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The magnetic moment—a function of the electric charge form factor F1ðq2Þ and the magnetic dipole

form factor F2ðq2Þ at zero four-momentum transfer q2—of the ground-state JP ¼ 3
2
þ baryon decuplet

magnetic moments have been studied for many years with limited success. At present, only the magnetic

moment of the �� has been accurately determined. We calculate nonperturbatively the magnetic

moments of the physical baryon decuplet JP ¼ 3
2
þ members and, in particular, we obtain ��þþ ¼

ðþ3:67� 0:07Þ�N , ��þ ¼ ðþ1:83� 0:04Þ�N , ��0 ¼ ð0Þ�N , and the magnetic moments of their

U-Spin partners in terms of �� magnetic moment data.
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I. INTRODUCTION

The properties of the ground-state JP ¼ 3
2
þ baryon dec-

uplet magnetic moments �, ��, �� and �� have been
studied for many years with limited success. Although the
masses (pole or otherwise) and decay aspects and other
physical observables of some of these particles have been
ascertained, the magnetic moments of many are yet to be
determined. From the Particle Data Group [1], only the
magnetic moment of the �� [2] has been accurately
determined. The magnetic moment is a function of the
electric charge form factor F1ðq2Þ and the magnetic dipole
form factor F2ðq2Þ at zero four-momentum transfer
q2 � �Q2. The lack of experimental data for the decuplet
particle members is associated with their very short life-
times (many available strong interaction decay channels)
and the existence of nearby particles with quantum num-
bers that allow for configuration mixing greatly increasing
the difficulty of experimental determination of physical
observables. The�� (strangeness S ¼ �3) is an exception
in that it is composed of three valence s quarks that make
its lifetime substantially longer (weak interaction decay)
than any of its decuplet partners. However, even for the
��, away from the static (q2 ¼ 0) limit, the electric charge
and magnetic dipole form factors are not known.
Theoretical models abound: Beg et al. [3] and Gerasimov
[4], and Lichtenberg [5] provide excellent sources of meth-
odological information.

In Ref. [6], we illustrated how one may calculate the
magnetic moments of the physical decuplet U-spin ¼ 3

2

quartet members (the ��, ���, and ���) in terms of
that of the �� (U-spin ¼ 3

2 as well) without ascribing

any specific form to their quark structure or intraquark
interactions [6–11]. Theoretical and computational inves-
tigations and reviews involving the magnetic moments of
the �� and the �� and lattice quantum chromodynamics
(LQCD) (quenched and unquenched, unphysical pion
mass) techniques are also available [12–16].

In this article all equal-time commutation relations
(ETCRs) involve at most one current density, thus, prob-
lems associated with Schwinger terms are avoided. ETCRs
involve the vector and axial-vector charge generators
(the V� and A�f� ¼ �;K;D; F; B; . . .g) of the symmetry
groups of QCD. They are valid even though these
symmetries are broken [7–10,17–20] and even when the
Lagrangian is not known or cannot be constructed.
The electromagnetic current j�emð0Þ obeys the double

ETCRs ½½j�emð0Þ; V�þ�; V��� ¼ ½½j�emð0Þ; A�þ�; A��� ¼
2j

�
em3ð0Þ and ½½j�emð0Þ; V�þ�; V��� ¼ ½½j�em3ð0Þ; V�þ�; V���

[11]—V�þ and V�� are vector charge generators, A�þ

and A�� are axial-vector charge generators, and j�em3ð0Þ
is the isovector part of j

�
emð0Þ—even in the presence of

symmetry breaking. The double ETCRs, in addition to
ETCRs involving axial-vector charges [18–20], allow us
to relate form factors—F1ðq2Þ and F2ðq2Þ where U-Spin is
not restricted to 3

2—associated with the U-spin ¼ 3
2 ��

(and hence the ��� and ���, and the ��) with those
associated with decuplet members having U-spin ¼ 1
(the �0, ��0, and ��0), U-spin ¼ 1

