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We develop worldline numerical methods, which combine string-inspired with Monte Carlo techniques,

for the computation of the vacuum polarization tensor in inhomogeneous background fields for scalar

QED. The algorithm satisfies the Ward identity exactly and operates on the level of renormalized

quantities. We use the algorithm to study for the first time light propagation in a spatially varying

magnetic field. Whereas a local derivative expansion applies to the limit of small variations compared to

the Compton wavelength, the case of a strongly varying field can be approximated by a derivative

expansion for the averaged field. For rapidly varying fields, the vacuum-magnetic refractive indices can

exhibit a nonmonotonic dependence on the local field strength. This behavior can provide a natural limit

on the self-focussing property of the quantum vacuum.
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I. INTRODUCTION

The study of vacuum polarization has been one of the
cornerstones of the development of quantum field theory. It
gives access to charge and field strength renormalization
and provides for an understanding of fluctuation-induced
modifications of Coulomb’s law in terms of the Uehling
potential which contributes to the Lamb shift.

Vacuum polarization in strong magnetic fields has led to
the prediction of nonlinear optical properties of the quan-
tum vacuum [1,2,4–6,3]; for a review, see [7]. More spe-
cifically, the magnetized quantum vacuum is birefringent
for low-energy photons and exhibits dichroism above the
threshold for pair production [8,9]. Past and present experi-
ments, such as BFRT [10], PVLAS [11], BMV [12], Q&A
[13], and OSQAR [14], have been working on the discov-
ery of these elementary properties of the quantum vacuum
by means of strong macroscopic magnetic fields. In addi-
tion to being a fundamental test of QED, these experiments
can provide for the strong laboratory bounds on the exis-
tence of hypothetical particles such as minicharged or
axionlike particles [15–18].

As first suggested in [19], also high-intensity lasers in
combination with latest methods in X-ray polarimetry [20]
may contribute to the search and discovery of these
nonlinear properties of the quantum vacuum. Various
laser-induced quantum-vacuum phenomena have been in-
vestigated recently [21,25–29,22–24], for reviews see
[30–32]. They also provide for a powerful probe for new
elementary particles complementary to accelerators
[33–35] or supplement searches for a noncommutative
structure of spacetime [36].

Theoretical analyses of the vacuum polarization tensor
so far dealt with the idealized limit of constant, homoge-
neous fields [5,6,8,37–45] which is appropriate as long as
the scale of field variation is much larger than the Compton
wavelength in QED. Whereas this is well satisfied for

experiments with large dipole fields searching for effects
from fluctuations of standard model particles, this assump-
tion can be violated for secondary fields (e.g., from higher
harmonics) from strong lasers or for fluctuations involving
hypothetical very light particles. A proper interpretation of
future experiments will therefore require the knowledge of
the vacuum polarization tensor in general inhomogeneous
fields.
Recent years have witnessed a variety of advances for

strong-field calculations in inhomogeneous fields. So far,
new techniques have concentrated mainly on the effective
action or effective Lagrangian in strong-fields as a primary
quantity of interest. In addition to exact solutions [48,49],
semiclassical [50], instanton techniques, and quantum ki-
netic equations have been developed and applied to pair
production in inhomogeneous fields, i.e., the imaginary
part of the action, as reviewed in [31]. As a general-
purpose numerical method, the combination of the world-
line formalism [51,52,46,47] with Monte Carlo path
integration techniques has proved successful in many in-
stances [53–56]. As one advantage, worldline numerics is
capable of providing local information about the effects of
fluctuations, such as energy or action densities, local pro-
duction rates etc. Local quantities are particularly indica-
tive for the nonlocal features of quantum-field theory.
The present work is devoted to generalizing these

worldline methods to the vacuum polarization tensor as
the lowest nontrivial correlation function of QED. As
the effective action is the generating functional for 1PI
correlation functions, the generalization at first sight
seems straightforward. However, the relation is provided
by a functional differentiation which is difficult to imple-
ment reliably in a numerical method. In addition to being
a powerful numerical method, the success of num-
erical worldline techniques also relies on the fact that
the formulation is very close to analytical calculations. In
fact, closed-form worldline expressions for correlation
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functions to arbitrarily high order (master formulas) can be
derived within perturbation theory [52].

In this work, we demonstrate that the corresponding
formula for the vacuum polarization tensor in an external
field can be used to develop a worldline numerical algo-
rithm that (i) satisfies the Ward identities at any level of
discretization, and (ii) operates on the level of renormal-
ized quantities so that only finite quantities are subject to
numerical evaluation. For numerical simplicity, we per-
form all computations within scalar QED—the general-
ization to spinor QED within the worldline approach is
straightforward [54,57].

As a concrete example, we concentrate on the evaluation
of the refractive indices of the magnetized quantum vac-
uum deduced from the vacuum polarization tensor and
their dependence on spatial variations. This is not only a
crucial observable in birefringence experiments, but can
describe a particular sensitivity of optical observables to
nonlocal features of the quantum vacuum. For instance, as
the vacuum refractive index in the homogeneous field
approximation increases with the field strength, the quan-
tum vacuum has a self-focussing property [58]: photons are
drawn into regions of higher field strength, in turn amplify-
ing the field strength even more. Our results provide for
first indications that the refractive index can depend non-
monotonically on the field strength in regions of large
spatial variations, hence providing for a natural mechanism
to limit this self-focussing property of the quantum
vacuum.

