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I. INTRODUCTION

The study of quantum Hall effect in higher (larger then
two) dimensions has been of some interest in the last
several years, following the analysis by Zhang and Hu [1].
They considered the Landau problem for charged fermi-
ons on S4 with a background magnetic field which is
SUð2Þ instanton. A number of papers have extended the
original idea in many aspects (see e.g. [2] and references
therein). One of such extensions concerns the analysis of
quantum Hall effect on complex projective spaces CPn

[3,4]. The corresponding bulk and edge actions were
derived [3]. In addition, in [4] it has been shown that
the bulk contribution coincides with the Chern-Simons
action.

The geometry of the CPn space is quite simple—this is
just the coset SUðnþ 1Þ=UðnÞ. For anyG=H coset one has
at hands the analogue of a constant background field—the
H-valued connection on G=H. Thus, the case of CPn

allows for both Abelian and non-Abelian background fields
[5]. Moreover, the system describing the motion of parti-
cles over the CPn manifold could be easily extended to
possess N ¼ 4 supersymmetry [6–8] in the absence of
background fields. Thus, it seems to be a proper task to
include the coupling with the background gauge fields in
the N ¼ 4 supersymmetric system on CPn. That is just
what we are doing in the present paper. We explicitly
construct theN ¼ 4 supercharges and Hamiltonian which
describe the motion of a particle over the CPn manifold in
the presence of backgroundUðnÞ fields. The corresponding
gauge potential is proportional to the UðnÞ-connection on
SUðnþ 1Þ=UðnÞ. Surprisingly, this form of the gauge po-
tential is dictated by N ¼ 4 supersymmetry. It turns
out that N ¼ 4 supersymmetry demands the presence of
additional pure potential terms in the Hamiltonian. In the
simplest case of the CP1 system this potential is just a
harmonic oscillator one.

The paper is organized as follows. In Sec. II we review
the N ¼ 4 supersymmetric mechanics on CPn. The
supercharges and the Hamiltonian are derived in Sec. III.
We conclude our work with a short discussion.

II. CPn MECHANICS WITH N ¼ 4
SUPERSYMMETRY

The construction of N ¼ 4 supersymmetric mechanics
on CPn manifold1 is almost trivial. Indeed, if we take n
complex N ¼ 4 chiral superfields Z�ð�i; ��iÞ, �Z�ð�i; ��iÞ
defined in d ¼ 1, N ¼ 4 superspace Rð1;4Þ ¼ ft; �i; ��ig,
i ¼ 1, 2 and obeying conditions

DiZ� ¼ 0; �Di
�Z� ¼ 0; � ¼ 1 . . . n; (2.1)

where N ¼ 4 covariant derivatives are defined as

fDi; �Djg ¼ 2i�i
j@t; (2.2)

then the superfields action S

S ¼
Z

dtd4� log½1þ Z� �Z�� (2.3)

does all the job, completely defining the model. The
explicit form of Lagrangian density in (2.3) immediately
follows from invariance of the action with respect to
the SUðnþ 1Þ group, which is realized on the superfields
Z, �Z as

�Z� ¼ a� þ Z�ðZ� �a�Þ; � �Z� ¼ �a� þ �Z�ða� �Z�Þ;
(2.4)

where a�, �a� are the parameters of the coset SUðnþ 1Þ=
UðnÞ transformations.
If we instead will not fix the integrand in the action

S (2.3) leaving it to be an arbitrary function LðZ; �ZÞ, then
the resulting system will describe a supersymmetric me-
chanics on an arbitrary n-dimensional Kähler manifold
(see e.g. [6–8]). In the case of one superfield Z, �Z such a
system has been firstly constructed in [9]. Recently, super-
symmetric mechanics on complex manifolds has been
considered in [10].
To fix our notations and for completeness, let us shortly

discuss the Hamiltonian description of the N ¼ 4 super-
symmetric CPn mechanics which directly follows from

1Let us stress that CPn is a geometry of target space, while all
fields depend on time t only.
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(2.3) after passing to the components and removing the
auxiliary fields.