2 (the �þ, and ��þ),
and U-spin ¼ 0 (the �þþ).
In the infinite-momentum frame broken symmetry is

characterized by the existence of physical on-mass-

shell hadron annihilation operators a�ð ~k; �Þ (momentum
~kðj ~kj ! 1Þ, helicity �, and SUFðNÞ flavor index �) and
their creation operator counterparts which produce physi-

cal states when acting on the vacuum. Indeed, the physical

on-mass-shell hadron annihilation operator a�ð ~k; �Þ is

related linearly under flavor transformations to the

representation annihilation operator ajð ~k; �Þ. Thus, in the

infinite-momentum frame, physical states denoted by

j�; ~k; �i (which do not belong to irreducible representa-

tions) are linear combinations of representation states

denoted by jj; ~k; �i (which do belong to irreducible repre-

sentations) plus nonlinear corrective terms that are best

calculated in a frame where mass differences are de-

emphasized such as in the infinite-momentum frame.*slaughtm@FIU.Edu, Slaughts@PhysicsResearch.Net
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Mathematically [7–10], this is expressed by: j�; ~k; �i ¼
P

jC�jjj; ~k; �i, j ~kj ! 1, where the orthogonal matrix C�j

depends on physical SUFðNÞmixing parameters, is defined
only in the 1-momentum frame, and can be constrained
directly by ETCRs.

The particular Lorentz frame that one might utilize when
analyzing current-algebraic sum rules does not matter
when flavor symmetry is exact and is strictly a matter of
taste and calculational convenience, whereas when one
uses current-algebraic sum rules in broken symmetry,
the choice of frame is paramount since one wishes to
emphasize the calculation of leading order contributions
while simultaneously simplifying the calculation of sym-
metry breaking corrections [6–11,17].

II. ETCRS IN THE INFINITE-MOMENTUM
FRAME AND FLAVOR BROKEN SYMMETRY

The physical vector charge VK0 is VK0 ¼ V6 þ iV7, the
physical vector charge V�� ¼ V1 � iV2. The �a, a ¼
1; 2; � � � ; 35 satisfy the Lie algebra ½ð�a=2Þ; ð�b=2Þ� ¼
i
P

cfabcð�c=2Þ, where the fabc are structure constants of
the flavor group SUFð6Þ and V

�
a ðxÞ ¼ �qiðxÞð�a=2Þij�

��qjðxÞ. The physical electromagnetic current j�emð0Þ may
be written (u, d, s, c, b, t quark system) as j

�
emð0Þ ¼

V�
3 ð0Þ þ ð1=3Þ1=2V�

8 ð0Þ � ð2=3Þ1=2V�
15ð0Þ þ ð2=5Þ1=2�

V
�
24ð0Þ � ð3=5Þ1=2V�

35ð0Þ þ ð1=3Þ1=2ðsinglet current Þ ¼
j�V ð0Þ þ j�S ð0Þ, where j�V ð0Þ� j�em3ð0Þ¼ the isovector

part of the electromagnetic current, j�S ð0Þ � the isoscalar

part of the electromagnetic current. The flavor Uð6Þ singlet
current V�

0 ðxÞ¼ �qiðxÞð�0=2Þij��qjðxÞ where �0 �
ffiffiffiffiffiffiffiffi
1=3

p
I,

I is the identity, so that Trð�a�bÞ ¼ 2�ab holds for all
�a0 ða0 ¼ 0; 1; 2; � � � ; 35Þ. The Uð6Þ singlet charge V0 com-
mutes with all of the Va. One may verify that the ETCR
½VK0 ; j�emð0Þ� ¼ 0 and the double ETCRs [11] mentioned in
the Introduction hold.