This article is organized as follows: in Sec. II, we
summarize the approach to the polarization tensor on the
worldline. We pay special attention to spacetime inhomo-
geneities and develop a numerical algorithm which satis-
fies the Ward identity at any level of discretization.
Section III is devoted to benchmark tests in the form of

comparisons with analytically known vacuum and
constant-field cases. In Sec. IV, we present new results
for the polarization tensor in an inhomogeneous magnetic
field.

II. VACUUM POLARIZATION TENSOR
ON THE WORLDLINE

Let us start with the worldline representation of the one-
loop effective action of scalar QED in D Euclidean space-
time dimensions [52],

�½A� ¼
Z 1

0

dT

T

e�m2T

ð4�TÞD=2

�
Z
xð0Þ¼xðTÞ

Dxe�
R

T

0
d�ðð _x2=4Þþie _xAÞ;

where m denotes the (scalar) electron mass. A transition to
Minkowski-valued quantities will be discussed below.
Here, the path integral is normalized to unity for vanishing
field A ¼ 0. Ultraviolet divergencies can be regularized
with the help of the propertime T integral, e.g., by replac-
ing the lower integration limit T ¼ 0 by Tmin ¼ 1=�2

(propertime cutoff), or by dimensional or zeta function
regularization. The corresponding effective action for
spinor QED looks very similar, additionally containing a
spin-field coupling [52]. This effective action is the gen-
erating functional for all 1PI correlation functions, which
can be deduced from � by functional differentiation with
respect to the gauge field A�. Alternatively, we can ex-

pand the gauge field in terms of a background field A� and
a sum over plane waves, A�

j ðxÞ ¼ A� þP1
j¼0 �

�
j e

ikjx.

The second order is relevant for the vacuum polarization
tensor,

� ¼ ð�ieÞ2
Z 1

0

dT

T

e�m2T

ð4�TÞD=2

Z
xð0Þ¼xðTÞ

Dxe�
R

T

0
d�ð _x2=4Þ

�Z T

0
d�1

Z T

0
d�2 _x1�1e

ik1x1 _x2�2e
ik2x2e�ie

H
dxA

�
þOð�3Þ

¼ �1��
ð2Þ��½k1; k2;A��2� þOð�3Þ:

The plane wave basis also implements the transition to momentum space. At first sight, this appears less efficient, as the
worldline integrals live in position space; an evaluation of the 2-point correlator in position space thus seems to be much
more straightforward. However, it turns out that the position space representation naturally involves two path integrals (one
for each internal propagator), whereas the momentum space formulation boils down to one path integral and thus is
numerically less expensive. The desired vacuum polarization tensor can be extracted as (part of) the coefficient of the
polarization vectors �

�
j ,

�ð2Þ��½k1; k2;A� ¼ ð�ieÞ2
Z 1

0

dT

T

e�m2T

ð4�TÞD=2

Z
xð0Þ¼xðTÞ

Dxe�
R

T

0
d�ð _x2=4Þ

�Z T

0
d�1

Z T

0
d�2 _x

�
1 e

ik1x1 _x�2e
ik2x2e�ie

H
dxA

�
:

The worldline integral can be decomposed into a path integral over worldlines with a common center of mass xCM and the
spacetime integration over this center of mass1

1Different prescriptions for such a decomposition can equally well be used [52,57].
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Z
Dxe�

R
T

0
d�ð _x2=4Þ

�Z T

0
d�1

Z T

0
d�2 _x

�
1 e

ik1x1 _x�2e
ik2x2e�ie

H
dxA

�

¼
Z
xð0Þ¼xðTÞ;CM

Dxe�
R

T

0
d�ð _x2=4Þ

�Z T

0
d�1

Z T

0
d�2 _x1�eik1x1 _x�2e

ik2x2
Z

dDxCMe
iðk1þk2ÞxCMe�ie

H
dxA

�
:

In the case of a homogeneous background or in the vacuum case, there is no additional xCM dependence apart from the
plane waves, such that the xCM integration can immediately be performed, yielding a � function that implements
momentum conservation, see below. In the general case, we have to be more careful and introduce a local vacuum
polarization tensor ��� that depends on xCM,

�ð2Þ��½k1; k2;A� ¼
Z

dDxCMe
iðk1þk2ÞxCM���½k1; k2; xCM;A�; (1)

where the local polarization tensor is

���½k1; k2; xCM;A� ¼ ð�ieÞ2
Z 1

0

dT

T

e�m2T

ð4�TÞD=2

Z
xð0Þ¼xðTÞ;CM

Dxe�
R

T

0
d�ð _x2=4Þ

�Z T

0
d�1

Z T

0
d�2 _x

�
1 e

ik1x1 _x�2e
�ik2x2e�ie

H
dxA

�
:

(2)

In the homogeneous or vacuum case, Eq. (1) boils down
to

�ð2Þ��½k1; k2;A� ¼ ð2�ÞD�ðDÞðk1 þ k2Þ���½k;A�; (3)

where ���½k;A� is the standard vacuum polarization
tensor in a homogeneous field, and k ¼ k1 ¼ �k2.
Momentum conservation is automatically implemented,
and local and global descriptions are identical.

