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A canonical ensemble algorithm is employed to study the phase diagram of Nf ¼ 3 QCD using lattice

simulations. We lock in the desired quark number sector using an exact Fourier transform of the fermion

determinant. We scan the phase space below Tc and look for an S-shape structure in the chemical

potential, which signals the coexistence phase of a first order phase transition in finite volume. Applying

Maxwell construction, we determine the boundaries of the coexistence phase at three temperatures and

extrapolate them to locate the critical point. Using an improved gauge action and improved Wilson

fermions on lattices with a spatial extent of 1.8 fm and quark masses close to that of the strange, we find

the critical point at TE ¼ 0:925ð5ÞTc and baryon chemical potential �E
B ¼ 2:60ð8ÞTc.
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QCD is expected to have a rich phase diagram at finite
temperature and finite density. Current lattice calculations
have shown that the transition from the hadronic phase to
QGP phase is a rapid crossover [1,2]. For large baryon
chemical potential and very low temperature, a number of
models suggest that the transition is a first order. If this is
the case, when the chemical potential is lowered and
temperature raised, this first order phase transition is ex-
pected to end as a second order phase transition point—the
critical point. However, lattice QCD simulations with
chemical potential are difficult due to the notorious ‘‘sign
problem’’. The majority of current simulations are focus-
ing on small chemical potential region �q=T � 1 where

the ‘‘sign problem’’ appears to be under control. Up to now,
all the Nf ¼ 3 or 2þ 1 simulations are based on the grand

canonical ensemble (T, �B as parameters) with staggered
fermions. The results from the multiparameter reweighting
[3], Taylor expansion with small � [4,5] and the curvature
of the critical surface [6] are not settled and need to be
cross-checked. Even the existence of the critical point is in
question [6]. We employ an algorithm, which is not re-
stricted to small chemical potential because of the mitiga-
tion of the sign problem under the current parameter
settings, to study this problem.

In this letter, we adopt an exact Monte Carlo algorithm
[7–9] based on the canonical partition function [10–15]
which is designed to alleviate the determinant fluctuation
problems. As it turns out, the sign fluctuations are not
serious on the lattices used in the present study, as we shall
see later. In the canonical ensemble simulations in finite
volume, the coexistence phase of a first order phase tran-
sition has a characteristic S-shape as a function of density
due to the surface tension. This finite-volume property has

been exploited successfully to identify the phase bounda-
ries via the Maxwell construction in studies of phase
transition with the staggered fermions [14,15] and clover
fermions [16] for theNf ¼ 4 case which is known to have a

first order phase transition at � ¼ 0. In these benchmark
studies the boundaries were identified at three temperatures
below Tc, and they were extrapolated in density and tem-
perature to show that the intersecting point indeed coin-
cides with the independently identified first order transition
point at Tc and � ¼ 0 [16]. In view of the success of the
Nf ¼ 4 study, we extend this method to the more realistic

Nf ¼ 3 case [17,18]. Although the real world contains two

light quarks and one heavier strange quark, the three
degenerate flavor case has a similar phase structure. Our
primary goal in this study is to determine whether a first
order phase transition exists for Nf ¼ 3 and where the

critical point is located.
With the aid of recently developed matrix reduction

technique [19–21], we scan the chemical potential as a
function of baryon number for four temperatures below Tc

which is determined at zero chemical potential, and we
observe clear signals for a first order phase transition for
temperatures below 0:93Tc. The phase boundaries of the
coexistence phase are determined and then extrapolated in
temperature and density to locate the critical point at
TE ¼ 0:927ð5ÞTc and �E

B ¼ 2:60ð8ÞTc. Our results are
based on simulations on 63 � 4 lattices with clover fer-
mion action with quark masses which correspond to the
pion mass from 750 MeV for the lowest temperature to
775 MeV for the highest temperature.
The canonical partition function in lattice QCD can be

derived from the fugacity expansion of the grand canonical
partition function,

ZðV; T;�Þ ¼ X
k

ZCðV; T; kÞe�k=T; (1)

where k is the net number of quarks (number of quarks
minus the number of antiquarks) and ZC is the canonical
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partition function. Using the fugacity expansion, it can be
shown that the canonical partition function can be written
as a Fourier transform of the grand canonical partition
function,

ZCðV; T; kÞ ¼ 1

2�

Z 2�

0
d�e�ik�ZðV; T;�Þj�¼i�T; (2)

upon introducing an imaginary chemical potential
� ¼ i�T. After integrating out the fermionic part in
Eq. (2), we get an expression

ZCðV; T; kÞ ¼
Z

DUe�SgðUÞdetkMNf ðUÞ; (3)

where

det
k
MNf ðUÞ � 1

2�

Z 2�

0
d�e�ik� detMðm;�;UÞNf (4)

is the projected determinant for the fixed net quark number
k. Nf is the number of flavors. We shall use the recently

developed matrix reduction technique to compute the pro-
jected determinant exactly [19].

