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Dynamical origin of the refinement of the Gribov-Zwanziger theory
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In recent years, the Gribov-Zwanziger action was refined by taking into account certain dimension 2
condensates. In this fashion, one succeeded in bringing the gluon and the ghost propagator obtained from
the Gribov-Zwanziger model in qualitative and quantitative agreement with the lattice data. In this paper,
we shall elaborate further on this aspect. First, we shall show that more dimension 2 condensates can be
taken into account than considered so far and, in addition, we shall give firm evidence that these
condensates are in fact present by discussing the effective potential. It follows thus that the Gribov-
Zwanziger action dynamically transforms itself into the refined version, thereby showing that the
continuum nonperturbative Landau gauge fixing, as implemented by the Gribov-Zwanziger approach,

is consistent with lattice simulations.
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L. INTRODUCTION

The infrared behavior of the gluon and ghost propagator
has received a lot of interest in recent years, in particular, in
the Landau gauge. Many of the discussions were evolved
around the zero momentum value of the gluon propagator
and the infrared enhancement of the ghost. The common
belief is now that in four dimensions and three dimensions
the ghost propagator displays no enhanced behavior, while
the gluon propagator exhibits positivity violation, being
suppressed in the infrared. Moreover, the latter propagator
attains a nonvanishing value at zero momentum. These
results are supported by many lattice data [1-8] as by
many analytical approaches [9-17]. The Landau gauge
propagators can then be used to extract results on physical
(spectrum) quantities; see e.g. [ 18-20]. In particular, in the
Gribov-Zwanziger (GZ) framework, which accounts for
the existence of (most of) the Gribov copies in the path
integral [21,22], this behavior of the ghost and gluon
propagator was explained by taking into account the ex-
istence of a certain Becchi-Rouet-Stora-Tyutin (BRST)
invariant dimension 2 condensate [23,24]. This was called
the refined Gribov-Zwanziger framework. This particular
condensate was investigated as it corresponds to a BRST
invariant operator. However, one could go one step further.
The Gribov-Zwanziger action has a softly broken BRST
symmetry [21,23]. Fortunately, the soft breaking can be
taken in due account at the quantum level through a
suitable set of extended Ward identities, which can be
written down by coupling the composite operator defining
the breaking to a suitable set of external sources. The
resulting Ward identities enable us to prove the algebraic
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renormalizability of the starting action and of the softly
broken BRST. Given that the BRST is already softly bro-
ken from the beginning, one could then ask why one would
only investigate d = 2 BRST invariant condensates.

In fact, there exists a whole range of d = 2 condensates
overlooked so far, which might be taken into account. In
this paper, we shall first explore these condensates and
show that they affect the gluon and the ghost propagator,
although not altering their qualitative behavior. The gluon
propagator is still suppressed and nonzero at zero momen-
tum, and the ghost propagator is not enhanced. Second, we
shall also be able, for the first time, to calculate the
effective action with the help of the local composite op-
erator (LCO) formalism at lowest order and give arguments
that there is in fact condensation. We shall motivate that
the minimum of the effective potential including the con-
densates is a nontrivial minimum, i.e. in this minimum the
condensates are present, leading to a dynamical trans-
formation of the GZ action into the refined GZ action.

This paper is organized as follows. In Sec. II, we shall
briefly review the construction of the Gribov-Zwanziger
action. The first main point of this paper shall be proven in
Sec. I11, i.e. there can be more d = 2 condensates affecting
the GZ action than considered so far. The second main
point of this paper is presented in Sec. IV, namely, the
construction of the effective action with the help of the
local composite operator formalism [25,26]. We first ex-
plain the LCO formalism and then apply it to the GZ action
with the inclusion of the set of d = 2 condensates. We then
show that searching for extrema of the effective action
automatically leads to nonvanishing condensates, i.e. to
the refining of the GZ action. In Sec. V, we present the
form of the gluon and the ghost propagator and discuss
that these can be in qualitative agreement with the current
lattice data. In Sec. VI we collect our conclusions.
Technical details are provided in a series of appendixes.

© 2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.84.065039

D. DUDAL, S.P. SORELLA, AND N. VANDERSICKEL

II. SUMMARY OF THE
GRIBOV-ZWANZIGER FORMALISM

The Gribov-Zwanziger action takes into account the
existence of Gribov copies by restricting the domain of
integration in the functional integral to the Gribov region
), which is defined as the set of field configurations
fulfilling the Landau gauge condition and for which the
Faddeev-Popov operator,

jvlab = _a#(aﬂéab + gfahc'AiL)’ (1)

is strictly positive. In [27] it has been first shown that this
restriction to the Gribov region {) can be established by
considering the following (local) action:

SGZ = SO + S,y (2)

with
SO = SYM + ng + '[ddx(go‘”(? Dam mc

_ waca Dam mc _g(a ac)fabm(D C)b mc)’

S =—vy gfdd (f“bLA,AD,L +fabcA1;L¢Zc
LS =1y )
8

with Syy the classical Yang-Mills action and Sy the
Landau gauge fixing

wv

1
M — Z fddxF“ F¢
“4)
Ser = f dix(b? A% + €99, D cb),

The fields (@5, ¢}°) are a pair of complex conjugate
bosonic fields, while (@4° ‘;;) are anticommuting fields.
We recall that we can simplify the notation of the addi-

tional fields (@, 4, @}, w4’) in Sy as S, displays a

symmetry with respect to the composite index i = (u, c).
Therefore, we can set

(,l(,

(@55, 4, @4, i) = (@4, ¢f, @f, wf), (5)

and thus
SO = SYM + ng + fddx(goaa (D QD?)
— @79, (DY w?) — gf**9,a{(Dlc)gf).  (6)
The BRST variations of all the fields are given by

1
sAY = —(D,0), sct = ng“bccbc”, sct = b7,
sb? = 0, sgo;’ = w? sw? =0,
s¢i = 0. (7)

PHYSICAL REVIEW D 84, 065039 (2011)

The massive parameter vy, called the Gribov parameter, is
not an independent parameter of the theory, being deter-
mined in a self-consistent way by the following gap
equation, commonly known as the horizon condition:

(8fPAY @be) + (gf AL @h) + 2y*d(N* — 1) = 0,
(8)

which ensures the restriction to the Gribov region. This
gap equation can also be written as

with I' the quantum action defined as
el = / [dD]e Soz, (10)

where [[d®] stands for the integration over all the fields.
The action Sgz is renormalizable. For the benefit of the
reader, we have presented the full algebraic proof of the
renormalization of this action in Appendix A, since we
have to built on this later on. Let us also mention that,
recently, an alternative approach was worked out to study
the renormalizability of the GZ action [28,29]. In this
paper, we shall however follow the original approach of
e.g. [30].

We recall that the GZ action breaks the BRST symmetry
explicitly [21,23]. This is due to the y-dependent term, S,
and one can easily check from (7) and (2) that

SSGZ =S(S0+S )=S(S )

— —gy ] A fbe(AS wbe — (Damem)(ghe + phe)).

(1)

II1. FURTHER REFINING OF THE
GRIBOV-ZWANZIGER ACTION

A. Introduction

So far, the GZ action has been refined [23] by
investigating the BRST invariant d =2 condensate
(@] ¢! — @f w{) and the well-known condensate (A} A% ).
The first condensate assures that the gluon propagator is
nonzero at zero momentum [23], while the second conden-
sate is indispensable in order to find a good quantitative
agreement with the lattice data; see [4,31]. The resulting
action, called the refined Gribov-Zwanziger action (RGZ),
gives rise to a ghost propagator which behaves like
1/p? for small p?, and to the tree-level gluon propagator
given by
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(A (P)AL(=p))

— 1 [ pMpV]5ab
nv
p2 +m? + 25’;1\'131/2 P
_ p + M?
p*+ (M? + m?)p? + 2g>Nvy* + M*m?
D(p?)
PuP
X [5W Ll ”]5ab (12)
p?
where M? is the mass related to the condensate

(plo¢ — @fw?) and m? to (A%A%). We clearly observe
that this propagator is nonvanishing at zero momentum
due to the presence of the mass M?>.

However, as the GZ action breaks the BRST symmetry
anyhow [see expression (11)], there is a priori no need to
keep the operators @¢ ¢ and @{w{ in a BRST invariant
combination, i.e. (¢¢¢? — @¢w{) = s(@f¢{). In fact, we
can split the operator into two separate operators, coupled
to different sources. Moreover, there are also other d = 2
operators, which were overlooked so far. In fact, all pos-
sible renormalizable d = 2 operators O; in the GZ action,
which have ghost number zero, are given by’

O; ={A AL ¢! o], ¢! @], ¢! P!, @f i} 13)

a a g
s - [an(Gagns, - L)

- [atsstvaton = [ datwator - vetor
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We shall only investigate condensates that are fully con-
tracted over the indices (a, i), e.g. like ¢{@{ = @f @i
However, it is possible to make different contractions over
the color indices as is shown in [32]. Therefore, if one
wants to be absolutely complete, one would have to take
into account all possible color contractions. Unfortunately,
this would be hopelessly complicated. Though, we hope
that a good description of the IR behavior of the gluon and
ghost propagator has been captured by taking into account
only one color combination. Comparison with lattice data
in three and four dimensions seems to confirm this, at least
so far [4,31].

We also wish to point out that by including the possi-
bility of condensation of certain operators, we are looking
at the GZ dynamics with respect to a dynamically im-
proved vacuum, in particular, an improved calculation of
the effective action, and thus of the horizon condition
via (9), becomes possible.

B. The action with inclusion of d=2 condensates
We propose to study the following extended action:
ECGZ = SGZ + SAz + Sqong + Sc?)w + SW&)_«J
+S + Svac (14

Pp,wp

where Sg7 is given by Eq. (2) and

Sus — [ dxs(Pptof) = [ d'A[0F 08 — Pt

1
SW,w—(p——fd“xs(G”w @) = /d4 I:H”w @4 +2G’/ goj]

Spowe = jd4xs(H’/g0 @9) = jd4 [ G gt @4 — Hw!¢ @4 ]

+ xO1 + SWr]. (15)
We have introduced a source 7 and 4 new doublets of sources, i.e.
st =0, sP = Q, sQ =0, sV =W, sW =20
sGU = 2H1, sHY =0 sHY = GY, sGY =0, (16)

where 7 is a bosonic source and P, V, H, and HY are Grassmann quantities. For consistency, the sources with double
index ij are symmetric in these indices. In this light, we use the following definition for the derivative with respect to a

symmetric source A:

"We are not considering the operator ¢%c* here. A (¢“c®) condensate would result in massive ghosts, something which is clearly
excluded by lattice simulations. If ¢“¢“ is not directly coupled to the theory, it can neither radiatively appear due to a shift symmetry of
the underlying action, viz. ¢* — ¢¢ + cte, with cte a constant Grassmann parameter.
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Notice that some sources have double indices, e.g. H',
while other sources have no indices, e.g. P. The reason for
this is only related to the algebraic proof of the renormal-
ization in order to keep certain symmetries, and has no
further meaning.