U(1) gauge symmetry imposes a constraint on the po-
larization tensor in the form of the Ward identity. In its
local form, the polarization tensor has to satisfy

k1;��
��½k1;k2;xCM;A�¼���½k1;k2;xCM;A�k2;�¼0: (4)

In the worldline representation (1), the Ward identity be-
comes obvious, as the �i integrands turn into total deriva-
tive upon contraction with ki,

Z T

0
d�iki;� _x

�
i e

ikixi ¼ �i
Z T

0
d�i

d

d�i
eikixi ¼ 0; (5)

where the last equality holds as the worldlines are closed,
xið0Þ ¼ xiðTÞ. However, in any discretized numerical ap-
proach, the first equality in this identity is difficult to
realize as there is no Leibniz rule for latticized derivatives.
Nevertheless, the Ward identity can be exactly maintained
in the numerical worldline algorithm due to the following
observation. Consider the parameter integral combination
I�1�2 occurring in Eq. (1),

I�1�2 ¼
Z T

0
d�1

Z T

0
d�2ð _x�1

1 eik1x1 _x�2

2 e�ik2x2Þ (6)

¼
Z T

0
d�1

Z T

0
d�2

�
_x
�1

1 � k�1

1 ½k1 _x1�
k21

�
eik1x1

�
�
_x�2

2 � k
�2

2 ½k2 _x2�
k22

�
e�ik2x2 ; (7)

The mixed terms arising from an expansion of the last
equation vanish in the continuum by virtue of Eq. (5).
The same holds for the product of the second terms in
parentheses. This representation explicitly shows that the
tensor structure of I�1�2 is identical to its contraction with
two corresponding transversal projection operators

P��
T ðkiÞ ¼ ��� � k

�
i k

�
i

k2i
;

a property which also holds for the local polarization
tensor,

���½k1; k2; xCM;A� ¼ P
��
T ðk1Þ���½k1; k2; xCM;A�P��

T ðk2Þ;
(8)

by virtue of which the polarization tensor satisfies theWard
identity manifestly. In other words, using the identity (7),
the local polarization tensor yields a form

���½k1; k2; xCM;A� ¼ ð�ieÞ2
Z 1

0

dT

T

e�m2T

ð4�TÞD=2

Z
xð0Þ¼xðTÞ;CM

Dxe�
R

T

0
d�ð _x2=4Þ

�
�Z T

0
d�1

Z T

0
d�2

�
_x�1

1 � k
�1

1 ½k1 _x1�
k21

�
eik1x1

�
_x�2

2 � k
�2

2 ½k2 _x2�
k22

�
e�ik2x2e�ie

H
dxA

�
; (9)
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which satisfies the Ward identity manifestly also upon
discretization of the worldline on a propertime lattice.
This discretization can now proceed in the standard way
[53]. First, we rescale the worldlines,

xð�Þ ¼ ffiffiffiffi
T

p
yðtÞ; � ¼ Tt; (10)

such that the kinetic term

exp

�
� 1

4

Z T

0
d� _xð�Þ2

�
! exp

�
� 1

4

Z 1

0
dt _yðtÞ2

�
; (11)

serving as the probability distribution of the Monte Carlo
configurations, becomes independent of the propertime T.
Each worldline yðtÞ is then represented by a set of N points

per loop (ppl), yi ¼ yðtiÞ, where ti ¼ i=N and i ¼
1; . . . ; N. The worldline path integral then turns into an
expectation value with respect to an ensemble of xCM
centered worldlines fy‘g, where ‘ ¼ 1; . . . ; nL and nL de-
notes the number of worldlines in the ensemble,

Z
xð0Þ¼xðTÞ;CM

Dxe�
R

T

0
d�ð _x2=4Þð. . .Þ ¼ hð. . .Þi: (12)

The expectation value is normalized to h1i ¼ 1. There are
powerful algorithms available to generate the ensemble ab
initio [56,59]. In the present work, we use the v loop
algorithm [56]. Together with the rescaling (10), the local
polarization tensor then reads

���½k1;k2;xCM;A�¼ ð�ieÞ2
ð4�ÞD=2

Z 1

0

dT

TD=2
e�m2TP��

T ðk1ÞP��
T ðk2Þ

�Z 1

0
dt1

Z 1

0
dt2 _y1;�e

i
ffiffiffi
T

p
k1y1 _y2;�e

�i
ffiffiffi
T

p
k2y2e�ie

ffiffiffi
T

p H
dyA

�
: (13)

This representation of the local polarization tensor serves
as the master formula for the construction of our algorithm
and its application in the following sections.

III. BENCHMARK TESTS

Vacuum polarization tensor at zero field

At A� ¼ 0, any dependence on the spacetime coordinate

drops out. Homogeneity ensures that the local polarization
tensor obeys 4-momentum conservation, such that Eq. (3)
applies. The worldline expression of the unrenormalized
polarization tensor then reads

���½k� ¼ ð�ieÞ2
ð4�ÞD=2

Z 1

0

dT

TD=2
e�m2TP��

T ðkÞP��
T ðkÞ

�
�Z 1

0
d�1

Z 1

0
d�2 _y1;�e

i
ffiffiffi
T

p
ky1 _y2;�e

�i
ffiffiffi
T

p
ky2

�
:

(14)

For a benchmark test in D ¼ 4 spacetime dimensions,
we need to renormalize Eq. (14) and then perform a
comparison with the analytically well-known result for
scalar QED [42]

���ðkÞ ¼ � e2

ð4�Þ2 k
2P��

T ðkÞ
Z 1

0

dT

T
e�m2T

�
�Z 1

0
dte�k2Ttð1�tÞð1� 2tÞ2 � 1

3

�
; (15)

where the last term in the curly brackets corresponds to the
counterterm from charge renormalization.