Using charge conjugation symmetry, one can show that
detkM

Nf ðUÞ is real, but not necessarily positive. Because of
the sign fluctuation, there can potentially be a sign problem
at large quark number and low temperature. For more
detailed discussion about the properties of the canonical
ensemble, we refer the reader to Ref. [16]. To simulate
Eq. (3) dynamically, we rewrite canonical partition func-
tion as

ZCðV; T; kÞ ¼
Z

DUe�SgðUÞ detMNf ðUÞWðUÞ�ðUÞ; (5)

where

WðUÞ ¼ jRedetkMNf ðUÞj
detMNf ðUÞ ;

�ðUÞ ¼ SignðRedetkMNf ðUÞÞ:
(6)

Our strategy to generate an ensemble is to employ
Metropolis accept/reject method based on the weight
WðUÞ and fold the phase factor �ðUÞ into the measure-
ments. In short, during the simulation, the candidate
configuration is ‘‘proposed’’ by the standard hybrid
Monte Carlo algorithm and then an accept/reject step is
used for the correct probability. Note the two-step simula-
tion with hybrid Monte Carlo and accept/reject based on
WðUÞ reduces the fluctuation problem [8] and accept/reject
step based on the exact projected determinant detkM

Nf ðUÞ
ensures that the simulation remains in the specific canoni-
cal sector with quark number k � 0.

The lattice spacing and the pion mass are determined by
using dynamically generated ensembles on 123 lattices for
each �. To locate the pseudo critical temperature Tc, we
varied � to look for the peak of the Polyakov loop suscep-
tibility. We run simulations for five different volumes
(63, 83, 103, 123, 163 � 4) and found that the peak of the
susceptibility hardly depends on the volume. This is con-
sistent with the finding on large volumes and physical

quark masses that the finite temperature transition for the
Nf ¼ 3 case is a crossover at zero chemical potential [1,2].

To determine the location of the phase transition at
nonzero baryon density, we pick four temperatures below
Tcð0:85Tc; 0:87Tc; 0:90Tc; 0:93TcÞ and vary the net quark
number from 3 to 54 in steps of 3 (for fractional baryon
number the partition function vanishes). This corresponds
to the baryon number nB from 1 to 18 and a density
between that of the nuclear matter and 18 times of that.
The chemical potential is calculated and plotted as a func-
tion of the net baryon number nB. In the canonical en-
semble, the baryon chemical potential is calculated by
taking the difference of the free energy after adding one
baryon, i.e.

h�inB ¼ FðnB þ 1Þ � FðnBÞ
ðnB þ 1Þ � nB

¼ � 1

�
ln
h�ðUÞio
h�ðUÞio (7)

where

�ðUÞ ¼ Redet3nBþ3M
nf ðUÞ

jRedet3nBMnf ðUÞj : (8)

is measured in the ensemble with nB baryon number and
hio in Eq. (7) stands for the average over the ensemble
generated with the measure jRedet3nBMnf ðUÞj.
As a first check, we examine the magnitude of the sign

fluctuations. The average sign in Eq. (6) appears in the
denominator of Eq. (7) and can lead to a sign problem
when its error bars overlap with zero. This quantity is
plotted in Fig. 2 for the highest and lowest temperatures.
We see that all of them are more than 3� above zero. This
result is better than the previous ones based on the winding
number expansion method [16,18], presumably due to the
adoption of the exact projection of the determinant [19].
Thus, we believe that the sign fluctuations are not a prob-
lem for this study.
We would like to point out the difference between the

phase diagram in the grand canonical ensemble and the one
in the canonical ensemble. We plot the expected canonical
ensemble phase diagram in Fig. 4 in contrast to that in the
grand canonical ensemble in Fig. 1. The first order phase

FIG. 1 (color online). Conjectured QCD phase diagram.
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transition line in the grand canonical T-� diagram be-
comes a phase coexistence region in the T-� diagram of
the canonical ensemble, which has two boundaries that
separate it from the pure phases. The two boundaries will
eventually meet at one point. This point is the critical point
at nonzero baryon chemical potential.

Once one enters the coexistence region in a finite vol-
ume, the contribution from the surface tension causes the
appearance of a ‘‘double-well’’ in the effective free energy
whose derivative with respect to density leads to an
S-shaped behavior in the chemical potential versus baryon
number plot [22]. However, in the thermodynamic limit,
the surface tension contribution goes away since it is a
surface term while the free energy scales with the volume;
the chemical potential will then stay constant in the coex-
istence phase region. The behavior of the baryon chemical
potential in the thermodynamic limit is shown as an inset in
Fig. 4. �1 and �2 mark the lower and upper boundaries of
the coexistence phase at a given temperature below Tc.