We have also introduced a vacuum term, S,,., which
shall be important for the renormalization of the vacuum
energy. As shown in [25,26], the dimensionless LCO pa-
rameters «, B, x, 6, and { of the quadratic terms in the
sources are needed to account for the divergences present
in the correlation functions like (O;(k)O;(—k)), with O;
one of the operators given in expression (13).

Now we can prove that the action (14) is renormalizable
to all orders. The proof is very similar to that of the
renormalizability of the GZ action; the only difficulty is
that the mixing between different sources and parameters is
now allowed. We refer to Appendixes B and C for all the
details.

For the rest of the work, we are only interested in a
restricted number of condensates. Therefore, we first set
the source W = 0, which is coupled to @ w, as this is not of
our current interest,” and we also set P =V = n =0, as
we have only introduced these sources to study the renor-
malizability in an algebraic fashion. Second, we also take
H = AY =0 and we set G/ = §G and GV = §/G.
The action (14) becomes

1
= 5(3ik6j€ + 800 j1)- (17)

_ 1
Scaz = Soz + [ d4x|:Q¢>§‘go? 5 TALAL

-3¢ = a00 — xor |+ [ 5Geter

1 _
+ EGng-“gol-“ + pGG], (18)

where (kd(N? — 1) + Ad*(N? — 1)?) was replaced by one
parameter p.

C. A diagrammatical look at the potential mixing
and at the vacuum divergences

Before starting the calculation of the effective action, we
can provide some simplification with the help of a dia-
grammatical argument. First, looking at the action (18),
we see that a term yQt is present. This term is respon-
sible for killing the divergences in the vacuum correlators
(A%2(x)@@(y)) for x — y. However, we can prove that
there are no divergences of this kind in the one-loop
diagrams. Let us start by considering these one-loop
diagrams. There is only one possible type of diagram
for (A%(x)@¢(y)), as displayed in Fig. 1.

There is no quadratic coupling of @ and @ to the gluon sector,
thus such a condensate would not directly influence the gluon
propagator.
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FIG. 1. One-loop diagram for (A%(x)®¢(y)).

The UV behavior of this diagram is finite, as can be
extracted from the list of propagators (D1). Indeed, for
large momenta, the corresponding integral of the diagram 1
behaves like ~ [ d* p# #, which is perfectly finite in the
UV. Therefore, <limxﬁ),A2(x)¢ago(y)> is not divergent at one
loop. In the next section, we shall explicitly prove this.

At two loops, it is not possible to present the same
argument as there exists a diagram which can be logarith-
mically divergent: as can be checked from the list of
propagators (D1).

Second, we can also have a look at the mixing of the
operators A> and @¢. In the algebraic analysis (see
Appendix C), we have found that a mixing is possible
between the different operators; see Eq. (C26). This means
that algebraically, a counterterm of the type QA A, is
allowed. This counterterm is needed to cancel the infinities

of the following type of diagram:

A

However, we can prove that there are no infinities at one
loop, as the only possible diagram is given by

which is similar to the diagram in Fig. 1. We can thus
conclude that the mixing can only start at two loops. Again,
we cannot exclude divergences at two loops, due to a
similar diagram as in Fig. 2.

AP

FIG. 2. A possible
(A2 @e(())-

divergent two-loop diagram for
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IV. THE EFFECTIVE ACTION

In this section, we shall try to calculate the effective
action. The calculation is quite technical and shall there-
fore be split in different steps, although the result is
reasonably compact and can be immediately found in
expression (96).

The energy functional can be written as

e W0.7G6) _ f [dA, T[dcldeldblldeld@llde]
X [dd)]e_ECGZ’ (19)

with 2z given by Eq. (18). We recall thatind = 4 — €
dimensions, we have the following dimensionalities:

d—2 € 4—d €
[Aﬂ]:[ﬁo]:T:l_i’ [8]2725,
[7]1=[0]=[G]=[G] =2,
[(I=le]l=[x]l=[p]l=d—-4=—¢€ (20)

A. The LCO formalism

In order to calculate the effective action, we shall follow
the local composite operator formalism developed in
[25,26]. Let us outline the main idea. We start from a
LCO 0O, in our case a local dimension-two operator within
a dimension-four theory. As done several times, we couple
the operator(s) of interest to (an) appropriate source(s) J,
and add the term JO to the Lagrangian. This gives rise to a
functional W(J) which we need to Legendre transform to
find the effective potential. However, as already observed,
novel infinities shall arise, which are proportional to J2.
These infinities are due to the divergences in the correlator
(lim,_,, O(x) O(y)), as explained in Sec. III C. Therefore, in
general, a term proportional to J? is always needed in the
counterterm, and the starting action needs to display a
term® £J2. The novel parameter ¢, called the LCO parame-
ter, is needed to absorb the divergences in J2, i.e. 6{J7.
With the inclusion of the term ¢J?, the functional W(J)
obeys the following homogeneous renormalization group
equation (RGE):

9 n 9 2 470
(M6M+ﬂ(g )ag2 vs(8 )/d X <>
d
2 — =
(g 27 )WU) =0, e
with (g2, £) the running of Z,

3For an example, see the action (18), where the term — 1Tt -
aQQ — xQOr is needed in the starting action. The sources Q
and 7 are coupled to the LCO operators O, = @;¢; and O, =
A,A,. Note that here, also a mixing term yQT accounting for
the divergences in lim,_, (O, (x)O,(y)) is present.
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9
po L= n(g% 0). (22)
7’

Notice that it is necessary to include the running of { at this
point.

Now the question is, how can we determine this seem-
ingly arbitrary parameter {? This is possible by employing
the renormalization group equations. We can write

boJ§ = wm T + 80T, (23)

where the second term of the right-hand side represents the
counterterm. As the left-hand side is independent from wu,
we can derive both sides with respect to w to find

— e+ 80+ <M%§+ M%@D)

—2y,(8°)({ +8{) =0, (24)

where v,(g?) is the anomalous dimension of J. As we can
consider ¢ to be a function of g2, and by evoking the 8
function

0
B(g*) = pn a_g2’ (25)
7’

the Eq. (24) becomes
d
B(gz)@é“ (%) = 2y,(8)¢ + f(87), (26)
with  f(g%) = €8 — B(g%)55:(80) + 2y5(g%)8L. The
general solution of this differential equation reads

g y,(2)
B(2)

with ¢ p(gz) a particular solution of (26). A possible par-
ticular solution is given by

{8 = £,(g) + aexp(z dz), @7)

C
£,(8%) = g_g +c1h + e gtht + e (28)

where we have temporarily introduced the dependence on
h. Notice therefore that the n-loop result for ¢(p?) will
require the (n + 1) loop results of B(g?), y,(g?), and f(g?).
As we would like ¢ to be multiplicatively renormalizable,
we set &« = 0. In this case we have that

{(g%) + 84(8%) = & = Z:4(8h), (29)

and we have removed the independent parameter «. Also,
now that £ is a function of g2, the RGE (21) becomes

d d o
— + ) —s — 2'[d4J—)WJ=O,
(o + B s e [ats )W)
(30)
as deriving with respect to ¢ is now incorporated in deriv-
ing with respect to g>.

After determining the LCO parameter £, the next step
is to calculate the effective action by doing a Legendre
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transformation. However, it shall be easier to perform a
Hubbard-Stratonovich transformation on W(J), where we
introduce an auxiliary field o describing the composite
operator @. In this way, we can get rid of the quadratic
term in J2 and a clear relation with the effective action
emerges, as will be shown later on in this section. We only
need to mention that the case we are handling here is a bit
more complicated due to the mixing of the operators
O, = ¢,¢; and O, = A,A,, and to the mixing of the
vacuum divergences. However, the basic principles remain
the same.

B. Differential equation for the LCO parameters
{,a, x,and p

We shall try to determine the four LCO parameters ¢, «,
X, and p. We shall first derive a differential equation for
these parameters, in a way analogous to [25,33]. As there
can be mixing, we shall define 6, dw, and d y as follows:

- 5507'(2) — a90% — x0QoTo
1 1
= —,u,_5<§§7'2 + aQ*+ xOr + 58{72

b SaQ + 6 XQT), 31)

while dp can be defined independently,

Sp

poGoGo = n Z,ZcZ5pGG = ,u‘f<1 + —)pGG.
P

(32)

We further define the anomalous dimension of G,
J 2 J 2
po—InZg = v6(g®) = n—G = —ys(g>)G,  (33)
jz Y

which is exactly the same as the anomalous dimension of G
as Zg = Zg. To define the anomalous dimensions of Q and
7, we start from Eq. (C26),

G 2l e
70 ZTQ ZTT T
X, z X

a relation stemming from the algebraic renormalization.
To the matrix Z, we can associate the anomalous dimen-
sion matrix T,

9
pw——27 = 7T, (35)
op
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and thus

d
r=z'w—=z
o

_ |: ZooM 3200 0 ]
_ZTQMﬁZQQ + Z;TIMﬁZTQ Z;TIM%ZTT
0
- [ Yoo ] (36)
1—‘21 Yrr

This matrix is then related to the anomalous dimension
of the operators,

aZ X 0X
Xy = ZX=>O—/.L—X+Z,LL—:>/_L—— -T'X,
I o

(37)

so the anomalous dimensions of the sources Q and 7 are
given by

a1l 0 s 0 0
w— = o0 . (38)

alJ’ T _FZI “Yrr T
With these definitions in mind, we can derive a differ-
ential equation for 6{, dw, oy, and 6p. We start with

that of &p. Starting from expression (32) and deriving
with respect to w, we find

9 3
—€(p + 6p) + (Mﬁp + M@(SP))

—2v6(g%)(p + 6p) = 0. (39)

As we can consider p to be a function of g2, according
to the standard LCO formalism, we can rewrite this
equation as

,B(gz) (5p)

+2y6(g)(p + 5p)- (40)

ﬁ(gz) p(gz) =e(p + 6p) —

As p is finite, we can even further simplify this into

p(gz) = 2y(g%)p + €8p — B(gQ) (5p)

+2y6(8%)8p. (41)

B(gz)

In an analogous fashion, we can find the differential
equations for 6{, dw, and Sy. If we derive (31) with
respect to w, we find the following set of coupled
differential equations:

065039-6
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2
B iy S5 = £00 3 B 00 + vleE + 50)
ﬁ(gz)iza(gz) = eda — ﬂ(gz)—z(éa) + 27008 (a + 8a) + Ty (g%)(x + 8x), (42)
B(gz) X(gz) =eby — B(gz) (5)() + Y008 (x + 8x) + ¥ (8 (x + 6x) + Ty (gH(L + 82).