Renormalization is not only an important conceptual
issue, but also needs to be taken care of as a matter of
practice, as it is advisable to perform the numerics only for
finite renormalized quantities. As the UV divergencies
associated with Eq. (14) occur for small propertimes T,
the divergencies can be analyzed and taken care of on the

level of the propertime integrand which is always finite.
Only after the counterterms are subtracted, we perform
the propertime integration which then is perfectly finite.
Even though propertime regularization is most natural
for our formalism, our result can be connected to any
other scheme, as the counterterms are known analytically
from the small propertime expansion of the worldline
integral.
Still the subtraction is not trivial, as subtracting the

analytically known counterterm (1=3) from the numeri-
cally evaluated propertime integrand in Eq. (17) would
lead to an indefinite result with infinitely large error bars.
This is because the small propertime behavior of the nu-
merical worldline expression is equal to (1=3) only within
numerical precision.
The solution to this problem has been provided by [53]

for effective action computations: the existence of the
heat-kernel (small propertime) expansion of the worldline
expectation value at least in an asymptotic sense allows us
to fit the numerically obtained worldline expression to a
polynomial in T. Subtracting the constant piece (¼ ð1=3Þ
within numerical errors) then corresponds to charge re-
normalization. For improving the stability of the numerical
result, it is advisable to fit to a higher-order polynomial (the
coefficients of which can also easily be worked out analyti-
cally with the heat-kernel expansion). The propertime in-
tegrand of ��� is then evaluated with the pure num-
erical result for values of T larger than a scale TDG and
with the fit for T < TDG. The scale TDG is dynamically
generated from the condition that both expressions for the
propertime integrand should have error bars with the same
size at TDG.
We stress that TDG is only an auxiliary scale accounting

for the error management. It is unrelated to the regulariza-
tion scheme which at this order of calculation only plays
a role in the (unobservable) connection between the
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bare and renormalized coupling. At higher loop orders, the
interplay between charge and mass renormalization
requires to specify the scheme more explicitly in order to
perform a consistent renormalization [60].

In Fig. 1, the numerical and analytical results of the
propertime integrand evaluated in Euclidean space for a

momentum vector k� ¼ ð1; 1; 1; 1Þ and Lorentz indices

chosen in the 11-direction is shown. Here, the units are
chosen such that each momentum component k� in arbi-

trary inverse length units L�1 has the value k� ¼ 1 for

� ¼ 1, 2, 3, 4. In the upper panel, we have set the electron
mass m ¼ 0 whereas the lower panel depicts the cases
m ¼ 1 and m ¼ 2 (using the same arbitrary length units).
The latter show a characteristic exponential drop-off for

large propertimes arising from the e�m2T factor. In all
cases, the numerical results represent a very satisfactory
approximation to the analytical results [42].
In Fig. 2, the diagonal (upper panel) and off-diagonal

(lower panel) components of the vacuum polarization ten-
sor in Euclidean space are shown as a function of the mass
parameter m again for the case k� ¼ ð1; 1; 1; 1Þ. The good
agreement between analytical and numerical results for a
wide range of mass values demonstrates that our method is
capable of computing perturbative correlation functions
with worldline numerics.
As described above, we have performed the renormal-

ization by polynomially fitting the propertime integrand
and successively subtracting the counterterm correspond-
ing to charge renormalization. More precisely, the term in
curly brackets in Eq. (15) is fitted, for instance, to

P ¼ bT þ cT2 þ dT3; (16)

or higher-order polynomials. The algorithm can be
stabilized by inserting the analytically known coefficients
from the heat-kernel expansion, b ¼ �k2=30, c ¼ k4=420,
d ¼ �k6=7560. Similar techniques and knowledge of the
heat-kernel expansion can as well be employed in the case
of nonvanishing electromagnetic fields.

FIG. 2 (color online). Comparison of the analytical and numerical results for the full polarization tensor ��� in scalar QED as a
function of the electron massm. The upper panel depicts a generic result for the diagonal elements (� ¼ �). The lower panel shows the
same for off-diagonal elements.

FIG. 1 (color online). Comparison of the analytical and nu-
merical results of the propertime integrands of Eqs. (14) and (15)
for k� ¼ ð1; 1; 1; 1Þ (in arbitrary inverse length units L�1 and

Lorentz indices chosen to point into the 11-direction for different
values of the electron mass: m ¼ 0 (upper panel) and m ¼ 1 and
m ¼ 2 (lower panel). In all cases, we have used the same
ensemble of random worldlines. A test of the algorithm shows
that an ensemble with Nppl ¼ 1000, nL ¼ 40000 gives us accept-

able results with respect to both the calculation time and the
numerical errors.
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IV. POLARIZATION TENSOR IN A
HOMOGENEOUS MAGNETIC FIELD

As is obvious in the worldline approach, the general-
ization to nonvanishing background fields is straightfor-
ward, by inserting the Wegner-Wilson loop

e�ie
R

T

0
d� _x�A

�ðxð�ÞÞ:

into the worldline average in Eq. (14), cf. Equation (13),

with xð�Þ ¼ xCM þ ffiffiffiffi
T

p
yðtÞ, t ¼ �=T. As another test of

our method, we compute the vacuum refractive indices
arising from fluctuations in a homogeneous magnetic field.
Because of homogeneity, the 4-momentum of the photon is
conserved, implying k1 þ k2 ¼ 0, such that we can di-
rectly study the polarization tensor. Writing the gauge
potential in the form