So, our basic ingredients are bosonic variables fz�; �z�g
which parameterize the coset SUðnþ 1Þ=UðnÞ and fermi-
onic variables fc �

i ;
�c i
�g:

z� ¼ Z�j; �z� ¼ �Z�j;
c �

i ¼ �DiZ
�j; �c i

� ¼ Di �Z�j;
(2.5)

where ð. . .Þj denotes �i ¼ ��i ¼ 0 limit. In what follows we
will pay a great attention to UðnÞ properties of our model.
That is why we decided to keep the corresponding indices
�, � of our fields (2.5) in a proper position. For the
SUðnþ 1Þ group we will fix the commutation relations
to be

i½R�; �R
�� ¼ J�

�;

i½J��; J�
�� ¼ ��

�J�
� � ��

�J�
�;

i½J��; R�� ¼ ��
�R� þ ��

�R�;

i½J��; �R�� ¼ ���
� �R� � ��

� �R�:

(2.6)

Thus, the generators R�, �R
� belong to the coset SUðnþ1Þ=

UðnÞ, while the J�
� form UðnÞ. In addition we choose

these generators to be antihermitian ones

ðR�Þy ¼ � �R�; ðJ��Þy ¼ �J�
�: (2.7)

After introducing the momenta for all our variables and
passing to Dirac brackets we will obtain the following set
of relations2

fc �
i ;

�c j
�g ¼ i�j

i ðg�1Þ��;

fp�; �p
�g ¼ �iðg��g�

� þ g�
�g�

�Þ �c i
�c

�
i ;

fp�; c
�
i g ¼ � 1

ð1þ z � �zÞ ½�z�c
�
i þ ��

�c
�
i �z��;

f �p�; �c i
�g ¼ � 1

ð1þ z � �zÞ ½z
� �c i

� þ ��
�z

� �c i
��:

(2.8)

Here, the CPn metric g�
� has the standard Fubini-Study

form

g�
� ¼ 1

ð1þ z � �zÞ
�
��
� � �z�z

�

ð1þ z � �zÞ
�
; z � �z � z� �z�:

(2.9)

Now, it is not too hard to check that the superchargesQi,
�Qi have the extremely simple form [6–8]

Qi ¼ �p� �c i
�; �Qi ¼ c �

i p�: (2.10)

They are perfectly anticommuting (in virtue of (2.8)) as

fQi; �Qjg ¼ i�i
jH; fQi;Qjg ¼ f �Qi; �Qjg ¼ 0; (2.11)

where the Hamiltonian H reads3

H ¼ �p�ðg�1Þ��p� þ 1

4
ðg��g	

�

þ g�
�g	

�Þ �c �i
�c i
�c

	jc �
j : (2.12)

In principle, one may modify the supercharges and
Hamiltonian by including potential terms [7,8], but here
we will be interested in including the interaction with
non-Abelian background fields which looks in itself rather
complicated. Therefore we will ignore such possible mod-
ifications in what follows.
Finally, we will need the explicit expressions for the

vielbeins e�
� and UðnÞ-connections !�

� on the CPn

manifold, which we choose as [11]

e�
� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z � �zp
�
��
� � �z�z

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z � �zp ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z � �zp Þ
�
;

(2.13)

!�
� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z � �zp ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z � �zp Þ

�
�
��
� � �z�z

�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z � �zp ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z � �zp Þ
�
: (2.14)

With our definition of the SUðnþ 1Þ algebra (2.6), these
quantities enter the standard Cartan forms as

g�1dg ¼ dz�e�
�R� þ �R�e�

�d�z�

þ iJ�
�ðz�!�

�d�z� � dz�!�
� �z�Þ; (2.15)

where

g ¼ ex
�R�þ �x� �R�

; and z� � tan
ffiffiffiffiffiffiffiffiffi
x � �xp

ffiffiffiffiffiffiffiffiffi
x � �xp x�: (2.16)

III. GAUGE FIELDS: CONSTRUCTION

It is curious, but the simplest form of the supercharges
(2.10) does not help in the coupling with background gauge
fields. One may easily check that the standard coupling by
shifting bosonic momenta in supercharges does not prop-
erly work. Our idea is to introduce the coupling simulta-
neously with all currents of the SUðnþ 1Þ and/or SUð1; nÞ
groups. Thus, let us introduce the isospin currents spanning
SUðnþ 1Þ and/or SUð1; nÞ, respectively

fR�; �R
�g ¼ �AJ�

�;

fJ��; J�
�g ¼ ��

�J�
� � ��

�J�
�;

fJ��; R�g ¼ ��
�R� þ ��

�R�;

fJ��; �R�g ¼ ���
� �R� � ��

� �R�:

(3.1)

2As usual, the bosonic momenta are shifted by c � �c terms in
this basis.