III. THE ELECTROMAGNETIC CURRENT
MATRIX ELEMENT

For the on-mass shell JP ¼ 3=2þ ground-state decuplet
baryon B with mass mB, the Lorentz-covariant and gauge-
invariant electromagnetic currentmatrix element inmomen-
tum space with four-momentum vectors P � p1 þ p2,
q � p2 � p1 (�1 and �2 denote helicity) is given by:

hBðp2; �2Þjj�emð0ÞjBðp1; �1Þi

� e

ð2�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffi
m2

B

Et
BE

s
B

s

�u�Bðp2; �2Þ½��
���u�Bðp1; �1Þ; (1)

�
�
��¼g��

�

FB
1 ðq2Þ��þFB

2 ðq2Þi��	

2mB

q	

�

þq�q�

2m2
B

�

FB
3 ðq2Þ��þFB

4 ðq2Þi��	

2mB

q	

�

; (2)

where e ¼ þ ffiffiffiffiffiffiffiffiffiffi
4��

p
,� ¼ the fine structure constant, theFB

i

are the four ��BB form factors ½FB
1 ð0Þ� electric charge

in units of e;ðFB
1 ð0ÞþFB

2 ð0ÞÞ�magnetic dipole moment in
units of e=ð2mBÞ� and ��

�� is written in standard form [21].

The electric charge multipole amplitude GB
Eðq2Þ ¼

½FB
1 ðq2Þð3 � 2
Þ þ 
fFB

2 ðq2Þð3 � 2
Þ � 2ð�1 þ 
Þ �
ðFB

3 ðq2Þ þ 
FB
4 ðq2ÞÞg�=3½units of e�, the magnetic dipole

multipole amplitude GB
Mðq2Þ¼½ð5�4
ÞðFB

1 ðq2ÞþFB
2 ðq2ÞÞ�4
ð�1þ
ÞðFB

3 ðq2ÞþFB
4 ðq2ÞÞ�=5½unitsofe=ð2mBÞ], the

electric quadrupole multipole amplitudeGB
Qðq2Þ ¼ FB

1 ðq2Þ
þFB

3 ðq2Þð�1 þ 
Þ þ 
fFB
2 ðq2Þ þ FB

4 ðq2Þð�1 þ 
Þg �
½units of e=m2

B�, and the magnetic octupole multipole
amplitudeGB

Oðq2Þ¼½FB
1 ðq2ÞþFB

2 ðq2Þþð�1þ
ÞfFB
3 ðq2Þþ

FB
4 ðq2Þg�

ffiffiffi
6

p ½unitsofe=ð2m3
BÞ� where 
�q2=ð4m2

BÞ. QB ¼
charge of decuplet baryonB in units of e, �B is the mag-
netic moment (measured in nuclear magneton units �N ¼
e=ð2mÞ, m ¼ proton mass) of baryon B.

In Eq. (1), u�Bð	B; �; �Þ is a spin 3=2 baryon Rarita-
Schwinger [22] spinor with helicity �, three-momentum
~p with angle � referred to the ẑ-axis, energy Ep

B, and
velocity parameter 	B ¼ sinh�1ðj ~pj=mBÞ [6].
Specifically:

u�Bð	B; �; �Þ ¼
Xþð1=2Þ

m1¼�ð1=2Þ

Xþ1

m2¼�1

h1=2; 1; 3=2jm1; m2; �i

� uBð	B; �;m1Þ��Bð	B; �;m2Þ; (3)

uBð	B;�;m1Þ

¼

cosh

�
	B

2

��

cos

�
�
2

�

�m1;ð1=2Þ�sin

�
�
2

�

�m1;�ð1=2Þ
�

cosh

�
	B

2

��

sin

�
�
2

�

�m1;ð1=2Þþcos

�
�
2

�

�m1;�ð1=2Þ
�

sinh

�
	B
2

��

cos

�
�
2

�

�m1;ð1=2Þ þsin

�
�
2

�

�m1;�ð1=2Þ
�

sinh

�
	B
2

��

sin

�
�
2

�

�m1;ð1=2Þ�cos

�
�
2

�

�m1;�ð1=2Þ
�

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

;