A� ¼ 1

2
F�� _x� ¼ 1

2
B��� _x�

with the magnetic field strength B and a dimensionless
4-dimensional tensor ���. Choosing the magnetic field to
point into the e1 direction, �

�� in Euclidean as well as in
Minkowski space reads2:

� ¼
0 0 0 0
0 0 1 0
0 �1 0 0
0 0 0 0

0
BBB@

1
CCCA:

The refractive indices are the inverse of the phase veloc-
ities of photons propagating in a magnetized quantum
vacuum. As the magnetic field distinguishes a direction
in space, the magnetized quantum vacuum is birefringent
like a uniaxial crystal, featuring two polarization depen-
dent phase velocities,

v2
k=? ¼ 1��k;?

k2
¼ ð1��vk=?Þ2; (17)

where �k;? are the nontrivial eigenvalues of the eigen-

modes �� of the polarization tensor [7], �����;k=? ¼
�k=?��;k=? satisfying the Minkowski-space photon dis-

persion relation

k2 þ�k=? ¼ 0: (18)

Eqs. (17) and (18) are actually identical as the phase
velocity is defined as v ¼ !=jkj. Here, we use the
Minkowski metric g ¼ ð�;þ;þ;þÞ and parameterize
the Minkowskian momentum as ðk�ÞM ¼ ð!; jkjÞ. For

scalar QED, the velocity shifts, �vk=? ¼ 1� vk;? in the

weak-field limit yield [17]

�vk=? ¼ ak=?
	

ð4�Þ
ðeBÞ2
m4

sin2
; ak=? ¼
8<
:

1
90

7
90

9=
;: (19)

Here 
 denotes the angle spanned by the magnetic field B
and the propagation direction k. For weak fields, the
k mode is polarized in the plane spanned by B and k,
whereas the ? mode is polarized orthogonal to this plane;

more explicitly, �k � ~�k and �? ��k, with ~� denoting

the dual field strength matrix.
Even though the worldline numerical formalism is set up

in Euclidean space, as the Monte Carlo procedure requires
a positive action, extracting these light propagation prop-
erties obviously requires a transition to Minkowski space.
In particular, we have to insert a Minkowski-valued
4-momentum vector into the worldline average to have
access to real light-cone properties. We do so by choosing
the Euclidean 4-momentum vector as k� ¼ ði!;kÞ. As
illustrated in the Appendix, the algorithm remains stable
at moderate frequencies, even though larger fluctuations
require typically 2 orders of magnitude more statistics than
typical Euclidean computations.
In Fig. 3, we compare our worldline Monte Carlo results

with those of the analytically known velocity shifts [17]
over a wider range of magnetic field strength (also exceed-
ing the simple weak-field limit). This benchmark test is
performed for orthogonal incident 
 ¼ �=2 and for the
k mode at a frequency ! ¼ 0:1m. The numerical results
approach the velocity shift in the weak-field limit with very
good accuracy and also yield reliable results for larger field
strengths.

FIG. 3 (color online). Benchmark test: velocity shift prefactor
ak in a homogeneous magnetic field for the kmode at orthogonal

incident 
 ¼ �=2 and for ! ¼ 0:1m. For weak fields, ak ap-

proaches the analytical result 1=90 ( � 0:01111), see Eq. (19).
Also for larger fields, ak follows the analytically known non-

perturbative result [17].

2In the case of a Minkowskian electric field, imaginary
Euclidean components would have to be inserted into the world-
line integrals, see [55].
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V. POLARIZATION TENSOR IN A SPATIALLY
INHOMOGENEOUS MAGNETIC FIELD

Let us now explore new vacuum polarization effects in
inhomogeneous fields, revealing the nonlocal nature of
fluctuation-induced processes. For this, we use a magnetic
background pointing into, say, e1 direction, consisting of a
constant magnetic field �B superimposed with a sinusoidal
oscillation varying in e3 direction with amplitude B1 and
wavelength �B,

B ðx3Þ ¼
�
�Bþ B1 cos

�
2�

�B

x3

�	
e1: (20)

A similar electric field has already been used to analyze
the role of spatial inhomogeneities in Schwinger pair pro-
duction [55]. This field configuration can be viewed as a
rough approximation to a realistic strong and broad laser
pulse in standing wave mode superposed with higher
harmonics.

For the worldline simulation, we use the corresponding
gauge potential

A2 ¼ � �Bx3 � B1�B

2�
sin

�
2�

�B

x3

�
; (21)

which is numerically convenient, as it depends only on one
spatial coordinate.

As a relevant observable, we compute the local velocity
shift �vðx3Þ for a photon propagating along the e2 direc-
tion from the local polarization tensor. The geometry of our
configuration is sketched in Fig. 4. As the magnetic field is
homogeneous in e2 direction, the photon momentum is
conserved k1 þ k2 ¼ 0 for k1 � k2 � e2. Hence, setting
k ¼ k1 ¼ �k2 and inserting (21) into the local polarization

tensor (13), we can determine ���½k; x3;CM;A�, which is

diagonalized by the same polarization eigenmodes ��;k=?
as the in constant-field case. The local phase velocity shifts
then are computed analogous to Eq. (17),

v2
k=?ðx3;CMÞ ¼ 1� �k;?ðx3;CMÞ

k2
¼ ð1� �vk=?ðx3;CMÞÞ2;

(22)

where �k;?ðx3;CMÞ are the local eigenvalues of the polar-

ization tensor.
In our computation, we use e �B ¼ 0:2m2 and B1 ¼ 0:5 �B.