C. Determination of the LCO parameters
0f,0a,0),and dp

In order to determine the counterterm parameters 6,
da, oy, and 6p at one loop, we need to calculate the one-
loop divergence of the energy functional W(Q, 7, G, G).
The details of these calculations can be found in
Appendix E. From Sec. III C, we know that at one loop
0 x should be zero. This observation shall serve as a check
of our computations.

In Appendix E, Eq. (E16), we have found

1 3 1 1
8/ =—-—=-——(N*-1), Sda=———(N*—-1)
¢ 6167T2( ) “« E47T2( )
1 1
oy =0, op = ——2(N2 - 1) (43)
€ 4

The value of &8¢ provides already a first check of our
results. In fact, this quantity has been calculated up to three
loops; see [25,34]. Our one-loop value for 6 coincides
with that reported in [25,34]. Second, we also see that
indeed 6y = 0 at one loop, which nicely confirms our
diagrammatical power counting argument.

D. Solving the differential equations for {, «, y, and p

In this section, we shall try to solve the differential
equations (41) and (42) when possible. For these calcula-
tions, it is useful to keep in mind the S function, here given
up to two loops,

B(g?) = —eg> — 2(Bog* + B1g® + 0(g%),  (44)

11/ N 34/ N \2
Bo = ?( 772>’ e _<1677'2) ’ (45)

in order to keep track of the orders. We start with (41),

B(gz) p(gz) =2y(g%)p + €8p — ,B(gz) ( p)

+2y6(g%)bp. (46)
In order to solve this differential equation, we need to
parametrize p as follows:

p= % +p1 + pag® + 08 (47)

with

We also need the explicit value of the anomalous dimen-
sion y5. We have from the definition (33) that

0
ve(g?) = L™ InZg, (48)
“

and thus we need the value of Z;. From the renormaliza-
tion factors (C20) and (A41), we find that

9 9 B
v6(g?) = “HoL InZ, = “Ha In(z;'z,'%). (49)

In [35], the factors Z, and Z, have been calculated up to
three loops,

131 Ng* 131 59 1\/Ng>\2
Zy=1+— +l—=+=-)—=) +-,
4 6 € 167> ( 8 & 16 e)<16772>

111 Ng? (121 117 1><Ng2)2
Z, = it +
8 6 € 1672 24 € 6 €/\1672
(50)

So one can calculate y;(g?) up to three loops if necessary.
Here only the first loop shall be useful for our calculations,
i.e.

3 Ng?

— g + ... s
4 1672

as oplsee Eq. (E16)] is only known up to lowest order.
With this information, we can solve the differential equa-

tion (46) up to lowest order, by matching the corresponding
orders in g°

ve(g?h) = (51)

24 (N2 —1)2

= +p . 2
g (52)

Unfortunately, we cannot solve the differential equation
for p; as we would require the two-loop value of 6 p, which
is however not easily computed. Therefore, in the current
work, we leave this value as a parameter to be determined.

Let us now turn to the set of differential equations (42).
We can do a similar analysis as above for the first differ-
ential equation, namely

6 { (gz)

——55 —,B(gz) (55)

+ (8¢ + 55)- (53)

Blg 2)

We shall again parametrize ¢ as follows:

;—@+a+§g+w¢> (54)
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In fact, we can even solve this differential equation to two
loops. From [25,33,34], we know that
21 1 1391 2
s=MoM3L (B 1oy
6 €e/\167>
( 665 1 6629 1
H(-—— =+ — 5
6 € 36 €

1672 € 2 €
CRRND] e

Z,=1-

351 (g2N ) [2765 1
+

6 e\l67? 7 &

[_113365 1 41579 1

449 1](g2N )2
48 e\1672
4+ —
432 € 576 €2

+(_75607 7{( )) ]( 2N) (56)

2592

so that from (36)

35 449 [ >N \2
2y — + (L&
vt = D (EN) 6#2)

N T o

By solving the differential equation for {, we can deter-
mine ¢ to one-loop order. In principle, we can even go one
loop further with the known results. However, as we shall
only determine the effective potential to one-loop order, we
do not need this next loop result. We find

2
9 167 161] (58)

= — + —
¢ 1672 [13 g’N 52

(see also [33]).

_ 1 1
[ d4x[zQQz¢Q¢;f<p;.l + 5 ZaZesTAGAL + 32429 0AL AL,

c b a

PHYSICAL REVIEW D 84, 065039 (2011)

The second and third differential equation of (42) are
coupled. However, they can be simplified and decoupled as
oy =0,

B(gz) a(gz) = 2ypp(g*)a + €da — B(gz) (5a)
+ 2y00(g%)0a + le(gz))(,

B&) - X(gz) = Y00(8))x + v+(8))x
+ Ty (e + 89). (59)

Fortunately, we know that I'y; = 0 at lowest order, from
the diagrammatical argument in Sec. III C. Therefore, we
can set I';; = 0 + O(g*). When parametrizing as usual

a
a = —3 + a; + ayg* + 0(g%),
8

X (60)
0
x="gtxt X28> + 0(g"),
we find for the solution of the differential equations
24(N* — 1)?
== =0. 61
@y 35N Xo (61)

E. Hubbard-Stratonovich transformations

In this section, we shall get rid of the unwanted quadratic
source dependence by the introduction of multiple
Hubbard-Stratonovich (HS) fields. We can then rewrite
the relevant part of the action in terms of finite fields and
sources:

1 _
- EZJJZ%ngu' ¢
%f—J

7.2 - ZZQQZaaalJ’ieQQ
{/
CKI

— 1~ ~a~a 1 a .a ~
~ Z00ZyyZor X b EQT] + [d4x|:ZGZ‘p§Ggoigoi + ZGZ¢§G¢i ¢+ ZPZZGpGG].
%,_J

X/

We shall now perform the following HS transformations by multiplying expression (19) with the following unities:*

*We dropped irrelevant normalization factors.
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| = [[da'l]e_(l/w) fdJX((tT]/g)+b/ﬁ/2A2—2{’#’6/%—)(’#’5/2@2’

- j [dery]e™ (/41400 =XD [ dix((oa/g X' 200 Y02 =2el w4l £ —xP)u= P 0P

| = f [dos] o~ 1/42,75p) f d"’x((rrg/g)+(l/2)M‘/ZZcZ¢W+(l/Z)M‘/ZZGZ¢¢¢+Z§;prlf‘/ZG+Z%;ZFP#"/2G)2’

| = [[dcm]e (1/42,2%p) [ dx((04/ )+ (/2 n*Z6Z 0~ (i/Dn*Z6Z 0 —iZ%Z,pp~*G+iZLZ, /J/L'G/ZG)2 (62)

where we have introduced four new fields, 0,05, 03, and o4. By doing these HS transformations, we can remove the
quadratic sources and rewrite the functional energy as

e WG = f [dA, lldc]deldblldo N do,]dos]ldos]ldelldpllde]da]

ol = JAR LB, 0) =201 /9)2L T X Q)20+ X2/ £)(Q/20)+(1 D 03—y [9)G+(1/2) (s iy /g =G

(63)
with ¢ = (A ,¢, ¢ b, o, §, w, ®) and
1 a’% b o b? 1 a3
J st @ onoi = seu+ [at(gn Gt o T uPa gt A+ e B
bX - 2a§’ /2 2[42 . c ,uf/zﬂg_ogD (b/\/ 2Cl§/)2 e(Au Ad )2
20[4a' = x"] g 4a'f = x? g 2T4ay = x71"
2 c(by' —2al") a'2 o2
t o R — T WEALAL P el + 7(—3 —4)
[4&’/{/ _ ] 4a,l§/ _ 2 M 4ZPZZGp g2 g2
Z o Z io 22
+pr—t— (@ + op) + ulE— (P — pe) + & @“qobsob)
"4z 76p g R4z, 76p g " az,p i€
(64)
As these HS transformations do not put everything in the right form yet, we propose the following extra transformation:
X gy
So (63) becomes
e V(@7G0) = [ [dA, ldclde]ldblldo ]dos]ldos]ldog]ldelldelldw][dd]
X el™ fdJX(£(¢,01,.--,04)—,u’5/2(01/g)T—,u’f/z(trg/g)QH1/2)M’5/2(03—itr4/g)G+(1/2)(03+i04/g)ﬂ’5/2G)] (66)
where
/ 2 ! 2 / 2ba/ _ aX/ o
dxL(p, o, ..., 04) =S +fdd( « T, £ N X 00, T peizp2
[ xL($, o o4) Gz X 4a'l — XIZ gz 4a'l — XIZ gz 4ol — X/2 g2 4ol — X/2 g K
by —2al oy cx 2c’ oy _
[da'l - X" 5/2?,42 4 — X" Me/z i 4a'{ — ¥ ey g i
b2 . (bX 261{/)2 c2§/
AaAa2 eAaAaZ €(Hpd)2
NV Y. v L U v v
c(bxy' —2al") 1 o} o} Z,
— L uCALAL @ ! 7<—+—) +u?—20 T (G5 + pp)
4a' — x"? m 47,7 p\g*  g* 4Z,Zp ¢
Z io 2
R X Y, + ue = papagph l?). 67
M iZ,Z0p g (@0 —pe) +u iZ,p ¢l el o] ] (67)
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Now acting with QIQT o and Z|p,—o on the energy
functional, before and after the HS transformation, gives
us the following two relations,:

_ 1 Ao
ZooZ @i ¢]) + EZAZTW<AQ AY) = — 5/2?2,
1
~ 747, {A%A%) = _M—e/2<‘71>y 69)
2 g
while acting with 3% | 6o and £ |6 6o,
ZoZ o) = ,,e/zM
4 s
s (69)
Z6Z(09) = M—e/zw,
g

or equivalently

PHYSICAL REVIEW D 84, 065039 (2011)

1 _ _epnfo3)
ZoZ, 5 e T F0) = 1 5/2?3,
: (70)
1, _ <0' >
Z6Zy5 (@0 — @) = p
8
F. The effective action
If we introduce the parameters
m? 1
N (o) — )
3 dagly — 2/\/(2)( @801 ~ X0802)
2 _W(Xogo'l {0802),
SN (71)
= T ———— 3 \T 10 )
P — TR
I (o3 —ioy)
P agVE— 12 3

with «, {y, xo given in Eqgs. (58)—(61), then the quad-
ratical part of the Lagrangian (67) is given by

/ 2 /
{ oy X 010,

fddxﬁ(d) o1y, 0y) =SB4 [a’dx( @

1(05 Lo
42,72p\g* g

— X/Z g2

4a/§/ _ XIZ g2 4a’§’ _ X/Z g2

m’ €/2 A2 2 €/2 = e2P_—— 5/2/’]L
)t AT = M ppp + S PPt u ) (72)

We have left out the higher order terms as we shall only calculate the one-loop effective potential ')
All details of the calculations of the effective potential have been collected in Appendix E. The final result for the

effective potential 'V is given by

r = %[(M2 Vprp')?In

ppt)In

M? ‘/
7’)’) + (M? +
,u

Mﬂi\/;; 2(M?* + pp*)]

3N*— 1) 5 - - - -
n ( )[ 7( 40N + Zln( J’1) n( _y2)+ %ln( _y3) B iln( _)’4)_ gln( _ys)]
647> 7 iz 7 iz
A3 1 48(N? — 1)? 53 p ppt 9 N> —1 m*
—2(N2—1)— + N2—1+77<1—N2 ! ) = —
( ) Ng? 232 3 A T 24 (N2 = 1)2 13 N 24
24 (N2 12 MY 161 N*— 1t

—_— —_— M4C¥l +M2m2,\/1, (73)

35 N g 52 167 2

where yq, ¥,, and y3 are the solutions of the equation

v+ (m? + 2M?)y? + (A* + M* — ppt + 2M>m?)y
+ M2A* +1/2(p + pY)A* + M*m? — m?ppt =0

and y, and ys of the equation y> +2M?y + M* — ppt =0.
We employed the MS scheme.

