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The two-particle wave function of neutrino and recoil nucleus is found as a solution of an initial-value

problem in the far zone for a time longer than the electron capture decay lifetime of a hydrogenlike ion.
The neutrino-recoil entanglement arising in such a process is a consequence of the momentum
conservation and is closely related to the wave packet structure of the state. Because of neutrino mixing,
the joint wave packet involves the coherent superposition of the neutrino mass eigenstate packets. This is
the new physical realization of the Einstein-Podolsky-Rosen thought experiment, which has no analogue

in quantum optics and quantum informatics. A class of possible experiments for the registration of a

neutrino and a recoil nucleus is proposed. It is shown that, due to spatial correlations, neutrino and recoil
oscillations can be observed in the coincidence experiment.
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I. INTRODUCTION

Massive neutrino oscillations are a consequence of the
presence of flavor neutrino mixing and a clear evidence of
physics beyond the standard model. They are subject of an
intense experimental and theoretical research beginning
with the pioneering paper by Pontecorvo [1]. The theoreti-
cal approach is mostly phenomenological and uses the
plane wave [2-4] or the wave packet formalism [5-9] to
describe the evolution of the massive neutrino states, and
the field-theoretical approach [10-12] which takes into
account the processes of production, propagation and de-
tection of neutrino. In spite of the fact that almost all these
treatments provide the canonical formula for the probabil-
ity of oscillations, some basic issues of the theory of
neutrino oscillations are still being debated [13]. In par-
ticular, there is no consensus on whether the three neutrino
mass eigenstates have equal energies or equal momenta.
Furthermore, the wave packet formalism leaves unan-
swered the question of how the properties of a neutrino
wave packet are determined by the process of weak decay.

If we want to resolve these problems, we need to do
away with ad hoc assumptions and invoke basic principles
of quantum mechanics to describe the weak decay of an
unstable object and neutrino production [14]. Closely re-
lated problems have been studied in quantum optics.
Fedorov et al. [15,16] considered the decay of composite
objects into two fragments that are free to move away from
the breakup point and are constrained only by momentum
and energy conservation. The authors obtained position-
dependent two-particle wave function as the solution of an
initial-value problem. This quantum state is entangled and
closely related to the Einstein-Podolsky-Rosen one [17].

Our motivation for this work is to apply the formalism of
Refs. [15,16] to the description of orbital electron capture
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(EC) decay. In this scenario, the spontaneous emission of a
flavor neutrino by an atom is described in three dimensions
with initial wave function of a decaying atom taken in the
form of a finite-size wave packet. The recoil-neutrino wave
function is found analytically in the coordinate representa-
tion as the solution of the time-dependent Schrodinger
equation in a far zone. Its wave packet structure evolves
with time. The function does not factorize in the neutrino,
r,, and recoil, r,, spatial coordinates, which is a direct
indication that the quantum state of the system is entangled.
However, due to neutrino mixing the entanglement in-
volves the coherent superposition of mass eigenstates
with equal energies and different momenta that manifests
itself in the oscillating correlations of the two particles.

Entanglement means that knowledge of one of the
particles reveals information about the other. Space corre-
lations of neutrino and recoil nucleus are the experimental
implication of this feature. It should be emphasized that the
spatial entanglement which we are considering, has noth-
ing to do with kinematic entanglement (see, for example,
Refs. [4,18]), which does not involve an exact solution of
the Schrodinger equation. Spatial entanglement between
an atom and a photon in spontaneous emission has been
observed by Kurtsiefer et al. [19].

Because of strong spatial correlations, we are able to
observe with two detectors the oscillations of a neutrino
and a recoil simultaneously in the coincidence measure-
ment. This experiment, first considered by Dolgov et al.
[20], could be of interest for the next generation of neutrino
detectors. By contrast, registration of one particle indepen-
dent of the other disentangles the recoil-neutrino pair. For
example, to observe neutrino oscillations the recoil posi-
tion is ignored whereas a flavor neutrino is detected. This
scenario is used currently to observe neutrino oscillations
in reactor and accelerator experiments.