Figure 5 shows a contour plot of the local velocity shift
as a function of the oscillation wavelength �B and the
normalized coordinate x3;CM=�B for the k -mode; the latter

corresponds to the phase inside the oscillation period,� ¼
2�x3;CM=�B. For large �B when the field becomes slowly

varying with respect to the Compton wavelength �Bm�1,
the local velocity shifts approach the constant field val-
ues as expected. A ‘‘locally-constant-field’’ approximation
becomes reliable in this limit. By contrast, if the two
characteristic length scales become similar �Bm ’ 1 the
oscillating structure of the magnetic field starts to become
washed out in the local velocity shift. The propagating
photon undergoing virtual electron-positron loops with an
inherent length scale of the Compton wavelength ‘‘sees’’ a
field averaged over this length scale. For a rapidly oscillat-
ing field, �Bm � 1, the field oscillations are completely
washed out and become invisible in the velocity shift.
In our present example, the limiting velocity shift in this
rapid-oscillation limit corresponds precisely to that in-
duced by the background field �B, �v� �B2. This is in

FIG. 4 (color online). Sketch of the geometry of our configura-
tion with an inhomogeneous magnetic field Bðx3Þ (arrows and
corrugated surface) with a constant magnetic component �B in e1
direction and a spatial variation along the e3 direction with field
amplitude B1 also pointing into the e1 direction. The photon
(wiggly line) propagates perpendicular to the field in e2 direction.
The fluctuation-induced interaction between the photon and the
magnetic field is represented by a Feynman diagram (black ellipse).

FIG. 5 (color online). Contour plot of the phase velocity shift
�v for an incoming k -photon at orthogonal incident with
respect to the direction of the external field (
 ¼ �

2 ). The

inhomogeneous field has a sinusoidal variation along the e3
direction, cf. Equation (20), with e �B ¼ 0:2m2 and B1 ¼ 0:5 �B.
The phase velocity is plotted horizontally versus the oscillation
wavelength �B and vertically versus the normalized position
x3;CM=�B of the photon relative to the oscillation phase. Lines of

constant absolute position x3;CM ¼ 0:5, 1.0, 2.0 in units of mass

m for varying wavelength �B are indicated as dotted, solid and
dashed lines.
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line with the interpretation that the averaging arises from
the nonlocal nature of the fluctuations. For instance,
naively averaging over the constant-field velocity shift,
depending quadratically on B, would give a different
(and wrong) averaging result, �v≁ ð �B2 þ 1

2B
2
1Þ.

An interesting parameter regime occurs at small �B, i.e.,
for rapidly varying background field, see Fig. 6. In Fig. 7,
we show horizontal slices of the contour plot Fig. 6 at the
ordinate values x3;CM=�B ¼ 0, 0.25, 0.5, corresponding to

different positions in the phase of the variation �=� ¼
2x3;CM=�B ¼ 0, 0.5, 1, as a function of the variation length
�B. For large �B, the velocity shifts approach their
constant-field limits with a clear ordering from large to
small background field from top to bottom. This is in
accordance with expectations from a locally-constant-field
approximation becoming applicable for large �B.

By contrast, this ordering is lost at small �B, where
the curves show a characteristic oscillation pattern, see
inlay of Fig. 7. Depending on the value of �B, the velocity
shift in a local minimum of the field (red stars, �=� ¼ 1)
can become larger than that in a local maximum (dots,
�=� ¼ 0), cf. inlay of Fig. 7 at around �B ’ 0:65.

We interpret this phenomenon as a consequence of
the local averaging property of the quantum fluctuations
on scales of the Compton wavelength m. In this way, the
local velocity shift in a minimum of the field can receive
dominant contributions from the nearby maxima if they
are significantly probed by the quantum fluctuations on
the scale 1=m. Conversely, the local velocity shift in a
maximum of the field can receive dominant contributions
from the nearby minima. This can lead to an inversion of
the hierarchy of the velocity shifts with respect to the
local background field. Our data is compatible with further
oscillations setting in at even smaller values of �B ’ 0:25,
which would correspond to further minima or maxima
entering the local fluctuation average.

FIG. 6 (color online). Contour plot with the same physical
parameters as in Fig. 5 but with a higher resolution in the region
of small �B. The y axis is now given in terms of the phase in
units of �, �=� ¼ 2xCM=�B. The straight lines are cuts at � ¼
0:15, 0.4, 0.6, which we discuss in Fig. 8.

FIG. 7 (color online). Phase velocity shift �vk for different
positions in the phase of the variation � ¼ 2�x3;CM=�B as a

function of the variation length �B. The curves correspond to
horizontal slices of the contour plot Figs. 5 and 6 at the ordinate
values �=� ¼ 2xCM=�B ¼ 0, 0.5, 1. For large �B, the velocity
shifts approach their constant-field limits with a clear ordering
from large to small background field from top to bottom (dots at
field maximum to stars at minimum field). By contrast, this
ordering is modified at small �B in various patterns depending
on the value of �B (see inlay). The straight lines in the inlay at
�B ’ 0:25, 0.65 mark the turning points.

FIG. 8 (color online). Normalized phase velocity shift �vk for
different field inhomogeneities �B ¼ 0:15, 0.40, 0.6, 2.0 as a
function of the phase of the field variation �=� ¼ 2x3;CM=�B.

