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We present a new class of oscillons in the (1þ 1)-dimensional signum-Gordon model. The oscillons

periodically move to and fro in space. They have finite total energy, finite size, and are strictly periodic in

time. The corresponding solutions of the scalar field equation are explicitly constructed from the second

order polynomials in the time and position coordinates.

DOI: 10.1103/PhysRevD.84.067701 PACS numbers: 05.45.�a, 03.50.Kk, 11.10.Lm

I. INTRODUCTION AND PRELIMINARIES

Scalar fields play an essential role in many branches of
physics, from cosmology to condensed matter physics to
particle physics—there is an unremitting interest in models
of self-interacting scalar fields. The rich variety of such
models includes some that have been studied only recently,
e.g., the so-called K fields with a nonstandard kinetic part
[1], or models with a nonsmooth V-shaped self-interaction
[2]. The signum-Gordon model considered in the present
paper is probably the simplest example from the latter
class. The pertinent field potential has the form Uð’Þ ¼
gj’j, where g > 0 is a coupling constant and j’j is the
modulus of the real scalar field ’. It is V-shaped with the
sharp minimum at the vacuum field ’ ¼ 0. Subsequent
investigations [3] have revealed that the V-shaped form of
the potential has very interesting consequences for the
dynamics of the scalar field. One of them is the existence
of strictly periodic oscillons [4].

The present brief report is a follow-up to the paper [4].
The oscillons described in that paper did not move in space
(apart from the trivial uniform motion obtained by apply-
ing Lorentz boosts). Rather unexpectedly, we have found
that there exist also oscillons that periodically move to and
fro in space with arbitrary constant velocity �v, where
0< jvj � 1. For the oscillons presented in [4], v ¼ 0.

In comparison with other oscillons discussed in litera-
ture [5], several differences should be pointed out. First,
our oscillons are strictly periodic in time; in particular, they
do not emit any radiation. Second, they have strictly finite
size because the field assumes the vacuum value at a finite
distance exactly. Third, they have a relatively simple exact
analytic form composed of several linear and quadratic
functions of the time t and the spatial coordinate x.

The swaying oscillon is reminiscent of the wobbling
kink in the ’4 model [6]. However, one should note that
the wobbling kink is an excitation of the static kink, while
all the swaying oscillons are degenerate in energy, and
moreover there is no static oscillon—even for the non-
swaying one presented in [4] the field oscillates in time.

The Lagrangian of the signum-Gordon model has the
form

L ¼ 1
2ð@t’@t’� @x’@x’Þ � gj’j; (1)

where ’ is a real scalar field, and t, x are time and position
coordinates in the two-dimensional Minkowski space-time
M. For convenience, t, x, ’, g are dimensionless—this can
always be achieved by suitable redefinitions. The signum-
Gordon equation

@2t ’� @2x’þ signð’ðx; tÞÞ ¼ 0 (2)

is the Euler-Lagrange equation corresponding to the
Lagrangian (1) (from now on we put g ¼ 1). The sign
function has the values �1 for ’ � 0 and signð0Þ ¼ 0.
The simplest way to obtain Eq. (2) from the Lagrangian (1)
is first to regularize the field potential Uð’Þ ¼ j’j, e.g.,
Uð’Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ ’2
p

orUð’Þ ¼ � lnðcoshð’=�ÞÞ, and to take
the limit � ! 0þ in the Euler-Lagrange equation obtained
from the regularized Lagrangian. Direct computation of
the variation of the action S ¼ R

dtdxL is more subtle
because of the j’j term, but it too gives the signum-
Gordon equation (2).
The left-hand side of Eq. (2) is not continuous with

respect to ’. Because such equations are not very common
in field theory, let us briefly comment on the related
mathematical aspects. First, it is clear that in general one
should expect nonsmooth solutions: the value of at least
one of the second derivatives @2t ’, @

2
x’ has to jump when

the function signð’Þ changes its value. Second, the use of
the stationary action principle implies that in general we
consider the so-called weak solutions of the Euler-
Lagrange equation, [7]. For the weak ones it is sufficient
that

�S ¼
Z
M
dtdx

�
@L

@�
��ðx; tÞ þ @L

@ð@��Þ@���ðx; tÞ
�
¼ 0

for all test functions ��ðx; tÞ from a certain class [typi-
cally one uses the DðMÞ class of smooth functions on M
with compact support]. This condition is equivalent
to

R
M dtdxEL�’ ¼ 0, where EL ¼ @L=@� � @�ð@L=

@ð@�’ÞÞ, only if the derivative @�ð@L=@ð@�’ÞÞ exists for
the given probed function’ðx; tÞ. Then the Euler-Lagrange
equation EL ¼ 0 has to be satisfied at almost all points
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ðx; tÞ in the two-dimensional space-time M, but not neces-
sarily at all points as would be the case with strong solu-
tions. Of course, the set of weak solutions contains the
strong ones as a subset.