The paper is organized as follows. In Sec. II we apply the
Weisskopf-Wigner theory of spontaneous emission [21] to
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treat the EC-decay process of the ion confined to a small
volume in a trap. We specifically study a hydrogenlike
(H-like) ion of the intermediate mass region with a
K-electron in the lowest hyperfine state having the total
angular momentum F = I = 1/2, where I is the nuclear
spin. Such ions have been used in the much-talked-of GSI
experiment [22] and its second run in 2010 [23]. However,
the question of what happens to the neutrino and the recoil
nucleus on time scales comparable to the lifetime of the
parent ion is left unanswered. The main result of this
section is the recoil-neutrino wave function that describes
the spatiotemporal behavior of these particles. In Sec. III
we use the far zone approximations to express this function
as a product of the relative and the center of mass (CM)
wave functions. It is shown that the coherent superposition
of the neutrino mass eigenstates has a fixed kinetic energy
equal to the EC-decay energy. The structure and time
evolution of the relative motion (RM) and the CM wave
packets are investigated in Sec. I'V. The far zone formalism
allows to find the spreading of these wave packets. In
Sec. V we outline the experiments appropriate for the
detection of a flavor neutrino and a recoil nucleus. Our
findings are summarized in Sec. VI. The Appendix con-
tains the details of calculation of an integral from Sec. III.

II. ORBITAL ELECTRON CAPTURE DECAY OF
MOVING HYDROGENLIKE ION

The decay which we study is the capture of a single
electron from the K-shell into a completely ionized daugh-
ter nucleus and a electron neutrino, as final state. The
system is described by the Hamiltonian H = Hy + V; +
H,,, where the unperturbed Hamiltonian has the form

2

Hy = M + H,(py,...,pa) T ;SWIW

+ ZGi(k)C;{(c,-k. (D
ik

Here p is the nucleus momentum operator; H, is the
nuclear hamiltonian depending on nucleon coordinates,
pr = r; — r,, with respect to r, which to a good approxi-
mation is the nucleus CM; A is the mass number; a)f and
a, are the creation and the annihilation operators of a
bound electron in the state with the energy e, and the
quantum numbers A = n, j, m; V,, is a hyperfine interac-
tion; and ¢} and ¢ are the creation and the annihilation
operators of the three massive neutrinos (i = 1, 2, 3) with

momentum k, the energy €; = 4/k> + m? and the mass m;.

The mass M of parent and daughter particles is supposed to
be equal with an accuracy of the small parameter o =
Orc/M, where Qg is the decay energy.

The weak-interaction Hamiltonian density is given by

o (8) = CEV, L0 - () + Hel, @

N

PHYSICAL REVIEW D 84, 073005 (2011)
where the lepton current,
J(r) = iv,(r)y(1 + ys)e(r), 3)

involves the flavor neutrino and electron field operators.
The former is [24]

ve(r) = D U, (x) = Y Ugiciu (m)e™r, (4

iK;

where U is the Pontecorvo-Maki-Nakagava-Sakata mixing
matrix. The Dirac spinor for left-handed neutrino,

1 { o —e~#/25in(0/2)
uy(n)=— , w,(n)= , , (5
L ﬁ(—wL> L ( e'¢/2¢cos(6/2)
depends on the unit vector n = k/k. We will use non-
relativistic limit for the electron operator

n=(")  ©

For the K-electron, we have wyq /2, = f15(r)na/2)ms
where f is radial and 7 is spin-wave functions. The nu-
cleon current for pure Gamow-Teller transitions in a
nonrelativistic approximation has the form

e(r) = Za,\ (1),
X

A
J(r) = g4 > o(s)7_(5)8(r — 1)

s=1

A
= g4 . J(5)8(r — 1)), 7)
s=1

where ¢ and 7 are the spin and the isospin Pauli matrices.

To find the wave packet structure of an entangled state,
one needs to use the coordinate representation for the wave
functions of neutrino and recoil nucleus. This implies that
the Hamiltonian H,, has to commute with the total mo-
mentum of a bipartite state in the r-representation. By
using Egs. (2), (3), and (7) we get after integration over
nuclear volume the weak-interaction Hamiltonian fulfilling
the momentum conservation law

Gr
H,=i—=V,» Ukci i, (m)y(l +
NG d% iCik; Lm)y( Ys)
X D J(s)e it a, i, (py)e™i® ™) + He. (8)
s A

Now let us use the time-dependent perturbation theory to
determine the temporal evolution of a decaying state
for the Gamow-Teller transition FIMy — I'M’ with I' =
I = 1. The parent ion is prepared in a polarized state with
the angular momentum projection M along the quantized
axis Z of the laboratory frame S. The solution of the
Schrédinger equation with the Hamiltonian H is sought
by using the following ansatz for the wave function

073005-2



SPATIAL ENTANGLEMENT AND MASSIVE NEUTRINO ...