G. A firm indication that the condensates are
nonvanishing by minimizing the effective potential

To simplify the calculations, let us set p = pf =0,
which corresponds to the case of not considering the con-
densates (¢@) and (@¢). For the moment, we are only
considering (¢ @), which already has the desired influence
on the propagators; see the next section. In this case, the
effective action simplifies and becomes
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N?—1)? M? 3N -1 5 M? - - M?
F(l) =(1672)|:2M4ln_—2—2M2j|+%[—6(m4—2)\4)+M41n( — )+ %11’1( _y2)+ %lﬁ( _y3)—2M4lnTi|
m f T iz iz Iz a
A3 9 N>—1m* 24(N*—1M* 161 N> —1m*
—2(N* - 1)— + N2 — A S — Mta, + M2y,
( e 22 W TN T e s N o 3 16 2 Mt My

(74)

where y, and y; are given by 1 (—=m? — M? = Vm* — 2M>m> + M* — 4A%).
In order to find the minimum, we should derive this action with respect to m? and M? and set the equations equal to zero.
In addition, we should also impose the horizon condition (9). Therefore, we have the following three conditions:

PO P S
oM? om? aat
which have to be solved for M2, m?, and A*. Unfortunately, it is impossible to solve these equations exactly due to the two
unknown parameters «; and y;. However, we would like to know if the condensate (@ ¢) is present or not. For this, we
need to uncover if M? = 0 can be a solution of the above expression. We can strongly argue that this is not the case, and
thus that M? # 0.
We shall start from expression (74) and derive with respect to M2, m?, and A*. As we would like to know if M? = 0 can

(75)

be a minimum of the potential, we further set M> = 0. We then obtain the following equations:

3(In(m? — vVm* — 4X*) — In(m? + Vm* — 41*)A* -
m

42\ m* — 4A4 Al
I:ll\/m —4A*(241n2 — 17)m? + 39(—m* + Vm* — 421*m? + 22%) ln( (m? — Vm* — 4/\4))

m4—4

8
—=0

+ 39(m* + Vm* — 4x*m? — 22%) ln<* (m* + Vm* — 4/\4))] =

Vm* — 4)*
+Vm* — 44X (—15+ 1761n2)] =0,

where we have chosen to set’ =2 and N = 3. Now
looking at these equations, we see that the second and third
equation can be solved exactly for m? and A. There are even
multiple solutions possible. We take the solution which has
the lowest value for the effective action with M? = 0.
However, for this solution to be also a solution of the first
equation, these values should be very specific and the
chance that they will also satisfy the first equation is practi-
cally nonexistent, with a certain value of y;. Moreover, at a
different scale i, the three equations will look slightly
different. However, y; is a number and stays the same.
Therefore, it would be necessary that at all different scales
these three equations can be solved exactly for only two
parameters. This is practically impossible, leading to the
conclusion that M? # 0. A similar reasoning can be worked
out if p and/or pT would be allowed. The main result is that
it appears impossible for all these condensates to be zero,
making the associated refinement inevitable.

5 . . _
We work in units AM—S =1.

[wm — ) ln( (m? — M)) + 9(m? + Vit — aA%) 1n< (m? + M))

(76)

In conclusion, we have a firm indication that the con-
densate (@¢) is indeed present, thereby suggesting the
dynamical transformation of the GZ framework into a
refined GZ framework.

V. THE GLUON AND THE GHOST PROPAGATOR
A. The gluon propagator

Let us now discuss that the gluon propagator can be
infrared suppressed and nonzero at zero momentum.
Indeed, starting from the further refined action (14), the
quadratic action is given by

1
Squad = —(GMA,, —3,A,)* +bd A, +cd*c+ pde

_wBZw_,y gfabcAb(¢bc + Zc)+,y4d(N2_1)

.l.
_om? p___ P
~Mpo+—AA, — =00 — 0o,

2 2 2 7
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where we have replaced the source 7 with m?, Q with —M?, G with — 8 p, and G" with — 8% p1 and set all other sources
equal to zero. From this, we can easily deduce the gluon propagator

(A% (p)AL(~p)) = [5 _P ;” ”]W

2(M* + p*)? = 2ppt
2M4p2 +2p° +2M°(2p* + XY — A p + p*) +2m*(M* + p?)* — pp') + 2p*(A* — pp')

D(pz)
(78)
with A* = 2¢g2Ny*. If we assume that p = p’, we then find the following gluon propagator:
M? + p> +
D(p?) = £ (79)

pt+ M?p? + pX(p + m*) + m>(M? + p) + A\’

which has exactly the same form as the refined gluon propagator (12). However, for the moment we cannot say whether
p = p' is the case or not. Notice that p, p', as well as M? can provide in an independent way that D(0) # 0. However, in
principle, it could occur that M* = ppT, giving D(0) = 0, at least at tree level, as is clear from (78). For the moment, we
cannot say much about the precise values of the condensates behind the parameters M2, p, and pt. This is currently being
further investigated using lattice data input in [31].

B. The ghost propagator
The one-loop ghost propagator is given by

b (12 — sa e 1 N dtq k—q)uk, . .71
G (K) = 8 G(k*) 5b(k2 kz[g2N2_1 amt =g ~(ALAS ]k2)+(9(g4)
1
= 5&1?(1 + o(k?)) + O(g") = 5% 2= oy O(g*), (80)

with
N d'q k= apky 0
N?—1 k2 Qm* (k- g)? SALAD

k,k diq 1 q.4
vk [, ~ 2222
Ce)ent Pl g
2M?* + ¢*)* = 2pp!

X .
2MAg* +2¢° + 2M*(2¢" + AY) — A% (p + pt) + 2m*(M* + ¢ — ppT) +24°(A* — ppT)

o(k?) =

As we are interested in the infrared behavior of this propagator, we expand the previous expression for small k2,

d—1 dig 1

K ~0)=No?2—— | — 2L _

ot ) d J Qm'q
2(M* + ¢°)* — 2pp!

2M4q2 +2¢° + 2M2(2¢* + A*) — X (p + pT) + 2m*(M? + ¢*)? — ppt) + 2¢2°(A* — ppT)

+ O(k).
(81)

Let us now have a look at the gap equation. For this we can start from the (one-loop) effective action which can be written
as (see Appendix E)

(N?
1Y) = —d(N*> = 1)y* + W=D 1)f(2 p—

with
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2M*q” +2¢° + 2M7Q2q" + %) = Ap + pT) +2mA(M? + ) — pp') + 27N — pp")

A=
2(M* + ¢ — 2pp?
and the - - - indicating parts independent from A. Setting A* = 2g>N+y*, we rewrite the previous expression,
ry 2¢°N _ d— diq
EW=_T Nt InA + - -
N—1 d TENTT ) Gay
The gap equation is given by % W =0,
| = 2Nd—l diq M2 +2¢% — p — pt
ST ) Cm oM T 245+ 2MP2q AT — Xp + pT) + 2mE(M2 + 2P — ppT) + 22N — ppt)
(82)
where we have excluded the solution A = 0. With the help of this gap equation, we can rewrite Eq. (81),
d—1 diq
k*=0)=1+Ng?
o )= d ) @)
2M*/q* + 2M* — 2ppT/q* + p + p! + 0
2M4q2 +2¢° + 2M2(2¢* + A*) — X (p + pT) + 2m2(M? + ¢*)? — ppt) + 2¢2°(A* — ppT) )
(83)

From the representation (80), it is clear that an infrared ghost enhancement can only take place if o/(0) = 1, meaning that
the integral appearing in (83) should vanish. This integral is finite. We can rewrite it as (d = 4)
1= [T qUI* — (P + ) + P2 + 1)
& 322 0 qM4q2 + g% + M?Q2¢* + AY) — rA* + m2(M? + ¢2)* — (P + 5%) + ¢*(A* — (P + 5%)]

with I = o(k*> = 0) — 1, where we have parametrized
p=r+is, pt=r—is (84)
We further write

3Ng
642
+ A M? — 1) + mA2(M* — (P + 52))). (85)

f dx(M* = (P + 52) + x(M2 + 7)) /(2 + QM + ) + x(M* + 202 M2 + X — (2 + $2))

Solution of cubic equation.—The next step would be to solve the cubic equation in the denominator of the equation above,

X3+ X22M? 4+ m?) + x(M* + 2m*M? + A — (P2 + $2) + A(MP = ) + mEME = (P2 + s2) = 0. (86)
M » M

In general, the roots are given by

-1 m+\/_ m—\/_
xl—T<a+\/ )
—_(a —1+l\/§3m+\/_ —l—l\/_zm \/_)
3 v
— —l—l\/§3m+\/_ —l+l\/_3m—\/_
T(a " ), (87)

X2

X3

with
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m = 2(m* — M*)((m*> — M?)*> — 9(r* + s2)) — 9(m> — M? + 3r)\*4,

n = [20m? = M2)(m® — MP)?

—9(r* + 52)) — 9(m? — M? + 3r)A*]?

—4[(m?> — M?>? +3(r2+ 2= AHP. (88)

Of course, it is possible that two (or three) solutions coincide. This can be checked by calculating the discriminant

A = —4d3c + a?b*?

— 4b3 + 18abc — 27c2 (89)

If A = 0, then the equation has three real roots and at least two are equal.
Case I: x| # x, # x3. If x; # x, # x3, we can rewrite the integral / as

(2 + 5%+ (M*>+ r)x; 1

3 00 M4_
I=Ng [f d
a2l )y ¢

(x; = x2)(x; — x3)

+j'wd M4—(r2+s2)+(M2+r)x2

Xy — x3) (X — x)(x — x)

These integrals are now easy to solve; they all are of the
type [dxl=Inx.