The curves correspond to vertical slices of the contour plot Fig. 6
at the given abscissa values for �B. The picture shows the
expected 2�-periodicity of the phase velocity with respect to
�. For large �B ¼ 2 (stars), the velocity shift is in phase with the
background field � cos� as expected from a locally-constant-
field approximation. For �B ¼ 0:4, 0.6 (diamonds, triangles), the
velocity shift oscillates out of phase� cosð���0 with�0 ’ �.
For even smaller variation length �B ¼ 0:15, the oscillation is
approximately in phase again � cos�.
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This becomes visible in vertical slices of the contour plot
Fig. 6 at the abscissa values �B ¼ 0:15, 0.4, 0.6, and 2 as a
function of the phase of the field variation�¼2�x3;CM=�B.

In Fig. 8, we show the varying part of the velocity shift
normalized by the maximum oscillation amplitude A. We
observe the expected 2�-periodicity of the phase velocity
with respect to �. Most importantly, the oscillation is
shifted by an offset �0 ¼ � for small wavelengths, e.g.,
�B ¼ 0:4, 0.6, compared to larger �B ¼ 2 where the veloc-
ity shift tends to approach the locally-constant-field limit.
This implies that velocity shift minima occur at field max-
ima and vice versa in the range 0:25 & �B & 0:65. For even
more rapid field oscillations �B & 0:25, our data is compat-
ible with the velocity shift being in phase with the external
field again. This goes hand in handwith our interpretation in
terms of fluctuation averages. The fullMonteCarlo data can
be parametrized by a simple fit,

fðxÞ ¼ A cos

�
2�

xCM
�B

��0

�
þ �v0: (23)

The fitting results are given in Table I.
A similar phenomenon had already been observed for

the case of pair production in inhomogeneous fields [55];
however, due to the exponential dependence of pair pro-
duction on the background field, this averaging phenome-
non was much more pronounced in this case. In fact, the
amplitude of the oscillations is on the order of our statis-
tical error bars for the velocity shift data. However, fitting
the data at fixed �B to sinusoidal fit functions translates into
a correspondingly large error for the amplitude, but a
significantly small error for the phase of the oscillation,
see Table I. The size of our statistical errors can also be
estimated from the deviations from symmetry about the
horizontal x3;CM=�B ¼ 0:5 axis in Fig. 5 or from antisym-

metry about the horizontal � ¼ 0:5 axis in Fig. 6. This
latter antisymmetry also guarantees that the exact result for
the phase velocity shift at � ¼ 0:5 should not depend on
�B; the slight dependence of the Monte Carlo data for the
� ¼ 0:5 curve (diamonds) on �B, hence is a measure for
our statistical error.3

As these velocity shifts correspond to shifts of the local
refractive indices this new phenomenon has a direct con-
sequence for the self-focussing property of the quantum
vacuum [58]: in the locally-constant-field limit (a pure
Heisenberg-Euler-type calculation), the refractive index
increases with increasing field strength. This implies that
photons are dragged into local maxima of the field
strength. This even enhances the field strength at local
maxima, thus giving rise to self-focussing properties. Our
observation in turn predicts that this self-focussing natu-
rally terminates on the scale of the Compton wavelength. If
field maxima are self-focussed down to a critical scale
�cr;1, field maxima with nearby minima can become local

minima of the velocity shift (and thus minima of the local
refractive index) such that the quantum vacuum becomes
defocussing again. From the inlay of Fig. 7, we estimate
this critical scale to be near �cr;1 ’ 0:65 in units of the

Compton wavelength. This critical scale provides a natural
limit to the self-focussing property of the quantum vac-
uum. As our data is compatible with an in-phase depen-
dence of the refractive index on the field inhomogeneities
for �B & 0:25, the quantum vacuum may become self-
focussing again on this shorter variation scale. But this
regime is also expected to terminate at another critical
scale �cr;2 where the velocity shift may run out of phase

again. Our data is compatible with �cr;2 & 0:05.

VI. CONCLUSIONS

Based on the successful worldline approach to perturba-
tive correlation functions, we have developed numerical
Monte Carlo techniques for the computation of the vacuum
polarization tensor in inhomogeneous background fields
for scalar QED. These techniques generalize earlier meth-
ods which have been frequently applied to effective action
or quantum energy computations. The new challenge in the
case of correlation functions is the appearance of further
scales provided by the incoming and outgoing momenta.
The stability of the numerical algorithm also originates

in the fact that it satisfies the Ward identity exactly and
operates on the level of renormalized quantities. We have
explicitly demonstrated that the algorithm can also be used
to determine correlation functions as a function of
Minkowski-valued momenta and fields, even though

TABLE I. Fit parameters deduced from the numerical results of Fig. 8 using a least-squares fit to Eq. (23). Starting from large �B

(slowly varying field), the velocity shift is in phase with the external field, �0 ’ 0. For �B ¼ 0:4, 0.6, we observe a jump of the phase
by �0=� ’ 1. For an even smaller variation scale �B ¼ 0:15 the phase �0 goes back to values compatible with zero (the deviations
from zero arise from the comparatively large signal to noise ratio of our data for small �B; this is also reflected in the large error bars
for the amplitude A for smaller �B).

variation length �B amplitude A phase shift �0=� constant velocity shift �v0

0.15 7:36� 10�9 � 2:5� 10�9 0:31� 0:30 2:62� 10�6 � 3:4� 10�8

0.40 1:61� 10�8 � 4:8� 10�8 1:09� 5:4� 10�1 2:62� 10�6 � 5:1� 10�8

0.60 8:66� 10�9 � 3:4� 10�8 1:13� 6:8� 10�1 2:62� 10�6 � 5:1� 10�8

2.00 8:52� 10�7 � 2:1� 10�7 0:02� 3:0� 10�2 2:74� 10�6 � 3:8� 10�8

3Of course, these (anti-)symmetries could be implemented
explicitly in the Monte Carlo computation by generating corre-
spondingly symmetric ensembles.
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stability is expected to become an issue for increasing
Minkowski momenta or dominating electric field
components.