V() = > A(p, )laFIMp;p, the !
P
+ > By(p, Kk, 0lbI'M';p — k;, K, e,
M pk;

()]

where

|61F1MF,P> Z C(]/z)m M a[M(p)afr(l/z)m |0>€ipr,,’
bI'M';p — ki k) = Qg (p)ciy [0)ePRIm=ikrs (10)
are the eigenvectors of H + V, with the eigenvalues

2 2
P (p — k)
w, gbiZEb1’+Ei+7-

(1)

In Eq. (10) Q(p) = Q(py, ..., p4) and E are eigenfunc-
tions and eigenvalues of the initial (a/) and final (b1’) states
of nucleus, g is the energy of the ion ground state, |0) is
the lepton vacuum,and C (1/72)m i are Clebsch-Gordan
coefficients. In the subsequent text we will assume that
Ebl/ = 0.

The differential equations for the coefficients A and B
are

Engal+80+

iAp 1) = Z B (P, ki, OWppy () U e,
ik, M’

iBiM’(p’ ki’ t) ﬂ(p t) ]lMl( i)U:i
where the matrix element of the Hamiltonian H,,,
GF Vud

JF+1/2

includes the radial wave function of the bound electron
averaged over nuclear volume, (f),), and the nuclear
reduced matrix element M. The spinor

Er(m) = Copr ) D20 (0,6,0),  (14)

e—i(é’,,—é'h,-)t’ (12)

VVI'M/(ni)= <.fls>gAM(aI! bIl)g;('M/(ni)v (13)

where D is the Wigner functionand u = My — M' = +1,
is normalized by the condition 3, y|&pp|* = F +1/2.

Suppose that a parent ion after production is stored in a
trap and its motion is localized. Then we switch off the
field of the trap and free spreading of the ion CM wave
packet begins. If the production and stored time is far less
than the lifetime of the parent ion, we can measure time
from the beginning of free spreading. The initial state is
described by the first term of Eq. (9) for + = 0. To be
specific, suppose that the CM part of this function has in
the momentum representation the Gaussian form

A (p,t =0) = (2J7d)*/? exp(— %d2p2). (15)
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The Egs. (12) are easily solved in the Weisskopf-
Wigner approximation with the initial conditions
A(p,t =0) = Ay(p) and B;,;(p, k, = 0) = 0. The so-

lutions for ¢ > 1/Qpc are

A(p, 1) = A(p) exp(—T),
_ O(P) I/Mr(ni)U:i _ i, —ENt—Tt
Biw(p ko) = —g g (1= e™ )
(16)
where

=a Z |WI’M’ |2|Uez|26(gb1 Ea)

iM' k
(GFVud)

= rr s Ml b)QscP A7)

is one half of the rate of the Gamow-Teller transition
FIMp — I'M', I' = I = 1. The final expression we have
derived for this value ignores a small dependence of I" on
the parent ion velocity. Furthermore, the two small dimen-
sionless parameters

_ Zec 5, = M
M’ " Ogc

allow to reduce I" to a conventional value for the ion at rest.
The last parameter is compatible with the limit of ultra-
relativistic neutrinos [25].