3 — (P +sH)+ M+ r)xl
641> () = x2)(x) — x3)

'
uy

—(r* + 52 + (M?* + r)x,
(x = x3)(xp — x1)

A'd
vy

I=Ngz In(x _xl)lo

In(x — x|

—(r2—i—sz)-i-(Mz-i-r))@1 (= x|
(3 = x)(x3 — xp) ) T %l

A'd
wy

One could expect there is a problem at infinity, in
contrast with what we have concluded before.
However, as u; + v, + w; =0, the infinities cancel.
We obtain,

In(—x,)

o, 3 M= (P +sH) + (M A n)x
I=Ne 64772[ (x1 = x2)(x; — x3)

—(r* + 5% + (M?* + r)x, In(—x,)

(X2 — x3)(x; — xy) ?

— (7 + 5% + (M?* + r)x;

(3 = xp)(x3 — x9)

ln(—x3)]. 1)

Case 2: x; = x, # x3. In this case, we can rewrite the
integral I as

X — X

/ i M4 (r2 + 57 + (M* + r)x3] 90)
—x)(x3 — xp)(x — x3)
o M= (PP +s2)+(M>+r)x; 1
I=Ng? f d
& 64 * (x; — x3)? x—xl
M
_j' I M= (PP +s2)+(M>+r)x, 1
0 (x; —x3)2 R
4 + 2 + 2+
N d M* — (r* + 52) + (M? + r)x; 1 i ©2)
0 N X1 X3 (x x3)
wo

One can check that u, + v, = 0, so we can perform the

integrations
3 TM*— (r+ 52) + (M? + r)x!
I = Ng? [ In(—x1
& am? (x; — x3)? n(=x1)
— (P + 5%+ (M*+ r)x,
— 2 ln(_x3)
(x) — x3)
— (P + 5%+ (M?* + r)x; iz] ©3)
X1 — X3 )C3

Case 3: x; = x, = x3. Finally, in this case we can write

3
I=Ng? [M2+ /d
6472 g x(x—xl)2

1
+ (M* = (> + s2) + (M? + r)x,)[ dx73:|,
0 (x = xy)
(94)
so after integration
I 3 [_ M* +r
6477'2 X1
+ — (P + 5%+ (M?*+ r)xl] 95)
2x?
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Now we can try to draw some conclusions about the
ghost propagator. Looking at the different cases, it is
clear that only for special values of the mass parameters
(condensates) I could be zero, which would correspond
to the case of an infrared ghost enhancement. This
appears to be a strong indication that the ghost propa-
gator is not enhanced, in addition to the nonvanishing
gluon propagator at zero momentum. We shall further
investigate this in [31]. It is perhaps interesting to note
that, for M* = ppt = > + 5%, we do not necessarily
find o(0) =1, or said otherwise, a vanishing gluon
propagator at zero momentum does not necessarily
correspond to an infrared enhanced ghost and vice
versa.

PHYSICAL REVIEW D 84, 065039 (2011)

VI. CONCLUSION

Although this paper is quite technical, the conclusions
are quite simple. First, we have shown that, using the GZ
action, more condensates can influence the dynamics. We
have investigated in detail the following condensates:
(ALAL), (@fef), (@!@f), and (¢f@{) where the latter
two were never investigated before. We have proven that
we can renormalize the GZ action in the presence of these
condensates. In particular, a renormalizable effective po-
tential, compatible with the renormalization group, can be
constructed for the associated local composite operators.
Second, for the first time, we were able to calculate the
one-loop effective potential in the LCO formalism,

B / [ t
T = ( 1)2 |:(M2 Veo! )21n pp (2 + o eV 2(M2+PPT)]

3N: -1 5 - - - -
n ( _ )[__( — 244 + 21n( )’1) n( _yz) n gln( _)’3) —yiln( _)’4) — ) ln( _)’5)]
o4 6 7 )7 1 1
A3 1 48(N? — 1)? 53  p ppt
—2(N*—1 N2—1+—7< - Ng? = Lo )—
( )Ngz 2 32772( ) 2 53N 24 (N? —1)?) ¢
9 N2—1m* 24 (N>—1>M* 161 N> —1m*
mo_ ( ) - mo_ M*a, + M?m?y,, (96)

13 N 282 35 N g 52 167

where y;, y,, and y; are the solutions of the equation

V3 + (m? + 2M2)y? + (A + M* — ppt + 2M2m?)y
+ M2A* 4+ 1/2(p + phHA* + M*m? — m?ppt =0

and y, and ys of the equation y> + 2M?y + M* — ppt =0.
Unfortunately, due to the existence of yet unknown
higher loop parameters, i.e. a;, p;, and Y, in the one-
loop effective action, we are unable to give an estimate
for the different condensates. Nevertheless, we have been
able to already provide strong indications that some
condensates are in fact nonzero and shall lower the
effective action. We hope to come back to the explicit
computation of the parameters «;, p;, and y; in the
future. In particular, one should compute the divergences
of the vacuum diagram in Fig. 2, the similar one for the
mixing, and other divergent two-loop diagrams stemming
from the operators ¢¢ and @@. Once this task will be
executed, all information is available to actually work
out the one-loop effective potential and to investigate its
structure and the associated formation of the RGZ
condensates.

Third, we have also shown that in this further
refined framework, the gluon propagator can be nonzero
at zero momentum, and the ghost propagator can be
nonenhanced.

2

A complementary approach to the current one is to find
out to what extent a gluon propagator of the type (78) or
ghost propagator of the type (80) could describe the
lattice data, not only qualitatively, but also quantitatively.
This is currently under investigation in [31] for different
spacetime dimensions. In [4] it was already shown that a
RGZ propagator (78) reproduces the SU(3) data very
well.

Another question, which was not answered here, is
whether o(k?) [see Eq. (80)] is in fact smaller than 1.
This is necessary in order to assure staying within the
Gribov horizon. However, this question shall also be ad-
dressed in [31], and we refer to that paper for further details
on this matter.
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APPENDIX A: RECAPITULATION OF THE
GRIBOV-ZWANZIGER ACTION AND OF ITS
RENORMALIZABILITY

In this appendix, we shall repeat the complete proof of
the renormalization of the Gribov-Zwanziger action [30].

1. The Gribov-Zwanziger action
and the BRST symmetry

We start with the Gribov-Zwanziger action,
Sgz = 8o +S,, (A1)
with
So=Sym+ Sgr + fddx(¢?8M(Dbe¢f’) —@%9,(D% wh)
— gf®a, @I Db pF),
S, = _yzgj‘ddx(fabcA%DZc + fabeAa pbe +§(N2 _ 1)72)'
(A2)

We recall that we have simplified the notation of the addi-
tional fields (@, i, @}, wf’) in Sy as S, displays a
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symmetry with respect to the composite index i = (uw, c).
Therefore, we have set

(B, 92, @9, 0) = (B¢, ¢¢, @f, f).  (A3)
The BRST variations of all the fields are given by
1
sAY, = —(DMC)", sct = ng“bccbcc, s¢¢ = b4,
sb® =0, sef = w?, swi =0,
sof = @¢, s@¢ = 0. (A4)

However, due to the y dependent term, Sy, the Gribov-
Zwanziger action breaks the BRST symmetry softly
[21,23]; see Eq. (11). In order to discuss the renormaliz-
ability of Sgz, we should treat the breaking as a composite
operator to be introduced into the action by means of a
suitable set of external sources. This procedure can be done
in a BRST invariant way, by embedding Sgz into a larger

action, namely
EGZ = SYM + ng + S() + SS’ (AS)

where

Sy =s f dx(—USDY o — VDY @F — ULV + Téig fpe Db cd @f)

i

= [ddx(_MziDzb¢? _ gfabCUZ,iDchdGDC + Uij‘wa? _ NziDZb@? _ Vﬁ"Dbeqbf? + gfabcvziDchd(qu

— MYV + USING + Riig f*rDbdcd ot + T4 g f . Dol e &5).

We have introduced three new doublets s, M,
(Ve N, and (T% R%) with the following BRST
transformations:

sUS = MY,
SN = 0,

sM =0,

ai — pai
ST# = Rw

sV = N,

SR = 0. (A7)
We have therefore a BRST symmetry at our disposal, made
possible by introducing new sources which also have a
BRST variation. However, we do not want to alter our
original theory (Al). Therefore, at the end, we have to
set the sources equal to the following values:

Uiilphys = N Zilphys = T;atilphys =0,

ab b

ab — — _pa — ~28ab
M,uv phys — V,uu phys — R/,w phys — Y 0 5,1“/- (AS)

2. The Ward identities

Following the procedure of the algebraic renormaliza-
tion outlined in [36], we should try to find as many Ward
identities as possible. Before doing this, in order to be able
to write the Slavnov-Taylor identity, we first have to couple
all nonlinear BRST transformations to a new source.
Looking at (A4), we see that only A, and ¢ transform

(A6)

[

nonlinearly under the BRST s. Therefore, we add the
following term to the action 2qy:

1
Sext = f d%(—K;;(DMc)“ + 3 gL f“b"chc”), (A9)

with K, and L two new sources which shall be put to zero
at the end,
K¢ | ohys = Llpnys = 0. (A10)

phys phys

These sources are invariant under the BRST transforma-
tion,

sKg, =0, sLe = 0. (A11)
The new action is therefore given by
EIGZ = EGZ + Sext- (AIZ)

The next step is now to find the Ward identities obeyed by
the action 2(;,. We have enlisted all the identities below:

(1) The Slavnov-Taylor identity is given by
S(257) =0, (A13)

with
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/ 52/ S /
S(E Z) — [dd ( GZ 2GZ
BK“ SA“ OL* 6c¢¢

O3y , 0% , 003k

+ be
dc " @Y wj dp?
834, 62 834G,
Mal Nal _l’_ Ral £ .
M 6Ual M 5vul M 6T/Lil>
(2) The U(f) invariance is given by
Uij2Gz =0,
) 8 1)
U.. = | d¥%( o — o4 + w?
L f X(ng 5@;, ¢] 6@7 a)t 5(1)7
8 i 8 i 8
T sar M s U sp
+ Nat 6 + Vai
FoNy M svy
o )
+ RY Ty ) Al4
#oRra T sTd (Al
By means of the diagonal operator Q; = U;;, the

i-valued fields and sources can be assigned an addi-
tional charge. One can find all quantum numbers in
Tables I and II.

(3) The Landau gauge condition reads

824 a
=G = 0,45, (A15)

(4) The antighost equation yields

06z ==z — o, Al16
sce * 8Ky, (A1O)

TABLE I. Quantum numbers of the fields.

Ayt bt g ¢ w! @
Dimension 1 0 2 1 1 1 1
Ghost number 0 1 -1 0 0 0 1 -1
Oy charge 0 0 0 1 -1 1 -1

TABLE II. Quantum numbers of the sources.

