’' 44 /
W= m(zﬂ') 8*(p—p' +qH,, (A8
The hadronic tensor is
Hy, = Ti(§ + m,)T,(g)(p + m,)T, ()] (A9)

where as usual, I' = y°T't4°. We may similarly analyze
antineutrino  scattering, (k) + p(p) — €T (k') + n(p’),
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using (A7), taking L*” — L"*, and making the replace-
ments m, < m,, I',(qg) — f'M(—q) inH,,.

Imposing time-reversal invariance shows that F;(g?) are
real. We will assume isospin symmetry in the following, in
which case Fg and Fp vanish, m, = m, = my, and
r «(—q) =T ,(g). The hadronic tensor has the time-
reversal invariant decomposition

pp,pv .E,LLVp(T
H, —i Pg”H
mlzv 2 2m12v P q 3

H,uv = _g,uVHl +

_l’_
N q,LZVH4 N (Pud, 2fmﬂy) H.. (A10)
my my

The H;’s are expressed in terms of the form factors F; as
H, = 8m3 F5 — 2¢°[(F, + Fy)* + F%],

H, = Hs = 8my(F{ + F}) = 2¢°F3,

Hy = —16m%F(F, + F,),

H,

2
- % (F2 + 4F2) — 2m%F3 — dm(F\Fy + 2F 4 Fp).
(A11)

Expressions for complex F; and nonzero Fg, Fy can be
found, for example, in [50].

2. Model for the nuclear matrix element

We employ a standard treatment of nuclear effects, the
relativistic Fermi gas model as presented by Smith and
Moniz in [10], based on the model presented in [51].

We assume that there are A nucleons inside the nucleus,
with A/2 neutrons and A/2 protons. The incoming neu-
trino interacts with a neutron with 3-momentum p, deter-
mined by some distribution 7;(p). The final state proton
phase space is limited by a factor of [1 — n(p’)] enforcing
Fermi statistics. Symbolically,

Onuclear — ni(P) ® O'free(p - pl) ® [1 - ”f(P/)], (Alz)

and more explicitly

&p G% &K
O nuclear [(277_)3 nz(I’){l6|k R p| (27T)32Ek/
d3p/
- - 2 464 — /+ L*YH }
(277)32Ep,( m)*8*(p — p' + q) v
X [1—=ng(p"]) (A13)

To arrive at the final model, two modifications are made.
First, we make the replacement k - p — EyE,, in the pre-
factor of (A13). This replacement ignores a correction
from the nonzero velocity of the initial state nucleon. It
corresponds to the model of [10], adopted by [3]; for
definiteness we have followed this convention. Second,
we incorporate a ‘“‘binding energy,” €, by expressing

H,, as a function of Lorentz 4-vectors p,, g, as in

073006-7
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(A10) and then making in (A13) the replacements

0

p — € = F

) (A14)

— 10 Y R—
p €p, pr ey, = Ep/,

with E, = w/m,z\, + |pl|*. Again, there is some arbitrariness

to the insertion of €, into the formalism; for definiteness
we have followed the conventions of [10]. The cross sec-
tion is then

G2 K

L*"W
16|k - PT|

Q27 2E ur

(A15)

O nuclear —

where p/ is the 4-momentum of the target nucleus with
mass my = Amy(1 — €,). We work in the target rest frame
where pf = m7 68} . The model nuclear structure function

W, is defined as
Wy = /d3pf(p, 4" QH,,(ep, p:d° ), (A16)
with
f(p. 4" q) = n (P11 —ng(p +q)]
5 € +
( p p+q q ) (A17)
€p€pq
The distribution of neutrons and protons is
ni(p)=0(pr—1Ipl), n/(p)=60(pr—Ip'l), (AlB)

where pp is a parameter of the model. The normalization V
is fixed by requiring A/2 neutrons below the Fermi surface
(accounting for two fermionic spin states),

A 3m2A

d3
5‘2Vf@)“”” T AP

We can expand W, in a similar way to H,, in (A10):