3The suð2Þ indices are raised and lowered as Ai ¼ "ijA
j,

Ai ¼ "ijAj with "12 ¼ "21 ¼ 1.

STEFANO BELLUCCI, SERGEY KRIVONOS, AND ANTON SUTULIN PHYSICAL REVIEW D 84, 065033 (2011)

065033-2



The coefficient A ¼ �1 in the first line corresponds to the
choice of SUð1; nÞ or SUðnþ 1Þ, respectively. It will be
clear below, why we are going to consider both these cases.

Now, we are ready to write the Ansatz for the super-
charges4

Qi ¼ �p� �c i
� � z�J�

�h�
� �c i

� þ c i�f�
�R�;

�Qi ¼ c �
i p� þ c �

i h�
�J�

� �z� þ �R�f�
� �c i�:

(3.2)

Here, h�
� and f�

� are arbitrary, for the time being,
functions depending on the bosonic fields z�, �z� only.
Moreover, due to the explicit UðnÞ symmetry of our

construction, which we are going to keep unbroken, one
may further restrict these functions as

h�
� ¼ h1�

�
� þ h2 �z�z

�; f�
� ¼ f1�

�
� þ f2 �z�z

�;

(3.3)

where the scalar functions h1, h2, f1, f2 depend now on
x ¼ z � �z only.
The supercharges (3.2) have to obey the standard

N ¼ 4 Poincaré superalgebra relations (2.11). There-
fore, the closure of superalgebra is achieved if the follow-
ing equations on functions in (3.3) are satisfied

fQ;Qg ¼ 0 )
8><
>:
f01 ¼ �ðf1h1 þ xf1h2Þ; f02 ¼ �ð2f2h1 þ f1h2 þ 2xf2h2Þ;

h01 ¼ �ðh21 � h2 þ xh1h2Þ; f2 ¼ �f1h1

fQi; �Qjg ¼ i�i
jH ) h02 ¼

1

2
ðAf21h21 þ h31Þ; h2 ¼ � 1

2
h21; Af21 ¼ ð2h1 � xh21Þ;

(3.4)

where the derivatives are taken with respect to x.
The simplest, almost trivial solution of the Eqs. (3.4)

reads

f1 ¼ f2 ¼ 0; h1 ¼ 1

z � �z ; h2 ¼ � 2

ðz � �zÞ2 : (3.5)

The functions h1, h2 in (3.5) have a singularity at
ðz; �zÞ ! 0. Moreover, they have no any geometric meaning
within CPn geometry. Thus, without R, �R terms in the
Ansatz (3.2) the reasonable interaction can not be
constructed.

In contrast, with nonzero f1, f2 functions the solution
of (3.4) is fixed to be

f1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Az � �zp ;

f2 ¼ � A

ð1þ Az � �zÞð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Az � �zp Þ ;

h1 ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Az � �zp ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Az � �zp Þ ;

h2 ¼ � 1

2ð1þ Az � �zÞð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Az � �zp Þ2 :

(3.6)

Thus, we see that the matrix-valued function f�
� per-

fectly coincides with the vielbeins for the CPn manifold
(2.13) if we choose A ¼ 1. The background gauge field
h�

� is the part of the UðnÞ-connection (2.14) for CPn. It
is worth to note that this field is identical to the one
constructed in [13] as the solution of the Bogomol’nyi

equation for the Tchrakian’s type of self-duality relations
in UðnÞ gauge theory [14,15].
The last step is to write the Hamiltonian

H ¼ ð �pg�1pÞ þ ð �pg�1hJ �zÞ � ðzJhg�1pÞ
� ð �Rfg�1fRÞ � ðzJhg�1hJ �zÞ
þ i

�
1� A

ð1þ z � �zÞð1þ Az � �zÞ
�
ððz �c Þið �Rf �c Þi

� ðc fRÞiðc �zÞiÞ � iAðc ifJf �c iÞ
þ 1

4
ðg��g	

� þ g�
�g	

�Þ �c �i
�c i
�c

	jc �
j : (3.7)

Here, we used concise notations—all indices in parenthesis
are in the proper positions and they are converted from
top-left to down-right, e.g. ðc �zÞi ¼ c �

i �z�, etc.
This Hamiltonian commutes with all our supercharges,

as it should be. Its bosonic part (the first line in (3.7))
contains the terms describing the interaction with UðnÞ
background fields and a specific potential term. The pa-
rameter A takes two values A ¼ �1, according with the
algebra (3.1). If we take A ¼ 1, so the algebra of currents
of the internal group is SUð1; nÞ, then the Hamiltonian
drastically simplified to be