U fj ij N ,“j V;f Rfj T4 Ky, L
2 2 2 2 2 4
-1 1 0 0 -1 -1 -2
-1 -1 1 1 1 0
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(5) The linearly broken local constraints yield

834 8636, 8636,

GZ di abc Ab y/ci
5@? + a.”- 5Mzz + gfdh’lTﬂ 5Kh' f AILV#’
53, . o3, ) |

+9 A abc 1 abcAb Uct.
Sw? M SNZI gf wl 5bc f M
(A17)
(6) The exact R;; symmetry reads
R i3k, =0, (A18)
with
R = fddx( a — @4 0 + ya
! TR Y
) 1)
- Uy . al . Al19
M 5M,Zl " 6R7L] ( )

(7) The integrated Ward identity is given by

83, 824,
déx GZ+ @ —SZ + ya )zo.
f ( w; 3 ~a M aKa

(A20)

Here we should add that due to the presence of the
sources 7% and RY/, the powerful ghost Ward iden-
tity [36] is broken, and we are unable to restore this
identity. For the standard Yang-Mills theory, this
identity has the following form:

G (Sym t+ Sg) = A (A21)
with
)
Ge= f dix ( bc), (A22)
and
=g [ d*xfebe (KL A — Lbc©), (A23)

i.e. a linear breaking. However, it shall turn out that
this is not a problem for the renormalization proce-
dure being undertaken; see later.

3. The counterterm

The next step in the algebraic renormalization is to
translate all these symmetries, which are not anomalous,
into constraints on the counterterm X.¢,,. This expression is
an integrated polynomial of dimension four and with ghost
number zero and is constructed from the fields and sources.
The classical action %, changes under quantum correc-
tions according to

Gz = 26z T h2gy, (A24)
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where £ is the perturbation parameter. Demanding that the (4) The antighost equation
perturbed action (3, + hX§,) fulfills the same set of
Ward identities obeyed by 2, it follows that the counter- 53¢ §3¢
term X, is constrained by the following identities: sz Ongge 0. (A30)
(1) The linearized Slavnov-Taylor identity yields K’
B3, =0, A25
oz (A25) (5) The linearly broken local constraints yield
with B the nilpotent linearized Slavnov-Taylor
( o 1 o
operator, + 0 -+ 0 -
oY ”6M,“j KoMy
863G, 6 6L, o 83, 8 5 ¢ =
oKg, 8Ay,  0AY OKj 6L éc S S S
82’ 1) o 1) o _ abc ~ —
+ GZ + p¢ + o4 <— Jd snai gf (Pl C) = 0. (A31)
aca 5LL1 8561 gDl 6-(1 l 5€D 5 MBN 6b
+ MY o + N4 o + RY o ) (A26) 6) Th Rii
T “ v hsTa) (6) The exact R;; symmetry imposes
and
, with R;; given in (A19).
B°=0. (A27) (7) Finally, the integrated Ward identity becomes
- [ S 1 ap S0y ) o
(2) The U(f) invariance gives @i "5 * 8K,
U;jZ&, = 0. (A28) (A33)

The most general counterterm EEZ of d = 4, which

obeys the linearized Slavnov-Taylor identity, has

BEGZ -0 (A29) ghost .number zero, and vanishing Qf number, can
Sh? be written as

(3) The Landau gauge condition

&, = agSym + foddx{alKZA‘;L + ay0,0°A% + a;Lc" + a UL, 0% + asVia,of + agd?! 9> ¢ + a,UsVal
+ aggfachai bAc +a gfabcvaid)l?Ac +a ngabca—)ch aMQD? + a“gfabca—)t_l(a )¢b + b R(lanl

+ by TS MY + bygfupe REGIAS, + bugfup TS GPAS, + bsRS 3, &% + beT4d, 7}, (A34)

with ay, ..., ay, by, . .., bg arbitrary parameters. Now we can impose the constraints on the counterterm. First, although
the ghost Ward identity (A21) is broken, we know that this is not so in the standard Yang-Mills case. Therefore, we can
already set a; = 0 as this term is not allowed in the counterterm of the standard Yang-Mills action, which is a special case
of the action we are studying.6 Second, due to the Landau gauge condition (3) and the antighost equation (4) we find

a, = a,. (A35)
Next, the linearly broken constraints (5) give the following relations:

a) = —dag = —dg = adjp=4a; = _b3 = b4, a, = as = —dag = ay, b1 = b2 = bs = b6 =0. (A36)

®In particular, since we will always assume the use of a mass independent renormalization scheme, we may compute a; with all
external mass scales ( = sources) equal to zero. Said otherwise, a; is completely determined by the dynamics of the original Yang-
Mills action, in which case it is known to vanish to all orders.
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The R;; symmetry (6) does not give any new information, while the integrated Ward identity (7) relates the two previous

strings of parameters,

a) = —dg = —ag = ayp = d;; =

Taking all this information together, we obtain the following counterterm:

5S . . . ‘
3¢ = aySym + a; jddx< @ M 45,699 ,¢% + K59 ,¢% + M% 9,08 — U%ia,wf + Nia,af + Vila, !

y22
8AY,
+0,800,0f + 9,000, + VIMY —

- gfabca,ud)?‘P?a,u,cc - gfabcRZ,iap,cba_)f + gfabcT

4. The renormalization factors

As a final step, we have to show that the counterterm
(A38) can be reabsorbed by means of a multiplicative
renormalization of the fields and sources. If we try to
absorb the counterterm into the original action, we easily
find

ap

z,=1-h%, zP =1+ h(% + al> (A39)

and

ZVP = 2V = Vg = - h%,

Z,=2;", Zx=27V"  z,=27* (A40)

The results (A39) are already known from the renormal-
ization of the original Yang-Mills action in the Landau
gauge [36]. Further, we also obtain

— _ a
2=z =z, Pz =1

zr=z'"  zP=7,
_ ay _ —1/2,-1/4 _ 512
ZM—I_E—Zg ZA N ZN_ZA 5

a

Zy=1+ h% =z, zy=1-0l=z7"z7",

a

_ ap _ 4 1 _ —1/2,-1/4
ZT—1+h?—Zg, Zr=1 hE—Zg Z, .

(Ad1)

This concludes the proof of the renormalizability of the
action (A1) which is the physical limit of 2(,,. Notice that
in the physical limit (A8), we have that

Z,p =257 (A42)

APPENDIX B. INCLUSION OF THE OPERATOR A?
IN THE GRIBOV-ZWANZIGER ACTION

For the benefit of the reader, let us also repeat the
renormalization of the operator A? in the Gribov-

_b3 = b4 = dz = dg4 = —ds = dg. (A37)
UNi = 8fanc Ul @79,¢° = 8 fape Vil @]9 ¢
Ziaﬂcbgbf). (A38)

Zwanziger action, which was first tackled in [37]. In that
paper, it was shown that the presence of the condensate
(A?) does not spoil the renormalizability of the GZ action.
The GZ action with inclusion of the local composite op-
erator Aj AJ, is given by

Sacz = Scz T Sy (B1)

Sy = [ ddx(%A;;A; - g’Tz),

with 7 a new source invariant under the BRST transforma-
tion s and { a new parameter. The renormalization can be
done very easily with the help of the previous section.

where

(B2)

1. The starting action and the BRST
Again, we shall make S,gz BRST invariant. We define

Jpcz = 2z + 2 (B3)

where 2(;, is given in expression (A12) and
3= [ d“xs(gA;;A;g - grz)
— 4 1 a pAa a a 1 2
= [at] S raga + maga,cn —Se | B4

with n a new source and sy = 7, so that (7, 7) forms a
doublet. At the end, we replace all the sources with their
physical values [see expressions (A8) and (A10)] and in
addition

nlphys = 0) (BS)

SO one recovers Sagz again.

2. The Ward identities

It is now easily checked that the Ward identities
Egs. (A13)-(A20) of Appendix A 2 remain preserved.
Obviously, the Slavnov-Taylor identity receives an extra
term,

S(EAGZ) = 0, (B6)
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where where X, is the counterterm (A38). This counterterm can

53 53 53 53 be absorbed in the original action, 3 ,qz, leading to the
S = | a4 ( AGZ AGZ 4 AGZ AGZ same renormalization factors as in Eqs. (A39)—(A41).
(Sacz) = [ a's(°5 o At e gs. (A39)~(Ad1)

In addition Z, is related to Z, and Zfl‘/ 2 [37],
8% _ 62 6% _
st P e Ol z.=2.2,", (®8)
i @i

and Z; and Z,, are given by
ai 2AGz ai 5EAGZ ai O2AGZ ‘ !
M,u 5U‘” N/L 8Vm R:Uv 6T‘” Zg =1+ h(—a3 - 2612 + 4611 - 2@0),
3
52AGZ) Z,=1+ h(% —5a + aZ).
Sn )

+ b

(B9)
+ 7

APPENDIX C: RENORMALIZATION OF THE
3. The counterterm FURTHER REFINED ACTION
As all the Ward identities remain the same, it is easy to

check that the counterterm is given by 1. The starting action

Let us repeat the starting action (14),

286z = 26, + [d x(— A4 A4 +—gr Scez =257 T 2+ Sps T Saw t Sepas
* Seg0e T Svacs (CDH
+ (a, — al)nAzaﬂc“). (B7) L
where 2, is given by Eq. (A12), 3, by (B4), and

= [estpason = [aiogser - Posor)
= [stvaron = [aiwarer - veror

1
SWw—gD—ffd“xs(G”w go“)—fd“ [H’Hu“go += G”go, <pj]

1 -
W‘w¢=§fd4xs(Hl~’q0, )—/d4 I: G g%t — H w? go]:l

%)

(C2)
2. The Ward identities
With the help of Appendix A, we can easily summarize all Ward identities obeyed by the action X¢gz:
(1) The Slavnov-Taylor identity reads
S(Zeaz) =0, (C3)
with
62caz 02caz |, 92caz 02caz 82 caz 82 caz 6ECGZ 82caz
S = |d ( + + b + @¢ + ¢ + M4
(eez) [ oKy sAn T SLT 5 set i Tsar Y Tser T TsuY
83z 02caz 83z 83coz 83coz 83z ; 0%caz
+ N4 + RY Z 4 + W + + 2H + Gl =592,
d sy RS Y2 5p sv T e 5G1 S5H )
(2) For the U(f) invariance we now have
U ijECGZ =0, (C4)

where
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U fd4 ( a 6 ~a 0 + w? 6 ~a 6 aj 6 Uaj 6 + Nai 6 + Vai 6 aj 6
L= x| @4 — p“ " — @“ — - — - - - -
i Yoot Fiser “iswr “ear TMeMu TFsun M eNw M eyd  F SR
aj O ki kj ki O kO
+TY o+ 2GM 2 — 2GN 2 + 2N 2 — 2HK )
5Ta 5GH 5GH SHY SHP

By means of the diagonal operator Qy = Uj;, the single
i-valued fields and sources still turn out to possess an
additional quantum number.
(3) The Landau gauge condition and the antighost equa-
tion are given by

62CGZ

50 = d,A%, (C5)
03car 4, OFcaz (C6)
S5c¢ )
(4) The linearly broken local constraints yield
82caz 82caz 0206z
+ 9 =+ T :
5@? 13 8M,Zl gfdba on 8KZI
= gfabcAZVfLi + e
0 ECGZ ) ECGZ 0 2ICGZ
+ 9 Z — gfiegph ———%
swr | nana 8T gy
= gf“”CAszj o (C7)

where the - - - are extra linear breaking terms irrele-
vant for our purposes.