First of all, we observe that the decay probability P(z) of
the parent ion is not dependent on the shape of the initial
CM wave packet A ,(p) because of

P(r) = exp(—2I'1) Y A3(p) = exp(—2I1). (19)
P

(18)

However the probability of emission of the electron neu-
trino with wave vector k and energy e is little affected by
Doppler shift

ﬂlz(p)
5 (€ = Opc + 45— BEP + T2
(20)

P.(k) = ZIWIIM/(n)PZ

With B, taken from Eq. (16), the recoil-neutrino wave
function at times ¢ > 1/I" has the form

Ayp)W;,,(n;
‘P]’M’(rn; r, l) _ Z O(P) I'M (Il )

ipk; € — QEC + % — pﬁk' + il
X expli(p — k;)r, + ik;r,
— i€, }U ¢, |0). 1)

It carries information on the neutrino production process
and involves the coherent superposition of the electron
neutrino mass eigenstate components.
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III. RECOIL-NEUTRINO WAVE FUNCTION

Now, by using the far zone approximation and small
parameters (18), we write the function (21) in the form
suitable for the analysis of the wave packet structure and
entanglement of the recoil-neutrino state. To begin with, let
us rewrite Eq. (21) as

Wy = Zﬂ()(p)exp(zpr - i )Zx,(r Uiy 10)

(22)
where the function
4 . . k? K.
A W) explikr — i(e; + 55 — B)r] 23)
1 2
k; EI_QEc‘}'zk—A'/I_ka""lF
depends on the relative coordinate r =r, —r,. In the

laboratory frame S, the vector r is specified by polar angles
6 and ¢. The direction of K; is given by angles 1J; and ¢;.

First we transform the summation over k; in Eq. (23) to
integration. To perform integration over d{)y , we rotate
the laboratory system S with the origin O in the decay point
by the angles 6, ¢ to align axis Z along the vector r. In the
new frame §’, the vectors k; and p are determined by
angles ¥/, ¢} and 9, ¢, respectively. The polar angles
of these vectors in the systems S and S’ are connected with
each other by well-known formulas [26]. Owing to
k;r ~ Qgct > Qpc/I' > 1, the integrant involves rapidly
oscillating function exp(ik;r cos?)!) and a slowly varying
preexponential function F of the angle ¥/. Integration by
parts over this angle yields

f " F(9!) explikrcosd!) sind!d 9!
0

LT (e — FOHT+ 001/ rP). - 24
Here the two terms in brackets represent incoming and
outgoing spherical waves. The incoming wave in the far
zone gives an exponentially small contribution for ¢ > 1/T,
which can be neglected in comparison with the outgoing
one. The latter corresponds to 9/ = 0, and it immediately
follows that ©; = 6 and ¢; = ¢ in the integrant of (23).
Thus, we find that k,||r and n; = n = r/r in the far zone.
After integration over d¢§, one obtains

* . k
xi= i) explibr — e it 2 =51, dk;,  (25)
i2m)*r Jo ~ Qpc +aL— Bk

where pk; = pk; cosd,,.
To calculate the integral, we change variable k; by €; and
expand the former around Qgc
1 2

ki(e;) = kio + v—i(fi — Orc) — m

(Gi - QEC)21 (26)
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because main contribution to the pole in (25) comes from
€; = Qpc — il'. We have retained a quadratic term to

describe the spreading of the RM wave packet. Here k;; =

\Oic —m? and v, =k

neutrino. Then the integral over €; can be evaluated by
the residue method. The details of calculations are given in
the Appendix. Upon using Egs. (13) and (17), we find in
the lowest order in the parameters a and 9J;

Xi = —¢;(n, r, 1) exp(iapr), (27)

where the RM wave function of ith massive neutrino is

i1 i vit—r
il ‘Eff[\[z@i A, )]

X Epppr(m)expli(kr — Qpct) — (vt —

0/ Ogc is the group velocity of

¢i(n’ r, t) =
r)/D;].
(28)

Here Erf is the error function, D; = v;/I" is the initial
width of the RM wave packet, and

3p\1/2
Ai—i<’+5 ) (29)
D, \M m;v;

is a dimensionless parameter describing its spreading.
Now, integration over dp can be readily performed after
substituting expressions (15) and (27) into Eq. (22)

2
%ﬂo(p) exp[zp(r + ar) — zg—]‘;]

r, + ar)z]

1 (
- - 30
7 + ex"[ 2d(d + 1 0

In view of the definition of the CM vector for a relativistic
system in terms of the particle energies [27],

R=r,+

r=r, + ar, 3D
€, t €

we find an analytic expression for the wave function (22)

B 1 R?
\PI/M'(R’ T, t) = — W exp[— M]

X Z¢ (n, r, ) U cji o |0). (32)

The two-particle wave function (32) describes the
evolution of the recoil-neutrino state after decay at time
t > 1/T'. This expression is accurate to within the small
parameters « and §; (18). The function carries information
on the decay process and has the form of a product of the
CM and RM parts. Such a factorization of the total wave
function is a general feature of the two-particle decay of
noninteracting fragments constrained only by momentum
and energy conservation [16]. The RM wave function
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involves the coherent superposition of the mass eigenstate
components of the electron neutrino state.