HA¼1 ¼ ð �pg�1pÞ þ ð �pg�1hJ �zÞ � ðzJhg�1pÞ
� ð �RRÞ � ðzJhg�1hJ �zÞ � iðc ifJf �c iÞ
þ 1

4
ðg��g	

� þ g�
�g	

�Þ �c �i
�c i
�c

	jc �
j : (3.8)

Clearly, the R, �R dependent term in the Hamiltonian (3.8)
can be rewritten through the Casimir operator K of
SUð1; nÞ algebra

4This Ansatz is a direct generalization of those supercharges
for the SUð2Þ case, which were explicitly constructed within the
superspace approach in [12].
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K ¼ �R�R� � 1

2
J�

�J�
� þ 1

2ðnþ 1Þ J�
�J�

�: (3.9)

Thus, the Hamiltonian depends only on UðnÞ currents J��

and SUð1; nÞ Casimir operator (3.9).
The Uð1Þ gauge potential presented in (3.2) and (3.8),

has the standard form

A Uð1Þ ¼ i
_z �z�z _�z

2ð1þ z � �zÞ : (3.10)

In the simplest case of CP1 we have only this gauge
potential in the theory, while the scalar potential term
acquires the form5

V CP1 ¼ � �R�R� � z � �z
4

J2: (3.11)

Let us remind that we choose the matrix-valued operators
�R, R, J to be antihermitian (2.7). Thus, the potential (3.11)
is positively defined.

Finally, we would like to say a few words about the
explicit realization of the isospin groups SUðnþ 1Þ and/or
SUð1; nÞ (3.1). The common way to involve the isospin
variables in the supersymmetric theories is to introduce the
set of semidynamical bosonic variables—harmonics and
construct the currents from them (see e.g. [19] and refer-
ences therein). The same strategy could be applied in the
present model too.

IV. CONCLUSION AND DISCUSSION

In the present paper we have constructed a N ¼ 4
supersymmetric extension of mechanics describing the
motion of a particle over CPn manifold in the presence
of background UðnÞ fields. The gauge potential is propor-
tional to the UðnÞ-connection on SUðnþ 1Þ=UðnÞ. Such a
type of background gauge field has been known for quite a
long time in a purely bosonic case [20]. What is really nice
is that this field appears in our system automatically, as a
result of imposing N ¼ 4 supersymmetry. Moreover, in
addition to gauge fields N ¼ 4 supersymmetry demands
additional potential terms to be present in the Hamiltonian.

In the simplest case of the CP1 system, this potential is just
a harmonic oscillator one.
One of the most unexpected features of the present

model is a strange interplay between the isospin group
which our background gauge fields are coupled to and
the form of these fields. It turns out that the standard
SUðnþ 1Þ=UðnÞ UðnÞ-connection appears as a gauge
fields potential only in the case when isospin group is
chosen to be SUð1; nÞ. Alternatively, the choice of the
SUðnþ 1Þ group for the isospin variables gives rise to a
UðnÞ-connection on the SUð1; nÞ=UðnÞ group. At any rate,
both cases are compatible with N ¼ 4 supersymmetry.
Another interesting peculiarity of our model is the

presence of the isospin variables on the whole SUðnþ 1Þ
(or SUð1; nÞ) group, despite the fact that only UðnÞ back-
ground fields appear in the Hamiltonian. Again, this situ-
ation is not new. The same effect has been noted in the
recently constructed N ¼ 4 supersymmetric mechanics
coupled to non-Abelian gauge fields [21–26].
One of the possible immediate applications of the con-

structed model is the analysis of the role the additional
fermionic variables play in the quantum Hall effect on CPn

[3,4,18]. In this respect it could be important that N ¼ 4
supersymmetry insists on the simultaneous appearance of
the gauge fields on Uð1Þ and SUðnÞ with a proper fixed
relative coefficient. The role of the special type of scalar
potential which appears due to N ¼ 4 supersymmetry
also has to be clarified.
Another interesting possibility to describe N ¼ 4

supersymmetric CPn mechanics is to replace from the
beginning the linear chiral supermultiplets by the nonlinear
ones [27]. This case is under investigation at present.
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