(5) The exact R;; symmetry is broken beyond simple
repair.

(6) The integrated Ward Identity is broken also beyond
simple repair.

(7) There is however a new identity,

SECGZ _ SECGZ.

5P 8V ©®

TABLE III. Quantum numbers of the fields and sources.

Af ¢t ¢ b of @Y wf

i

ot U My N Vi

Dimension 1 0 2 2 1 1 1 1 2 2 2 2
Ghost number 0 1 -1 0 0 0 1 -1 —1 0 1 0
Oy charge o0 oo0 1 —-11 —-1-1 -1 1 1

Ry T K, LY QPWYV Ty GYGYHYHY
Dimension 2 2 3 42 22 22 2 22 22

Ghost number 0 -1 —-1-20-10 —-10-—1
Qy charge 1 1

00 —-11
0 00 00 00 0-22 —22

3. The counterterm

These identities (C3)—(C8) can be translated into con-
straints on the counterterm according to the quantum ac-
tion principle (QAP); see [36]. Unfortunately, many
identities are broken due to the introduction of these
d = 2 operators. However, we are using mass independent
renormalization schemes and, therefore, the new massive
sources (P, Q, V, W, G, G, H', H') cannot influence
the counterterm of the original GZ action (A38) since they
are coupled to d = 2 operators. Said otherwise, there are
no new vertices capable of destroying the UV structure of
the original GZ theory (A38). We only need to check
whether these operators themselves are renormalizable.
Thus, the counterterm is given by

Stz = 2z T 25 Zhoy (C9)

with 2§, given by Eq. (A38) and 24 given by

. a a
24 = ’[d“x(?z TALAY + 7357'2 + (ay — al)nAjiaﬂc”),
(C10)

as already determined in (B7). %%, is dependent of all the
sources (P, Q, V, W, G, G, H', H), is of dimension 4,
ghost number —1 and Q; = 0, and obeys the remaining
Ward identities. For completeness, we have enlisted rele-
vant quantum numbers of all fields and sources in Table III.
Because of the linearly broken constraints we find

0Spy_ 0w,
I ¢ (C11)
Sy _ g %,
Jw ’ 0] '
Therefore,

CP_H = BE /d4x(b1PAZAz + bQVAzAz + b3QP

+ b4QV + bsWP + b6WV + b7PT + bSVT

(C12)

where by, ..
new identity

., ¢, are arbitrary constants. By invoking the

52;-[-1 _ 52;’-H

5P SV (C13)

we can write
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oo = f d*xb,[(Q + W)ALAY + 2(P + V)d A% ]

+ l’)3QQ + b4QW + b6WW + b7Q’T + bgWT
+ Cl(GijGij — zHij[._Iij) + Cz(Giiij — 2[-]1'1']-_]]'/')‘
(C14)

Let us notice that due to the U(f) constraint, the term in ¢,
is only present when

GG + 2HPPHIU = G49G + 2HU 44, (C15)

which is indeed the case due to Hermiticity.

4. The renormalization factors

Let us now try to reabsorb this counterterm into the
starting action (14). We shall split this analysis into three
parts, according to

34+ 36y =37 + 3§+ 3, (C16)

where

¢ — j dxbi[(Q + W)ALASL +2(P + V) , A% ]
a2 a a a a
+3TAMAM + (ay — ay)nAgd .9,
26, = [d4xb3QQ + b, QW + bgWW + b, Q1

+b8W7+%§7'2 (C17)

are the three parts which we shall try to absorb separately.

First, we start with the vacuum counterterm connected to
the arbitrary parameters ¢, and c,. If we redefine ¢, and c,,
we can write

+ ey MGG — 2HIT ), (C18)
and if we define
A =zzAY,  Hj =zuHY,  G{=Z2:GY,
Gy = Z5GY, Ko = Z,.K, Ao = Z)A, (C19)

we find for the renormalization factors of the new sources
and the LCO parameters « and A,
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Zg=2,"2,'""  Zs=12;
Zy=2,""2,'""%  z5=12,
Ze=0+c)Z;'25' = (1 + ¢))Z;'Z,

Z, =0+ cz)Zglzgl =1+ c)Z;'Zy,

(C20)

and thus the part %¢ can absorbed in the starting action.
Second, let us focus on X,

= /d4Xb1[(Q + W)ALAS + 2(P + V) ,c"A4 ]

a
+ ?ZTAZAfL + (ay — a))nA%d ¢ (C21)
We propose the following mixing matrix:
Qo Zoo Zow Zg-\(Q
To ZTQ ZTW ZTT T
(i) From

Qo9i®lo =200 + ZowW + Zy,71Z,¢¢ §
= 0¢i o, (C23)
we find that Zy, = Z;', while Zgy = Zy, = 0.
(i1) From
Woadywly = [ZwoO + ZywW + Zy,71Z,0¢ ¢

= Woeip?, (C24)

we find that Zyy = Z;', while Zyo = Zy, = 0.
(iii) Finally, from

1 1
ST0AL AL 0 =3[ Z:00 + Zoy W + Z TIZ,ALA,
1
= 5(1 + az)TAZAg + leAZA;lL
+ by WA AG, (C25)

we obtain Z., =Z, = (1 +ay)Z;', and Z,, =
ZTW = 2bl

In summary, we find the following matrix:

Qo zZ,0 0 0 0]
Wol=1 0 Zz;' o [|W (C26)
7o ZTW ZTW ZTT T

Now that we have the mixing matrix at our disposal, we
can pass to the corresponding bare operators by taking the
inverse of this matrix,
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0 Z, 0 0 0o
w | = 0 Z, O |l w, (C27)

Subsequently, we can derive the corresponding mixing
matrix for the operators, since insertions of an operator
correspond to derivatives with respect to the appropriate
source of the generating functional Z¢(Q, W, 7). In
particular,

1A2 _ 8Z(Q, W, 1)
270 47y 70=0
_ S_Q 8Z°(Q, W, 1) 8_W 8Z¢(Q, W, 1)
67’0 SQ 57'0 6W
5t 8Z°(Q, W, 1) 1
+— = T s A= A? 2
570 5t ATz (€28

TT

and similarly for ¢f ¢{, and &{jw{,. We thus need to
take the transpose of the previous matrix,

Z.wZ
PioPio Ze 0 =770\ [ e
Plowly [=| 0 z, -ZZ || efwf | (€29
A2 1 A?

0 0 0 Z_rr

We can make some observations from this matrix. First,
we find that A} does not contain the operators @¢¢¢ and
@¢w¢. This is already a first check on our results as
without these latter two operators the GZ action includ-
ing A? is renormalizable, as we have shown already in
Appendix B. Second, we observe that
G_Dgoﬁp?,o - a_)?,owfo = Z¢(¢?‘P? - “_’?wz‘a)’ (C30)

meaning that the mixing with A% disappears again when
recombining the two operators in a certain way. In fact,
this is the operator (&f¢{ — @fw{) which we have
investigated using the RGZ action [23] and no mixing
with A% appears for this operator.

We can do a completely analogous reasoning for the part
in d,cAj,. We first set V + P = X. We propose

No ZnX Znn n

(C31)

(i) From

~[ZyxX + Zx,n1ZY? 72> 3¢ 0t

1 L

- (XO)[G_D?,() wgo] =
~ ~X[gfw!]

we find that Zyy = 2;1/22;1/2’ while Zy, = 0.
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(i1) Also, from

2,172
M0AG 00,8 = [ZoxX + Zyy1Z)* 27 A% 6,
=+ ay, —a;)nAfd,c”
+ 2b,1XA5,0 ¢4,
we obtain Z,, =Z, = (1 + a, — al)Z/Zl/zZQI/Z,
and Z,x = 2b,.
Therefore, we find that

Blowf 2?77 —2b \( it
( ,0%71,0 ): A c _11 [} ) (C32)
A0 ,C0 0 z, A,d,c

Again, we find that A, 4d,cq does not contain @} w?,
which is necessary as the GZ action with the inclusion
of A? is renormalizable. We also see that, when setting
V = —P, X = 0, the mixing with A? disappears again.
Third, the vacuum term X¢;; has the following form:

b;00 + b,OW + bgWW + b;07 + byWr + %grz.
(C33)
We know that setting Q = —W has to return the vacuum

term from the RGZ action ~a,Q7 + “2—3 [ 7?. Therefore, we
may set

by — by + bg = 0. (C34)
In this case, the vacuum term reduces to
—c;a(QQ + QW) — ¢, B(QW + WW)
— c3xOT — ¢, 6WrT + %g#, (C35)

where we have extracted «, B, x, and § and some minus
signs for convenience. If we allow mixing between the
different parameters,

o Zoa Zap Zay Zas Zag o
Bo Zpa Zpp Zpy Zps Zp || B
Xo | = | Zva Zvp Zxx Zxs L X )
o Zsa Zsp Zsy Zss Zs¢ || 0
e Zia Zip Loy Zes Z) NG

(C36)

when absorbing the counterterm, we find for the mixing
matrix of the LCO parameters
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I+e _ ZyZew ZyZy
ZZQQ1 0 )gQQ 0 2;/2 \
Zaa Za,B Za)( ZaS Zoz{
0 Lo 0 ZssZw  ZawZu
Zﬁa ZB:B Z.BX Z,B(S Z,Bf Z_QQ Zoo ZZ
Zva Zwg Zyv Zys Zye | =1 00 I+c; 0 _ZTWZ;:OOOOO. (C37)
Zo0Z:r Zoo
Zsa Zsp Zsy Zss Zst o o 0 te,  ZewZy
Zia Zip Loy Zis Ly ZaoZr Za0
0 0 0 0 L

In summary, we have proven the action (C1) to be renormalizable.

APPENDIX D: LIST OF PROPAGATORS

We give here the list of propagators which can be calculated from the GZ action (2):
8(p + b2,

(@5 (k)@ (p)) = ﬁacabdw;—ja(p + ey, (@ RS(p) = sabé

pZ

(AL (PIALK) = ——
p*

/\4 M,,B“"B(k + p)2m)?,

(AL (p)b" (k) =

(b“(p)b* (k) = 5v & o 5(1!7 +hemt, (ALl

_ 2
(B(p)@Le (k) = (b (p)@te(k)) = fFabeip, —SX- Qa8 (p + k),

2.4
~ab =cd k)) = abr cdr 8 B“CBbdé )2 46 +k
(PIFR) = (P10, STt ) o(p+ b
gzy“
K pA(p* + 28°Ny*)

(@9 (p) @i (k)y = (e (p)psi(k)) = febrfedrp, Q2m)*8(p + k).