We have verified our algorithm with the analytically
known cases of the vacuum polarization tensor for off-shell
momenta and the polarization tensor in homogeneous
fields using the magnetically induced light-cone deforma-
tions as an observable. In these cases, the algorithm is
capable to reach a precision on the percent level at mod-
erate numerical cost.

Furthermore, we have studied for the first time light
propagation in a spatially varying magnetic field. For small
variations of the field compared to the Compton wave-
length, the local derivative expansion (or locally-con-
stant-field approximation) is well applicable as expected,
such that the vacuum polarization tensor quickly ap-
proaches the constant-field limit.

For rapidly varying fields, the vacuum-magnetic refrac-
tive indices can exhibit a nonmonotonic dependence on the
local field strength. This new behavior can geometrically
be understood in the worldline picture, as the worldlines
and their spatial extent probes the nonlocal structure of
quantum field theory. Local values of the refractive indices
can receive dominant contributions from nearby maxima
or minima of the field strength. This inherent averaging
mechanism induces a smearing and even nonmonotonical
features of the refractive indices. For the properties of light
propagation, this can provide a natural limit on the self-
focussing property of the quantum vacuum.

Our present study represents a first step into the largely
unknown territory of quantum correlation functions in
inhomogeneous fields. Even though we have concentrated
on the two-point function in the present work, we expect
that our algorithmic strategy can rather straightforwardly
be generalized to higher-order correlation functions. Also a
generalization to spinor QED is in principle straightfor-
ward and merely requires the inclusion of the worldline
spin factor involving a numerically moderately expensive
path-ordering prescription.
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APPENDIX A: VALIDITY CONTROL
OF THE NUMERICAL ALGORITHM

The worldline Monte Carlo method has proven its effi-
ciency and accuracy in many examples in the context of
effective action and quantum energy computations.

Generically, the convergence is very satisfactory and scales
with a typical Monte Carlo 1=

ffiffiffiffiffiffi
nL

p
dependence, where nL is

the number of configurations, i.e., worldlines in this case.
Precision with an error on the 1% level can be achieved
with moderate numerical cost. In the present case, it is
worthwhile to critically reexamine the quality and effi-
ciency of the algorithm, as the calculation of correlation
functions goes along with further technical requirements.
Most prominently, the physical observables need to be
computed with Minkowski-valued momenta which techni-
cally is a potential source of numerical instability. This is
because the Euclidean phase factors � expðik�x�Þ receive
real exponential contributions for Minkowskian momenta
k0 ! i!. Also, the frequency and spatial momentum de-
pendence introduces further scales which can interfere
with the scale of inhomogeneity.
All error estimates in this work are based on the

Jackknife method. We have checked explicitly, that this
error estimate using the same random number seed yields
results equivalent to an error estimate derived from a set of
ensembles created with different random number seeds.
In Fig. 9, we compare the relative error for the velo-

city shift �vk in percent as a function of the number of

worldline configurations nL for various parameters. The
smallest error is observed for a purely Euclidean constant-
field calculation (dots). This type of calculation is closest
to conventional effective action and quantum energy

FIG. 9 (color online). Relative error (jackknife estimate) for
the velocity shift �v in percent as a function of nL for a
Euclidean vs. Minkowskian calculation including its dependence
on the field inhomogeneity. We have used a worldline ensemble
with N ¼ 1000 points per loop. The plot shows a comparison
between the Euclidean constant-field case with e �B=m2 ¼ 0:2
and a Minkowskian calculation for the same constant-field case
(diamonds). Two Minkowskian calculations for the inhomoge-
neous field of Sec. V with wavelengths �B ¼ 1:0 (stars) and
�B ¼ 7:0 (triangles) are also shown. Because of the stronger
fluctuations in the Minkowskian case, all Minkowskian calcu-
lations show larger relative errors. The dependence of the error
on the background inhomogeneity is comparatively minor. For
illustration, also a line �1=

ffiffiffiffiffiffi
nL

p
is shown reflecting the expected

error depletion for Monte Carlo calculations.
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computations; however, in the present case it does not
describe a physical observable. The corresponding physi-
cal Minkowskian calculation for the constant-field case
(diamonds) shows an error increase of roughly an order
of magnitude. This implies that an error on the level of a
typical Euclidean calculation requires 2 orders of magni-
tude more statistics.

The interference of the error with the external scales is
also illustrated in Fig. 9, where we determine the relative
error for the velocity shift�v in percent as a function of nL
and its dependence on the field inhomogeneity for two
different values �B parameterizing the field inhomogeneity.

Even though we observe some dependence on the field
inhomogeneity leading to slightly larger errors, the main
effect on the error clearly arises from the necessity to
perform Minkowski-valued calculations.
Figure 9 also depicts a straight line exhibiting a�1=

ffiffiffiffiffiffi
nL

p
dependence in this double-log plot. This indicates that the
numerical error decreases with increasing number of
worldlines nL as �1=

ffiffiffiffiffiffi
nL

p
, as expected. Even for these

perturbatively small Minkowski-valued quantities, errors
below the 10% level are achievable at manageable numeri-
cal cost.
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