Our results for the baryon chemical potential are pre-
sented in Fig. 5 for four different temperatures below Tc.
Statistical errors are estimated from the jackknife method.
It is clear that the chemical potential exhibits an
‘‘S-shaped’’ wiggle for nB between 6 and 14. To identify
the boundaries of the mixed-phase region and the coex-
istence baryon chemical potential, we rely on the Maxwell
construction: the coexistence chemical potential ~�B is the
one that produces equal areas between the curve of the
chemical potential �B as a function of nB and the constant

~�B line which intersects with �B at nB1
and nB2

. This

procedure was used in studies with staggered fermions
[14,15] and Wilson-clover fermions [16] in this context
for the Nf ¼ 4 case.

We carried out the Maxwell constructions for the three
temperatures at 0:85Tc, 0:87Tc and 0:90Tc. We could not
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FIG. 3 (color online). Maxwell constructions for T ¼ 0:90Tc, T ¼ 0:87Tc and T ¼ 0:85Tc with the horizontal dashed line indicating
the constant ~�B=T and red triangles indicating the mixed-phase boundaries at nB1

and nB2
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FIG. 2 (color online). Average sign as a function of nB for
highest and lowest temperatures (0:93Tc and 0:85Tc) used in this
study. Dashed lines represent the phase boundaries of the coex-
istence phase.

FIG. 4 (color online). Schematic plot illustrating the scanning
we use to locate the boundaries of the mixed phase for QCD with
Nf ¼ 3. The infinite volume expectation for chemical potential

as a function of density is shown in the inset.
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FIG. 5 (color online). Phase scan for temperatures 0:85Tc,
0:87Tc, 0:90Tc and 0:93Tc.
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do it for the 0:93Tc case, as the wiggle there, if present, is
not statistically significant. The results are presented in
Fig. 3. Having determined nB1

and nB2
for three tempera-

tures, we plot the boundaries of the coexistence region and
perform an extrapolation in nB and T to locate the inter-
section of the two boundaries. To determine the crossing
point, we perform a simultaneous fit of the boundary lines
using a even polynomial in baryon density. We use an even
polynomial since ZC is an even function of k. The phase
boundaries and their extrapolations are plotted in Fig. 6.
We find the intersection point at TEðnEBÞ=Tc ¼ 0:927ð5Þ
and nEB ¼ 5:7ð3Þ.

Using the coexistence chemical potential, one can map
out the phase diagram in the grand canonical ensemble as
shown in Fig. 7. Note that, the region of coexistence phase
becomes a curved transition line separating two the phases
as we expected. In this way, we locate the critical point in
the grand canonical ensemble at critical temperature
TE=Tc ¼ 0:927ð5Þ and baryon chemical potential
�E

B=Tc ¼ 2:60ð8Þ. Using the lattice spacing a � 0:3 fm
in our simulation, we convert its location in physical units
to be TE � 157 MeV and �E

B � 441 MeV.
In conclusion, we have applied a canonical ensemble

algorithm previously tested on the Nf ¼ 4 to the more re-

levant Nf ¼ 3 case and located the first order phase tran-

sition as signaled by the S-shape structure in the �-nB
plane for several temperatures below Tc. The Maxwell
construction was employed to identify the boundaries of
the coexistence phase and we extrapolated them to locate
the critical point at TE ¼ 0:925ð5ÞTc and �E

B ¼ 2:60ð8ÞTc.
We should point out that the present work is carried out on

a relatively small volume with spatial extent of �1:8 fm
and for three degenerate quark flavors with their masses
similar to that of the strange quark. Quark mass for this
system acts like the magnetic field for spin systems which
weakens the phase transition. Since the � ¼ 0 finite tem-
perature transition is first order for massless quarks [23]
and the present critical point is at a relatively large �E

B for
quark masses around the strange, one expects that the
critical point for the more realistic 2þ 1 flavor case with
light u=d quarks to be somewhere in between. This expec-
tation is based on the assumption that there is a critical
surface which grows continuously from the critical line at
� ¼ 0 into finite �. The critical line is the one that
separates the first order phase transition region at some
finite temperature with small quark masses and the cross-
over region with intermediate masses (including the physi-
cal ones) on the � ¼ 0 plane of the Columbia plot. This
assumption is challenged by recent studies of the critical
surface near the critical line (See Fig. 1 in Refs. [6,24])
which suggest that the first order region shrinks with
increasing chemical potential and, therefore, there might
not be a critical point for physical quark masses. To address
this issue, future simulations will study the quark mass
dependence of the critical point and the existence of the
critical point needs to be checked on lattices with higher
cutoffs and larger volumes.
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