(4)

��Bð	B; �;m2Þ

¼

sinhð	BÞ�m2;0

� m2ffiffi
2

p cosð�Þ�jm2j;1 þ coshð	BÞ sinð�Þ�m2;0

� iffiffi
2

p �jm2j;1
m2ffiffi
2

p sinð�Þ�jm2j;1 þ coshð	BÞ cosð�Þ�m2;0

0

BBBBBBB@

1

CCCCCCCA

: (5)

��Bð	B; �;m2Þ is the baryon polarization (m2) four-vector

where ��
�

B ð	B; �;m
0Þ�B�ð	B; �;mÞ ¼ ��m0m. uBð	B;�;m1Þ

is a Dirac spinor with helicity index m1, and h1=2; 1;
3=2jm1; m2; �i is a Clebsh-Gordan coefficient where our
conventions are those of Rose [23].
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Physical states are normalized with h ~p0j ~pi ¼ �3ð ~p0 � ~pÞ
and Dirac spinors are normalized by �uðrÞðpÞuðsÞðpÞ ¼ �rs,
Dirac matrices are f��; �	g ¼ 2g�	 with �5 �
i�0�1�2�3, where g�	 ¼ Diagð1;�1;�1;�1Þ [24]. In
addition to obeying the Dirac equation, the Rarita-
Schwinger spinors satisfy the subsidiary conditions
��u

�
B ðp; �Þ ¼ p�u

�
B ðp; �Þ ¼ 0 and the normalization

condition �u�Bðp;�0Þg��u�Bðp;�Þ¼���0�. Associated with

baryon B are the four-momentum vectors p1 (three-
momentum ~tð~t ¼ tzẑÞ, energy Et

B) and p2 (three-
momentum ~s at angle �ð0 	 � < �=2Þ with the ẑ axis,
energy Es

B, with sz ¼ rtz and rðconstantÞ 
 1).

IV. U-SPIN 1, 12 , AND 0 DECUPLET BARYON
MAGNETIC MOMENT RELATIONSHIPS

Previously [6,25] (U-spin 3
2 quartet only), we investi-

gated magnetic moment relationships by utilizing the com-
mutator ½VK0 ; j�emð0Þ� ¼ 0 inserted between the baryon
pairs (h���s�j, j��t�i), (h���s�j, j���t�i), and
(h��s�j, j���t�i) where each baryon (B ¼ ��, ��� ,
��� , or ��) had QB ¼ �e, helicity þ3=2 and tz ! 1
and sz ! 1, and where

q2B ¼ �ð1� rÞ2
r

m2
B � s2x

r
� �Q2

B;

q2
Bjsx¼0

¼ �ð1� rÞ2
r

m2
B:

(6)

We found that:

FB
2 ðq2BÞ ¼

m2
B

m2
��

F��
2 ðq2��Þ; (7)

FB
1 ðq2BÞ ¼ F��

1 ðq2��Þ: (8)

Clearly, if one knows F��
1 ðq2��Þ for some range 0 


q2�� 
 q2K, then one knows the value of rK 
 r 
 1 and

thus q2B (from Eq. (6)) for this same range and hence one
can infer FB

1 ðq2BÞ and FB
2 ðq2BÞ from Eqs. (7) and (8). We

illustrate this in Fig. 1 where B is the �� (or the �þ—see
Eq. (11) below) and F��

1 ðq2��Þ is predicted using lattice

calculations from Ref. [26] for the�� electric charge form
factor (dipole fit).