—8Y

“(k)y = (A5 (p)@he (k) = fobe P Py

72,

—i’;—’;aabﬁ(p + k),

2

(p)2m)*s(p + k),

(D)

with

Puly
P,, = (5W - ”“—2) (D2)

APPENDIX E: DETAILS OF THE CALCULATION
OF THE EFFECTIVE ACTION FOR THE FURTHER
REFINED GZ ACTION

1. Determination of the LCO parameters
6(,6a,0),and ép

We shall start from expression (18), determine the qua-
dratic part, and integrate out all the fields. The quadratic
action is given by

1
Sl = fdd [A“ 5ab< 8,0 + (1 — g>3u3u)A3
+ @020 — Y28 fupc AL (@b + @Z‘)]

1 1
+ [d“x[ng?go? S TALAL — 547 — aQQ

1 - 1 _
~x0r |+ [ JGerer + SGeter + pGG |

where we have immediately integrated out the ghost fields,
¢, ¢, w, @, as they only appear trivially. We have also
already integrated out the b field, where « is formally
equal to zero.

As a first step, we integrate out the ¢ and ¢ fields. For
this, we shall split ¢, &, G, and G into real and imaginary
components,

= U¢ + iV,
G=X+1iY,

o = Uf — Ve,
G=X-1iY, (E1)

so that the part depending on ¢ and & in expression (E1)
becomes

/d" (UL0PUS + VEPVE — 2928 fanc AL UL + QU?

+ QV2 + XU? — XV? = 2YUSV¢ + pX? + pY?)
fdd ( Uab Vﬁb]
y 200>+ Q + X) -2Y
-2Y 202+ 0—X)
Uab
X [ Vab i| - 2'}’ gfabcAa U,ZC)
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Therefore, applying Gaussian integration, we find for the 2(0+ Q + X) -2Y

integration over ¢ and @ P bed = 5,w5ab56d )
2y 202+ 0 — X)

Jdenapient e (E3)
IR P2+0-X ) and the - - - stands for the other terms in E%‘g; [see (E1)],
= exp[i)t AM<84 +202+ 02— X2 — Yz) I i.e. terms purely in A and the vacuum terms. The second
step is to integrate out the gluon field Aj;. Combining the
+ - ~:|(detPbe,fd)*1/ 2, (E2)  expression (E2) with the terms purely in A from the qua-

dratic action, we obtain
where we recall that A is defined as A* = 2y*g>N. Pabed js
given by

[[dA]e[f(l/Z)A“ﬂ6"”(76,”62+(17(1/01))%8,,7/\4(82+Q7X/84+2Q32+Q27X27Y2)+76W)A§’,]

1 2+0—X -1/2
= [det(—ﬁwaz + (1 - E)aﬂay - A4<a4 207 X Y2) + 7'5/“,)] : (E4)

Therefore, the total effective action at one loop is given by

_WOrGG b edn— 1 ’?+0-X -1/2

s o= Jdd=(1/2)¢7 =200~ x07(1/2)+pGG]], (ES)
[

In order to find 6, da, 6 x, and Jp at one loop, weneedto ~ Employing the standard formula [38]
find the first order infinities of the previous expression.
These shall be present in the two determinants which we
need to evaluate.

Let us start with the first determinant of P¢;/. In
general, we can write we obtain the following infinity:

I'(—d/2) 1
(47T)d/2 (MZ)—d/z ’

Tr In(—9% + M?) = — (EB)

(detP(;LhV,cd)—l/Z = ¢~ (1/2) TrinP4 _ e~ (1/2d(N*~1)? TrInP_

(E6)

TN -1

(detP)~1/2 = exp[ g [0* + X2+ V2] + cl],
€ T

As we are taking the trace, we know that TrInP = TrInP’, (E9)
with P’ the diagonalization of P. Therefore, after diago-

. where ¢, is a constant term.
nalization, we find

The second determinant requires a bit more effort to be
(detPybyed)~1/2 evaluated. Let us call the corresponding matrix K. We thus

1 calculate
= epr:—Ed(N2 - 1)2Tr<ln<—62 -Q+ m)
+ 1n(—a2 -0- m))] (E7)

P?+0-X
Trink,, =Tr1n<5#,,<—62—)\4( T 5 Q2 5 2)+7))
P20+ 0 XY

1 (=2))
m— 1-—)a,0,). (E11)
(_62 - /\4(94+2Q(§21QQ2§X2,)12) +7) a)”

(detKZb,,)_l/z — e—(1/2)(N2—1)TranW. (ElO)

Therefore, we need to determine

+ Tr 1n<6w, +

For the first term, we can easily take the trace over the Lorentz indices, while for the second term, we need to use

In(1 -2|-x) =X —§+ ---, then take the trace of the diagonal elements of the second term, and again employ

x — %+ -+ =In(l + x). After these operations, we obtain
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TrlnkK,, = dTrln((—a2 — /\4(

PZ+0—-X ) ))
+ 7
0*+200°+ 0> - X - Y?

+ Trln(l +

which can be written as

(—0* — A%(

)
9 YZ) + T) @

9*+200>+0? - X2~

TrinK,, = (d — 1)Trln<(—82 - )\4(

7?+0—-X ) ))
+ 7
0* +200+ Q> - X*—Y?

P2+0-X 1
- T”“((_az B A4(64 207 F 0 - X - Y2) - T) - (1 - 5)82)'

The first term of this expression can be written as’

(d— D[Trin(p® + (r —2Q)p* + (A* + Q* — X> — Y? = 207)p> — QA* + XA* + Q*r — X°7 — Y?7)
— Trin(p* —20p* + Q> — X> — Y?)] = (d — 1)(TrIn(p? — x,) + Trin(p® — x,)

+ Trin(p? — x3) — Trin(p? — x,) — Trin(p? — x5)),

where x, x,, and x5 are the solutions of the equation

B+ T =202+ M +0>—X2—Y?—-207)x
— QAN+ XA+ QP r XY r=0

and x, and xs of the equation x> —2Qx + Q%> — X —
Y? = 0. After determining xi,...,xs, we can apply the
standard formula (E8) again, so we ultimately find for
the first term

B 3
1672

1
;(7’2 - 2)\4) + Co, (E13)

with ¢, a constant, which is not of our current interest. For
the second term of (E11), we can perform an analogous
analysis, whereby we find that this term is proportional to
« and therefore does not contribute to the determinant as
a — 0. Therefore, the second determinant ultimately gives

1
(detkgh)~1/2 = expl:(N2 -1 (2 =2AY) + c2:|.
€

3272
(E14)
We can now combine both results (E9) and (E14) to find

N>-1)1

_ 3
WQ.7,6,6) =~ P (32 v -

X (Q* + GG) — %A“) + ¢, (E15)

with ¢ a constant term. Therefore, at one loop we obtain

"We shall replace —d% by p? from now on and work in
momentum space.

(E12)
[
_ 13 ) 11 2 2
55 - < 167TZ (N 1); oa € 477_2 (N 1) ’
1 1
Sx=0, dp=--—5(N>—1)2 (E16)
€ 4

2. Calculation of the effective action

We can now proceed in a very similar fashion as in

Sec. E1. We can split the one-loop effective potential in

a few parts. A first part, I’ 5,1), is the equivalent of (detP)~ 1/2

in expression (ES)

11
ry = (N2 — 1)2|:_EW(M4 +ppt)

1672

2 M*+ t
+(M2+ ppT> lnTpp—2(M2+ppT)>i|.

(E17)

The second part, the equivalent of (detK)~'/2, is given by

3N2— 1) 2 5
I‘(l)z [__ 4_2/\4 _ 4_2)\4
b 642 2o ) =g lm )
+} ln(__yl) +3 ln(__yZ) +3 ln(__y3)
i i

-3 (=2 )2 ln(__yS):I, (E18)
I I

where y;, y,, and y; are the solutions of the equation
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y? + (m? 4+ 2M2)y? + (A* + M* — ppt + 2MPmP)y + M?A* + 1/2(p + pP)A* + M*m? — m?ppt =0

and y, and ys of the equation y> + 2M?y + M* — ppT = 0.
The third part is the constant term of the GZ action,

I = —dyd(N? — 1), (E19)
From Eq. (A42), we can calculate that®
. 3 ¢’N 1
Ye=Zh7 with 22, =1+ 3 1g6772 - (E20)
so we find
3 N 1 3¢
I = —d(N? — 1)yg = —4(N? — 1)y* — 4 (N? 44+ N2 -1
( )70 ( )y 2( 672 < > 167 27( )
A4 AV 13
= —2(N* - 1)——=—6(N* — 1 -+= N2 —1). E21
( ) Ng® ( )327725 232772( ) (E21)
The fourth part requires some calculation. We first find
1 (a_’g a_ﬁ) =148(1\/2 — 1)2(1 531 Ng? N ,53  p )pp+ £22)
42,Ztp\g>  g*) 2 53N 6 € 167 24 (N> = 1)?*) ¢~
and second
o ‘7%4_ { U%_ X' ‘71‘72_§0m4+a0M4
4a/§/ _ /\//2 g2 4(1’{’ _ X/Z 82 4a/§/ _ /\/2 g2 2g2 g2
1 (13N{ym*  M*(N?> — 1>  m*
;( 962 + P ) — > — M4a1 + Mzmz)(l, (E23)
so that
o _ 1 48(N? — 1)2 (1 531 Ng? g2§ pi )pp*r Zom* . agM* . 1(13N§0m4 . M*(N? — 1)2)
d 2 53N 6 € 1672 24 (N?2 —1)? 2g> g2 e\ 967 A2
4
_ 51;71 — M*a, + M2y, (E24)
As a check on our results, we see that all the infinities cancel, so we find
(N? = 1) 2 M*—y/pp! 2 M?+4ppt
T LG O e o (M2 oot ) Y =200+ o)
2 _ _ _
+3(N l)l:_é( T P 21n( }’1) ( )’2) V1 ( y3) — 3 ln( _)’4)_)%1“( _)’5)]
64 a i i i iz
—2(N? — ’\_4 3 A (N> — 1) + 1478(N2_1)2<1—Ng2§ P1 )ppT 9N -1 m
g2 2 3272 2 53N 24 (N* —1)? 13 N 2g°
24 (N> —1)> M* 161 N> — 1
_ 2] i " Miay + Moy, (E25)

35 N g2 52 lem* 2

8For the explicit loop calculations of the Z factors, we refer to [35].
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