In the case of the signum-Gordon equation the weak
solutions that are not strong ones are ubiquitous. For
instance, ’0 ¼ x2=2 is a smooth static solution of Eq. (2)
in the weak sense, but not in the strong sense. The point is
that @2t ’0 � @2x’0 þ signð’0Þ ¼ 0 everywhere inM except
the line x¼0. On this line @2t ’0 � @2x’0 þ signð’0Þ ¼ �1
because @2t ’0 ¼ 0, @2x’0 ¼ 1, signð0Þ ¼ 0. Nevertheless,

Z
M
dtdx½@2t ’0 � @2x’0 þ signð’0Þ���ðx; tÞ ¼ 0

for the arbitrary test function ��.
In general, the weak solutions are physically relevant. To

see this, consider the following simple example from
classical mechanics of a point particle on a plane with
Cartesian coordinates ðx; yÞ. The particle is free except
when on the y axis, where it is subjected to a finite constant

force ~F0 parallel to the y axis. Thus, the force ~F ¼ 0 at all

points ðx; yÞ with x � 0, and ~F ¼ ~F0 when x ¼ 0. It is

clear that integrating the Newton’s equation d ~p=dt ¼ ~F
we obtain ~p ¼ const even if the trajectory crosses the

y axis. The physical reason is that the finite force ~F0 acts
on the particle only during the infinitesimally short time
when the particle is exactly on the y axis; hence, it is not
able to perturb the free motion. Such trajectories are the
weak solutions of Newton’s equation [now the test func-
tions are denoted as �~rðtÞ and we integrate over t]. On the
other hand, the trajectories which do not intersect the y axis
are solutions in the strong sense. Notice that our Newton’s
equation is not equivalent to the free equation, in which
~F ¼ 0 everywhere, because our particle is accelerated if it
moves along the y axis.

Because the function signð’Þ is piecewise constant, it is
natural first to solve Eq. (2) in the regions in which signð’Þ
is constant. For instance, if ’< 0, Eq. (2) acquires the
form

@2t ’� @2x’� 1 ¼ 0: (3)

The oscillon solutions are constructed from second order
polynomials in x, t. The most general second order poly-
nomial that obeys Eq. (3) has the form

’2ðx;tÞ¼a0x
2þa1txþða0þ 1

2Þt2þb0xþb1tþc0; (4)

where a0, a1, b0, b1, c0 are constants (beware that they are
not completely arbitrary because of the condition ’2 < 0).
The class of functions of the form (4) is invariant with
respect to Lorentz boosts, space-time translations, and the
reflections x ! �x, t ! �t. It contains the static solutions
of the form

’s ¼ �1
2ðx� b0Þ2 þ c0 þ 1

2b
2
0; (5)

where c0 þ b20=2< 0 in order to keep ’s < 0.

The oscillons are constructed by patching together
several such polynomial solutions. The patching condi-
tions have the following standard form: the field ’ is
continuous all over M. Also the derivatives @t’, @x’ are
continuous functions of x, t, with the possible exception
when the border line between two patches is a (segment of)
the characteristic line (x ¼ �tþ const) for the signum-
Gordon equation; in this case the derivative in the direction
perpendicular to that line does not have to be continuous—
i.e., a finite jump is allowed.

II. THE SWAYING OSCILLONS

A hint that new oscillons may exist comes from the
following procedure for constructing periodic solutions
of the signum-Gordon equation. Let ’�ðx; tÞ be a solution
of Eq. (3) negative for all t from an open interval
ð0; TÞ, >0, and such that

’�ðx; 0Þ ¼ 0 ¼ ’�ðx; TÞ: (6)

Then the function ’þ defined by

’þðx; tÞ ¼ �’�ðx;�tÞ (7)

is a positive solution of the equation @2t ’� @2x’þ 1 ¼ 0
for all t 2 ð�T; 0Þ. The functions ’�, ’þ as well as their
time derivatives match each other at the time t ¼ 0:

’þðx; 0Þ ¼ 0 ¼ ’�ðx; 0Þ;
lim
t!0�

@t’þðx; tÞ ¼ lim
s!0þ

@s’�ðx; sÞ;

where s stands for �t, and t 2 ð�T; 0Þ. The crucial ob-
servation is that also ’þðx;�TÞ; ’�ðx; TÞ match each
other:

’þðx;�TÞ ¼ 0 ¼ ’�ðx; TÞ;
lim

t!�Tþ
@t’þðx; tÞ ¼ lim

s!T�
@s’�ðx; sÞ:

Therefore, we may extend our partial solutions ’� to all
times t � T and t � �T just by applying time translations
(by multiples of�T) to ’�. In this way we obtain periodic
solutions of the signum-Gordon equation (2) with the
period equal to 2T. The solution ’�ðx; tÞ with the property
(6) can be constructed by patching together several solu-
tions of the form (4). Also the trivial solution ’ ¼ 0 is
involved. The schematic picture of such a ‘‘patchwork’’ for
the swaying oscillon is presented in Fig. 1.
In order to ensure finiteness of the total energy we

assume that ’�ðx; tÞ ¼ 0 outside a certain compact inter-
val. Thus, our first task is to find the polynomials of the
form (4) which match the trivial solution ’ ¼ 0. The
matching conditions imposed on a line xðtÞ in M can be
written in the form

’2ðxðtÞ; tÞ ¼ 0; @x’2ðx; tÞjx¼xðtÞ ¼ 0;
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provided that xðtÞ does not coincide with a characteristic
line.

They give the following two equations:

a0x
2ðtÞ þ a1txðtÞ þ ða0 þ 1

2Þt2 þ b0xðtÞ þ b1tþ c0 ¼ 0;

2a0xðtÞ þ a1tþ b0 ¼ 0:

Their solution xðtÞ exists only if a0 � 0, and then

xðtÞ ¼ vtþ x0; ’2ðx; tÞ ¼ � ðx� xðtÞÞ2
2ð1� v2Þ ; (8)

where v ¼ �a1=ð2a0Þ, x0 ¼ �b0=ð2a0Þ, and v2 < 1 in
order to satisfy the condition ’2 < 0.

Thus we have found that the boundary of our oscillon
has to move with the constant velocity v, and close to the
boundary the field has the parabolic shape (as expected, see
[2]). Note that ’ given by formula (8) coincides with the
Lorentz boosted and translated in space static solution

’s ¼
�
0 x � 0;
� x2

2 x > 0:

The structure of the solution ’� is shown in Fig. 1, in
which the support of ’� for the swaying oscillon of unit
length and vanishing total momentum is depicted. The
period of this oscillon is equal to its spatial size, i.e.,
to 1. As discussed in [4], we may use the symmetries of
the signum-Gordon equation, such as Poincaré or scaling
transformations, in order to obtain more general oscillons.
The interior of the parallelogram is divided into seven
sectors a� f by the four characteristic lines drawn from
its corners. Each sector has a different causal neighbor-
hood. For instance, the field in the triangular sector c is
determined by Cauchy data on the segment ½1=2þ v=2; 1�
of the x axis; the sector e is controlled by Cauchy data in
the future, i.e., on the segment ½1=2; 1þ v=2� of the
t ¼ 1=2 line which lies in the future of the sector e; the

sectors a and d are controlled by the boundaries of the
oscillon, etc. The parallelogram has height equal to one-
half of its length. In this case the characteristic lines drawn
from the lower (upper) corners meet at a point lying on the
upper (lower) edge.
In the case of the nonswaying oscillon presented in [4]

we have v ¼ 0 and a rectangle in Fig. 1. The parallelogram
is the simplest deformation of that rectangle consistent
with the conditions ’�ðx; 0Þ ¼ 0 ¼ ’�ðx; 12Þ, and with

the fact that both the ends of the oscillon have to move
with a constant velocity. Such a generalization—the par-
allelogram instead of the rectangle—is very suggestive in
the ‘‘patchwork approach’’ adopted in the present paper,
but it is not obvious at all in that based on the d’Alembert
formula approach used in [4]. Let us also note that a
Lorentz boost of the oscillon considered in [4] gives a
uniform rectilinear motion, and not the swaying one.
The building blocks of ’� are denoted as ’a; . . . ; ’g

after the sectors of the parallelogram. The fields ’a, ’d in
the sectors a and d have the form (8) with xðtÞ ¼ vt and
xðtÞ ¼ vtþ 1, respectively, i.e.,

’a ¼ � ðx� vtÞ2
2ð1� v2Þ ; ’d ¼ �ðx� vt� 1Þ2

2ð1� v2Þ : (9)

In the regions x � vt and x � vtþ 1, i.e., on both sides of
the parallelogram, the field has the vacuum value ’ ¼ 0.
The functions ’b, ’c, ’e, ’f are determined by impos-

ing on the solution (4) the condition ’2 ¼ 0 on the lines
t ¼ 0 and t ¼ 1=2, and the conditions of matching with ’a

or ’d on the characteristic lines. As an example let us
determine ’b. The condition ’2ðx; 0Þ ¼ 0 gives a0 ¼
b0 ¼ c0 ¼ 0. Next, ’2 ¼ t2=2þ a1txþ b1t is compared
to ’a on the part of the characteristic line x ¼ t with t 2
ð0; 1=4þ v=4Þ:

t2

2
þ a1t

2 þ b1t ¼ � 1� v

2ð1þ vÞ t
2:

Therefore, b1 ¼ 0, a1 ¼ �1=ð1þ vÞ, and ’b ¼ t2=2�
tx=ð1þ vÞ. Similar calculations give ’c, ’e, ’f. Finally,

we compute ’g by comparing ’2 to ’b, ’c, ’e, ’f along

the four characteristic lines that form the boundary of the
sector g. We obtain

’b ¼ t2

2
� tx

1þ v
; ’c ¼ t2

2
þ tðx� 1Þ

1� v
; (10)

’e ¼ 1

2

�
t� 1

2

��
1

2
þ tþ 1� 2x

1þ v

�
; (11)

’f ¼ 1

2

�
t� 1

2

��
1

2
þ tþ 2x� 1

1� v

�
; (12)

FIG. 1. The support of the solution ’�ðx; tÞ. The field ’�ðx; tÞ
vanishes on the continuous lines that form the boundary of the
parallelogram. In each sector a� f the function ’� is given by a
different formula. The matching conditions that relate the func-
tions in neighboring sectors are imposed along the dotted lines.
These four lines with the slopes�1 are characteristic lines of the
signum-Gordon equation.
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’g ¼ ðvxþ tÞ2
2ð1� v2Þ þ

x2 þ t2

2
þ 1þ v� 4ðxþ tÞ

8ð1� vÞ : (13)

All these functions are negative inside their domains.
The evolution of our oscillon is described by the func-

tion ’�ðx; tÞ in the time interval ½0; 1=2�, and by ’þðx; tÞ,
formula (7), for t 2 ½�1=2; 0�. In particular, the field’þ at
the boundaries of the oscillon has the form

’þ;aðx; tÞ ¼ ðxþ vtÞ2
2ð1� v2Þ ; ’þ;dðx; tÞ ¼ ðxþ vt� 1Þ2

2ð1� v2Þ :

We see that now the boundaries of the oscillon move with
the velocity�v. The world sheet of the swaying oscillon is
depicted in Fig. 2. At the times t ¼ k=2, k integer, when the
sharp turns take place, the field ’ vanishes everywhere.

In the case xðtÞ is a characteristic line [see the derivation
of formula (8)], we have xðtÞ ¼ vtþ x0, where jvj ¼ 1.
There is just one matching condition ’2ðxðtÞ; tÞ ¼ 0.
Solving it we obtain certain relations between the constant
coefficients present in’2. The next steps are similar to those
described above, but now the situation is much simpler.
When v ¼ 1, the left- and right-hand sides of the parallelo-
gram in Fig. 1 coincide with characteristic lines. Therefore,
the sectors a, f, c, d, g are absent. The remaining sectors
b, emeet at the line x ¼ 1� t. The corresponding functions
’b,’e are given by formulas (10) and (11) with v ¼ 1, and
they correctly match each other on that line.

The total energy E and momentum P of the oscillon are
calculated from formulas

E ¼ 1

2

Z 1

�1
dx½ð@t’Þ2 þ ð@x’Þ2� þ

Z 1

�1
dxj’j;

P ¼ �
Z 1

�1
dx@t’@x’;

considered at the time t ¼ 0 when ’ ¼ 0 ¼ @x’. We see
that P ¼ 0, in spite of the swaying motion of the oscillon.
This can be understood if we regard the swaying oscillon as
a nonlinear bound state of the basic oscillon, that is, the one
with v ¼ 0, with a wave packet traveling inside the basic
oscillon. Because the swaying oscillon has P ¼ 0, the
nonzero momentum of the wave packet is compensated
by the momentum of the basic oscillon. Thus the basic
oscillon has to move accordingly when the wave packet
bounces in its interior.

In order to compute the total energy we need @t’jt¼0.
Formulas (9) and (10) give @t’bjt¼0 ¼ �x=ð1þ vÞ for
x 2 ½0; ð1þ vÞ=2�, and @t’cjt¼0 ¼ ðx� 1Þ=ð1� vÞ for
x 2 ½ð1þ vÞ=2; 1�. In the case v ¼ �1 the part with ’c

is absent. Simple integration gives E ¼ 1=24. Thus all our
swaying oscillons have the same energy. We have not
found any explanation for such a degeneracy.

III. CONCLUSION

We have shown that oscillons in the (1þ 1)-dimensional
signum-Gordon model can periodically move to and fro in
space (the x line) with a constant speed v from the interval
½0; 1�. The amplitude of such a swaying motion is equal to
vl=2, where l is the length of the oscillon. The pertinent
exact analytic solutions of the field equation have been
constructed from the second order polynomials in t and x.
Our findings contribute to the already substantial evi-

dence that the models of the signum-Gordon type have
rather amazing properties. In particular, it is quite surpris-
ing that one can find simple, explicit solutions that describe
very nontrivial objects like the oscillons, orQ balls [8], and
this happens in spite of the unpleasant form of the non-
linear term in the field equation.
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