The time-dependent phase factor of the recoil-neutrino
wave function (32) [see also Eq. (28)] involves the kinetic
energy of the pair. As shown in the Appendix, it is equal
with great accuracy to the decay energy Q. Thus, all three
massive neutrinos have the same energy. This resolves the
long-standing problem ‘“same energy or same momentum.”
This issue, like other paradoxes of neutrino oscillations
[13], emerges from the theory that considers the time evo-
lution of a neutrino independently from a recoil. The exact
solution (32) shows that a neutrino and a recoil do not
evolve separately due to their spatial correlation.

IV. THE WAVE PACKET STRUCTURE OF THE
RECOIL-NEUTRINO STATE AND SPATIAL
ENTANGLEMENT

The spatiotemporal behavior of the joint quantum state
of the recoil and the electron neutrino following the EC
decay is in agreement with the results obtained in the
theoretical studies of decaying bipartite systems
[15,16,28]. The distinctive feature of our system is the
coherent superposition of neutrino mass eigenstates. In
this section we give the more detailed analysis of the
function (32) providing insight into the nature of entangle-
ment and neutrino oscillations. We begin with the wave
packet structure of this function, since entanglement and
neutrino oscillations depend on spatial localization of par-
ticles involved in the decay.

The CM part of W;,,(R, 1, £) has the form of a spread-
ing wave packet

1 R?
Ven® 0P =~ exp[ -~ o] G3)
oM =Dy L D3()
with the time-dependent width
(e (t 2]1/2:{d, I <K fem
Dy(t) [d + (Md PR

where ey = Md? is its spreading time and 1), = /t/M is
the quantum diffusion length. If the initial size d of the
atomic wave packet is approximately 107® cm, we have
tem ~ 1076 s for nucleus with the mass number A ~ 100.
Hence, the width Dy, is of pure dispersion origin and grows
linearly with time. The velocity of spreading is equal to
1/Md.

The time-dependent width of the RM wave packet
|, (r, £)|? is due to dispersive broadening of both the recoil
and the massive neutrino. To estimate these effects, let us
put r = v;t in Eq. (29). We get

1 ) t
A= — By + 832) =M= [ 35
where t; = MD? is the spreading time caused only by a
recoil particle. The contribution of a massive neutrino is
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negligible because of the relativistic suppression of the
wave packet spreading. For ' ~ 1s~! and A ~ 100, the
spreading time is #; ~ 10" yr. This result is apparent for
ultrarelativistic neutrinos, and we can put A; =0 in
Eq. (28). In this limit, one finds the RM function

1
Y, t) = Jz—ﬁfl’M’(n)gRi(ry NU.icj 10), (36)

where the radial function of the ith massive neutrino is

'Ul'l_r

Ri(r,1) = g exp[i(kior = Ogct) — ]@(v,-t - 7).

(37)

i

Here O is the unit step function. The function R;(r, 1) is
Lorentz covariant. The RM function (36) is normalized for
ultrarelativistic neutrinos by the condition

[ &SP = Sloar =1 G8)
M' i

The wave packet | 1,y (r, )| is a superposition of three
exponential wave packets of massive neutrinos with differ-
ent sharp edges r = v;t and widths D;. The later depends
only on the dynamics of the decay process. The difference
between the group velocities v; of these packets results in
their separation. However, the separation is negligible
compared with D; for times t << 10° yr. Therefore the
wave packets corresponding to different mass eigenstates
are in fact spatially inseparable. Hence, we can use an
ultrarelativistic approximation for R; with D, = D =
1/T" and v; = 1. In this approximation the function (37)
takes the form

R;(r, 1) = Ry(r, 1) expli(k;or — Opct)],

Ry(r, 1) = %J%exp(— = r)@(z .