€
——— W, — 2/wp2<r qu"W3

q,LpV)

T 2mT

(A20)

The functions W, are related to integrals over H,.
The relations can be expressed in terms of the following
integrals [10]:

PHYSICAL REVIEW D 84, 073006 (2011)

2
a, = fd3pf(P’ q), a, = fdgpf(p, q) > |p|

2

€
f dEpf(p,q) ‘2’ ,

My

(pz)2

N

as = f &Epf(p. q)~——

= fd3pf(p, 4)%, ag = fd3pf(p, q)—,

my my

%=ffﬁm®2n (A21)
my

where |p|> = (p¥)? + (p*)? + (p*)? and the z axis is par-
allel to ¢. A straightforward but tedious comparison shows
that

1
Wy=aH, +§(a2 —az)H,,

W, [ I I 1(1 “’2)( )]H
=|last—>a3—2—as+=(1——)(a; —a ,
S R P el P ) G PTEY A

W, = <a7 25,6)1-]3,
my |¢I|
W, %[ Hy+ ™ aoHs + N (3 )H]
—la —a as—da 5
4 2 NPT 2| |2 3 AR
Ws =ﬂ(a7 —£a6)H [Zas w( 2_303)]1{2’
my ] lq] lql

(A22)

where we are using w = ¢°. Recall that the H, are func-
tions of ¢g> = w? — |q|*. For the integrals a; let us define

we = w — €, and observe that
8(€p — €prg T q")

= 6(Ep - Ep+q + weff)

_ Epiyg 5( 0, — wye — lqI* + 2“’effE1’>, (A23)

Ipllql 2lpllql
The integrals a; can be expressed in terms of
Vv E E,\J
P A Y <—”)’, (A24)
27r|q| E, — €, \my

for j = 0, 1, 2. In particular,
by = | |(E + €, log(E €b))|Eh'
#}\‘I/lql[l E? + €,(E + €,10g(E — eb))] 5
Vv
by = #%qul

1 1
X {gE3 + EbI:EEZ + €,(E + €, log(E — eb))]}

Elo
(A25)
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Up to an overall constant these are the b;’s of [10].
Introducing ¢ = —w./lgql, d = —(wZ; — 1q17)/(2lglmy),
we can express the a;’s as

ay = bo,

ay = by — by,

as = C2b2 + 2Cdbl + dzbo,

2 2
ay=by— L+ by, (A26)

my my

as = —cb, + (ic - d)bl + 50 gp,,
my my

ag = _Cbl - db(),

€p
ar; = bl - —bo.
my

The range of integration is restricted by the conditions,

E,=Ep= w/mﬁ, TP =Epiy =E, + oy,

1= wgff —lql* + 2wE), =1

2lglyE} — my

danuclear _ G%«"lﬁd
dE¢dcost, 167 my

(A27)

€ 2
m > m
+—2(E; — |P¢| cos)W, — —£ WS},
mT mT
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The latter condition can be expressed as

(EI, cd +~1—c+ d2)<Ep cd — N1 —c*+ d2)
P 2 P 2

my 1—c¢ my 1—c¢

= 0.

(A28)

Define

cd+\/1—c2+d2)
1—¢? " (A29)

E, = max(EF — Wep, My

Ehi = EF'

Then if E), = E\;, there is no contribution for the given
kinematics.

In the rest frame of the nucleus, let E, and |P,| =

VE? — m? be the energy and 3-momentum of the char-

ged lepton, and let 6, be the angle between the 3-momenta
of the leptons. From (A15), the final expression for
the differential cross section of neutrino-nucleus scat-
tering is

> - 1 -
{Z(Ee — |Pelcos@ )W, + (E¢ + |P¢l cos )W, = m—[(Ee — |P¢lcoso)(E, + E¢) — mg]W;
T

(A30)

where W, are given in (A22), and where the upper (lower) sign is for neutrino (antineutrino) scattering.
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