To obtain the magnetic moments of the U-Spin 1, 12 , and

0 decuplet baryons, one must find a way to quantitatively
connect the decuplet U-Spin multiplets. We proceed to do
this by first defining hBs�; 3=2jj�emð0ÞjBt�; 3=2i � hBi,
hBs�;3=2jj�V ð0ÞjBt�;3=2i�hBi3, and hBs�;3=2jj�S ð0ÞjBt�;
3=2i�hBiS so that hBi ¼ hBi3 þ hBiS where B is now any
decuplet baryon). With that notation, in Ref. [6], we found
that h��i ¼ h��i. Second, we utilize the double ETCRs
to relate the matrix elements h��i, h�0i, h�þi, and h�þþi
(a U-Spin singlet) to each other and to that of the ��.
We can—for example—use ½VK0 ; j�emð0Þ� ¼ 0 to obtain the
magnetic moment of the ��þ from that of the �þ (U-Spin

doublet) and the magnetic moments of the ��0 and ��0

from that of the �0 (U-Spin triplet).
The double ETCRs ½½j�emð0Þ;V�þ�;V���¼½½j�em3ð0Þ;

V�þ�;V���¼2j
�
em3ð0Þ [11] sandwiched between the

pair states h�þþj, j�þþi, h�þj, j�þi, h�0j, j�0i, and
h��j, j��i can be used to determine the SUð2Þ parametri-
zation of j�emð0Þ for the � states in the infinite-momentum
frame. This produces six equations:

h�þþi ¼ h��i � 2h��i3; h�þþi3 ¼ �h��i3 (9a)

h�þi ¼ h��i � 4

3
h��i3; 3h�þi3 ¼ �h��i3 (9b)

h�0i ¼ h��i � 2

3
h��i3; 3h�0i3 ¼ h��i3: (9c)

Third, the axial-vector matrix elements (in the infinite-
momentum frame) [11] h�þ;3=2jA��j�þþ;3=2i¼
h��;3=2jA��j�0;3=2i�� ffiffiffiffiffiffiffiffi

3=2
p

~g, and h�0;3=2jA��j�þ;
3=2i¼� ffiffiffi

2
p

~g and the double ETCR ½½j�emð0Þ; A�þ�; A��� ¼
2j�em3ð0Þ sandwiched between the same pair � states allow

us to write the following four equations:

3~g2½h��i � h�0i� ¼ 4h��i3; (10a)

3~g2½7h�0i � 3h��i � 4h�þi� ¼ 4h��i3; (10b)

3~g2½�7h�þi þ 4h�0i þ 3h�þþi� ¼ 4h��i3; (10c)

3~g2½h�þi � h�þþi� ¼ 4h��i3: (10d)

Finally, Eqs. (10) in conjunction with Eqs. (9) imply in
broken symmetry that:

Q2 (GeV2/c2)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

F
1(

Q
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-0.4

-0.2

0.0

FIG. 1 (color online). The Solid curve is a dipole fit ½ð�1Þ�
ð1þQ2=�2

E0
Þ�2� with �E0

¼ 1:146 GeV=c to lattice calcula-

tions for the �� electric charge multipole form factor GE0 taken
from Table III of Ref. [26]. The Dashed curve is the �� electric
charge form factor calculated using Eq. (8) and (6) and the above
�� lattice dipole fit using �E0

¼ 1:146 GeV=c which is inde-

pendent of Q2. The �þF1ðQ2Þ electric charge form factor as a
function of Q2 is just (� 1) times that of the Dashed curve
according to Eq. (11) and the assumption that m� ¼ 1:22�
0:01 GeV=c2 for all � charge states.
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~g2¼2; h�þþi¼�2h��i; h�þi¼�h��i; and h�0i¼0:

(11)

Equation (11) effectively connects the U-Spin 1, 12 , and 0

decuplet baryon matrix elements to that of the U-spin ¼
3
2 �

� (and hence the ��) and with Eq. (7), (8), and (6) is

valid for allU-Spin decuplet baryons—allow us to compute
the magnetic moments of the �þþ, �þ, and �0 and their
(strangeness S � 0) U-Spin partners in terms of �� mag-
netic moment data by using the ETCR ½VK0 ;j

�
emð0Þ�¼0

which results in:

�B¼�QB

�

1�
�
m2

B

m2
��

��
mþm��ð���=�NÞ

m

���
m

mB

�

�N:

(12)

Equation (12) is the main result of this work and is
valid for all of the ground-state JP ¼ 3

2
þ baryon decuplet

members. As the values of m� (all � charge states)
(pole or Breit-Wigner) are not very well established, we
assume m�¼1:22�0:01GeV=c2. Experimentally, we
have [1], ���¼ð�2:02�0:05Þ�N¼½ð�1þF��

2 ð0ÞÞ�
ðm=m��Þ��N and m�� ¼ 1:6724� 0:0003 GeV=c2. We

summarize our results for all of the ground-state baryon
decuplet magnetic moments �B in Table I.

V. CONCLUSIONS

We have—nonperturbatively—calculated the magnetic
moments of all of the ground-state JP ¼ 3=2þ physical
decuplet baryons without ascribing any specific form to
their quark structure or intraquark interactions or assuming
a Lagrangian (effective or otherwise). The Particle Data
Group [1] value of ��� along with other decuplet mass
data was used as input except we took m� ¼ 1:22�
0:01 GeV=c2 (all � charge states) as the values of m�

are not well-enough established [1]. In particular—utiliz-
ing Eq. (12)—we obtained ��� ¼ ð�1:83� 0:04Þ�N,
��þ ¼ ðþ1:83� 0:04Þ�N , and ��þþ ¼ ðþ3:67�
0:07Þ�N and ��0 ¼ ð0Þ�N . Our results for the magnetic
moments (the �� magnetic moment is input) of the
ground-state decuplet baryons are summarized in Table I
along with a prediction in Fig. 1 for the �� (and the �þ)
electric charge form factor as a function of Q2 based upon
�� lattice calculated fit data [26]. Similarly—with
Eq. (11)—one may predict the electric charge form factor
for the �þþ as a function of Q2 based upon �� lattice
calculated fit data. For all of the ground-state JP ¼ 3=2þ
baryons B, we have demonstrated how the FB

1 ðq2BÞ and
FB
2 ðq2BÞ form factors can be calculated in terms of ��

data. Future experimental measurements of the �� mag-
netic moment and accessible form factors for q2�� < 0 will
have great importance for viable theoretical models (espe-
cially lattice QCD models) of the structure of baryons.
Knowledge of the behavior of the decuplet form factors
(or corresponding multipole moments) is critical to our
understanding of QCD—standard model, enhanced stan-
dard model, lattice gauge models, superstring models, or
entirely new models—since these models must be capable
of yielding already known results at low or medium energy.
Equations (7), (8), (6), and (11) explicitly demonstrate that
the electromagnetic charge form factors of the decuplet
baryons are very closely related to each other and that their
magnetic dipole form factors are also very closely related
to each other. This may aid experimental and theoretical
ground-state decuplet baryon magnetic moment analyses
in the future.
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TABLE I. ground-state baryon decuplet magnetic moment �B

in units of �N .

Baryon B This research a Particle Data Group;b Lattice QCD c

�þþ þ3:67� 0:07 þ5:6� 1:9 þ3:70� 0:12

�þ þ1:83� 0:04 þ2:7� 3:6 þ2:40� 0:06
�0 0� 0 - þ0:001� 0:016
�� �1:83� 0:04 - �1:85� 0:06

��þ þ1:89� 0:04 - -

��0 0� 0 - -

��� �1:89� 0:04 - -

��0 0� 0 - -

��� �1:95� 0:05 - -

�� �2:02� 0:05 �2:02� 0:05 �1:93� 0:08

a��� is input. m� ¼ 1:22� 0:01 GeV=c2 is assumed for all �
charge states. ��� and other baryon masses are from the Particle
Data Group [1]. Statistical propagation of errors used in
calculations.
b�þþ estimate from Ref. [1]. �þ error (quadrature calculated)
from Ref. [1] (see original Ref. [27]).
cLattice result from Ref. [13].
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