We now wish to consider the two-particle wave function,
taken as the product of two functions (33) and (36), in the
observable coordinates of the recoil nucleus and the neu-
trino. This normalized function has the form

(39)

where

(40)

Vi =Yeu((1—a)r, +ar, e, e, —r,l ). (41)

The function does not factorize in these variables—a direct
indication of the spatial entanglement of two particles.
Each of the three massive neutrinos becomes entangled
with the recoil nucleus because a neutrino is not emitted in
a momentum eigenstate.

The joint recoil-neutrino wave packet 3,/ |W;|> has
an axially symmetrical shape with respect to the axis
passing through the CM in the direction of the vector n.
The packet increases with time in a transverse direction
with velocity 1/Md and in a longitudinal (along the axis)
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one with velocity v, + (1 —v,) =1, where v, =
v,€;/€, = av, is the velocity of a recoil. It is easy to see
that the function ¢y takes its maximum value on the
symmetry axis, along which the state is highly entangled.
The probability density is proportional to a product of the
Gaussian and exponential functions

[(1 - Cl)l"n - arl/]z}
Dy

Zl\PI/M/lz ~ FI/(H) exp{—
MI

— Iy Ty

D )@(r — 71, =T, (42)

t
X exp(—

where the angular modulation of the joint packet is deter-
mined by the function (angular distribution function)

1 My
Fp(0) = E(l * T cos0> forI'=1%x1. (43)
Modulation is due to the polarization of a parent ion. For a
nonpolarized ion we have Fy = 1/4.

The Gaussian packet in Eq. (42) for fixed r, has the form

exp[%(rn - la—rva)z]’ (44)

whereas for fixed r, it is equal

2 1— 2
exp[g—% (r,, - a r,,) ] (45)

Relative location of the peaks of these curves is determined
by the condition

(1-a)yr,—ar, =0, (46)

which corresponds to the maximum of the wave packet
(42). The r,-dependent exponential and Gaussian curves
overlap each other, if r, does not exceed its maximum
value v, t.

V. EXPERIMENTAL IMPLEMENTATIONS

Recent experiments concerned with atom-photon entan-
glement are dealing with generation and verification of an
entangled pair. The special structure of the recoil-neutrino
wave packet offers new kinds of experiments. There are
three types of possible experiments to detect a flavor
neutrino and a recoil:

(i) Coincidence measurements, in which both the recoil

and neutrino are detected. The flavor-changing pro-
cess e — [ is determined by the probability density

2
Z |<0lzcjk,-0 UgiWipe(r,, 1, 1) | . 47)
M J

(i) Noncoincidence measurements, when only a neu-
trino is detected regardless of the recoil position.
The flavor-changing process e — 3 is determined
by the probability density
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2
[drnz |<Olzcjkj0UBj\P1’M’(rm r, 0| . 48
M’ J

(iii)) Noncoincidence measurements, when only the re-
coil nucleus is detected regardless of the neutrino
position. The probability density to detect recoil
nucleus at the point r,, is

2
f dr,y I O iy Vi (e, 0 | . (49)
M J

The probability distributions (48) and (49) reveal
no entanglement because all information about the
position of one of the particles is lost completely.
Coincidence measurement. On the axis with highest
entanglement, the probability density to detect recoil nu-
cleus at the point r, together with the neutrino of flavor 8
at the point r, is

dP,g
dr,dr,

= Fp(0)Vi,((1 — a)r, + ar,, Drir?
X ZUBiU:iUerij}“(r,, + r)R(r, + ).
ij

(50)

In ultrarelativistic approximation the second line is pro-
portional to

Am?,
U 21U 512 + 2 IUB,-U+-UE-U+.|COS< i, 7),
g ; eire] = Bj 20k

(D
where Amizj = m? — m}2 and y = arg(Ug;U,; U,;Up))-

We choose the direction of the axis corresponding to the
maximum value of F;(6), which will be denoted by Fp.
The neutrino detector N and the recoil one R are connected
with a coincidence circuit and located on this axis on both
sides of a parent ion confining volume (that is approxi-
mately the CM position) at distances from it, respectively,
L,and L,.If L, and L, satisfy Eq. (46), the amplitude of
oscillations will be equal

2F, L2

WD%(Z‘) exp[—2I'(r =L, —L,)] (52)

The amplitude conforms to highest spatial entanglement
and can serve as its verification. The detection time ¢
depends on the lifetime of a parent ion. For short lifetimes,
the length of the joint wave packet may be equal to distance
between the detectors, thatis r = L, + L,,. In this case, the
amplitude (52) will be maximum. This condition is impos-
sible for parent ions in a Penning trap because their lifetime
must exceed the time it takes to prepare them in the trap.
The latter is of the order of seconds. In such a case, the
measurement time ¢ > 1/T" should be taken so as to mini-
mize the exponent in Eq. (52).
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It follows from Eq. (51) that the expression for the
probability (50) contains the well-known oscillation phase

_ Am%j .
2Qgc

However, the oscillation length for the recoil and the
neutrino is different. According to Eq. (46), the distance
between the two detectors can be written in two ways, as
r=0L,/aorasr = L,/(1 — a). Therefore, the oscillation

lengths, associated with Am%j, for neutrino and recoil are

equal to

bij (53)

Okc

Okrc -
~1075L7
|AmZ]

|Am%j| i

L}, =4m and L}, =4ma (54)

respectively. The final expression for the coincidence
probability density is
dP,g _ _2F L2
drydr,  7/2DD3(1)
X {Z|Uei|2|U,3i|2
i

+ ZZIUB,-U;UW-UEJ.I cosQQmL;; + y)}, (55)

i>j

eXP[_zr(t - LV - Ln)]

where L;; =L,/L},=L,/L};. A strong correlation
means that knowledge of one of the particles automatically
corresponds to precise information about the other. In
particular, if a neutrino disappears at a certain position of
the detector N, the recoil will not be registered in the
detector R. One can fix the distance from source to one
of the detectors and change the distance to another one.
Here, too, both neutrino and recoil oscillations may be
observed, but with a far lower amplitude due to the
Gaussian factor of Eq. (42).

Let us examine the conditions for the observation of
oscillation patterns. The first condition is trivial: the
source-detector distances L, and L,, should be of the order
of, or greater than, the corresponding oscillation lengths
L}, and Lj;. The second condition is the coherence of
different mass eigenstates, necessary for the neutrino and
recoil oscillations to be observed. Coherence is preserved
over distances not exceeding the coherence length L.g,.
The latter is defined as the distance at which the phase
difference due to energy spreading obeys the equation

¢:i(Qpc) — ¢;(Qpc + ) = 27. (56)

We find L, = Los.Qpc/T ~ 10?!' L. Such a large cor-
relation length arises because the emitter is in a pure
quantum state that is described by a state vector (9).

Neutrino detection. This is a well-established experi-
ment for studying neutrino oscillation. Integration over
dr, in Eq. (48) can be done approximately since the width
of the Gaussian packet (44) is much smaller than that of the
exponential, if I't << 10'°. Indeed, we have
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2Md
The integral is calculated as follows

Dy 1

e SR N )
(I1-—a)D D

(57)

[ W2,((1 = a)r, + ar,)R:(Ir, — r,DR,(Ir, — r,))dr,

~ 7(1 fa)Rj(l fa”\ng((l — )r,)dr,. (58)

Let the position of a neutrino detector be given by the
distance L, from the emitter, then the probability density to
detect the neutrino of flavor S at this distance is

dP,s 2Fy
dr, D

expl-20(e ~ L, T 101U

L,
+ ZZlUﬁiU;.Uer;gjl cos(ZWﬁ + y)} (59)

i>j ij

Recoil nucleus detection. Integral (49) is calculated in
perfect analogy to (48) if I't < 10° As a result, we obtain
the following expression for the probability density to
detect recoil at a distance L,, = v, ¢ from the parent ion

dr, FpI
dr, v,

. (60)

The joint wave function of the recoil-neutrino pair al-
lows to calculate probability densities of the considered
processes. In order to calculate the oscillation probability,
it is necessary to take into account a detection process.
However, this is different problem.

VI. CONCLUSION

In summary, we have found an accurate analytical solu-
tion for the joint quantum state of an electron neutrino and
a recoil nucleus following the electron capture decay of a
hydrogenlike ion. The evolution of the state provides an
exactly calculable illustration of the famous Einstein-
Podolsky-Rosen thought experiment. The new effect is
the entanglement between the recoil and the coherent
superposition of the three massive neutrinos. Such a super-
position cannot be observed in the experiments involving
discrete states of an atom-photon pair because the polar-
ization of an emitted photon is inevitably entangled with
the spin state of an atom.

We have shown that each of the three massive neutrinos
is not emitted in a momentum eigenstate, and so the recoil
becomes entangled with the superposition of three neutri-
nos. However, the total energy is conserved in the course of
EC decay, and the decay energy converts to the kinetic
energy of the reoil-neutrino pair. Thus, we have rigorously
proved that the neutrino mass eigenstates composing the
electron eigenstate produced in EC decay have the
same energy. It should be emphasized that, although a
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particular type of decay has been treated, the results of our
calculations are applicable to other two-body weak decays
due to the common features of the initial-value problem for
noninteracting particles.

The most peculiar aspect of our solution is the two-
particle system in a pure quantum state, where the parti-
cles, a recoil and a massive neutrino, are mixed with each
other. Such an entanglement opens up an opportunity for
correlative experiments and the investigation of
environment-induced decoherence. This is the main dis-
tinction of our approach from the field-theoretical one [11],
where a neutrino enters as unobserved intermediate state.
We have suggested the correlative experiment which al-
lows to observe neutrino and recoil oscillations simulta-
neously. However, a considerable progress in the detection
methods of neutrinos and recoil nuclei is necessary to carry
out such measurements.
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APPENDIX

We consider the integral

% k(€) explik(e)r — i e+ — Pkf<f>]t}d

2M M
0 Ui(f)

I= .
€ — Qpc +59 k(9 41

e, (Al

where the function k;(€) is given by power series (26). In
the lowest orders of the small parameters « and for I' <
QOxc the pole of the integrand is

. pkio k20)< pn _ kjp )
= Qpc — il + S | S L |
€ = Qrc 1 ( M M Mv, M,

(A2)
We may extend the lower limit in (A1) to —oo, since the
contribution to the integral falls of sharply with increasing

le;| owing to I' << Qgc. The integral involves the expo-
nential factor exp[ —ig;(€ — Qpc)?] with

1[ Lo 5? ( L P k“’z)]
R 4 P20, N0
) Mv?  mu? M M

1( t a?r)
~ _— ——}——,
2 le2 m,-v?

(A3)
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which prevents the use of the residue method. To overcome
the problem, we have to use the Fourier transformation of
this factor [15]

1 o0 ix?
exp[—ige*] = Ner [_oo exp(% + isx)dx. (A4)

Then, we first evaluate the integral

f ki(e) exp[iP(e) + i(e — OQpc)x]
c

vi(e)(e — €,)

de, (AS5)

where the contour C encloses the pole (A2) and

kiz pk;
P(e) = kior — (QEC + 21‘(/)1 - M0>t

" [vL - (1 - ASI; " zf,"ﬁl.)f]& ~ QOrc)- (A6

l

The integral is easily calculated, and Eq. (Al) takes the
form

21.7Tk'0€i7) 00 l-xz
J=-=-—"-"90 o B i
V4i7TQiUi r/vi—t expl:4ql- lx(el’ QEC)] X

(A7)

where for I' < Qgc

o a2 Cl3 CYI’I’llZ
T= ,.P(Ep) =k[0r(l _E‘i‘?) - QEC(I +7_ 2M2)t
Uit

+ apr(l —3—a+ 2a2—) + ir[(l - az)t—L(l - a)]
2 r v;

2 3
(L) (L_S_at)Jra(pn)
M v; 2 szi

= k;or + apr — Qgct +il'(t —r/v,).

t
(A8)

The last two terms in the exact expression for the exponent
P can be dropped because they are small compared to the
term proportional to p> in the exponent of Eq. (22). The
exact expression shows that the energy of a pair of ith
neutrino and a recoil is the same for all pairs with great
accuracy and is equal to the decay energy Qpc. Small
deviations from Qgc are attributable to the approximate
calculation of the pole (A2): the more precisely it is
defined, the less are these deviations.

Finally, the integral (A7) can be transformed into the
error function

ik rfv;, —t+ iqT) .
I =——2(1-Bf——=—"")?. (A
v; ( : '\/4iqi ¢ ( 9)
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